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In terms of the availability and accuracy of positioning, navigation,
and timing (PNT), the traditional Global Navigation Satellite System
(GNSS) algorithms and models perform well under good signal con-
ditions. In order to improve their robustness and performance in less
than optimal signal environments, many researchers have proposed
machine learning (ML) based GNSS models (ML models) as early as
the 1990s. However, no study has been done in a systematic way to ana-
lyze the extent of the research on the utilization of ML models in GNSS
and their performance. In this study, we perform a systematic review
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of studies from 2000 to 2021 in the literature that utilizes machine
learning techniques in GNSS use cases. We assess the performance
of the machine learning techniques in the existing literature on their
application to GNSS. Furthermore, the strengths and weaknesses of
machine learning techniques are summarized. In this paper, we have
identified 213 selected studies and ten categories of machine learning
techniques. The results prove the acceptable performance of machine
learning techniques in several GNSS use cases. In most cases, the
models using the machine learning techniques in these GNSS use cases
outperform the traditional GNSS models. ML models are promising
in their utilization in GNSS. However, the application of ML models
in the industry is still limited. More effort and incentives are needed to
facilitate the utilization of ML models in the PNT context. Therefore,
based on the findings of this review, we provide recommendations for
researchers and guidelines for practitioners.

[. INTRODUCTION

THE growing complexity and dependency on global nav-
igation satellite system (GNSS) technologies have increased
the need for delivering high-performance GNSS solutions
in terms of performance parameters, such as accuracy,
availability, continuity, and integrity, at lower costs. Another
additional performance indicator is the “Time To First Fix
(TTFF),” which is used by some receiver manufacturers.
GNSS performance prediction is a very important and es-
sential activity to be carried out before the system is de-
ployed so that the performance of the navigation system can
be estimated, and the maintenance efforts and downtime can
be significantly reduced. The early detection of faults and
errors may lead to the timely correction of these faults [1].

There are various performance parameters addressed
in the literature. These performance parameters as well as
error/fault data can be used to develop and evaluate models
used for the detection and correction of GNSS errors. These
models can be used for estimating and predicting GNSS
performance required by an application relying on a GNSS
system in order for it to perform adequately.

There are some significant sources of errors for satellite-
based positioning namely the ionospheric and troposphere
effects, multipath, clock drift, receiver noise, interference,
and hardware biases [2]. Ionospheric content interferes with
GNSS signals, thereby, inducing errors for users when
making calculations of their position from such signals. In
addition, because GNSS was designed to operate in ideal
line-of-sight (LOS) conditions, it has been observed to be
highly influenced by the signals arriving at the receiver with
multipath propagation in locations having a high possibility
of reflection or refraction of the signal, such as urban areas.
The GNSS signals are also vulnerable to radio frequency
interference (RFI), due to their very low power at the
Earth’s surface. There are areas where GNSS signals are
denied or not available (GNSS-denied environments) and
this affects or even hinders the calculation of the user’s
position. All these can have a severe degrading effect on
receiver performance [2].

The GNSS performance degradation is an area where
machine learning (ML) finds its application as it deals with
a nearly limitless quantity of data GNSS provides. ML has
been used in many research works to propose and provide
solutions to tackle GNSS challenges.
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When compared to statistical methods, ML techniques
enable us to identify tricky dependencies in data for which
exploratory analysis has not allowed the proper determi-
nation of the shape of the underlying model [3]. The aim
of using ML is not to generate an explicit formula for the
distribution of the data. Rather, ML can be used to train an
algorithm to learn the relation between the input features
and the output. Furthermore, it is used for studying inter-
relationships between features of a dataset. For example, if
the features are continuous variables, you can use covari-
ance to find their inter-relationship. Covariance is a measure
of how much a feature is dependent on another. This learning
method makes it possible to allow relaxation of the assump-
tions needed as seen in many statistical methodologies.
Furthermore, the use of ML in GNSS context has seen in-
creased interest by also several industries, such as Google’s
DeepMind Al, which learns to navigate cities without a map.
When this is achieved in a real-world practical setting, it
means artificial intelligence (AI) can recognize both objects
and the type of the object, and relate them to the physical
environment at various scales and distances [4]. Google has
also found a new way to update its maps, by combining deep
learning with Street View. This is done by combining the
location data from Street View car’s GNSS with address
information and business names extracted from imagery.
This could help in effectively mapping an entire city without
any pre-existing knowledge of the layout or nomencla-
ture [5]. In February 2020, Apple applied to the Federal
Communications Commission for a license to install GPS
testing equipment on its headquarters campus. It is thought
that this move is related to the application filed by Apple
Inc. with the U.S. Patent Office in August 2019, describing
the company’s “Machine Learning Assisted Satellite Based
Positioning” [6]. Therefore, with this increased interest by
industry and researchers alike in ML utilization in GNSS,
we decided to make a systematic literature review (SLR) to
analyze and compare the different ML algorithms, methods,
and solutions used in the literature, as it can facilitate the
development of new and efficient solutions in the utilization
of ML techniques in GNSS. We perform a systematic review
of studies between 2000 and 2021 to analyze and cite
examples from the identified literature.

The rest of this article is organized as follows. Section II
presents the methodology used in this systematic review.
In Section III, we present and discuss the results of the
review process. The implications for research and practice
are presented in Section IV. While Section V describes the
limitation of this article. Finally, Section VI concludes this
article.

[I. MATERIALS AND METHODS

In the planning, conducting, and reporting of the system-
atic review performed in this article, a process was adopted
from [8], as illustrated in Fig. 1.

In the planning stage, the review protocol was devel-
oped, which includes the following steps:

1) identifying the research questions;
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Fig. 1. Systematic review process adapted from [8].

2) design of the search strategy;
3) criteria for study selection;

4) quality assessment of the study;
5) data extraction;

6) data synthesis process.

Afterward, the results are then used in reporting the
review.

The first step was the formation of the research questions
that covered the issues to be addressed in the SLR. In the
second step, the search strategy was described including the
identification of search words and phrases and the selection
of data sources from where the search will be performed in
order to identify the candidate studies. The third step is used
to determine the relevant studies. In this step, the criteria
for the inclusion and exclusion of studies in the relevant
study are performed. The fourth step scans the reference
of the relevant papers for additional relevant studies, and
then the quality assessment criteria are applied to the total
relevant papers to derive the final selected papers used for
the SLR. The fifth step involves the design of data extraction
forms to collect the required information from the final
selected papers in order to answer the research questions
and in step six, we devise methods for data synthesis. The
review protocol was developed through frequent meetings
and consultations with senior researchers and professors.
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TABLE I
Research Questions

#RQs Research Motivation

RQ1 Which ML algorithms have been Identify the ML algorithms that have been used in
applied to GNSS? GNSS. Practitioners and researchers can use the identi-

fied ML techniques as candidate solutions in their work.

RQ2 To which GNSS use cases have Identify GNSS use cases to which ML algorithms have
ML algorithms commonly been ap- been utilized. Practitioners can use this information to
plied? decide if their work requires the consideration of using

an ML technique.

RQ3 ‘What are the GNSS data sets used Identify GNSS data sets used in ML algorithms.
in the ML algorithm?

RQ4a Do ML algorithms _outperform Tn some of the existing studies, the proposed ML al-
non-ML algorithms? gorithms are compared with traditional non-ML GNSS

algorithms in terms of estimation accuracy. RQ4a, there-
fore, aims to verify if ML algorithms perform better than
non-ML algorithms. Estimation accuracy is the primary
performance metric for ML models. The four aspects
of estimation accuracy are accuracy metric, accuracy
value, data set used for model construction, and model
validation method.

RQ4b Are there ML algorithms that sig- Investigate which ML algorithms consistently outper-
nificantly outperforms other ML al- form other ML algorithms. Therefore, RQ4b aims to
gorithms? identify the ML algorithms with relatively good perfor-

mance.

RQS What are the strength and weak- This aims at identifying the pros and cons of utilizing
nesses of ML models applied to ML algorithms in GNSS. Having a full understanding
GNSS? of the characteristics of the candidate ML models,

practitioners can make rational decisions on choosing
the ML models that favor the GNSS use case in focus.

RQ6 What are the methods used for List out the methods used for evaluation or validation
evaluation or validation of the ML of the ML algorithms to determine their accuracy and
algorithms? performance.

This review protocol helps in reducing the possibility and
risk of research bias in the SLR. The following sections
describe the research questions used and the steps taken
during the period the SLR was conducted.

