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ABSTRACT Machine learning approaches for predicting Alzheimer’s disease (AD) progression can sub-
stantially assist researchers and clinicians in developing effective AD preventive and treatment strategies.
This study proposes a novel machine learning algorithm to predict the AD progression utilising a multi-task
ensemble learning approach. Specifically, we present a novel tensor multi-task learning (MTL) algorithm
based on similarity measurement of spatio-temporal variability of brain biomarkers to model AD progression.
In this model, the prediction of each patient sample in the tensor is set as one task, where all tasks share a set
of latent factors obtained through tensor decomposition. Furthermore, as subjects have continuous records of
brain biomarker testing, the model is extended to ensemble the subjects’ temporally continuous prediction
results utilising a gradient boosting kernel to find more accurate predictions. We have conducted extensive
experiments utilising data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to evaluate the
performance of the proposed algorithm andmodel. Results demonstrate that the proposedmodel have superior
accuracy and stability in predicting AD progression compared to benchmarks and state-of-the-art multi-
task regression methods in terms of the Mini Mental State Examination (MMSE) questionnaire and The
Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) cognitive scores. Brain biomarker
correlation information can be utilised to identify variations in individual brain structures and the model can
be utilised to effectively predict the progression of AD with magnetic resonance imaging (MRI) data and
cognitive scores of AD patients at different stages.

INDEX TERMS Alzheimer’s disease, multi-task learning, brain biomarker spatio-temporal correlation,
tensor decomposition, gradient boosting ensemble learning.
Clinical and Translational Impact Statement: The model utilises magnetic resonance imaging data to
calculate cognitive scores at different stages of patients to predict and diagnose AD progression. The
important brain biomarker correlation information revealed in experiments can be utilised as potential
indicators for early identification of AD.

I. INTRODUCTION
Alzheimers’s disease (AD) is a severe primary neurodegen-
erative disease in which neurons and their connections dete-
riorate over time, leading to a full spectrum of dementia
including cognitive decline, memory loss and executive dys-
function [1]. There is currently no cure to treat or reverse
the progression of the disease and it puts patients and their
families under enormous psychological and emotional stress.
Numerous studies have been conducted to recognize sensitive

and precise biomarkers of early Alzheimer’s disease progres-
sion that will assistance in early AD diagnosis to create,
evaluate and validate current and new treatments.

Utilising machine learning methods to predict AD pro-
gression can greatly support clinicians and researchers in
making effective disease prevention and treatment deci-
sions. Standard AD prediction methods rely on quantifying
and extracting important biomarkers from diverse modali-
ties (e.g., Magnetic Resonance Imaging (MRI) and Positron
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Emission Tomography (PET)), and then learning themodel as
a regression problem to calculate cognitive scores at different
time points. Existing AD progression models mainly utilise
machine learning regression algorithms [2], [3], statistical
probability-based survival models [4], [5] and deep learning
methods based on neural networks [6], [7]. The input features
of the above models are signified as second-order matrices
containing patient and biomarker information, and this data
representation makes it difficult to predict and analyse dis-
ease progress from multiple dimensions (e.g., spatial and
temporal dimensions). At the same time, the second-order
matrix can only focus on a single biomarker, which will
lose the correlation information between different AD
biomarkers.

Therefore, instead of applying a second-order matrix with
two components for each index, we constructed a third-
order tensor with three components for each index (Fig. 1).
The paper proposes to build a third-order tensor to build
an AD prediction model to better present numerous aspects
of AD data in both spatial and temporal dimensions. With
the enhanced presentation of AD biomarker features, the
utilise of the tensor in regression algorithms can improve pre-
diction accuracy, stability and interpretability. Secondly, for
AD prediction models, multi-task learning (MTL) can share
information across tasks, outperforms traditional single-task
learning methods in terms of prediction accuracy, inter-
pretability and generalisation, and is most effective when the
number of samples is small [8]. Therefore, we designed a
tensor-based MTL approach to predict AD progression by
incorporating spatio-temporal information on brain structural
variations. Specifically, we first propose a method for quan-
tifying structural variations in the brain based on similarity
calculations, which expresses the similarity of morphological
variation trends between biomarkers as a third-order tensor
with dimensions corresponding to the first biomarker, the sec-
ond biomarker and the patient sample. Subsequently, the pro-
posed algorithm performs a CANDECOMP/PARAFAC (CP)
decomposition of the tensor [9] and extracts a set of rank-one
latent factors from the data. As shown in Fig. 1, the similarity
in morphological variation trends between biomarkers can
be decomposed into a set of rank-one tensors, each calcu-
lated from the outer product of three rank-one latent factors.
Each latent factor is described by its first biomarker, second
biomarker and patient sample dimension, resulting in an
interpretable way to describe the latent factors controlling the
variability of the data, and the latent factors can be utilised as
predictors for training the MTL model.

