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FingerDTA: A Fingerprint-Embedding Framework for Drug-Target

Binding Affinity Prediction

Xuekai Zhu, Juan Liu*, Jian Zhang, Zhihui Yang, Feng Yang, and Xiaolei Zhang

Abstract: Many efforts have been exerted toward screening potential drugs for targets, and conducting wet
experiments remains a laborious and time-consuming approach. Artificial intelligence methods, such as Convolutional
Neural Network (CNN), are widely used to facilitate new drug discovery. Owing to the structural limitations of CNN,
features extracted from this method are local patterns that lack global information. However, global information
extracted from the whole sequence and local patterns extracted from the special domain can influence the drug-
target affinity. A fusion of global information and local patterns can construct neural network calculations closer
to actual biological processes. This paper proposes a Fingerprint-embedding framework for Drug-Target binding
Affinity prediction (FingerDTA), which uses CNN to extract local patterns and utilize fingerprints to characterize
global information. These fingerprints are generated on the basis of the whole sequence of drugs or targets.
Furthermore, FingerDTA achieves comparable performance on Davis and KIBA data sets. In the case study of
screening potential drugs for the spike protein of the coronavirus disease 2019 (COVID-19), 7 of the top 10 drugs
have been confirmed potential by literature. Ultimately, the docking experiment demonstrates that FingerDTA can find

novel drug candidates for targets. All codes are available at http:/lanproxy.biodwhu.cn:9099/mszjaas/FingerDTA.git.
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1 Introduction

In vivo drug discovery usually involves target-based
screening, phenotypic screening, modification of natural
substances, and biologic-based approaches!!!. These
experiments are time-consuming, laborious, and costly.
Virtual pre-screening of potential drug candidates can
guide subsequent wet experiments. Compared to the
traditional blind screening process, the pre-screening
process uses high throughput techniques before the
detailed experimental inspection. Virtual pre-screening
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can minimize costs and improve the success rate
of drug discovery. Three kinds of strategies exist
for virtual pre-screening as follows. (1) Strategies
based on a high throughput assay system. Bao et
al.l’ used green fluorescent protein to screen nuclear
translocation inhibitors for cancer treatment. Wang et
al.’! developed a high throughput flow cytometry to
support antibody discovery without tedious sample
preparation. Keusgen!*! reviewed new drug discovery
approaches of screening through biosensors. These
methods allow for small, straightforward, and
comparable wet experiments. (2) Strategies based on
simulated molecular docking. Gupta et al.!’! explored
inhibitors of Plasmodium falciparum’s serine/threonine
protein phosphatase through molecular docking. Rasool
et al.!% explored anti-viral molecules against dengue by
simulating docking phytochemical against NS2B/NS3
proteases. Ghosh et al.”l performed structural and
physicochemical interpretation analysis on some small
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molecule structures to the COVID-19 Mpro inhibition.
These virtual pre-screening methods mimic drug-target
binding processes and minimize the time spent on
biological experiments. (3) Strategies based on drug-
target affinity prediction models. Intuitively, a high
affinity between the drug and the critical target means
that the drug can be a candidate for treating the
corresponding disease. Hakime et al.’® conducted drug-
target binding affinity prediction using Convolutional
Neural Network (CNN). Rajpura and Ngom!®! used
a support vector machine to predict drug and target
interaction which can reposition known drugs to
unknown targets. Zhou et al.l'” reviewed some drug-
target interaction models and algorithms. Modern
methods are mainly based on similarities of drug-
drug, target-target, and drug-target. Although the first
two strategies have been widely used to discover new
candidate drugs, they warrant in-depth experimental
design and verification, which is not suitable for gigantic
scale screening. Given the accumulation of diverse
omics data and the development of deep learning
technology, the third strategy has great advantages in
efficiency and cost. Recently, deep neural networks have
been applied successfully to predict drug-target binding
affinity rapidly!!!!. Accordingly, we focus on developing
a deep learning model for drug-target binding affinity
prediction in this paper.