A. Research Questions (RQs)

This SLR is performed with the aim of providing and
assessing results obtained from the studies done on the
utilization of ML techniques in GNSS. This article exten-
sively reviews studies between 2000 and 2021. From the
final selected studies, first, we identify the different ML
algorithms applied to GNSS (RQ1). Second, we identify
GNSS use cases in which ML techniques are commonly
used (RQ2). In the third research question (RQ3), the GNSS
datasets used in ML techniques are identified. In RQ4a,
the performance of ML techniques with traditional GNSS
parameters/techniques is compared. This was done with
the aim of determining if ML techniques are better than
the traditional GNSS parameters/techniques. In RQ4b, the
assessment of whether an ML technique outperformed other
ML techniques in order to determine if an ML technique is
consistently better than other ML techniques was addressed.

In research question RQ5, the strengths and weaknesses
of different ML techniques are discussed to provide GNSS
experts and researchers guidance regarding the selection of
an appropriate ML technique based on the context of the
GNSS application. Finally, in RQ6, the different methods
used for the evaluation or validation of the ML algorithms
are discussed. Furthermore, future guidelines are provided
to GNSS technology experts and researchers regarding the
application of ML techniques in GNSS. Table I presents
more details on the research questions addressed in this
SLR.

In Table XI in Appendix B, a summary of the ML
algorithms utilized in GNSS and the GNSS use case they
were applied to has been presented. Other details include
year of publication, data type, the ML validation method,
and the paper type (journal/conference).
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B. Search Strategy

The search strategy comprises search terms, literature
resources, and search process, which are detailed one by
one as follows:

1) Search Terms: We formed sophisticated search
terms by incorporating alternative terms and synonyms
using the Boolean expression “OR” and combining main
search terms using “AND.” The following general search
terms were used for the identification of literature:

GNSS AND “deep learning” OR GNSS AND “ma-
chine learning” OR GNSS AND “artificial intelligence”
OR GNSS AND “random forest” OR GNSS AND “decision
tree” OR GNSS AND “support vector machine” OR GNSS
AND “neural network” OR GNSS AND “regression”

2) Literature Resources: After identifying the search
terms, relevant digital portals were selected. The selection
was restricted by the availability of digital portals at the
home universities. The following electronic databases were
used for the search. We also used relevant studies from The
Institute of Navigation (ION).!

1) IEEE Xplore

2) Google Scholar

3) ScienceDirect

4) Crossref

5) Scopus

6) Institute of Navigation (ION)

We restricted the search from 2000 to 2021 to capture
the ML and GNSS-related studies for the most recent two
decades. The initial search to identify the literature for the
review was performed after which the candidate studies
were determined from the full-text papers by removing
duplicate and irrelevant papers. The search was limited to
only publications in journals and conferences. However, we
included one paper from 1995 because we found it to be very
relevant to our review process.

3) The Search Process: To facilitate the use of ML
techniques in GNSS, it is necessary to systematically review
the performance of these ML techniques and their usage
from existing literature and studies. To the best of the au-
thors” knowledge, there is no systematic review that focuses
on ML techniques utilized in GNSS use cases except for our
conference publication presented at the 2021 International
Conference on Localization and GNSS (ICL-GNSS) [7].

To achieve this aim, we extensively searched through
some relevant digital libraries to identify studies to answer
the research questions. The final selected studies were se-
lected based on the quality assessment of the studies and
their relevance. Fig. 2 illustrates the stages involve in this
SLR.

1) Search phase 1: Search each electronic database
separately and then go through each paper title and
abstract to check its relevance based on the search

![Online]. Available: https://www.ion.org
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term (i.e., # papers from title and abstract). After-
ward, gather the returned papers for each electronic
database together and remove duplicate papers to
form a set of candidate papers.

Search phase 2: Scan the reference lists of the rele-
vant papers to find extra relevant papers and then, if
any, add them to the set of relevant papers.

2

~

C. Study Selection

Search phase 1 resulted in 433 retrieved papers. Since
not all of the retrieved papers would provide the informa-
tion useful to address the research questions raised by this
review, further filtering is needed to identify the relevant
papers. This is the aim of the study selection. Specifically,
as illustrated in Fig. 2, the study selection process consists
of two phases. It is important to note that in each selection
phase, two researchers conducted the selection indepen-
dently. If there were any disagreements between them on the
selection criteria, a group meeting involving all researchers
was held to make a decision.

1) Selection phase 1: Apply the inclusion and exclusion
criteria (defined below) to the candidate papers so
as to identify the relevant papers, which provide
potential data for answering the research questions.

2) Selection phase 2: Apply the quality assessment
criteria (defined in the next section) to the relevant
papers so as to select the papers with acceptable
quality, which are eventually used for data extraction.

The final literature to study was selected after following
the criteria for inclusion and exclusion listed below, which
had been refined through pilot selection. We carried out the
study selection by reading the titles, abstracts, or full text
of the papers.
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Inclusion Criteria:

1) Studies utilizing ML techniques in GNSS use cases.

2) Studies combining ML and non-ML techniques in
GNSS application.

3) Studies utilizing ML techniques for GNSS/non-
GNSS integration such as inertial navigation system
(INS), ultra-wideband (UWB), and wireless fidelity
(Wi-Fi).

4) Comparative studies that compare different ML
models or compare the ML. model with the non-ML
model in GNSS use cases.

5) Only journal versions of papers will be included: for
studies with both conference versions and journal
versions.

6) Only the most complete and latest paper will be
included for duplicate publications of the same study.

Exclusion Criteria:

1) Studies based only on non-ML techniques applied to
GNSS.

2) Studies using ML techniques in a context other than
in GNSS.

3) Studies based on ML techniques used with only non-
GNSS techniques, such as INS, UWB, and WIFI.

4) Similar studies, that is, studies by the same author in
conference as well extended versions in the journal.
However, if the results were different in both studies,
they were retained.

5) Review studies (mini-reviews), editorials, news.

6) Short communications, encyclopedia, book chap-
ters, case reports, conference info.

Using the above steps, we identified 212 relevant studies
for inclusion in the SLR process. We then used search
phase 2 to include more papers from the reference lists of
the relevant studies, which produced an extra 37 studies.
Therefore, a total number of 249 relevant studies were
identified for further processing and analysis.

D. Quality Assessment Criteria

We formed a quality questionnaire for assessing the rel-
evance and strength of the relevant studies. The quality cri-
teria were developed by considering the suggestions given
in [9]. Table II presents the quality assessment questions.
The questions are ranked 1 (yes), 0.5 (partly), and O (no).
The final score is obtained after adding the values assigned
to each question. A study could have a maximum score of
6 and a minimum score of 0.

Two independent researchers ranked the quality ques-
tions for each relevant study and consulted other researchers
in case of any disagreement. Finally, after thorough reviews,
discussions, and brainstorming sessions, a final decision
about the inclusion/exclusion for each study was made.
To ensure the reliability of the findings of this review, we
considered only the relevant studies with acceptable quality,
i.e., with quality scores equal to or greater than 3.5, for the
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TABLE II
Quality Assessment Questions

#Q Quality factors Yes
Q1 Are the ML algorithm used in the
research clearly described?

Q2 Are the GNSS use cases to which
the ML algorithms are utilized
clearly defined?

Q3 Are the data set for model con-
struction clearly defined and are
the evaluation or validation meth-
ods for the ML algorithms men-
tioned?

Partly | No

Q4a | Are there any comparison done
between non-ML vs ML?
Q4b | Are there any comparison done

between ML vs other ML?
Q5 Are the strengths and weaknesses
of the ML algorithms specified?

subsequent data extraction and synthesis. Accordingly, we
further dropped 36 papers with a quality score of less than
3.5 in selection phase 2 (see Fig. 2). Finally, after the appli-
cation of the quality assessment criteria stated in selection
phase 2 to the total number of relevant studies, we identified
213 papers as the final selected studies used for this SLR.
The quality scores of all 213 selected studies are presented
in Table VII in Appendix A. These 213 studies were then
used in the data extraction form. The more detailed list of
these 213 selected papers can be found in the data extraction
form in Table XI in Appendix B.

E. Data Extraction and Data Synthesis

A form is filled out for each of the final selected
studies. The purpose of using the data extraction form is
to determine which research question was satisfied by a
final selected study. We summarized author’s name, title,
publishing details, dataset details, independent variables
(metrics), and the ML techniques. The details of which
specific research questions were answered by each final
selected study were present in the data extraction card.
These data extraction cards were used to collect information
from the final selected studies. Two independent researchers
collected the information required for each final selected
study from the data extraction card. The two researchers
then matched their results and if there is any disagreement
between the two, other researchers are consulted to resolve
these disagreements. The resultant data are saved into a
excel file for further use during the data synthesis process.
Table III shows the data extraction form used to collect the
data from the selected studies.