In addition to the above challenges, in real-life applica-
tions, patients with suspected AD will continue to go to
hospital for testing, which is a waste of subsequent incre-
mental data if only a baseline model is utilised or if con-
tinuous testing records of the patient cannot be reasonably
integrated. To address this problem, we utilise a gradient
boosting ensemble learning approach to integrate consecu-
tive test records of subjects to further improve prediction
accuracy.

The contributions of this article are summarized as follows:
1) A similarity measurement method for quantifying and

understanding variability in AD brain structure data is pro-
posed to extract temporal and spatial information between
biomarkers, further combined with tensor decomposition to
obtain latent factors.

2) The proposed tensor-based MTL algorithm seamlessly
integrates spatio-temporal information based on brain struc-
tural variations and its biomarker latent factors, thus signifi-
cantly improving the predictive accuracy and stability of AD
progression.

3) Identified and analysed important spatio-temporal vari-
ation correlations between brain biomarkers in the AD pro-
gression.

4) The proposed AD dynamic prediction utilises gradient
boosting ensemble learning to combine multiple consecutive
MRI detections and the experimental results demonstrate that
the prediction accuracy continues to improve as the number
of MRI detections increases.

II. RELATED WORK
Numerous preceding brain science studies have focused on
the differences in brain structure variation of AD, CN (cog-
nitively normal older individuals) and MCI (mild cognitive
impairment). [10] developed a distortion-based framework
for modelling the properties of AD and aging on the mor-
phological progression of the brain, emphasizing specific
morphological changes in the brain to help identify clinical
conditions. [11] evaluated the correlation of CSF and MRI
biomarkers with clinical diagnosis and cognitive functioning
in patients with CN, AD and aMCI (amnestic mild cognitive
impairment). It was concluded that MRI provided stronger
cross-sectional grouping, discrimination and correlated bet-
ter with cross-sectional integrated cognitive and functional
abilities. [12] used automated MRI analysis to evaluate corti-
cal thickness in healthy older adults, MCI patients and AD
patients. Patterns of cortical thinning were identified as a
function of disease progression, and it was discovered that
as the disease marched from MCI to AD, the whole cortex
thinned and extended appreciably into the lateral temporal
cortex.

In addition, the research on correlations between AD MRI
biomarkers has been a focus of brain structural variation
research, [13] used correlation of multi-kernel support vector
machines and regional mean cortical thickness to combine
relevant information with ROI-based data to advance the
classification performance of AD and its precursor stages.
[14] structured brain networks by thresholding the cortical
thickness correlation matrix for different regions and anal-
ysed them using graph theory. The above study evaluated and
analysed the relationship between AD progression and brain
biomarkers and showed that there are differences between
brain biomarkers for AD, MCI and CN. However, the above
studies only focus on a particular biomarker or the same
category of biomarker, lacking the linkage and correlation
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FIGURE 1. CP decomposition on a spatio-temporal tensor representation based on the similarity of the morphological variation trend between
brain biomarkers.

of spatio-temporal variation between dissimilar categories of
biomarkers, which is important for AD feature representation.

