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Abstract— Infantile spasms (IS) is a typical childhood
epileptic disorder with generalized seizures. The sudden,
frequent and complex characteristics of infantile spasms
are the main causes of sudden death, severe comorbidities
and other adverse consequences. Effective prediction is
highly critical to infantile spasms subjects, but few related
studies have been done in the past. To address this,
this study proposes a seizure prediction framework for
infantile spasms by combining the statistical analysis
and deep learning model. The analysis is conducted
on dividing the continuous scalp electroencephalograms
(sEEG) into 5 phases: Interictal, Preictal, Seizure Prediction
Horizon (SPH), Seizure, and Postictal. The brain network
of Phase-Locking Value (PLV) of 5 typical brain rhythms
is constructed, and the mechanism of epileptic changes
is analyzed by statistical methods. It is found that 1) the
connections between the prefrontal, occipital, and central
regions show a large variability at each stage of seizure
transition, and 2) 4 sub-bands of brain rhythms (θ , α, β,
γ ) are predominant. Group and individual variabilities are
validated by using the Resnet18 deep model on data from
25 patients with infantile spasms, where the consistent
results to statistical analyses can be observed. The
optimized model achieves an average of 79.78 %, 94.46%,
75.46% accuracy, specificity, and recall rate, respectively.
The method accomplishes the analysis of the synergy
between infantile spasms mechanism, model, data and
algorithm, providing a guideline to build an intelligent and
systematic model for comprehensive IS seizure prediction.

Index Terms— Infantile spasms, scalp electroencephalo-
gram, brain network analysis, seizure prediction.
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I. INTRODUCTION

INFANTILE spasms (IS), also called the Western syndrome,
is a common childhood epilepsy syndrome. The incidence

rate of IS among all newborns is 0.031%. The disease
is characterised by frequent, prolonged and uncontrollable
seizures that often cause irreversible damage to infant’s brain
[1], [2]. The physical pain and illness also place huge burden
to patient’s family. Meanwhile, the risk of death in epilepsy
is 3 times higher than other diseases. Factors contributing
to death include suddenly seizure death, persistent status
epilepticus, and unintentional injuries. The suddenly seizure
death is closely associated with the generalised tonic-clonic
seizures, nocturnal seizures and poor seizure control. IS is
a typical generalised tonic-clonic seizures. Effective diagnosis
and intervention are critical in epilepsy treatment in the golden
age of patient [3].

Epilepsy is neurological disorder caused by repeated
synchronous abnormal discharges of neurons or nerve loops in
the brain. It can be divided into three main categories by type
of seizure: focal seizures, full-blown seizures and seizures that
cannot be classified. IS seizure patterns are full-blown seizures.
In the past, most scholars generally believe that seizure onset
cannot be predicted. Until 2013, Cook et al. [4] show the
closed-loop seizure counseling system through clinical implan-
tation of invasive electroencephalography (iEEG). The results
demonstrate the possibility of a focal epilepsy prediction
system being implemented. So far, seizure prediction based
on data learning become popular. These studies have been
successful in showing differential changes in intracranial EEG
dynamics prior to focal seizures [5]. But there still lacks of
analysis on generalized seizure epilepsy [4].

Scalp EEG (sEEG) has been widely used in epilepsy
prediction due to its ease of acquisition, low cost, and
high temporal resolution [6], [7]. Most of the differences
in seizure prediction algorithms based on sEEG are visible
in two main steps, namely feature extraction and pre-ictal
classification against interictal categories. But there lacks of
predictive algorithms for IS seizures as most studies are on
the associated EEG feature extraction and seizure detection
[8], [9]. Smith et al. used signal amplitude and power spectral
characteristics to quantify the differential changes between
seizures and non-seizures in IS [10]. Nariai et al. adopted
high-frequency oscillations in the sEEG interictal period as
an objective biomarker of IS [11]. Zheng et al. constructed
multiple brain networks and analyzed the mechanisms of
seizure network changes in IS of three states: pre-ictal, seizure
and post-ictal [12], [13]. The main limitation of existing
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Fig. 1. The analytical framework for predicting IS. It mainly includes three parts: EEG preprocessing, feature extraction analysis and predictive
analysis model. The results learned by the predictive analysis model and the statistical analysis are combined to explain the IS seizure overload
mechanism.