The basic objective while synthesizing data is to accu-
mulate and combine facts and figures from the final selected
studies in order to formulate a response and resolve the re-
search questions [10]. Collection of a number of studies that
state similar and comparable viewpoints and results help in
providing the research evidence for obtaining conclusive
answers to the research questions. We scrutinized and eval-
uated both the quantitative data, which include values of
various performance metrics like area under the receiver

SIEMURI ET AL.: SYSTEMATIC REVIEW OF MACHINE LEARNING TECHNIQUES FOR GNSS USE CASES

TABLE III
Data Extraction Form
ID
Authors
Paper Title

Year of Publication

DOI

Machine Learning Technique Used (RQI1)
Study Application (Uses case) (RQ2)
Data Category (Real or Simulated)
Data Used (RQ3)

Performance (ML vs. non-ML) (RQ4a)
Performance (ML vs. ML) (RQ4b)
Strength and Weakness (RQS5)
Validation Method (RQ6)

Results

Paper Abstract

Digital Library

Paper Type (Type)

Publication Venue

operating characteristic (ROC) curve (AUC), prediction
accuracy, and qualitative data, which include strengths and
weaknesses of the ML methods, categorization of various
ML methods, feature subselection methods, and datasets
used. We utilize a number of techniques to synthesize data
collected from our final selected studies. In order to answer
the research questions, we used visualization techniques,
such as line graphs, box plots, pie charts, and bar charts.
We also used tables for summarizing and presenting the
results.

F. Threats to Validity

The three main threats to the validity of the process
implemented in this review are presented from the following
standpoints: bias from study selection, possible inaccuracy
in the data extraction process, and publication bias. There-
fore, based on the research questions and the aim of this
review, the search terms were generated. It was noticed
that some studies used different terms in titles that may
not be related to the research questions or aim of our review
process. As aresult, itis possible that there were biases in the
search strategy. The study selection process was performed
by two independent researchers. However, some relevant
studies that were found may have been excluded during the
selection phase, but it was a minimal number of records.

The inclusion and exclusion criteria were used to select
the studies to meet the aim of the review. These criteria
were agreed on by all the authors to meet the scope of the
study. Another possible threat to the validity of this review
is publication bias. Based on this, it is more likely that
positive results on ML models will be published than neg-
ative results, or researchers may put forward their methods
as outperforming other ML or non-ML methods. This can
therefore lead to an overestimation of the performance of
ML models. However, this may be limited by the inclusion
of studies that did not implement new ML models, but just
did comparisons between ML models and other models.
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TABLE IV
Publication Type Distribution

Paper Type Number of Studies | Percentage
Journal 123 57.75
Conference 87 40.85

PhD thesis 1 0.47

Msc thesis 1 0.47
Book-Chapter | 1 0.47

Total 213 100

TABLE V

Quality Levels of Relevant Studies

Quality level # Of studies Percent
Very high (5 <= score <= 6) 46 18.47
High (3.5 <= score <= 4.5) 167 67.07
Medium (2.5<= score <= 3) 14 5.62
Low (1.5<= score <= 2) 19 7.63
Very low(0 <= score <= 1) 3 1.20
Total 249 100

To reduce the inaccurate data extraction bias, a special-
ized card was utilized for data extraction (see Table III).
In addition, the study selection process was undertaken in
its entirety by two independent researchers (extractor and
checker) with other researchers resolving disagreements by
discussion among all researchers.

[ll.  RESULTS AND DISCUSSIONS

In this section, the findings of this review are presented
and discussed. We begin by presenting an overview of the
selected studies. We then report and discuss, one by one in
separate sections, the findings of the review based on the
research questions. We interpret the review results not only
within the context of the research questions but also in a
broader context that is closely related to the research ques-
tions. Furthermore, some related works are also presented
to support the findings.

A. Overview of the Final Selected Studies

In this review, we identified 213 primary studies that
applied ML in GNSS use cases (see Table VIII). These
papers were published between 2000 and 2021.

A total of 122 (57.55%) papers were published in jour-
nals, 87 (41.04%) papers were published in conference pro-
ceedings, and 3 (1.42%) papers (one Ph.D. thesis, one M.Sc.
thesis, and one book chapter (see Table IV). The publication
venues of the selected studies are presented in Table VI
while the distribution of the studies over publication year is
shown in Fig. 3.

From Fig. 3, it is interesting to see how the number of
publications has been expanding over the years. The types
of the selected studies belong to experiment research except
for one survey research [7], and one case study research was
found [11]. Although most of the selected studies used one
form of validation dataset to validate ML models, it does
not follow that the validation results sufficiently reflect the
real situations in the industry. In fact, the lack of sufficient
case studies and surveys from the industry may imply that
the application of ML techniques in GNSS is still immature.
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Fig. 3. Distribution of the studies over publication year.

Regarding the quality of the selected studies, we used
the quality score of the study which must be equal to or
above 3.5 (with a perfect score for the quality assessment
being 6), before it is included in the review. As shown in
Table VII, about 85.14% (213 of 249) of the selected studies
are in high- or very high-quality level.

B. Types of ML Techniques (RQ1)

From the selected studies, we were able to identify some
of the main types of ML techniques that had been applied
to GNSS use cases. They are listed as follows:

1) Decision tree (DT)
2) Random forest (RF)
3) Regression analysis (linear/logistic)
4) K-nearest neighbor (KNN)
5) K-means clustering
6) Naive Bayes (NB)
7) Extreme learning machine (ELM)
8) Gaussian process regression (GPR)
9) Support vector machine (SVM)

10) Neural networks (NNs) a.k.a. artificial neural net-

work (ANN)

a) Recurrent neural network (RNN)

b) Long short-term memory (LSTM), a special kind of
RNN

¢) Convolutional neural network (CNN)

d) Multilayer perceptron (MLP)

e) Back propagation neural network (BPNN)

f) Deep neural network (DNN)

g) General regression neural network (GRNN)

h) Radial basis function neural network (RBF-NN)

i) Bidirectional recurrent neural networks (BRNN)

j) Deep belief network (DBN)

k) Time-delay neural network (TDNN).

Among the above-listed ML techniques, NNs, DTs, and
SVMs were the three most frequently used techniques;
they together were adopted by about 84% of the selected
studies, as illustrated in Fig. 4. The top three algorithms
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Fig. 5. Distribution of the NN model’s terminologies as used in the
selected studies.

have the following percentages: NNs (55%); SVMs (19%);
DTs (10%). Considering only the selected ones, this shows
that DL models have been utilized the most in GNSS out
of all ML models. The distribution of the NN models as
shown in Fig. 5 is based on the terminologies used in the
reviewed literature. This shows that ANN (58%), CNN
(15%), and LSTM (18%) have been used more frequently
by researchers in various GNSS applications. Note that
“undefined ANN” is used to categorize the ANN models
where the author of the selected paper was not specific on
the category of the ANN used. Fig. 5 is used to represent the
number of times these NN model terminologies are used in
the selected papers. We present the terminologies used in
the selected papers. From this, we can see that, for example,
MLP, BPNN, and DNN are all related but have been counted
separately based on their reference in the selected papers
used for the review.

MLP is known as the foundation architecture of DNNs.
However, notice that MLP and DNN are separated in Fig. 5.
This is done in this article in other to keep track of how the
NN models’ terminologies are being used. For example,
although DNNs could be seen as a subset of MLP, they
are different in their structure. The structure of both MLP
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and DNN consists of an input layer, hidden layers, an
output layer, an activation function, and a set of weights
and biases. However, DNN has a higher number of hidden
layers stacked together for processing and learning from
data, while MLP has few numbers of hidden layers. Sim-
ilarly, LSTM is a special kind of RNN that is suitable for
classification, processing, and prediction using time series
data. This is because time series can have lags of unknown
duration between important events. LSTMs were designed
to take care of the vanishing gradient problem that can be
experienced when training traditional RNNs. It is difficult
to train RNNs that require long-term memorization, but
LSTM performs better with these kinds of datasets as it
has more additional special units that can hold information
longer.

C. GNSS Use Cases for ML Algorithm (RQ2)

ML utilization in GNSS is becoming more popular
among researchers. The ML algorithms were used for clas-
sification, clustering, forecasting, and anomaly detection
depending on the GNSS use case. In this section, we present
some of the GNSS use cases in which ML algorithms have
been utilized based on the selected studies used in this
review.

1) GNSS Signal Acquisition: Signal acquisition is the
process of assessing the presence of GNSS signals and pro-
viding a rough estimate of the parameters of the incoming
signal: the Doppler frequency and the code delay. It is the
first step performed by a GNSS receiver. The outcome of
this process decides if a particular satellite signal is present
or not in the received signal, and it also gives a rough
estimate of its associated code delay and Doppler frequency
if present [12]. This acquisition process is implemented by
all GNSS receivers [2]. This process is achieved through the
evaluation of the cross ambiguity function (CAF), usually in
adiscrete-time domain. CAF is a 2-D function that is related
to the correlation between the received signal and local
code for every possible delay/Doppler pair. The CAF can
be assumed to be an image and has certain traits that can be
utilized in identifying the presence or absence of the signal
from a specific satellite. With this knowledge, a data-driven
model can be trained such as 1) an MLP, which is an NN
architecture with moderate complexity been widely applied
in ML literature; and 2) a Convolution Neural Network
(CNN), having the ability to recognize complex nonlinear
phenomena, at the expense of a much larger complexity
compared to MLPs [12].