The CNN model is a widely used deep learning
framework that can extract representative features
(hereinafter called convolutional features) from training
data. CNN models are more powerful than traditional
models based on traditional machine learning methods!®!.
However, elements in the convolutional are separated,
indicating that convolutional features are local patterns.
Resultantly, the processes of model calculation lack
global information. In the processes of in vivo drug-
target interaction, whole structure features and special
domain features can influence affinity scores. In the
actual biological compounds or proteins, some structures
are distant in sequence but near in space, such as some
transmembrane structures. Although this information
is ignored by CNN models, it remains useful for
predicting drug-target binding affinity. Furthermore,
a fusion of global information and local patterns may
help CNN models achieve better performance. This
paper presents a Fingerprint-embedding framework for
Drug-Target binding Affinity prediction (FingerDTA).
Fingerprints of drugs and targets are calculated from the
whole Simplified Molecular Input Line Entry System
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(SMILES) sequence and the whole amino acid sequence.
Global information can be extracted by some Fully
Connected (FC) layers from these fingerprints. We
combine global information with baseline CNN models
through an attention-like process that can guide the CNN
model training.

To evaluate the effectiveness of the performance of
FingerDTA, we conduct comparison experiments on
Davis!'?! and KIBA!"3! datasets. Following previous
works!® 14 experiments illustrate that FingerDTA
performs comparable results to state-of-the-art methods
on Mean Squared Error (MSE), Concordance Index (CI),
and r,%,. We also apply FingerDTA to screen drugs for
COVID-19. For the spike protein of COVID-19, 7 of the
top 10 drugs have been confirmed potential by literature,
which validates the effectiveness of FingerDTA. This
finding confirms that FingerDTA can screen potential
drugs for COVID-19 or other special targets.

2 Methodology

2.1 Overview

This section describes the details of FingerDTA. As
shown in Fig. 1, the amino acid sequence of proteins
and SMILES sequence of drugs are used as input.
First, protein and drug are encoded into one-hot
matrices. To characterize global information, the ECFP4
fingerprint!’ is used to represent drugs. Imitating
ECFPs fingerprints algorithm, a target fingerprint
algorithm is designed to represent proteins. These
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Fig. 1 Details of FingerDTA. Dense blocks extract local
features from one-hot matrices, and FC layers compress
fingerprints into global features. Then, FingerDTA utilizes
these features to predict drug-target affinity scores.
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fingerprints are calculated from the drug’s SMILES!!®!
strings and target amino acid strings, which are based
on enumerating the drugs’ substructures and targets’
amino acid arrangements. Second, dense blocks extract
local features from one-hot matrices, and FC layers
extract global features from fingerprints. To improve
the performance of FingerDTA, a Dense Convolutional
Block (DCB) is used to construct the CNN framework
instead of a Normal Convolutional Layer (NCL).
Third, FingerDTA fuses global and local features to
predict drug-target affinity. In addition, fingerprints
are calculated before training the affinity-predicting
model. The data preprocessing is described in the next
section. In summary, FingerDTA contains four main
parts: drug fingerprint, target fingerprint, dense blocks,
and fingerprint-embedding.

2.2 Drug fingerprint

Drug fingerprint is extracted as ECFPs!">! by
RDK:it!!”!, The main objective is to list all environments
formed by neighbor atoms and bonds. These
environments can be interpreted as a drug’s substructures.
After some iterating epochs of calculation, substructures
from the local scale to the global scale are all enumerated
as patterns. Each pattern is converted to a one-hot vector
which is defined as the fingerprint. The total process can
be summarized into three main stages:

(1) Initialization: All atoms are given an integer tag
except for hydrogen atoms within a drug according to
the Daylight atom invariants rule!'8.

(2) Iteration: All atoms are tagged and transformed into
an array as [n,tag,bandy,tag,,band,,tag,,...], in
which n means iterating epoch, fag means the integer tag
of this atom, band; means bond type between neighbor
atom, and fag; means the tag of its neighbor atom. This
array is hashed by iteratively applying the hash function
for each item. Then atoms in the same environment (or
same structure) are given the same tag by some rules
during one iteration!'3.