The AD prediction can be considered as a multi-task
regression problem [15]. The primary assumption of the
model is that there is an intrinsic link between a large number
of data records and that capturing the intrinsic link enhances
the generalizability of the predictive model. The sharing
of information between different patient prediction tasks
promises advance achievable performance. This advantage is
particularly pronounced when the number of input features
(e.g., AD biomarkers) exceeds the number of samples (e.g.,
patient samples) [16]. In the field of MTL for AD, existing
approaches have focused on modelling relationships between
tasks using novel regularisation techniques [17], [18]. Kernel
methods were added to the technique to enable it to fit non-
linear relationships [19], [20]. The aforementioned study and
experiments demonstrated that the regularised MTL tech-
nique performs well in a diversity of AD prediction appli-
cations.

To the best of our knowledge, there is no commonly
exercised tensor regression algorithm that exploits the multi-
dimensional properties of biomarker data to predict AD pro-
gression. Current third-order tensor-based algorithms in AD
are mainly used for images (e.g., MRI) [21] and electroen-
cephalograms (EEG), as the images themselves are third-
order tensors and each patient’s EEG can be composed of a
third-order tensor in the time and frequency domains. But in
terms of the form of the data, MRI brain biomarker data can
be formed into a third-order tensor. The first characteristic of
data that can be constructed as a tensor is that it is multidimen-
sional data, and the second characteristic is that the original
data is inherently a tensor, for example as an RGB image it is
innately a three-dimensional tensor. Brain biomarker data are
multidimensional data that fit the first characteristic of tensor
data. Based on this fact, we have pioneered a tensor-based
MTL method for accurate AD progression prediction.

III. METHODOLOGY
A. DENOTATION
For brevity, we represent tensors as italic capital letters, such
as X or Y , and matrices by capital letters, such as A or B.

FIGURE 2. Examples of Mahalanobis distance matrix distribution for AD,
CN and MCI brain biomarker relationships. The difference in the matrix
areas is evident in the figure, which indicates the difference in spatial
changes in the brains of AD, CN and MCI as time progresses. (The scale
from top to bottom is 1.0, 0.8, 0.6, 0.4, 0.2, 0.0).

Vectors are denoted by lowercase letters such as x whereas
Scalars are denoted by italic lowercase letters such as a.

B. SPATIO-TEMPORAL VARIATION SIMILARITY
CALCULATION OF MRI BIOMARKERS
Two successive MRI tests were utilised to calculate the
spatio-temporal variation in brain biomarkers. The quanti-
tative approach has been reported in its preliminary ver-
sions [22], [23], and this research expands and exploits it
across number of successive time points (BL to M06, M06
to M12, M12 to M24). For instance, at time points baseline
(the date the patient was first screened in hospital) and M06
(the time point six months after the first visit), we utilised
MRI at the corresponding time points to calculate the rate of
change and velocity for each biomarker, where x is the test
value of brain biomarkers and t is the MRI detection dates.
The rate of change is xM06−xBL

xBL
, the velocity is xM06−xBL

tM06−tBL
per

month. The rate of change and velocity were then utilised to
create a vector which describes the morphological variation
trend of brain biomarker.

In this study, the similarity between two vectors was
calculated utilising the Mahalanobis distance as a method
to indicate the similarity of the spatio-temporal variation
of two MRI biomarkers. The Mahalanobis distance was
utilised because it is scale-independent when the covari-
ance matrix is divided [24]. The Mahalanobis distance
between the vectors xi and xj is defined as: Ma

(
xi, xj

)
=√(

xi − xj
)T S−1(xi − xj), where S is covariance matrix.
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Fig. 2 shows the spatio-temporal correlations of brain
biomarkers of AD, CN and MCI calculated by Mahalanobis
distances. Although similarity calculations can demonstrate
differences in the spatio-temporal correlation of AD, CN and
MCI brain biomarkers, there is a unifying problem that half
of the data is duplicated due to pairings of biomarker asso-
ciation, it may increase the computational complexity and
this study addresses this problem utilising the duplicate data
correction matrix in the algorithm design.