2) Signal Detection and Classification: The detection
and classification of GNSS signals are very useful as it
helps to differentiate the various types of signals based on
how they are being affected or not by the environment or
media of propagation. GNSS signals can be classified into,
for example, LOS, non-line-of-sight (NLOS), and multi-
path [13]. A multipath signal is a GNSS signal bouncing
off a reflective surface prior to reaching the GNSS receiver
antenna. This means multipath interference occurs when an
RF signal from a transmitter arrives at areceiver through two
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or more routes. Multipath is one of the major sources of a
GNSS error that lead to unacceptable pseudorange errors
and affects positioning. Multipath causes distortions of
GNSS signals; therefore, it needs to be detected, excluded,
or corrected. NLOS signals are reflected signals arriving at
a receiver even when the LOS signal is blocked. Detecting
the characteristics of the acquired signal enables the system
to decide how to treat the signal based on the evaluated
effect it would have on the GNSS positioning solution. New
designs of receivers can help mitigate against multipath to
some extent but this is not the case for all receivers, for ex-
ample, low-cost receivers and GNSS-enabled smartphones.
Most of the market-ready solutions currently available for
multipath detection and mitigation are based on stochastic
modeling, spatial geometry modeling, advanced techniques
in data processing, and special hardware designs [3]. These
models need to be able to accurately and reliably classify
LOS, multipath, and NLOS signals. However, when there is
an outside event that is too complex to be modeled and that
does not fit the mathematical assumptions used to develop
the statistic model, these solutions become ineffective. ML
methods enable us to relax assumptions attached to the
statistical methodology. In [14] (SVM), [15] (LSTM), [16]
(DT, SVM, and KNN), [17] (SVM, NN), [18] (CNN), [19]
(SVM), and [13] [gradient-boosting decision tree (GBDT),
DT, KNN, and adaptive network-based fuzzy inference
system (ANFIS)], ML have been applied to signal detection
and classification. An ANN model capable of processing
the structure of the autocorrelation function (ACF) was
used for the detection of evil waveforms (EWFs) in [20]
(ANN). EWFs are a rare perturbations occurring at the
stage of signal generation. Detecting this type of distortion
postcorrelation traditionally involves hand-crafted structure
tests on a densely sampled ACF. These are designed for
specific scenarios; therefore, they lack flexibility compared
to data-driven methods. In [13], compared with DT, KNN,
and ANFIS, arobust GBDT was employed for GNSS signal
reception classification. It made use of the carrier-to-noise-
density ratio (C/NO), pseudorange residuals, and satellite
elevation angle as the input features to improve the perfor-
mance of the signal classification at the receiver. Similarly,
in [16], compared with SVM, and KNN, a DTs-based
classifier has used the satellite elevation and C/NO-R-L ratio
as the input features to improve the performance of the
signal classification at the receiver. While in [21], GNSS
interference signal recognition based on CNN and fusion
time—frequency features was implemented. The accurate
detection and classification of GNSS signals can help in the
improvement of the GNSS positioning accuracy especially
in urban areas where the GNSS signals are heavily impacted
by the environment [19].

3) Earth Observation and Monitoring: Earthquakes
detection—ML algorithms have been used in Earth obser-
vation and monitoring applications, such as in [22], where
an alternative ML approach to the prediction and detection
of earthquakes and the determination of their magnitude has
been proposed. Results show that the ANN process achieved
an accuracy of 85.71% in validation assessment to predict
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the earthquake approximately 3 h before the seismic event.
Other techniques applied to the monitoring of earthquakes
include seismographic stations, Interferometric Synthetic
Aperture, strong-motion measurements, and gravity mea-
surement [23]. Hurricane tracking—ML has also been ap-
plied to hurricane tracking using a convolutional neural
network (CNN) in [24]. The trained CNN regression model
has achieved accuracy with less than 1.5 pixels errors in x
and y coordinates, i.e., 0.2% error on average.

Sea ice detection/sensing/thickness estimation—ML-
aided sea ice monitoring methods make use of spaceborne
global navigation satellite system-reflectometry (GNSS-R)
data. These data collect information about sea ice con-
centration (SIC), sea ice thickness (SIT), etc. In [25], sea
ice detection/sensing/thickness estimation is done using
an NN. On average, using this method, the accuracy for
sea ice detection is about 98.4%. It was found that when
GNSS-R delay-Doppler maps (DDMs) data are adequately
preprocessed, CNNs and NNs share similar accuracy; oth-
erwise, the former outperforms the latter. Furthermore, it
was concluded that CNNs were more tolerant to the data
format changes than ANNs [26]. In [27], support vector
regression (SVR) and CNN are used. Comparisons showed
good consistency between the derived and reference SIT,
with correlation coefficients of 0.95 and 0.90 and root mean
square differences of 5.49 and 7.97 cm for SVR and CNN,
respectively. While in [28], among NN, CNN, and NN-FS,
the NN-FS (FS means feature selection) showed the best
performance, and it was the closest to that of SVM-FS.
Through experiment, it was found that SVM-FS produced
fewer false alarms compared to NN-FS during the analysis
of false detection of ice under different sea conditions in
terms of wind speed. In [29], DT- and RF-based methods
have been used and achieved an overall accuracy of 97.51%
and 98.03%, respectively, in the Arctic region and 95.46%
and 95.96%, respectively, in the Antarctic region. Further-
more, a regression NN is used in [30] to train thin ice and
full-range models having a mean absolute error (MAE) of
6.5 and 23 cm, respectively.

In the estimation of snow depth (SD), a DBN was used
in [31]. The results showed that the DBN SD retrieval model
estimates SD more accurately than linear methods and CNN
models. Specifically, R increased from 0.81 to 0.85, MAE
decreased from 11.15 to 9.55 cm, and root mean square
error (RMSE) decreased from 17.96 to 15.40 cm.

Soil moisture (SM), wind speed retrieval, and vegetation
water content (VWC)—SM retrieval is a vital activity in
various applications such as hydrology and agriculture.
GNSS-R is a new type of remote sensing technology also
used for SM retrieval. In [32], random forest (RF) was
used for GNSS-R SM retrieval. While in [33] RF, SVM,
gradient boosting DT (XGBoost), and ANN was used. The
XGBoost model performed best with an RMSE of 0.052 cm.
The proposed algorithm can be applied to other training
and testing problems that could benefit from it such as
hydrology and agriculture where accurate SM estimates
play an important role. Another study that used the XGboost
ML-aided method in GNSS-R SM retrieval/estimation is
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seen in [34]. The results showed a good correlation with the
statistical analysis of ground-truth measurements.

Other ML-based methods include Bayesian regulariza-
tion neural network (BRNN) used in [35]. RF and SVM
used in [36], SVM used in [37], ANN in [38], and ANN,
RF, and SVM in [39].

For GNSS-R wind speed retrievals and estimation, NN
was used in [40], [41], [42], and [43]. When compared to
an LS-based approach, the derived model shows a signifi-
cant improvement of 20% in the RMSE. While for wind
speed retrievals from cyclone global navigation satellite
system (CYGNSS), ANN was used in [44]. The comparison
highlights that the ANN approach outperforms the baseline
approach for both low and high wind speeds (ANN RMSD
improves by 15%) and removes most of the geographical bi-
ases between baseline winds and wave-watch 3 model winds
seen in monthly maps of wind speeds. The ANN improve-
ment increases for increasing wind speed [44]. Similar ac-
curacy was found in [45] and [46], where ANN outperforms
the traditional approach for wind speed retrieval. In [47], RF
was used in down-scaling GNSS-R-based VWC, which is
recognized as an important parameter in vegetation growth
study. The results showed that the RF model outperformed
the traditional methods of multiple linear regression (MLR)
and kriging interpolation in the cross-validation results (R
of MLR is only about 0.4, and that of the cross-validation
of kriging interpolation is only 0.3). Using the RF method,
the results decreased a lot with R decreasing by 0.2 and
RMSE increasing by 0.015 for cross-validation results.
Similarly, in [48], RF-method, BPNN, and GRNN were
used in monitoring the variation of VWC. Among the three
ML methods, the results of RF were the best, followed by
those of GRNN and BPNN [48].

Other areas of Earth monitoring—An RF algorithm has
also been used in the prediction of dam displacement [49].
While in [50], SVR was used in monitoring the urban heat
island effect, which has been widely studied because of its
impacts on the environment and human well-being.