(3) Conversion: All unique tags produced are collected
during each iteration. Each of them represents a unique
substructure pattern. They are hashed into a one-hot 1024-
dimensions vector, which is the fingerprint of this drug.

2.3 Target fingerprint

A target sequence can be divided into many slices. Each
slice represents an amino acid arrangement. The base
conversion method is used to obtain this characteristic
number, as shown in Fig. 2. This method conveniently
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Fig. 2 Procedures for target fingerprint generation. The
source amino acid sequence is encoded into the target
fingerprint.

and intuitively converts a sequence of numbers into
a feature number. Different sets of arrangements may
have different kinds of long-range interaction. Given
the considerable number of target slices, the target
fingerprint is generated through a clustering-based
process. This process concentrates many amino acid
slices into a fixed number of critical patterns. Details are
described in four main stages:

(1) Initialization: Each amino acid is tagged to a simple
number from 1 to 20. Rare existing ones are tagged to
the same integer of 21. Slices are sequentially generated
for each target string by encoding every five numbers to
a unique number (see Fig. 2). The step length of sliding
is one. Thus, a tag array is generated for each target.

(2) Encoding: A word2vec model is trained!'”! with
the above-mentioned tag arrays through a skip-gram
algorithm with a window size of five, and slices whose
appearance count is less than three are ignored. This
model is used to encode each slice of the target to a 64-
dimension vector. Every two slices located in a similar
environment will obtain less cosine distance between
their vectors.

(3) Clustering: Slices are encoded into 1024 types by
cosine distance between every two vectors of slices with
a bottom-up hierarchical clustering method, which can
be found in the Scikit-Learn python package!*"!.

(4) All appearing slice types in a target are collected
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and mapped to a one-hot 1024-dimension vector, which
is the fingerprint of this target.

2.4 Dense convolutional blocks

To improve the predicting performance of FingerDTA,
the convolutional framework is optimized. Three DCBs
are used to construct the convolutional framework of the
CNN model. Each DCB contains four 1D convolutional
layers. In this block, each result from a convolutional
layer has the same number of channels which will be
concatenated with all outputs of the former layers in
the block through a channel dimension. All outputs
of these four layers are concatenated in the channel
dimension and activated by a Rectified Linear Unit
(ReLu)-activating layer to generate the block’s output.
Kernel sizes for these four layers in the dense block are
assigned to 1, 3, 5, and 7, respectively, and the padding
sizes are respectively 0, 1, 2, and 3. The structure of the
three DCBs is shown in Fig. 3. The output channels of
these three DCBs are 128, 256, and 96, respectively.

2.5 Fingerprint embedding

Fingerprints are first fed into two FC layers to extract
global features. As shown in Fig. 1, these two FC
layers have 512 and 96 neutral nodes, and a dropout
layer is between them. The output features contain
global information of the whole length sequence. They
are multiplied into each channel of the convolutional
output to guide the CNN model training in the global
background. This simple process introduces the global
information into convolutional features.

Let the convolutional features be
xt e R i e[1,100], j € [1,1200].

In the following contents, ¢ means channel dimension,
and i, j are the indexes in the sequence dimension (/).
d and ¢ represent drug and target.

Similarly, let the output features from two FC layers
be gf, g% € R°. The output of the attention-like process
yfl- and y! ; is calculated as

d
Xeis

‘ Xy

Fig. 3 Details and data calculation of the three DCBs. sfi
and sij are source one-hot matrics for drug and target,
respectively.

Big Data Mining and Analytics, March 2023, 6(1): 1-10

ve = x4 x g? (1)
y(t:j = xéj X gf: (2)

The final feature in the global background y¢ and y?
are calculated as

d d
= m : 3
Ye 1@.2)1(00()’”) 3)
t t
Ye lgjgalxzoo(ycj) 4)

Finally, these features are fed into three FC layers
to fit the drug-target binding affinity. The neural node
numbers for these three layers are 1024, 1024, and 512,
respectively. Between each two neighbor layers are a
dropout layer and a following ReLu-activating layer. The
final FC layer following these three layers will give an
affinity value between the drugs and the targets.