C. TENSOR DECOMPOSITION
Our proposed formula requires an understanding of the latent
factors of the correlation tensor of morphological varia-
tion trends between MRI biomarkers. These latent factors
are represented by factor matrices A and B, which can be
derived utilising tensor decomposition methods. There are
two mainstream standard approaches for tensor decompo-
sition, specifically Tucker and CANDECOMP/PARAFAC
(CP) decomposition [9]. The Tucker decomposition decom-
poses the tensor into the result of the core tensor and the
factor matrix for each mode. Although it expresses a more
inclusive statement, it is problematic to interpret the latent
factors, as the amount of latent factors may differ for different
model. By comparison, CP decomposition decomposes the
tensor into a set of rank-one tensors. i.e.,X≈ [[A× B× C]] =∑r

i=1 ai ◦ bi ◦ ci, where ◦ denote the outer product operation
between two vectors, while ai,bi and ci correspond to the
vectors related with the i-th latent factor. Given a tensor X
of the size n1 × n2×n3, the size of matrix A, B and C is
n1 × r, n2×r and n3 × r respectively.

D. TENSOR MULTI-TASK REGRESSION
To predict cognitive scores (e.g., MMSE and ADAS-Cog) at
future time points. Consider a tensor multi-task regression
problem with t time points, n training samples with d1 and d2
features. Let X ∈ Rd1×d2×n be the input tensor from two con-
secutiveMRI tests and the it is the amalgamation of similarity
matrix of all n samples Xn∈Rd1×d2 , Y = [y1, · · · ,yt ] ∈Rn×t

be the targets and yt = [y1, · · · ,yn] ∈Rn is the corresponding
target (clinical scores) at different time points. We utilise the
operator � as follows: Z = M � N denotes zij = mijnij, for
all i, j.
The input tensor for the similarity of morphological varia-

tion trends in brain biomarkers is a symmetric tensor because
the relationships between biomarkers are paired and therefore
half of the data are duplicated. The research further proposes
a duplicate data correction matrix to resolve the problem of
duplicate data and it states as follows:

K =


0 1 · · · 1
...

. . .
...

1
0 · · · 0

 ∈ Rd1×d2 (1)

For t-th prediction time point, the objective function of the
proposed approach can be stated as follows:

Lt (X , yt) = min
Wt ,At ,Bt ,ct

1
2

∥∥ŷt − yt∥∥2F + λ2∥∥X − JAt , Bt ,CtK
∥∥2
F + β ‖Wt , At , Bt ,Ct‖1

ŷn =
∑d1

i=1

∑d2

j=1
Uij,

where

U = (AtBT
t )� K�Wt�Xn,U ∈ Rd1×Ád2 . (2)

where the first term computes the empirical error for the train-
ing data, ŷt =

[
ŷ1, · · · ,ŷn

]
∈ Rn are the predicted values,

At ∈ Rd1×r is the latent factor matrix for first biomarker
dimension and Bt ∈ Rd2×r is the latent factor matrix for sec-
ond biomarker dimension with r latent factors, Wt∈Rd1×d2

is the model parameter matrix for t-th prediction time point,
λ and β are the regularization parameters. Obtaining latent
factors by optimising objective function ‖X − [[A,B,C]]‖2F,
where X = [[A,B,C]] =

∑r
i=1 ai ◦ bi ◦ ci where ◦

denote the outer product operation between two vectors.
‖Wt ,At ,Bt ,Ct‖1 employing an l1-norm on the Wt , At , Bt
and Ct matrices respectively.

For all prediction time points, the objective function can be
stated as follows:

L(X ,Y) = min
Wf

∑t

1
Lt (X , yt)+ θ

∥∥Wf P(α)
∥∥2
F (3)

where
∥∥Wf P(α)

∥∥2
F is the generalized temporal smoothness

term, model parameter matrix Wf ∈R(d1×d2)×t is the tempo-
ral dimension unfolding for model parameter tensor W ∈
Rd1×d2×t , θ is the regularization parameter. The generalised
temporal smoothing states the fact that in actually diagnosing
AD, the specialist not only relies on the patient’s current
symptoms, but also takes into account their previous symp-
toms. Therefore, we assume that the i-th progression in an
individual AD patient is related to all preceding progres-
sions. The generalized temporal smoothness prior describe as
follows:

1w1 = δw1
1w2 = α11w1 + (1− α1)δw2
1w3 = α21w2 + (1− α2)δw3
· · ·

1wt−1 = αt−21wt−2 + (1− αt−2)δwt−1

(4)

where 1w denoted the progression with preceding progres-
sion information.wi is the i-th column ofW.where the param-
eter α represents the relational degree of the i-th progression
and all preceding progressions. In addition, the impact of each
stage of disease progression on the following stage may not
be consistent, and therefore the relational degree parameters
differ for each disease progression stage. The definition of the
i-th progression δwi for one patient is:

δwi = wi − wi+1, i = 1, 2, · · · , t − 1 (5)

As a result, we can describe the more realistic temporal
smoothness assumption with matrix multiplication:

WP(α) =WHD1(α1)D2(α2) · · ·Dt−2(αt−2) (6)
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TABLE 1. Demographic characteristic of the studied subjects valued are
specified as mean ± standard deviation. (The notation ‘‘M12’’ indicates
the time point 12 months after the first visit, ‘‘M24’’ indicates the time
point 24 months after the first visit, etc).

where H ∈Rt×Á(t−1) has the following definition: Hij = 1 if
i = j,Hi = −1 if i = j + 1 and Hij= 0 otherwise. P(α)
denotes the correlation between progress, it comprises the
hyperparameters α, which depends on the result of cross-
validation. Di(αi) ∈R(t−1)×Á(t−1) is an identitymatrix and the
value of Dim,n(αi) is substituted by αi if m = i, n = i+ 1, the
value of Dim,n (αi) is substituted by 1− αi if m = n = i+ 1.
Latent factors A ∈ Rd1×r×t , B ∈ Rd2×r×t , C ∈ Rd3×r×t

and the model parameter W∈Rd1×d2×t can be learned by
iteratively optimising the objective function for each set of
variables to be solved. Because not all components of the
objective function are differentiable, we utilise proximal gra-
dient descent to solve each subproblem. Specifically, the
terms in our objective function involving Frobenius norms
are differentiable, but those involving the sparsity-inducing
l1-norms are not differentiable. In the MTL model, the prox-
imal approach is frequently utilised to construct the proximal
issue for the non-smooth objective function [25], [26], [27],
[28], by replacing the smooth function with the quadratic
function, we get the sum of the smooth and non-smooth
functions. Its quadratic functions can be constructed in a
variety of ways based on Taylor series, and the resulting
proximal problems are usually easier to solve than the original
ones. The strategy can simplify the design of distributed
optimisation algorithms or accelerate the convergence of the
optimisation process.

E. GRADIENT BOOSTING
Ensemble learning has been proven to be effective in a variety
of prediction tasks by grouping a set of weak learners together

to build stronger learners. Boosting is the dominant technique
in ensemble learning methods, which produces a set of weak
learners in which predictors are trained sequentially rather
than individually, with the aim of utilising the errors of the
previous learner to develop a more effective model for the
next learner.

Gradient Boosting (GB) is an extension of the boosting
method which utilises gradient descent optimisation tech-
niques to identify global or local minima of the cost function.
It trains themachine to fit themodel on the input feature space
through a series of weak learners, each of which improves
the prediction accuracy of the previous learner. GB trains
powerful learners by combining numerous weak learners in
multiple iterations [29], [30]. The proposed method enhances
prediction accuracy by sequentially fitting a more accurate
model to the residuals of the preceding step in the final stage
of the GB construction framework. This process will continue
until a highly accurate model is obtained. The flowchart of the
proposed method in the training stage is illustrated in Fig. 3.

IV. EXPERIMENTAL SETTINGS
A. DATASET
Data used in the preparation of this article were obtained from
the Alzheimer s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer
s disease (AD). The FreeSurfer image analysis software
(http://surfer.nmr.mgh.harvard.edu/) was used by a team from
the University of California, San Francisco (UCSF) to con-
duct volumetric segmentations and cortical reconstruction
using imaging data from the ADNI database, which includes
all ADNI subprojects (ADNI 1, 2, GO, 3).We gained theMRI
data from the ADNI website and continued to implement the
subsequent pre-processing steps:

• Removal of features with missing values in more than
half of the sample;

• Exclusion of individual participants who did not have
BL and M06 MRI;

• Missing data were filled with average of the features;
• Removal of cognitive function assessments for individu-
als withmissing follow-up points in longitudinal studies;

• For AD dynamic prediction, exclude individuals who
did not have follow-up MRI detections.