Other areas of Earth monitoring in which ML has been
applied include using GNSS position time series to predict
the land subsidence or upheave in an area. This is done
by predicting the next GNSS position time series using
algorithms like MLP, Bayesian NN (BNN), RBF, KNN,
GRNN, SVR, GP, and classification and regression trees
(CART) [51], [52], [53]. Another Earth monitoring applica-
tion is the nowcasting of severe weather events and summer
storms from the combination of vertically integrated water
vapor with vertical profiles of wet refractivity derived from
GNSS tomography. In [54], RF was used.

ML models have been applied to other environmental
remote sensing applications such as landslide monitor-
ing/prediction, estimating nearshore water depths, weather
forecast by monitoring and forecasting precipitable water
vapor (PWYV), and forecast hourly intense rainfall [11], [55],
[56], [571, [58], [59], [60], [61], [62].

4) GNSS Navigation and Precise Positioning:
Location-based services can be utilized in many
aspects, namely, tracking, health care monitoring, and
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intelligent transport systems (ITS). ML has also been
applied in this area with the aim of improving GNSS
navigation/positioning in several scenarios. GNSS outage
for very short periods may not represent a relatively
big problem for a position estimate, as an INS can be
integrated to produce position estimates. However, a long
outage period means the bias error from motion sensors
will start to increase and position estimate accuracy is
significantly reduced as well [63]. Therefore, long GNSS
signal outages could harm vehicles’ position estimates and
become a risk for ITS and its users. Nowadays, GNSS is
successfully implemented to achieve precise positioning
in both indoor and outdoor environments [64], [65]. Such
precise positioning is essential for safe operations [66],
[67]. ML has been applied in ITS to estimate the GNSS
position error by aiding motion sensor units in providing a
more accurate position estimate during periods of outage
or blockage of the GNSS signal [63]. For land vehicle
navigation applications, an ANN model and an efficient
hybrid methodology based on Dempster—Shafer theory
augmented by an SVM (DS-SVM) were implemented in
order to effectively fuse GNSS and INS data [68]. Kalman
filtering (KF) is used for linear systems and extended KF
(EKF), i.e., linearized KF can be implemented but may
cause filter divergence under high dynamic conditions.
In [68], test results indicate that the proposed DS-SVM
algorithm effectively compensated and reduced positional
inaccuracies over the regular ANN model and traditional
KF/EKF methods during GNSS availability and outage
conditions for low-cost inertial sensors.

In[69], LSTM is used to achieve a GNSS network-based
real-time kinematic improvement. The GNSS sensor only
provided the RMSE of about 3.8 m compared to the LSTM
model, which significantly improved to about 0.45 m. GNSS
position error estimation is done in order to improve the
positioning accuracy after error correction. In [63], DT and
SVM were implemented, with the average RMSE for SVM
being around 31% less than the one seen in the best results
in RMSE for DTs (28 versus 41 cm). Features considered
in training the models included elevation, azimuth, constel-
lation type, and carrier-to-noise ratio.

In [70], fully connected NNs (FCNNs) and LSTM are
combined and used to predict the GNSS satellite visibil-
ity and pseudorange error in an urban area based on the
available GNSS measurements. These combined networks
achieve satisfactory performance on both satellite visibil-
ity and pseudorange error predictions, which have 80.1%
overall accuracy and a 4.9-m average difference from the
labeled pseudorange error (reference). A least-squares SVM
(LSSVM) technique is used in [71] for GNSS navigation
with dynamic model real-time correction. The results show
that the proposed LSSVM-KF algorithm can adequately
adapt to time-variant dynamics and performs well for real-
time correction. In [72], a new ML-based architecture [LR,
linear discriminant analysis (LDA), SVM, KNN, CART,
and Gaussian Naive Bayes (NB)] combines classical ob-
servables for local hazard detection, with the outcome
of advanced Receiver Autonomous Integrity Monitoring

5051



(RAIM) in order to find out if a given point of a railway is
suitable for safe and reliable use of GNSS for train position-
ing. The results show that the setup of the classifier can be
driven by the features of the electromagnetic environment
on which the train shall operate. Using the daily records
taken by the GNSS receivers, the map of the local hazards
and the effects of their combinations can be learned. This
can mitigate the risks derived by significant changes in
the environment (for example, constructing new buildings
along arailway) or by the activation of new RF sources (such
as new 5G RAN nodes). ML models have been applied to
other positioning and navigation applications, such as re-
gional mapping of the geoid [73] and human mobility anal-
ysis on large-scale mobility data, which has contributed to
multiple applications, such as urban and transportation plan-
ning, disaster preparation and response, tourism, and public
health [74]. Other applications include location prediction
using GPS trackers to, for example, locate missing people
with dementia [75], improving GNSS Positioning from
smartphones [76], [77], [78], [79], improving GPS code
phase positioning accuracy in urban environments [80], im-
proving accuracy of differential GPS correction prediction
in the position domain [81], and improving kinematic GNSS
positioning accuracy with low-cost GNSS receiver in urban
environments [19]. Another study used the combination
of Genetic Algorithms (GA) and NNs for exploring the
navigation satellite constellation design tradespace to speed
up the constellation performance computation and for an
improved GNSS integrity [82]. In [83], a wavelet neural
network (WNN) is employed for orbit approximation to
obtain a continuous orbit function. This is because the orbit
function is essential in positioning and navigation tasks.
Therefore, the advantage of continuity is that it can also be
used during GNSS signal interruptions.

5) GNSS-Denied Environments and Indoor Navigation:
The foundation for a context-adaptive system is scenario
recognition and it is a major contributor to seamless in-
door and outdoor positioning technology. This allows the
system to “understand” its environment, and then apply
the appropriate strategies to achieve accurate, continuous,
and reliable positioning in the different scenarios [84].
Scenario recognition is essential for seamless indoor local-
ization and robust positioning in complex environments.
RNN-based scenario recognition with multiconstellation
GNSS measurements on a smartphone was implemented
in [85]. Here, a complex environment was divided into
four categories (deep indoor, shallow indoor, semioutdoor,
and open outdoor) and the influence of multiconstellation
satellite signals on scenario recognition performance based
on a hidden Markov model algorithm was analyzed in detail
prior to the application of RNN for the scenario recognition.
The experimental results show high recognition accuracy in
both isolated scenarios and transition environments, with an
overall accuracy of 98.65%.

In the case of situation and context awareness, Guin-
ness [86] implemented an ML-based approach [SVM,
ANN, LR, BN, DT, NB, instance-bases learning with pa-
rameter k (IBk)], and locally weighted learning (LWL)
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for sensing mobility contexts using smartphone sensors.
The aim is to develop techniques that continuously and
automatically detect a smartphone user’s mobility activ-
ities, including walking, running, driving, and using a
bus or train, in real time or near-real time (<5 s). The
main aim of this study was to investigate if an ML al-
gorithm exists that can produce a classifier having both
high performance (with respect to class prediction rate) and
low computational complexity. The results show that sev-
eral existing ML algorithms achieved performance above
95% accuracy; however, DT algorithms were the only
ones that also had relatively low computational complexity
(for classification) [86].

Inindoor navigation, NLOS and multipath are caused by
indoor furniture and flat surfaces of the walls and ceilings,
and itis quite severe. Since detecting NLOS and multipath is
a classification problem, deep learning can be used to tackle
this problem. In [87], a deep learning approach [NLOS and
multipath detecting network (NMDN)] is used for indoor
NLOS and multipath detection. The datasets used are gen-
erated by a GNSS software receiver using an intermedi-
ate frequency signal collected from an indoor pseudolite
system. This method is compared with two SVMs, which
are the traditional methods for classification, and shows an
improvement of up to 45% in overall classification accu-
racy. In [88], NN fingerprinting and GNSS data fusion are
done to improve localization in an indoor environment. The
NN-based positioning fusion model was able to reduce the
positioning error by up to 49%, having submeter accuracy in
the uncertainty-free scenarios and 1.75 m mean positioning
error in the 5-dB uncertainty case.

6) GNSS Anomaly Detection and Atmospheric Effects:
GNSS has been used recently in the understanding of the
atmospheric effects on the Earth because of the analysis
of the ionospheric behavior. This ionospheric behavior can
be derived through the determination of the total electron
content (TEC) derived from GNSS data processing. TECis a
representation of the electron density in the signal trajectory
between the satellite and the receiver on the Earth’s surface.
A good understanding of the tropospheric wet delay and
ionospheric scintillation effects on GNSS signals has been
of great interest both in the fields of science and indus-
try. Ionospheric scintillation is the rapid fluctuation of the
amplitude and phase of radio frequency signals (for exam-
ple, GNSS), propagating through the ionosphere. In GNSS
receivers, signal acquisition and tracking can be heavily
impacted by strong scintillation, resulting in degradation
in accuracy and continuity of GNSS performance. It is
difficult to predict and model scintillation because there are
different reasons for the occurrence of this phenomenon,
for example, solar activity, magnetic storms, local electric
fields, conductivity, and wave interaction to name a few [89].

lonosphere analyses: ML models have been employed
for the detection of scintillation, as illustrated in [89] using
SVM-based algorithm. It used cross-validation to determine
the optimal hyperparameters with a detection accuracy is
96%, which is increased by 1.5% compared to the previ-
ous implementation. In [90], the overall accuracy in the
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validation performance is around 92%, which demonstrates
the good performance of the SVM detector on phase scin-
tillation detection.