3 Experiment

3.1 Data pre-processing

Davis and KIBA data sets are the benchmarks for drug-
target binding affinity prediction. Table 1 summarizes
both data sets. Data preprocessing is performed
following Zhao et al.['* A total of 64 types of characters
exist in all SMILES sequences and 21 types of amino
acid characters in all target sequences strings. The
SMILES sequences of drugs are padded or truncated to
a length of 100 and the amino acid sequences of targets
to 1200. The matrix dimensions for both are 100 X
64 and 1200 x 21, respectively. Both fingerprints are
pre-calculated into 1024-dimension vectors.

3.2 Slice similarity analysis

Different targets have different sets of slices. For
example, different targets have different kinds of
domains, and each domain involves a slice set. The
target fingerprint is a 1024-dimension vector. Each bit of
this vector indicates a kind of slice. To validate that those
different domains contain different kinds of slices and
generate different bit sets in a target fingerprint, the slice
similarity in a domain and between different domains
is judged. The first experiment makes a statistic of the
slice similarity of domains which is calculated as Cosine
Similarity (CosSim) between two 64-dimension slice
vectors (see Eq. (5), in which two vectors are denoted as

Table 1 Summary of Davis and KIBA data sets.

Number Number Number
Data set . . .
of targets of ligands of interactions
Davis 442 68 30056
KIBA 229 2111 118254
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a and b, and k is the dimension of a vector). The target
domains and their corresponding amino acid sequences
are determined by the Pfam database. The vectors are
calculated using the word2vec model. The similarity of
slices in a domain is called the Self-Similarity (SSim),
and that between different domains is called the Cross-
Similarity (CSim). Considering the considerable number
of slices in a domain, the mean similarity of both types
is calculated to determine whether slices in different
domains are less similar than in the same domains. The
mean SSim and mean CSim are calculated as Egs. (6)
and (7). k or [ is the index of the slice in a domain. The
numbers of slices in two different domains are denoted

as n and m.
n
> agby
CosSim = —— k=1 - (5)
\/Zk=1 ak \/Zk=1 b
n—1 n
>~ CosSimg;
SSim = k=1 l=1k+1 (6)
sn(n—1)
n m
> > CosSimy;
. k=11=1
CSim = (7
nm

The second experiment compares CNN models using
DCBs or NCLs to construct the convolutional framework.
FingerDTA embeds global information extracted from
a fingerprint, which is fused with the corresponding
convolutional features similar to an attention-like
process. Furthermore, two CNN models are compared
with FingerDTA, DeepDTA®! and AttentionDTAU4I,
DeepDTA is a CNN model without an attention-like
process that performs better than traditional machine
learning models. AttentionDTA performs an attention-
like process on DeepDTA between the convolutional
features of drug and target, which can be interpreted as
the interaction between the whole target and the whole
drug. Regarding performance, FingerDTA is compared
with the above two models?'!. These models are all
deep learning models for predicting drug-target binding
affinity.

3.3 Baselines

To verify the effectiveness of our model, comprehensive
experiments were conducted on the following baselines.
DeepDTA builds the base framework, which only
utilizes sequence information. It extracts features by
CNN fully blocks!®!.
AttentionDTA averages the attention mechanism

to combine drug and protein information based on
DeepDTA, which can be treated as the interaction
between the entire target and the entire drug!'*!.

GraphaDTA mines drug data information through
modules, such as graph convolution?!.

3.4 Model settings and metrics

The immediate fingerprint features are 96-dimension
vectors to fit the dimension of convolutional features for

22] i used for model

drug and target. Adam optimizer!
training with a learning rate of 0.0001. Batch sizes for
Davis and KIBA are 64 and 128, as advised by Hakime
et al.l®! Each model is trained for 300 epochs to gain
a stable performance. The dropout rate is set to 0.5
according to conventions.