After the pre-processing steps, there are a total of 313 MRI
features. which can be classified into five categories: the
volumes of cortical parcellations (CV), the volumes of spe-
cific white matter parcellations (SV), the total surface area
of the cortex (SA), average cortical thickness (TA) and stan-
dard deviation in cortical thickness (TS). Table 1 depicts the
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FIGURE 3. The flowchart of the proposed method in the training stage.

demographic features of the ADNI MRI data utilised in this
research.

For the predictive target of the approach, cognitive scores
(MMSE and ADAS-Cog) can be used to precisely differen-
tiate between CN, MCI and AD in the clinical scenarios.
For MMSE with score range 0–30, 30 is represented as
cognitively no dementia, 29–26 is represented as questionable
dementia, 25–21 is represented as mild dementia, 20–11 is
represented as moderate dementia, 10–0 is represented as
severe dementia. For ADAS-Cog with score range 0–70,
where higher scores indicate greater cognitive impairment.

B. EVALUATION METRICS
The similarity tensor of morphological variation trends
between MRI brain biomarkers was utilised to build predic-
tive models for each target. The data was randomly divided
into a training set and a test set in a ratio of 9:1. As the number
of model parameters (λ, β and θ), the hyperparameters α
and the latent factor r must be designated during the training
phase, we utilise 5-fold cross-validation on the training data
to select them. The research evaluates the prediction perfor-
mance of various methods for each single time point utilising
the root mean square error (rMSE) as the major evaluation

metric. We use normalised mean square error (nMSE) for the
overall regression performance metrics, which is commonly
utilised in multi-task learning research [31]. The rMSE and
nMSE are stated as follows:

rMSE(y, ŷ) =

√
‖y− ŷ22

n
(7)

nMSE(Y, Ŷ) =

∑t
i=1

∥∥Yi−, Ŷi
∥∥2
2 /σ (Yi)∑t

i=1 ni
(8)

where for rMSE, y is the ground truth of target at a single time
point and ŷ is the corresponding prediction by a model. For
nMSE, Yi is the target’s ground truth at time point i and Ŷi
is the corresponding prediction from a model. We reported
the mean and standard deviation based on 20 iterations of
experiments on dissimilar splits of data.

V. RESULTS AND DISCUSSION
A. COMPARISON WITH THE BENCHMARKS AND
STATE-OF-THE-ARTS
We utilised the Mahalanobis distance to construct a tensor
of morphological variations in the brain, combined with the
proposed tensor multi-task ensemble learning (TMTL-GB)
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TABLE 2. Comparison of the results from our proposed methods with benchmarks and state-of-the-art methods for MMSE at time points M12 to M48.
The best results are bolded.

algorithm to compare with single task learning, benchmarks
and state-of-the-art multi-task learning algorithms that were
chosen as competitive methods in studies to predict clinical
deterioration, including Ridge regression (Ridge) [32], Lasso
regression (Lasso) [33], Temporal Group Lasso (TGL) [8],
Non-convex Fused Sparse Group Lasso (nFSGL1) [34], Con-
vex Fused Sparse Group Lasso (cFSGL) [8], Non-Convex
Calibrated Multi-Task Learning (NC-CMTL) [35], Fused
Laplacian Sparse Group Lasso (FL-SGL) [36], Joint fea-
ture and task aware multi-task feature learning (FTS-MTFL)
[37], Group Asymmetric Multi-Task Learning (GAMTL)
[38] and Dual feature correlation guided multi-task feature
learning (dMTLc) [39]. The experimental results of MMSE
and ADAS-Cog predictions are shown in Table 2 and 3.