In [91], Ridge Regression, Long short-term mem-
ory (LSTM), Classification Neural Network, Autoencoder
Classification Neural Network, and LSTM Autoencoder
Classification Neural Network were implemented, and com-
pared. The results showed that the durability of the LSTM
Autoencoder Classification Neural Network model over the
span of a year can predict irregularities up to 3 hours in
advance with an accuracy of 92%. Other studies include [92]
and [93] using ANN model, [94], [95] and, [96] using DT
model, [97], [98], [99], and [100] using SVM model, [101]
and [102] using RBF SVM model (RBF-SVM), and [103]
using an NN model.

The time delay of the GPS (L1 and L2) signal in the
ionosphere is one of the propagation path delays and it
depends on the TEC of the atmospheric layer. This delay
contributes to a potential source of error in time measure-
ments and can produce an error range in tens of meters.
ML algorithms have been used to predict ionospheric time
delays from GNSS observations like in [104] and [105]
using an NN model. It used an extrapolation methodology
combining two types of input data, observed TEC, and
environmental parameters. The NN method yielded the best
accuracy when compared to the least square regression
(LSR) model and bi-harmonic spline (BHS), which is a
pure spatial extrapolation method.

Others include [106] and [107] using GPR, and [108]
using SVM. Prediction of tropospheric wet delay from
GNSS observations has also been performed using ML
algorithms like in [109], [110], [111], [112], and [113] using
ANN, and [114] using BP NN.

Tropospheric analyses: In [115], ANN has been used to
precisely identify interfered radio occultation (RO) events
from GNSS RO measurements widely used in the predic-
tion of weather, climate, and space weather, particularly
in the area of tropospheric analyses. The estimation of
tropospheric wet delay is of great importance for real-time
weather forecasting applications. The characteristics and
effects of ANN in tropospheric analyses can be validated
by comparing the predicted zenith wet delay values using
ANN with the values estimated from GNSS observations
and meteorological data. ANN is useful in finding hidden
relationships between features in a dataset, such as the
relationship between the GNSS signal delay and PWV as
in the case of tropospheric analyses. It has the ability to
learn, recall, and generalize from the given data by suitable
assignment and adjustment of weights. Due to significantly
reduced computation time compared to the traditional SVM
method, ANN is useful for real-time RO applications, such
as extreme weather prediction or data assimilation [115].

7) GNSS Security: Spoofing and Jammer Attacks: A
user device receiving false signals and believing it to be
authentic could prompt dangerous behavior due to the
false position or timing fixes. An example was mentioned
in [116], where GPS spoofing was used to misdirect a
hovering drone into an unplanned dive and to steer a yacht
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off course. Therefore, defenses against spoofing are aimed
at detecting an attack in order to warn the attacked receiver
that its navigation fix and clock offset are unreliable. The
second reason for defense against spoofing is to recover
a reliable navigation and timing solution. This has been
achieved at the pseudorange level with receivers employing
RAIM by using an inconsistent set of five or more pseu-
doranges to allow the receiver to detect an unsophisticated
spoofer that broadcasts one or more false signals with no
attempt to achieve a believable consistency. However, in
response to increased efforts to defend against spoofing,
advanced forms of GNSS spoofing have been conceived and
interest in GNSS spoofing has increased with an example
of such spoofing called “in the wild,” which is an actual
malicious spoofing attack. Various defense strategies that
have been developed to deal with self-consistent spoofing
have been beaten by these advanced spoofings [116]. There-
fore, we have seen researchers attempting to use ML to
detect and defend against spoofing attacks, for example,
in [117] using the ANN model. Using features such as
pseudorange, PR, Doppler shift, etc., an increase in the
ANN model detection performance is observed. For one
feature, the highest accuracy of 73.2% is achieved with the
pseudorange. With two features (pseudorange and Doppler
shift), the best performance with an accuracy of 92.6%,
a probability of detection of 85.2%, and a probability of
false alarm of 0% is obtained. As the number of features in-
creases, the accuracy also increases. Another application is
the C/NO abnormity detection method for GPS antispoofing
using an ANN model [20].

In [118], using MLP trained with particle swarm opti-
mization (PSO), the simulation results showed that spoof-
ing attack detection improved approximately 4 and 2% in
comparison with the results achieved through classification
based on Bayes-optimal rule and multihypothesis Bayesian
classifier mentioned in the literature review. The feature
vector used by this method includes received signal power
and correlation function distortion. It uses these features
to try to classify received signals as jammed, spoofed,
multipath, or interference-free signals.

While in [119], using RNN based on LSTM, the error of
the forecasting model over the testing dataset is in the order
of 0.0006%. The model is able to detect GPS anomalies
using signal imperfections, Doppler shift deviations higher
than 4 Hz, and detecting mobile spoofing devices at higher
speeds of 2.5 km/h.

In [120] SVM classification (C-SVM) with principal
component analysis (PCA) was implemented. The overall
success rate of the proposed approach was 97.8%, and
the cross-validation error was slightly higher. Using PCA,
the relations among the selected variables were analyzed.
These variables include lock time, pseudorange, carrier
Doppler frequency, receiver clock bias, receiver clock drift,
C/N, code variance, multipath correction, carrier multipath
correction, full carrier phase [cycles], carrier variance, and
spoofing indication.

Research has also been done on the use of ML to detect
and classify interferences and jammer signals in order to
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defend against jammer attacks. Types of jamming signals
include audio jamming, narrow-band jamming, pulse jam-
ming, sweep jamming, spread spectrum jamming, and the
combination of each two of the above jamming signals.
Jammer signals are a type of interference signal; therefore,
the detection and classification of GNSS interference sig-
nals can help identify if the interference is an intentional
and malicious (jammer or spoofing signal) attack or if it
is unintentional, which can still cause GNSS positioning
erTors.

For intentional jammer attacks, studies have been con-
ducted using ML to detect and classify GNSS interference
such as in [121] using a twin SVM algorithm (TWSVM)
for real-time interference monitoring. Implementing SVM
in the interference monitoring of GNSS signals meets the
requirement of objectivity and accuracy. However, the train-
ing speed of standard SVM does not satisfy the requirement
of being in real time for interference monitoring. The ex-
perimental results indicate that the TWSVM model [121]
is faster than the standard SVM in training speed (the
training speed of TWSVM is at the millisecond level and
the classification speed of TWSVM is at the microsecond
level) and can be used in practice.

While for unintentional attacks like solar radio bursts
that interfere with the GNSS signal, the SVM algorithm
was used for the detection of the interference. In [122],
SVM and CNN were used for jammer signal classification
in GNSS bands. The results showed that with a small library
of images and not excessively complex parameters/network
layer architectures, a high mean classification accuracy was
obtained for SVM (94.90%) and CNN (91.36%). It used
a dataset’ composed of 61 800 different images and con-
taining different jammer types including the no-interference
scenario and also used randomly generated parameters for
these interference types.

While in [18], CNN is used for jammer signal classifica-
tion. Here, the proposed CNN method has both robustness
and good accuracy in jamming signals classification. This is
seen in the results for single jamming signal classification,
the proposed CNN method correctly classifies almost 100%
of jamming signals. While for coexisting situations (more
than one jamming signal), the lowest classification accuracy
is up to 92%. Other studies include [123] using LSTM
with CNN, [124] using LR, KNN, NB, DT, and SVM
algorithms, [125] using a multilayer NN, and [126] using
SVM.

8) GNSS/INS Integration: KF is widely used as a data-
fusion algorithm in navigation. The integration of GNSS
and non-GNSS systems, such as INS, makes use of KF
for its GNSS/INS calibration systems. When GNSS cannot
supply measurement updates normally, the filter time would
be increased. In such cases, the divergence of INS error is
fast without GNSS information correction. This could be
detrimental depending on the use case, such as the con-
cealment of unmanned underwater vehicles and unmanned

2[Online]. Available: https://doi.org/10.5281/zenodo.3370934
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aerial vehicles (UAVs). ML algorithms have been used in
several studies to mitigate such scenarios. In general, when
GNSS is active, the ML model is used to learn the diver-
gence characteristics of the INS error under several basic
conditions depending on the area of application (vehicles,
UAV, etc.). If there is a disturbed GNSS signal, the ML
model is used to correct the position error of the INS in
order to improve the navigation accuracy.