All models are evaluated by a fivefold cross validation
following Oztiirk et al.®! The evaluating metrics are
MSE, CI and r,%, index. MSE is used to measure the
difference between the predicted value and the real
affinity score. CI is utilized to measure whether the
predicted affinity scores of two pairs are in the same
order as their labels were. 12 shows the predictive
performance of the models. Furthermore, the lower value
of MSE shows the predicted scores are closer to the real
score. For CI and r2, the higher values indicate better

performance.

4 Result

4.1 Distribution of slice similarities

The mean cosine similarities of slices are shown in Fig. 4,
which comprise slices in the same domain and between
CSim. The distribution of SSim is higher than CSim.
This indicates that slices in the same domain are more
likely to be clustered into the same class and refer to the

— Mean self similarity

ar —— Mean cross similarity

151

Density

0 01 0.z E 04 05
Simnilarty

Fig. 4 Distribution of the mean similarities of slices. The

curves show slices in the same domain belonging to the

same class, which corresponds to the same bit in the target

fingerprint.



6

same bit in the target fingerprint.

For example, the cross-similarity between the
Pkinase_Tyr (kinase associated-1, KA1) domain in target
Q7KZI7 and FGFR3_TM domain in target P11362 is
lower than the SSim of those two (see Fig. 5). However,
the cross-similarity between the Pkinase_Tyr domain
in target Q7KZI7 and target P11362 is similar to their
SSim (see Fig. 6). The above analysis indicates that

similar slices tend to be clustered into the same class.

Different targets with different domains contain different
slice classes and generate different fingerprints. These

301 —— Self similarity of KA1 in QTKZIT

Self similarity of FGFR3_TM in P11362
251 — Cross similarity

-04 -02 0.0 0.2 04 0.6 0.8 10 12
Sirnilarty

Fig. 5 Example of slice similarity distribution of different
domains.
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fingerprints reflect all kinds of amino acid arrangements
in a target, which is the general information of the target.

Although some bits of different domains fall into some
same bits, this confliction can be reduced by enlarging
the dimension of the fingerprint vector as the authors
proposed the ECFPs in Ref. [15].

4.2 Models utilizing attention-like process

Evaluating metrics on the testing data of Davis and
KIBA data sets are shown in Tables 2 and 3, which
show the main result comparison with the state-of-the-
art models. Each metric is shown as the mean value
of the fivefold cross validation result with the standard
deviation in brackets. As Tables 2 and 3 demonstrate,
the FingerDTA achieves the best performance in both
data sets. Tables 4 and 5 present that the models
utilizing attention-like processes (the AttentionDTA and
the FingerDTA) exceed those (the DeepDTA) without
any processing. Compared to building CNN models
with NCLs, the origin DeepDTA utilizing our proposed
attention-like process (the FingerDTA) performs best in
both data sets with the lowest MSE value and the highest

Table 2 Comparison with state-of-the-art models on the
Davis data set.

Model MSE | CI 1 r2 A
DeepDTA  0.242 (0.009) 0.883 (0.005) 0.674 (0.011)
AttentionDTA ~ 0.241 (0.007)  0.885 (0.006) 0.668 (0.014)
GraphDTA  0.276 (0.003)  0.689 (0.001)  0.386 (0.022)
FingerDTA  0.234 (0.003) 0.895 (0.002) 0.678 (0.008)