TABLE I
COMPARISONS WITH EXISTING RESEARCH, WHERE � MEANS THE

RESEARCH COVERED THE AREA, ≈ MEANS PARTIALLY COVERED,
ML INDICATES USING MACHINE LEARNING ALGORITHMS AND DL

MEANS USING DEEP LEARNING MODELS

studies is that they cannot overcome the disadvantages caused
by individual variability.

Comparing with EEG feature statistical analysis, research
on IS seizure detection algorithms is similar to existing
epilepsy prediction algorithms. Das et al. constructed a motion
detection model with support vector machine (SVM) to
distinguish IS seizures from other disorders [14]. Feng et al.
developed a 3D residual attentional deep networks to
distinguish IS interictal periods from multiple different
childhood epilepsy syndromes using interictal sEEGs [15].
Yang et al. applied traditional nonlinear classifiers (e.g., SVM
and random forest (RF)) for IS seizure detection through
fused features of EEG and ECG [16]. It is worth noting
that these studies confirm that there are indeed exist large
differential changes between IS seizures and non-seizures.
As comparatively shown in Table I, they all ignore transitional
states and fail to quantify the dynamic changes in seizure
mechanisms, making them not applicable to IS seizure
prediction.

In summary, the pathophysiological mechanisms of IS
are still unclear and the seizure mechanisms are complex.
The seizure prediction of IS remains an open problem. In this
paper. We attempt to build an infantile spasticity seizure
prediction system based on statistical analysis and Resnet18
deep network model using sEEGs, with the aim of further
exploring the mechanism of IS seizure. The overall schematic
diagram of the analysis is shown in Fig. 1. Comparing with
existing research, our main contributions include:

1) The continuous sEEG signal of IS (generalized seizures)
are divided into five different periods, (i.e. Interictal,
Preictal, Seizure Prediction Horizon (SPH), Seizure, and
Postictal). Combining with the graph theory, an epileptic
network of Phase-Locking Value (PLV) is constructed.
The mechanism of seizure changes in the brain network
during the transitional phase of seizures by statistical
methods is analyzed.

2) The optimal feature vector combinations of the corre-
lation matrix in different brain rhythms are selected,
which are used to train a deep residual network
model (Resnet18) for IS seizure prediction. The PLV
correlation matrix as the pre-seizure biomarker between
groups and on individuals is validated by the machine
learning model. The optimized model can achieves
an average of 79.78 %, 94.46%, 75.46%, accuracy,
specificity and recall rate, respectively.

3) An analytical framework for IS prediction, that can
explain the synergy between combined data, models,
seizure mechanisms and algorithms through statistical
methods, deep network models and visualization,
is developed in this paper. The proposed model can
effectively achieve accurate IS seizure prediction.

The study is conducted on real recorded sEEG of 25 IS
childhood patients from the Children’s Hospital, Zhejiang
University School of Medicine (CHZU). The statistical
analysis and model learning feature visualization results on the
CHZU database both revealed that 1) the associations between
prefrontal, occipital, and central regions exhibited substantial
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TABLE II
SUMMARY INFORMATION ON THE DETAILS OF IS CHILD

SUBJECTS ENROLLED FOR THE ANALYSIS (h: HOUR,
m: MINUTES, s: SECONDS)

variability at each stage of the seizure, and 2) the brain rhythms
of (θ , α, β, γ ) bands played dominated roles in IS seizure
prediction.

II. DATA COLLECTION

A. Subject Identification and sEEG Recordings

The sEEG data of 25 IS childhood patients are adopted in
the study. Table II describes the details of the participants,
in which the ratio of male to female patients is 2:3 and
the mean age is 11 months. The subject data collection and
labeling are done by clinical neurophysiologists in CHZU
with pediatric expertise. These subjects are diagnosed with
infantile spasms (IS), with at least one series of spastic seizures
without the prognostic control. All sEEG records are collected
in the clinical environment with the informed consent of the
patient’s legal guardian. The experiments are performed in
accordance with the Declaration of Helsinki and are reviewed
and approved by CHZU.