In [127], the BPNN algorithm was used for GNSS/INS
integration to overcome the GNSS outages. The simula-
tion experiments used BPNN to compensate for the KF
algorithm. The results showed an improved accuracy of
the integrated navigation when GNSS is unavailable. The
proposed method is able to maintain low-level deviations for
about 9 min. Within this short navigating mission without
a GNSS signal, the reliability and feasibility of the UAV
can be verified. Similarly, in [128], the BPNN algorithm
was used for GNSS/INS integration. The results show that
the BPNN model can efficiently predict the increment of
position and compensate for the accumulation of INS errors
during GNSS outages.

In [129], a CNN-based adaptive KF is implemented
to achieve the GNSS/INS integration. The estimator can
output the system noise covariance matrix by windowed
inertial measurements. The experimental results show that
the proposed algorithm has a better performance (three
times lower RMSE value) compared to classical KF and
Sage—Husa adaptive filter in highly dynamic conditions.
While a CNN-LSTM method is used in [130], here the
results of the CNN-LSTM model compared with the EKF
navigation method, show significant improvement in the
navigation accuracy and the alignment time. It has a final
attitude accuracy better than 0.2°, an alignment time of
10 s, and a position accuracy better than 3 m. This can
meet the requirements of low-cost vehicle flexibility. While
in [131], an ensemble learning algorithm (ELM) is used
for INS/GPS navigation. To validate the performance of the
proposed method, the results are compared with an adaptive
network-based fuzzy inference system (ANFIS) and an EKF
method. The result of ELM outperforms ANFIS and EKF
by approximately 50% and 70%, respectively. This suggests
a promising prospect for the use of ELM in the field of
positioning in the absence of GPS signals using low-cost
MEMS-based inertial sensors.

NN models have also been implemented to mitigate the
GNSS signal outage in GNSS/INS integration in [132]. The
study uses an NN model to do online learning of the system
behavior during the time intervals when there are no satellite
outages. It then takes advantage of this learning by applying
it during periods of outages. The fixed velocity (stationary)
results showed that the MAE after a 30-s outage was about
400 m without the NN model, but after the NN model was
used for error compensation, it was approximately 100 m.
For a constant-velocity trajectory, the position accuracy was
about 500 m without NN error corrections and close to
100 m with the NN error corrections applied.

An SVM-based GNSS/INS integrated was utilized
in [133] for land vehicle navigation. Here, the proposed
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SVM-based GNSS/INS integrated provided a 45%-73%
improvement on rms positioning compared with the KF
approach. It also outperformed BPNN by 8%-32%, and
ELM by 46%—67% on rms positioning. The positioning
improvements in maximum position accuracy were 26%,
66%, and 78% compared with KF, BPNN, and ELM meth-
ods, respectively.

GNSS can also be integrated into other devices such
as cameras [134] using the CNN algorithm. The RMSE
errors obtained remain low even at high added bias values
of 100 and 200 m. The highest RMSE values were ob-
served at low/medium biases because it is more difficult
to detect and exclude low biases than high biases. Other
ML-based GNSS/INS integration studies include [135] us-
ing RNN, [136] using RBF-NN, and [137], [132], [138],
[139], and [140] using NN models.

9) Satellite Selection: Location accuracy is a result of
two main factors namely, the satellite location-dependent
geometric dilution of precision (GDOP) and the pseudor-
ange measurement inaccuracies [141]. Generally, the more
visible satellites available the better the positioning perfor-
mance. The benefit of multiconstellation GNSS is that more
visible satellites can be used to improve user positioning
performance. However, not all satellite would contribute to
the positioning performance because of some GNSS error
like satellite clock error or high C/NR, etc. [142]. Therefore,
selecting the optimal sets of satellites from all possible
visible satellite combinations is important. This selection is
done with the aim of minimizing either GDOP or weighted
GDOP (WGDOP) as a criterion. Other selection criteria
used in researches include elevation angle, C/NR, and range
errors. ML has been applied in this kind of study to im-
plement an ML-based satellite selection algorithm as seen
in [143] using PointNet and VoxelNet networks, and [144]
using an NN model. The study by Simon et al. [144] was
one of the earliest research (from our database search in
Section II) that utilized DL algorithm for satellite selec-
tion. Usually, a satellite subset is chosen by minimizing a
quantity known as geometric dilution of precision (GDOP).
However, in [143], the satellite selection algorithm is a
satellite segmentation problem, having a specified input
channel for each satellite and two class labels, one for
selected satellites and the other for those not selected. The
satellite segmentation algorithm is used to ensure that a
fixed number of satellites with the minimum GDOP or
WGDOP value can be segmented from any feeding order
of input satellites. Whereas, in [144], an NN model is used
to predict the GDOP without the usual resource consuming
computation of the trace of the inverse of the measurement
matrix. The NN model does this by learning the functional
relationships between the entries of a measurement matrix
and the eigenvalues of its inverse.

10) LEO Satellites: Orbit Determination and Position-
ing: The application of GNSS to the precise orbit determi-
nation (POD) of low-Earth-orbit (LEO) satellites has been
beneficial in the development of many new space applica-
tions in the area of navigation, telecommunication, remote
sensing, and Earth observation systems. These applications
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can benefit from the precise tracking of satellites orbits
using onboard GNSS receiver data. With recent advance-
ments, GNSS receivers have been designed to meet the
POD requirements and have been implemented on many
satellites, depending on the objectives of their missions, re-
quiring accurate knowledge of their orbits. The performance
of the POD process can be affected by the measurement
environment, the technique used, and the mission appli-
cation of the satellite. Furthermore, besides accuracy, the
need to reduce the latency in achieving a precise solution
has been of interest. This is beneficial to many end-user
applications as it provides faster access to the required
orbit solutions [145]. ML for orbit determination of LEO
satellites has been implemented by some studies [146],
[147], [148], [149]. In [146] and [149], TDNN, which is
a type of feed-forward NN (FFNN), and LSTM are used for
simultaneous tracking and navigation with LEO satellites.
An NN isimplemented in [147] and [ 148] to mitigate GNSS
multipath for LEO positioning applications. It was noticed
that very limited studies have been done on the use of ML
for POD of LEO satellites. This may be due to the fact
that most studies related to GNSS navigation are based on
improving positioning accuracy and mitigation of GNSS
errors. Additionally, LEO satellites with GNSS receivers
have only recently emerged, and thus not many studies have
yet focused on their POD via GNSS accounting for little
number of research on LEO satellites using ML models
and GNSS.

D. Datasets Used by the ML Models (RQ3)

A variety of datasets have been used in ML utiliza-
tion in GNSS studies. Fig. 6 shows the percentage of
studies using different datasets. Some of the data used
were simulated data [150], [151] while others were real
data [23], [152], [153]. The utilized datasets can be pub-
licly available (for free) or private in nature not shared
by researchers; therefore, results on such datasets cannot
be verified and such studies are not replicable. The major
category of datasets used and their sources are as follows.

1) Simulated data: These datasets include, CU SeNSe
Lab [154], and a customized software-defined radio
(SDR)-based GNSS data grabber and software re-
ceiver [155].
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2) Real data: These datasets include GNSS raw data
from smartphones (it also include data collected by
individuals.) [156], vertical total electron content
(VTEC) data from the National Oceanic and Atmo-
sphere Administration [23], and GPS data over Inter-
national GNSS Service (IGS) stations [152], [153].

3) Combining real and simulated data: The combina-
tion of real and simulated data are used [3], [120],
[157].

Different kinds of devices were used for the collection of
the data used for research. These include low-cost receivers
such as u-blox, smartphones, and high-end receivers, for ex-
ample, Trimble, Novatel, and Javad Triumph VS receivers.
The type of research determined the location for data collec-
tion. These locations include open sky environments (LOS),
urban canyon (multipath/NLOS prone), indoors (GNSS-
denied environment), and laboratory-generated data.

In GNSS, even with the same equipment and the same
data collection path, the data collected at different times
should be regarded as different dataset due to the change
in satellite’s geometry. Therefore, in the GNSS field, it is
rare to see researchers use the same dataset for different
objectives or even more, the same objective. However, in
research, replicability is important; therefore, it would be
a good practice to create a database where researches can
store their research data for easy access in order for other
researchers to be able to replicate their results. This way,
the ML model used can be trained and evaluated by other
researchers making use of the shared data.