Table 3 Comparison with state-of-the-art models on the

KIBA data set.
05 Model MSE | cIt r2 A
o L DeepDTA 0.186 (0.003) 0.854 (0.002) 0.677 (0.005)
-06 -04 -02 00 giﬁanwﬂ-“ 06 08 10 AttentionDTA  0.174 (0.002) 0.861 (0.002) 0.697 (0.004)
. L GraphDTA  0.157 (0.006)  0.859 (0.004) 0.505 (0.030)
Fig. 6. Example of slice similarity distribution of the same FingerDTA  0.150 (0.001) 0.885 (0.001) 0.750 (0.005)
domain.
Table 4 Ablation results on the testing data of the Davis data set.
Using NCLs Using DCBs
Model MSE | g 1 MSE | CI 1 P21
DeepDTA 0.242 (0.009) 0.883 (0.005) 0.674 (0.011) 0.234 (0.004) 0.897 (0.002) 0.667 (0.010)
AttentionDTA 0.241 (0.007) 0.885 (0.006) 0.668 (0.014) 0.234 (0.007) 0.897 (0.002) 0.688 (0.006)
FingerDTA 0.236 (0.001) 0.886 (0.002) 0.671 (0.007) 0.234 (0.003) 0.895 (0.002) 0.678 (0.008)
Table 5 Ablation results on the testing data of the KIBA data set.
Model Using NCLs Using DCBs ;
MSE | () 1 MSE | CIt iy 1
DeepDTA 0.186 (0.003) 0.854 (0.002) 0.677 (0.005) 0.162 (0.005) 0.874 (0.006) 0.738 (0.019)
AttentionDTA 0.174 (0.002) 0.861 (0.002) 0.697 (0.004) 0.158 (0.001) 0.879 (0.001) 0.723 (0.003)
FingerDTA 0.162 (0.001) 0.876 (0.002) 0.715 (0.012) 0.150 (0.001) 0.885 (0.001) 0.750 (0.005)
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Cl and r,%l values. These results indicate that fingerprint
embedded global information promotes the capability
of the models in predicting drug-target binding affinity.
These results indicate that fingerprint-embedded global
information promotes models’ capability of predicting
drug-target binding affinity.

When using DCBs to construct these three CNN
models, all of them exhibit better performance than those
using NCLs. Three models show similar metrics on the
Davis data set. This may be due to the small data size of
the experimental interaction, and convolutional models
using DCBs are strong enough to predict drug-target
binding affinity without an attention-like process. When
the models use DCBs, a significant difference between
them emerges on the KIBA data set. Moreover, the size
of the experimental interaction is three times larger than
on the Davis data set. FingerDTA performs the best on
the KIBA data set. DCB is more suitable for assembling
CNN models on drug-target binding affinity prediction.
These results also reveal that the data size is a restriction
for the efficiency of the fingerprint.

4.3 Comparison experiments

In comparing FingerDTA with two models, FingerDTA
performs the lowest MSE value and highest CI and
r2 value on Davis and KIBA data sets. This result
indicates that global information can be extracted from
fingerprints by two FC layers. This information helps
FingerDTA to be more powerful in predicting the drug-

target binding affinity.
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4.4 Case study

As FingerDTA aims to discover potential drugs, we
ground FingerDTA on a special target. A case study
is performed to show its power. We choose the spike
protein of COVID-19 as the special target, which is
an important receptor for COVID-19. In this case,
FingerDTA tries to find some potential molecules that
can deactivate COVID-19 by combining them with
the critical spike target. Given that the number of
interactions in the Davis data set is smaller than that
in the KIBA data set, FingerDTA is trained and screens
candidate molecules in the KIBA data set. Interestingly,
targets in the KIBA data set are all from humans but
not viruses. Nevertheless, targets in viruses and humans
share characteristic similarities in the gene!>}!. However,
collecting experimental affinity values between drugs
and virus targets for training is difficult. Given the
few studies of drug-target binding affinity information
between these molecules and spike targets, we collect
and examine some virus-inhibiting information related
to these molecules or their derivatives to show their
potentiality as drugs.

The top 10 candidate drugs with high affinity values
are shown in Table 6. Three of them are unknown
small molecules. There exist three Alternariol-related
compounds or derivatives. Alternariol 5-O-Methyl Ether
is known to have HIV-inhibiting activity®!, and HIV-
1 shares similar mode of actions with SARS for viral
entry!?®!. SCH-47112 is a staurosporine derivative,
and staurosporine can inhibit Rous sarcoma virus

Table 6 Top 10 drugs with high affinity score to spike.