Approximately 2 or 16 hours of EEG signals from IS
patients are recorded using the NicoletOne’s 10-20 standard
EEG device with the Fpz electrode as the reference channel
and the sampling frequency of 1000 Hz. Followed the
construction of a brain network, the EEGs of channels A1
and A2 are deleted, and the remaining EEGs of 19 channels
(e.g., Fp1, F3, Fz, etc.) are used for data analysis. Here, F, T,
P and O represent the frontal, temporal, parietal and occipital
brain regions, respectively, and z is the midline, where odd
and even numbers indicate the left and right brain regions,
respectively. Artifacts (e.g., EMG, EYE, etc.) are present in
the data for all subjects due to that these artifacts may relate
to the behavioral activities of the subjects during seizures [17],
[18]. The study aims to explore the transition mechanism
of IS seizures by statistical and deep network models. The
corresponding sEEG processing and analysis are performed
on MATLAB R2019a and python platforms. The interference
of power lines on EEGs is eliminated by a 50 Hz notch filter,
and the frequency band of interests in EEGs is extracted using
a band-pass filter (1-80 Hz).

B. Data Segmentation
Epileptic seizures that occur suddenly are caused by

abnormal, self-sustained discharges in some neurons and the

Fig. 2. Definition of the different stages of sEEG for the predictive
analysis of IS epilepsy. Seizure prediction horizon (SPH) is the
intervention time between preictal interval and seizure onset.

closed-loop networks in the brain, and the length of seizures
fluctuates widely. The suddenness and individual variability
make it difficult to perform accurate seizure prediction. sEEG
has been widely implemented as the most powerful diagnostic
and analytical tool for epilepsy [7]. There generally classify
EEG data from epileptic patients into four phases: pre-ictal,
seizure, post-ictal, and interictal (referring to the interictal
period in addition to the previously mentioned states). The
unpredictability of seizure states is the direct threat to the
life safety of epileptic patients. How to provide effective
alerts and interventions in the proximity of seizure [19]
becomes an open issue? Therefore, a brief period of effective
Seizure Prediction Horizon (SPH) exists before the seizure
state, and the EEGs are divided into 5 states, as shown in
Figure 2. Seizure predictors require that alerts must occur
prior to seizures, along with the seizure onset duration
detection. Based on the above classification of brain activity
in epileptic patients, the seizure prediction problem can be
considered as a classification task on Interictal, Preictal, SPH,
Ictal, and Postictal brain states. Pre-seizure states are alerted
when they are detected, indicating that potential seizures are
imminent. During SPH, effective pharmacological intervention
and electrical stimulation can prevent seizures [20], making the
SPH detection very important.

For IS seizure prediction, the Interictal, Preictal, SPH, and
Postictal are set as 30-40 minutes, 5-30 minutes, 0-5 minutes
before seizure, and 0-30 minutes after seizure, respectively.
Meanwhile, the time of onset of significant EEG changes
during a seizure is defined as the start of a seizure, and the
seizure duration is labeled based on neurologist’s diagnosis.
A sliding window of 4s is used to sample the sEEG data
with an overlap rate of 50% among consecutive frames.
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TABLE III
EEG CHARACTERISTICS OF DIFFERENT RHYTHMS IN EPILEPSY

By this way, the number of samples extracted for analysis
from the above 5 states are 5318, 13709, 3785, 3845, 13409,
respectively.

III. METHODS

A. sEEG Pre-Processing

Human brain has multiple functional brain regions, like
learning, memory, cognition and emotion. The synergy
between different regions generates different rhythms of brain
waves [21], [22]. Different brain wave rhythms can reflect the
activities of different functional brain regions. In this study,
the sEEG is analyzed on 5 major sub-bands: δ (1-4 Hz), θ
(4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ (30-80 Hz).
A summary of the relationship between these frequency bands
and childhood epilepsy is shown in Table III. We employed
the 4th order IIR mid-pass filter to divide the (1-80 Hz) sEEG
signal into 5 rhythms [23].

B. Functional Connectivity Matrix Construction

EEGs are essentially nonlinear and non-smooth signals.
Direct brain network analysis by the above brain rhythm
signal generally relies on using the wave amplitude and phase
components of sEEG. We use the Hilbert’s variational method
to decompose the signal to find the instantaneous phase and
construct the brain network correlation matrix based on the
phase synchronization.