For overall regression performance, our proposed approach
outperforms benchmarks and state-of-the-art approaches in
terms of nMSE for both cognitive scores MMSE and ADAS-
Cog. And for all individual time points, the proposed
approach obtains a smaller rMSE than other approaches.
The followings are our main observations: 1) The pro-
posed tensor MTL model outperforms single-task learn-

ing models, benchmarks and state-of-the-art MTL models,
demonstrating the utilise of morphological variation trend
similarity calculations and tensor latent factor hypothesis
in our MTL formulation. 2) The proposed tensor MTL
method significantly improves the prediction stability. The
results obtained through 20 iterations have a lower standard
deviation compared to other comparative methods. This may
be due to the addition of biomarker latent factors to the pre-
diction algorithm to increase stability. 3) The proposed tensor
multi-task ensemble learning can effectively aggregate the
temporally continuous MRI records of subjects to improve
the prediction accuracy, and with the increase of temporally
continuous MRI records, the prediction accuracy increases
for subsequent time points. In contrast, the addition of tem-
porally continuous MRI records had no significant effect on
benchmarks and state-of-the-art competitive methods.

B. INTERPRETABILITY OF SPATIO-TEMPORAL
RELATIONSHIPS BETWEEN BIOMARKERS
Currently, there is no cure for AD, therefore the key to
current treatment is early detection and prevention of AD,
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TABLE 3. Comparison of the results from our proposed methods with benchmarks and state-of-the-art methods for ADAS-Cog at time points M12 to M48.
The best results are bolded.

therefore, identifying important spatio-temporal biomarker
relationships in early MRI data can help clinicians to identify
patients with suspected AD for early prevention. Tables 4, 5,
6 and 7 provide the top 10 brain biomarker relationships in
descending order of weighted parameter values for MMSE
prediction (since the MMSE sample size was higher than the
ADAS-Cog at all time points) at different time points for the
proposed TMTL-GB model. Higher values indicate a greater
impact on the final prediction.

In Fig. 4, we observed a certain similarity in the plots
of important brain biomarker relationships at different time
points, indicating that there are a number of brain biomarker
relationships that are consistently important in the pro-
gression of AD and that they can be utilised as poten-
tial indicators for the early identification of AD, and in
combination with the above tables we discovered that sev-
eral spatio-temporal relationships between brain biomark-
ers were significant at all time points. Specifically, they
are Vol(C). of R.RostralMiddleFrontal - Surf. Area of
R.InferiorTemporal, CTA. of L.SuperiorParietal - Vol(C).
of R.InferiorParietal, CTA. of R.ParsTriangularis - CTA.

of L.Bankssts, Vol(WM). of CorpusCallosumMidAnterior -
CTA. of L.TransverseTemporal, Vol(WM). of L.Caudate -
CTStd. of R.InferiorTemporal, Vol(C). of L.SuperiorFrontal
- Surf. Area of L.SuperiorTemporal and Surf. Area of
R.Postcentral - CTStd. of R.Insula.

For Vol(C). of R.RostralMiddleFrontal - Surf. Area of
R.InferiorTemporal, the frontal gyrus is related to a person’s
literacy and numeracy skills [41]; The inferior temporal gyrus
is closely related to visual information processing, and abnor-
malities of the inferior temporal gyrus are associated with
semanticmemory disorders (e.g. AD), face blindness and cor-
tical color blindness [42]. Both are related to the processing
and implementation of information in the brain.

For CTA. of L.SuperiorParietal - Vol(C). of
R.InferiorParietal, the superior parietal lobule is associated
with spatially oriented brain functions; The inferior parietal
lobule is associated with emotional cognition and the inter-
pretation of sensory information, as well as with language,
mathematical operations and bodily imagery [43]. This cor-
relation can be a factor in causing decline estimation and
analytical ability in AD.
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TABLE 4. The top-10 rank brain biomarker relationships with time point M12 for the proposed TMTL-GB model on MMSE prediction.

TABLE 5. The top-10 rank brain biomarker relationships with time point M24 for the proposed TMTL-GB model on MMSE prediction.

TABLE 6. The top-10 rank brain biomarker relationships with time point M36 for the proposed TMTL-GB model on MMSE prediction.

TABLE 7. The top-10 rank brain biomarker relationships with time point M48 for the proposed TMTL-GB model on MMSE prediction.