Drug Affinity value ChEMBL synonyms Deactivating virus activity information
A h h i ivati
CHEMBL554993 14.91 Alterporriol G/H tetrahydroanthraquinone derivative, o
Some tetrahydroanthraquinone has anti-viral activity!>¥
Inhibitor of HIV-1123
CHEMBL483526 1494  Alternariol 5-O-Methyl Ether o mbrer ot RV _ .
HIV-1 share similar mode of actions with SARS for viral entry!2%!
An anthraquinone derivative,
CHEMBL512054 14.94 Altersolanol A Anthraquinones can inactivate enveloped viruses?”!
A potential inhibitor for COVID-19 by docking study?®!
CHEMBL291126 14.97 SCH-47112 , A staurosporine derivative, oo
Staurosporine can inhibit Rous sarcoma virus transformation?’!
CHEMBLS520144 14.98 Unknown Unknown
CHEMBL495727 15.01 AT9283 It has COVID-19 deactivating activity>"!
CHEMBLZ83790 15.09 Unknown Unknown
T 01 5.0 hibi 11251
CHEMBLS519982 15.09 Alternariol Its derivative Al?ernarlol 5-0 M.ethyl l?ther can 1nh1b1.t HIV-1 N
HIV-1 shares similar mode of actions with SARS for viral entry?®!
CHEMBL1684800 15.15 Unknown Unknown
st 01 5.0 hibi 11251
CHEMBLA483525 15.20 Alternariol 5-O-Sulfate Its derivative Alternariol 5-O-Methyl Ether can inhibit HIV-1

HIV-1 shares similar mode of actions with SARS for viral entry

[26]
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transforming®!. No obvious evidence points out its
potentiality in deactivating COVID-19. Altersolanol A
is an anthraquinone derivative. Anthraquinones can
inactivate enveloped viruses?”), and it is a potential

inhibitor for COVID-19 according to a docking study!?%!,

Alterporriol G/H is a tetrahydroanthraquinone derivative
and some tetrahydroanthraquinones have anti-viral
activity®*. For example, Altersolanol A is also a kind
of tetrahydro anthraquinone.

After our investigation for these drugs, none of the
molecules have drug phase data, except for the 6th
CHEMBLA495727 on Phase II. We examined it on the
ChEMBL website*'I. Tt is a multi-target kinase inhibitor
and is a candidate drug for deactivating COVID-19
according to Ellinger et al.l*"!. It gains an affinity score
of 15.0, whereas the total mean score and the standard
deviation are 12.11 and 0.80. This analysis confirms the
benefits of FingerDTA in new drug discovery.

Further analysis of the structures of the three unknown
drugs and the seven known drugs shows that they
all have a large, conjugated structure between the
polyaromatic ring and carbon-oxygen. Oxygen in these
conjugated structures may be the binding atom to
spike, such as the example in Fig. 7 (the binding site
of CHEMBL483525 to spike predicted by AutoDock
software). Wet experiments are still necessary to confirm
1t.

5 Conclusion

Drug-target binding affinity prediction is a promising
way to discover new drugs for inhibiting viruses from
attaching to their targets. It can provide precise guidance

to save substantial manpower and material resources.

W

b

Fig. 7 Docking of CHEMBL483525 to spike. This
experiment demonstrates that CHEMBL483525 may be
a potential drug for COVID-19, which also indicates that
FingerDTA can discover new drugs for unseen targets.
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Moreover, it can accelerate the development of new
drug research and provide a further reference for disease
diagnosis. CNN models are powerful given their high
speed and accuracy. This study first proposed a new
algorithm to generate a target fingerprint. With the
help of fingerprint representation, we built a fingerprint
embedded framework (FingerDTA). It involves general
information from the fingerprint of a drug or a target
into a CNN model and promotes its performance in
predicting drug-target binding affinity. The FingerDTA
can help discover some potential drugs for deactivating
COVID-19 by binding to the spike target. One of the
top 10 predicted candidates is confirmed as a potential
drug according to the ChEMBL website. FingerDTA is
a powerful model for discovering new drugs. However,
there remains a limit of experimental affinity data to
train this model for screening drugs among gigantic scale
molecules.

Future work must investigate the influence of different
network structures on compound representation, such as
graph neural networks. Moreover, unsupervised training
methods must be introduced to utilize existing unlabeled
data.
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