Assume the above brain rhythm signal is s(t), the analytic
signal calculated by Hilbert transform is denoted as z(t):

z(t) = s(t) + j ŝ(t) = m(t) · e jθ(t) (1)

where

m(t) =
√

s2(t) + ŝ2(t), θ(t) = arctan

(
ŝ(t)

s(t)

)
(2)

ŝ(t) = 1

π
p. v.

∫ ∞

−∞
s(τ )

t − τ
dτ (3)

Here m(t) is the instantaneous amplitude and θ(t) is the phase,
p.v. is the Corsi criterion value [30]. The real signal s(t) is
extended to the complex plane by Hilbert transform to satisfy
the Corsi-Riemann equation. The phase angle of the sEEG

signal at moment t for different rhythms can be calculated by
the above equation. Supposing that for two channels of the
same rhythm the sEEG is X (t) and Y (t), respectively, then
the phase difference between them can be expressed as:

	ϕxy(t) = θx(t) − θy(t) (4)

When the phase difference between two signals is a constant
value, indicating that they are synchronized. The phase-locked
value (PLV) is an important parameter for quantifying signal
synchronization and is often used to quantify the task-induced
changes in remote synchronization of neural activity [31], [32].
Assume that the phase difference calculated by (4) is 	ϕn(t),
and PLV is defined as:

PLV �| 1

N

N∑
n=1

e j	ϕn(t) (5)

where N represents the sequence length of phase difference
and the calculated PLV varies from 0 to 1. For PLV of 1,
meaning that there has a constant phase difference time series
and the phase angle is distributed uniformly within [0,2π).

In this study, to fully utilize the rich spatio-temporal and
frequency domain features of sEEG, the PLV values between
different channel are calculated, which can effectively address
the inherent limitations of sEEG signals, such as low spatial
resolution. A functional correlation matrix of sEEG on the
5 brain rhythms is constructed as follows:

1) Define the network node. The 19 electrodes on the sEEG
collector device are defined as network nodes.

2) Estimated inter-node connections. Computing the con-
nection values between all nodes by (5).

3) Generate an adjacency matrix to evaluate brain network
connectivity patterns. The connectivity values between
all nodes are integrated to make an adjacency matrix.
The brain network connectivity patterns are analyzed
by a threshold filtering method on the strength of
connections between nodes.

4) Secondary interpolation. It is to improve the spatial
resolution of the PLV correlation matrix.

The spatial resolution of the original 19 × 19 PLV
correlation matrix is enhanced to 256 × 256 by the bilinear
interpolation algorithm in this study. The overall correlation
matrix extraction of 5 different states is shown in Fig. 3.
As observed, after interpolation, rich detail information can
be obtained, which can compensate for the poor spatial
resolution of EEGs. Differences mainly reflect in the frontal-
anterior region, occipital region, and central region between
the placed electrodes of the connections. The values of PLV
connections between these channels with the approaching
onset show a trend of first weakening and then enhancing. This
pattern is evident in the γ band, while the δ band does not
change.

C. Functional Connectivity Analysis

The different properties and functions of neurons in
the brain constitute the complex neural loops and neural
networks at different levels. These spatially separated different
functional regions and structures interact with each other to
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Fig. 3. Illustration of the procedure for constructing EEG-based brain
functional connectivity networks.

achieve the complex functions of the brain [33]. IS seizures
have been thought to result from hyper-synchronized activity
of neuronal cells in these areas when an imbalance between
excitation and inhibition in the cerebral cortex occurs. When
the level of synchronization increases, the waveform frequency
increases, meaning that more neurons are correspondingly
synchronized, then the amplitude of the sEEG becomes larger,
leading to the generation of spikes or spikes. Notably, once
this phenomenon ends, the brain returns to normal function.
By setting up nodes and defining edges, complex relationships
between different brain regions can be mapped into the
network topology through complex networks. Such mapping
has the advantages of being purposeful, interpretable, etc.,
which facilitates understanding and exploring the complex
dynamics and behaviors of the brain, and is beneficial for
exploring mechanisms ranging from apparently normal brain
activity to epileptic seizures.