For CTA. of R.ParsTriangularis - CTA. of L.Bankssts, the
pars triangularis is associated with the ability to translate
from a second or third language back into the mother tongue,

with its involvement in semantic processing [44]; Bankssts
is the posterior part of the superior temporal gyrus, which is
responsible for processing auditory signals, including speech,
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FIGURE 4. Visualization for the top-10 rank brain biomarker relationships with different time points for the proposed TMTL-GB model on MMSE
prediction. Visualization was performed by the toolkit of BrainNet Viewer [40]. The colors of the nodes represent the different biomarker categories and
the thickness of the edges represents the importance of the relationship between the biomarkers, with thicker edges representing more important
relationships between the biomarkers.

and the comprehension of language [45]. Both are correlated
with the brain’s linguistic response and semantic processing.

For Vol(WM). of CorpusCallosumMidAnterior - CTA.
of L.TransverseTemporal, the corpus callosum is a fibrous
bundle of fibers linking the left and right hemispheres.
It maintains coordinated activity between the two hemi-
spheres and connects the corresponding parts of the left and
right hemispheres, coordinating the activity between the two
halves of the brain and making the brain function as one.
If the corpus callosum is impaired, the activity of the two
hemispheres is not coordinated [46]; The transverse temporal
gyrus is the first cortical structure to process auditory infor-
mation and is part of the primary auditory cortex [47]. This
correlation can be one of the factors causing reduced physical
coordination in AD.

For Vol(WM). of L.Caudate - CTStd. of
R.InferiorTemporal, the caudate nucleus is an important part
of the brain’s learning and memory system [48]; The inferior
temporal gyrus is closely related to visual information pro-
cessing. This correlation can be one of the factors that cause
the decline of learning ability and memory in AD.

For Vol(C). of L.SuperiorFrontal - Surf. Area of
L.SuperiorTemporal, the superior frontal gyrus is involved
in higher order cognitive functions of the brain, particularly
working memory [49]; The superior temporal gyrus includes
parts of the auditory cortex as well as the main areas of the
language center [45]. This correlation can be a factor that
causes the co-occurrence of language function and cognitive
dysfunction in AD patients.

For Surf. Area of R.Postcentral - CTStd. of R.Insula, the
postcentral gyrus is the seat of the primary somatosensory
cortex and is the nerve center of the somatosensory sys-
tem [50]; The insula is thought to be associated with con-
sciousness and to play a role in a variety of functions normally

associatedwith the regulation of emotion or bodily homeosta-
sis, these functions include perception, motor control, self-
awareness, cognitive functions [51]. This correlation can be
one of the factors that cause physical activity impairment
in AD.

AD is clinically characterized by generalized demen-
tia manifestations such as memory impairment, agnosia,
aphasia, apraxia, impairment of visuospatial skills, per-
sonality and behavioural changes, and executive dysfunc-
tion. We can observe that the important spatio-temporal
relationships between brain biomarkers indicative of brain
functions are all related to the clinical manifestations
of AD.

C. CLINICAL APPLICATION
In clinical application, our proposed approach can be utilised
to obtain a patient’s currentMRI data and predict the patient’s
cognitive scores at multiple time points in the future, thereby
helping clinicians and patients to detect the disease and
implement intervention treatment in early stages. Moreover,
patients suspected of AD will continue to go to the hos-
pital for MRI testing in real-word application. Subsequent
incremental MRI data is wasted if only the baseline model
is used or if the patient’s serial examination records cannot
be properly integrated. To address this problem, we have
applied the concept of ensemble learning to our approach,
which allows the model to continuously receive MRI data
from subjects and continuously update predictions of future
cognitive scores with improved accuracy.

VI. CONCLUSION
We proposed a tensor multi-task ensemble learning method
based on tensor decomposition for predicting AD progression
at different time points to overcome variability and instability
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in prediction accuracy. In our framework, a prediction model
is developed based on spatio-temporal morphological vari-
ation trend correlations across biomarkers and multi-task
regression, utilising tensor latent factors as multi-task rela-
tionships to transfer knowledge and calculate final prediction
results. Furthermore, the proposed approach utilises gradient
boosting ensemble learning technique integrate temporally
continuous MRI recordings to consistently improve predic-
tive accuracy of AD progression. The results of the experi-
ment demonstrate that correlation information can be utilised
to identify variations in individual brain structures underlying
AD, MCI, and CN, and support the utilisation of correlation
data to predict and diagnose AD progression.
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