Improving the neurophysiological understanding of
pre-seizure states to determine whether universal mechanisms
exist for the various pre-seizure states observed is beneficial
for enhancing the seizure prediction. The study aims to reveal
which physiological aspects underlie the predictive features
of the EEG through statistical analysis and deep learning
models. Here, the variability of the mean PLV correlation
matrix for all samples in 5 different states of IS is analyzed
by traditional methods. Thresholding of the association matrix
is directly based on determining the strength of connectivity

Fig. 4. PLV value distribution map and threshold connection matrix.
Through observation of the PLV distribution, the connectivity matrix is
binarized using the median plus the standard deviation as the threshold
value.

of brain regions. Different threshold settings often lead to
different connectivity results. In this study, the PLVs of
multiple conditions are pooled to determine the thresholds by
analyzing the data distribution. Therefore, it can increase the
signal-to-noise ratio (SNR) and provide a threshold that is
more robust to non-representative data.

In Fig. 4 (a), the distribution of PLV values for all states
does not show a normal distribution and each state should
have its own threshold due to that the average connection value
changes across states. Therefore, by analyzing the distribution
of PLV values in Fig. 4 (a), it can be observed that the
threshold is determined by the sum of the variance and the
median of the data for each state. Those greater than this
threshold are considered to have enhanced connectivity on
that edge, and those less than the threshold are considered
to have no connectivity. The brain network connectivity
topology is finally constructed and shown in Fig. 4 (b). The
correlation matrix was used as the input of the analytical
model in this study, and also being used to see more clearly
the variability of the connection matrix in different states.
The corresponding results were presented as the binarized
correlation matrix in Fig. 5. We can find that (1) in δ band,
Fp1, Fp2, F3, F4, C3, C4 electrodes show synchronization
variability with other electrodes, which also varies significantly
in the Preictal, SPH, Ictal, and Postictal phases. (2) In θ , α
and β bands, the variability of the connections between P3,
P4, O1, O2 electrodes and other electrodes is mainly in the
SPH and Ictal phases. (3) In the γ band, the lead connection
strengths of the Preictal, SPH, Ictal, and Posticta states all
showed variability. In summary, the connections between the
prefrontal, occipital, and central regions of different rhythms
showed high variability. The PLV of mean correlation matrices
in different states was tested by paired t-test. The variability
between the data was demonstrated when the p-value was
less than 0.05, which was indicated by ∗. The more number
of ∗ represents the larger variability, and the results are
shown in Fig. 6. The figure clearly shows that in the δ band,
only the Ictal and Postictal phases present variability, with
no variability between the other states. While in θ , α, β,
and γ bands, each state presents different variability between
them.
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Fig. 5. Brain network connectivity patterns of 5 rhythms in 5 different states were presented as mean correlation matrices. In each subgraph one
color block represents the connection strength of two channels. The blue color represents connections that did not pass the threshold setting, while
the yellow color represents areas of enhanced connectivity. The areas marked in red are the connections where other states show differences
compared to the interval data.

Fig. 6. Statistics of the distribution of PLV values of the average brain
network connectivity matrix of the five rhythms in different states. (*:p <
0.05, **:p < 0.01, ***:p < 0.001.

D. IS Seizure Prediction Model

The purpose of this study is to distinguish the different
stages of the PLV correlation matrix with deep learning

models. Particularly, the residual network model (Resnet18)
is applied for IS prediction. Comparing with conventional
popular deep networks, such as Alexnet, VGG, etc., Resnet
has the following advantages in our study: (1) In the residual
blocks of Resnet, the input can be propagated forward faster
through the cross-layer data lines to avoid the problem
of gradient disappearance. (2) Different Resnet models can
be obtained by configuring different number of channels
and the number of residual blocks in the module, with
simple structure and convenient parameter modification. The
Resnet18 structure is shown in the predictive analytic model
section in Fig. 1. There mainly consists of three parts in
Resnet18: 4 residual modules constructed by 16 convolutional
layers, a convolutional layer and a fully connected layer. The
kernel size of each convolutional layer is 3. The number of
convolutional kernels of the four residual modules is 64, 128,
256, and 512, respectively.
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Algorithm 1 Seizure Prediction Analysis Algorithm

Input: EEG database N = {Ni }, Input X ∈ R
D×H×W ,

Number of categories K = 5.
Output: Statistical analysis results, Predictor identification

results
1: for k = 1 to K do
2: Extraction of brain rhythms
3: Calculate the PLV correlation matrix
4: end for
5: Obtaining functional brain connectivity matrix
6: Calculation of the average correlation matrix and statistical

analysis
7: for i = 1 to i/32 do
8: Randomly select a batch the PLV correlation matrix Ni

from N
9: Perform feature extraction on X through forward

propagation
10: Calculate the loss and compute the loss through back

propagation
11: Update the network parameters
12: end for
13: return Evaluation Model

In summary, in building the prediction model, sEEG signals
of 19 electrodes were selected as nodes for the construction
of the functional network. The connectivity between the nodes
was calculated by PLV. The brain network of 5 rhythms in
different states was constructed, and the connectivity analysis
was accomplished by thresholding and statistical methods.
The two-dimensional enhanced correlation matrix was used
as input to Resnet18 for IS seizure predictive. Algorithm 1
summarizes the detailed steps.

IV. RESULTS AND DISCUSSIONS

For analysis, sEEG data recorded from 25 IS patients were
involved for study in this section. The total sEEG segmentation
samples adopted in the experiments are 40066, namely, there
include 40066 PLV correlation matrix for training, testing and
validation, and each PLV correlation matrix is obtained from
4s sEEG. For each subject, the samples for each state are
shown in Fig. 7. We selected 19 EEG electrodes as the brain
network nodes (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4,
P3, P4, T5, T6, O1, O2, Fz, Cz and Pz), and constructed
the PLV correlation matrices for 5 rhythms in 5 different
states. The connectivity between brain regions is analyzed
using thresholding and binarization, and the association of
different rhythms with each state of IS by statistical is also
studied. The correlation matrix after quadratic interpolation
was used for the deep residual network model learning. The
stochastic gradient descent (SGD) was applied as the neural
network optimizer and the cross entropy loss was adopted
as the loss function in optimization. The learning rate is
initialized to 0.001 and reduced to 1

10 of the previous for
every 10 epochs with the batch size of 32. The ratio of
training, testing and validation dataset is set to be 8:1:1.
Precision, recall, Specificity, F_score and accuracy are derived

Fig. 7. Sample size of 5 states per subject.

for performance evaluation. Particulary, the parameter settings
of the model did not change when the individual difference
analysis model was constructed.

A. Brain Rhythm Correlation Analysis

The resolution-enhanced correlation matrices of δ, θ , α,
β, and γ rhythms are input to Resnet18 for analyzing the
correlation between different rhythms and IS seizure status.
The experiments were performed independently for single
rhythm, two rhythm and multi rhythm analyses. The radar
plot in Fig. 8 represents the performance of using Single
Rhythm as input for model training and testing. Fig. 9 shows
the effect of the action between the two rhythms on the
accuracy of the model. Table IV shows the performance using
some of the multi-rhythmic features as input. It is evident
from the above three results that (1) the higher the frequency
in the single rhythm, the greater the positive effect on the
identification of the state of the IS. (2) The complementarity
of useful information between features of β and γ band is
the strongest, while that of low frequency bands is opposite.
(3) The combined features of multiple rhythms are better than
those of using single rhythms. In terms of accuracy, the model
built on the combined features of θ , α, β, and γ bands offers
the best performance.

The δ wave is the main component of the childhood sEEG.
But merely using the δ band features, the IS seizure prediction
performance is not satisfactory. The result does not change
significantly throughout the transition from normal EEG to
seizure, as reflected in Figs. 8, 9, and Table IV. By contrast,
the higher frequency bands features are more effective in
identifying different states of IS. This observation is consistent
with the statistical significance analysis results in Fig. 6. This
phenomenon was due to the high activity of neuronal cells
in various cognitive and motor brain regions before and after
seizures and the increase of high frequency layers in brain
waves. To be a meaningful early warning system in clinical
usage, the pre-seizure biomarker should be able to be detected
early to shorten the time to false warning. The PLV correlation
matrix was demonstrated effectively in combining with deep
network models for the brain network changes measuring
in different states of IS seizures, which can be potentially
used as a pre-seizure biomarker for IS seizure prediction.
From the above analysis on the IS prediction, the overall
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Fig. 8. Radar chart of the performance of the proposed single rhythm
approach.

Fig. 9. Analysis of complementarity between rhythms.

observations are that: 1) the PLV matrices of brain rhythms in
the middle and high frequency bands changed significantly at
each stage of IS episodes, 2) there was greater informational
complementarity between θ , α, β, and γ band pairs, 3) The
PLV correlation matrix can be adopted as the biomarker for
IS seizure prediction.

B. Model Prediction Analysis

An additional aim of this study is to assess the feasibility
of the PLV association matrix as predictive features or
preictal biomarkers in predicting the exact timing of seizure.
We selected feature vectors consisting of the PLV association
matrices in θ , α, β, and γ rhythms as biomarkers of preictal
states based on the above analysis. The confusion matrix of
all 5 different states of IS epilepsy is shown in Fig. 10(a).
It is clear that the biomarker can effectively distinguish the
postictal state, while the remaining 4 states are relatively
not satisfactory when comparing with the postictal. Based on
discussions with neurologists, we have chosen the continuous
sEEG signals with too much similarity between the signals
of different states. Fig. 11 visualizes the features extracted by

TABLE IV
OPTIMAL INPUT VECTORS AND PREDICTION

RESULTS BASED ON RESNET MODEL

Resnet18 for comparison through t-SNE. Fig. 11 also directly
validates the clinical experience. It can be clearly seen from the
figure that the postictal state is clearly distinguished from the
others, while the remaining states are not as distinguishable.
In addition, the receiver operating characteristic (ROC) curves
of the 5 states are depicted in Fig. 10(b). The maximum
value of the area under the curve (AUC) is 0.9804. The AUC
values for both the micro-average and macro-average reached
approximately 0.94. The prediction performance was evaluated
based on the ROC curve, which relates the true positive rate
to the false positive rate. The AUC can be used to quantify the
performance of the algorithm. The ROC curve and the AUC
area, although demonstrating the good performance of the
Resnet18 model, are not as effective as its detection, probably
because of the large individual differences.

In addition, we have visualized the feature vectors learned
by the residual blocks in Resnet18, as shown in Fig. 12.
It is clear that (1) after the multi-layer convolution, some
correlations in the correlation matrix are amplified in
characterizing different epilepsy states of Infantile Spasms.
These discriminating areas are mainly in the regions marked
by the red boxes in Fig. 5. (2) The distinctions learned from
the data-driven model and the results of the statistical analysis
consistently showed that the connectivity between prefrontal,
occipital, and central regions has significantly difference
among five different states. (3) The PLV connectivity changes
are most significant in the prefrontal, occipital and central
regions of the γ waves.

Since few research has been done on generalized epilepsy
seizure prediction, to exemplify the possibility of this
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TABLE V
COMPARISON OF PARAMETERS WITH SEIZURE PREDICTION SYSTEMS

Fig. 10. Confusion matrix of the Resnet18 and the ROC curve
of 5 categories (micro-average: Each class has equal weight, the
outcomes aggregated across all categories and the metric is obtained by
aggregating all outcomes, macro-average: Each class has equal weight,
the metric within each class and the average metrics across categories
are obtained).

combination of features as a determinant of epileptic states,
we compared the results with existing continuous signal based
focal epilepsy prediction algorithms (i.e., classification of
epileptic states into 5 states), as shown in Table V. The major
difference between focal epilepsy and generalized epilepsy
is whether there are significant changes in EEG features
in the preictal state. Although the two kinds of epilepsy
predictions are not fully comparable, the prediction algorithm
for focal epilepsy has some implications for generalized

Fig. 11. The optimization feature vector as input, t-SNE visualizes the
features extracted by the Resnet18 model during the various stages.

epilepsy prediction. Here, we compare the data types, models,
processing methods and recognition results between existing
methods and ours. In [20], the performance is tested on a
balanced dataset by removing the samples in non-episode
periods. But in real applications, there have far more data
in the non-ictal phase than in the episodic phase, making the
testing not suitable under realistic conditions. In [35], a good
recognition can be achieved, but the algorithm is limited for
small amounts of invasive EEGs. In [34], [36], and [37], all
studies are performed in simulated real seizures. Comparing
with the three methods, our proposed model performance
achieved good accuracy, sensitivity,and specificity. The model
showed characteristics of low misdiagnosis rate and high
underdiagnosis rate. Combining the results of the confusion
matrix, it is clear that the possibility of the postictal state
being misclassified is low, while the ictal and SPH are mostly
misclassified, which is caused by the high similarity of the
data from 0 to 40 minutes before the infantile spasm seizure.
The above comparisons indirectly demonstrate the feasibility
of PLV as a biomarker for IS seizure prediction. Meanwhile,
the brain network features have been explored to discuss the
mechanism during IS episodes through statistical and deep
learning methods. We use the non-invasive scalp EEGs, which
is better than [34].

Overall, it is clear that (1) the PLV features of θ , α, β,
and γ rhythms are the most optimal combination features
in IS seizure prediction. (2) The visualization results of
the features learned by the model demonstrate the finding
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Fig. 12. Visualization of the 8×16 feature map of the fourth convolutional
layer of Resnet18 learned from the PLV matrix of θ, α, β and γ rhythms
derived from the sEEG of subjects in different states.

that the connections between the prefrontal, occipital, and
central regions show large variability at each stage of seizure
transition. (3) The brain network features have advantages in
IS seizure prediction.

C. Individual Variability Analysis

Seizure prediction algorithms should be specific to individ-
uals and/or the intervention used at the time of prediction.
The prediction time associated with seizures and the duration
of the assumed pre-seizure period varied considerably among
different individuals. The results in Fig. 10(b) also revealed
that IS seizure prediction has obvious individual differences.
Therefore, an independent modeling analysis is performed
for the first 17 IS patients in individual, and the results are
shown in Fig. 13, respectively. Due to using few sample sizes
in individual testing, the model performance are generally
degraded in the SPH and the preictal states when comparing
with the testing on mixed samples. Particularly, the detection
performance on subjects 5, 8, 16, and 17 are generally better,
it may be due to the presence of in-sample testing and
selection bias in the study, the limited number of episodes
in the data, and the severe data imbalance between the
individual states of the episodes. Therefore, to improve the
performance of machine learning models, it is important
to improve the neurophysiological understanding of preictal
states to determine whether the prevalent mechanisms lead to
the various preictal states.

In summary, we evaluated the possibility of PLV association
matrix as a biomarker for IS seizure prediction by brain

Fig. 13. The optimal model was used to analyze individuality. Subplots
(a) (b) show Precision, Specificity of the individual, respectively. Subplot
(c) presents the trend of the average measure of the five states of the
individual.

rhythm correlation analysis, model prediction analysis, and
individual variability analysis. The consistence of the results
by statistical analysis with the results of deep learning models
were also demonstrated. These results are useful as a guide
for constructing generalized seizure predictors. But there still
have some limitations, including (1) more epilepsy seizure
data of infantile spasms are still needed for analysis, (2) the
performance testing is carried out using the post-acquisition
data in the paper, but analysis on real-time seizure prediction
on new data is still lacking, (3) besides Resnet, analyses on
more up-to-date models should be conducted.

V. CONCLUSION

In this study, we designed an analytical framework for IS
seizure prediction based on statistical analysis with Resnet18
as the predictor, aiming to characterize the local and overall
properties of the epilepsy network and to help understanding
how seizures occur in the epilepsy network. The sEEG
data collected from 25 IS subjects were involved in the
study. The extracted continuous sEEG of generalized seizures
were divided into 5 different periods, namely (Interictal,
Preictal, SPH, Ictal, and Postictal). The epilepsy network
of PLV was constructed through the graph theory, and the
mechanisms of seizure changes in the brain network during



376 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

the transitional phase of seizures were analyzed by statistical
methods. Resnet18 was also employed as the IS seizure
predictor to find the optimal combination of feature vectors
of correlation matrices with different rhythms, which has
been further used to validate the PLV correlation matrix
as a biomarker of generalized preictal seizures in terms of
intergroup and individual differences. Finally, the synergy
between data, models, seizure mechanisms and algorithms
is explained through comprehensive statistical analysis, deep
network prediction and visualizations. It is observed that
how to effectively address the overfitting issue casued by
data imbalance and large individual differences in the SPH
period becomes critical in our future research in enhancing
the prediction performance.
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