E. ML Versus Non-ML Models (RQ4a)

In some of the selected studies, ML models versus
non-ML models performance were compared (as seen in
Fig. 7). The ML models have been compared with several
conventional non-ML models: regression model [14], [80],
[101], [158], [159], brute force approach [143], traditional
statistical approaches [60], [94], [160], [161], [162], [163],
classical KF [129], Bayes-optimal rule [118], least square
(LS)-based approach [40], Saastamoinen model [110],
autoregressive model and a traditional LEO propagation
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model (EKF-STAN) [146], conventional wind speed re-
trieval method [43], maximum-likelihood power-distortion
(PD-ML) [164], BERNESE 5.2 [114], CYGNSS [44],
hydrostatic-seasonal-time model [49], statistical theta
method [51], [52], [53], [165], MAPGEO2004 geoid
model [73], GNSS-IR SM [58], autoregressive and au-
toregressive moving average [166], ERA-Interim—a global
atmospheric reanalysis (now ERAS reanalysis) [107], em-
pirical linear algorithms (LRM and LLM) [59], Inter-
national Reference Ionosphere (IRI) 2016 model [167],
NeQuick and IRI-2001 global TEC model [168], [169],
[170], EKF-based integration scheme [171], CODE Global
Ionospheric Maps (GIMs) [172], autoregressive integrated
moving average (ARIMA), and quadratic polynomial mod-
els [173], LSR and BHS [105], linear interpolation method
and inverse distance weighted interpolation method [112],
KF [138], [139], polynomial model [93], [174], IRI-2001
model [175], conventional systems (RAIM) [126], [176],
EGNOS [103], and IRI-2012 model [177].

In Fig. 7, we present the studies that compared the
performance of ML with non-ML models. Majority of the
studies concluded that ML models outperformed non-ML
models except for one study (GNSS/INS integration [126]),
where the SVM model has a similar performance to conven-
tional systems (RAIM), but suffers from faster degradation
due to the tightly coupled fusion algorithm. Specifically,
Fig. 8 shows that 23.47% (50 of 213) of studies did a
comparison between non-ML and ML models [14], [31],
(401, [43], [44], [45], [511, [521], [531, [58], [591, [601, [73],
[80], [93], [94], [103], [105], [107], [110], [112], [114],
[126], [129], [130], [131], [138], [139], [143], [146], [158],
[159],[160], [161], [162], [163], [164], [165], [166], [168],
[169],[170], [171], [172], [173], [174], [175], [176], [177],
[178].

The percentage of studies that made comparison be-
tween ML and other ML models was 15.49% (33 of
213) [12], [13], [16], [17], [26], [27], [28], [29], [33], [36],
[39], [56], [63], [68], [77], [86], [87], [91], [108], [115],
[122],[123], [124], [135], [179], [180], [181], [182], [183],
[184], [185], [186], [187]. Whereas 55.39% (118 of 213)
of the studies did not do any comparison but presented the
result of ML model(s) used [3], [11], [15], [18], [19], [20],
(211, [22], [24], [25], [301, [32], [34], [35], [37], [38], [41],
[42], [46], [47], [48], [501, [54], [55], [57], [61], [62], [69],
[701, [721, [741, [751, [761, [78], [79], [811, [83], [85], [88],
[89], [90], [92], [95], [96], [97], [98], [99], [100], [102],
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[104], [106], [109], [111], [113], [117], [119], [120], [121],
[125], [127], [128], [132], [133], [134], [136], [137], [140],
[144], [147], [148], [157], [188], [189], [190], [191], [192],
[193], [194], [195], [196], [197], [198], [199], [200], [201],
[202], [203], [204], [205], [206], [207], [208], [209], [210],
[211], [212], [213], [214], [215], [216], [217], [218], [219],
[220], [221], [222], [223], [224], [225], [226], [227], [228],
[229], [230], [231], [232], [233].

Furthermore, 2.82% (6 of 213) of studies compared one
or more non-ML model with one or more ML model [49],
[71], [101], [167], [234], [235], while 2.82% (6 of 213) of
studies implemented a hybrid between ML and non-ML
algorithm [82], [118], [149], [236], [237], [238]. These
hybrid implementation studies claim their performance is
better than ML only and non-ML only implementations.
The comparison of the utilization of ML in GNSS are
presented in Fig. 8.

F. ML Versus Other ML Models (RQ4b)

For the comparisons between different ML models, we
compared the accuracy of many ML models applied to the
same use case. This comparison is done for studies that
implemented more than one ML model for a particular
GNSS use case. All ML models applied to a specific GNSS
use case are analyzed for comparison based on accuracy.
In general, five significant comparison results can be found
from the selected studies. First, RF, GBDT, CNN, RNN, and
ANN are more accurate than LSTM and SVM respectively.
Some studies showed that DT, GBDT, and RF-based clas-
sifier obtained a higher accuracy than KNN, CNN, ANN,
and SVM respectively. Another ML model with significant
performance was the SVM in its various forms (SVM,
LSSVM-KF, and C-SVM) performing better than CNN,
ANN, and DT. These performance comparisons between
ML models are provided in Fig. 9.

The reasons for some ML models such as DT, GBDT,
and RF performing better than NN models (ANN, CNN,
and LSTM) may be due to the following:

1) Very few studies conducted experiments to compare
ML with other ML models for the same GNSS use
case.

2) All the GNSS use cases demonstrating the superior-
ity of NN models over other ML models come from
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the studies of NN models; therefore, it is possible
that some of them have a bias toward NN model and
these studies may be overly optimistic.

3) The use cases used for this comparison differ slightly
from each other and as a result, the type of ML
algorithm used varies and it may not be beneficial to
do a cross-comparison of ML model across GNSS
use cases.

Furthermore, for ML models that are rarely compared
with each other, it is difficult to determine which is more
accurate.

G. Strength and Weakness of ML Models Applied to
GNSS (RQ5)

Given the various GNSS use cases, we may have to
concern ourselves with selecting the appropriate ML models
for a specific GNSS use case. By investigating the charac-
teristics of the candidate ML models (to be more precise,
the ML techniques), such concern can be addressed. The
aim is to identify the strengths and weaknesses of the ML
techniques. To this aim, we have extracted the strengths
and weaknesses of ML techniques and synthesized them
based on the type of the ML technique. The different studies
assessed the ML techniques in different ways and from
different aspects based on the GNSS use case the ML
model was applied to, therefore, we decided to synthesize
in general, the common strengths and weaknesses that were
mentioned by at least two studies (see Table IX). The list
comprises of the most common algorithm from the selected
studies. However, in Table X, we present the strength and
weaknesses as mentioned by some of the authors of the
selected studies.

The topics about model selection, model application,
and model combination, which are closely related to the
characteristics of ML techniques and estimation contexts
have been discussed in some existing works. With respect
to model selection, a tree-form framework to select ap-
propriate ML models was proposed [239]. The design of
the framework is based on criteria, such as dataset size,
uncertainty, causality, and applicability. These preliminary
criteria can be extended to include more criteria related
to ML models. With respect to applying ML models to
GNSS use cases, no study has proposed a framework
or procedure; however, Zhang and Tsai [240] proposed
a general procedure for applying ML models that con-
sists of the following steps: problem formulation, problem
representation, data collection, domain theory preparation,
performing the learning process, analyzing and evaluating
learned knowledge, and dealing with the knowledge base.
This procedure is also applicable to GNSS-related tasks.
In the aspect of model combination, MacDonell and Shep-
perd [241] stated that the combination of a set of diverse
techniques can improve estimation accuracy in cases where
no dominant technique can be found. In [242], an SLR
was conducted where it was also found that combining
models would usually produce better estimates than when
the models are used individually. Other studies [243] have
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provided strong support for this possibility although in
the field of software development effort. Studies have pre-
sented the opinion that combining two or more ML tech-
niques may potentially enhance the power of the estimation
model. This can hold true in the field of GNSS, as shown
in [77].

Although ML techniques have been proved in some
studies to be effective for some GNSS use cases (contexts),
they do not always perform well on all GNSS use cases. This
implies that an absolutely “best” ML model (technique)
does not appear to exist, and the performance of a particular
ML model depends heavily on the contexts it applies to.
Therefore, in order to choose appropriate ML techniques
and apply them to real-world GNSS use case efficiently, the
characteristics of the candidate ML techniques as well as the
contexts of the GNSS use case needs to be well understood.
In [244], it was noted that selecting the best estimation
method “in a particular context” is more beneficial than
selecting the “best” estimation method in general.

H. Evaluating/Validating ML Models (RQ#6)

Since ML model is data-driven, both building the model
and its validation rely extremely on the training data. There-
fore, when evaluating the estimation accuracy of an ML
model, the training dataset on which the model is built
and validated, must be taken into account, as well as the
employed validation method. Various historical datasets
were used to build and validate the ML models identified
in this review. The most frequently used datasets together
with their relevant information has been presented in the
previous sections.

Regarding the type of data used for evaluating the model,
the studies made use of either simulated data, real data,
or semisimulated data to evaluate the model depending on
the GNSS use case. The real data were collected using
high-grade GNSS receivers to be used as reference/ground
truth. In some studies where GNSS ground truth/reference
data are not available (for example, indoor applications),
predefined known trajectories were used. During the tra-
jectory recording, stops are made at certain way-points
and the current location is recorded as a reference point
(ground truth). For the studies that used simulated data, the
simulation was done to be used as the accurate reference
data for the model evaluation. The aim of testing with
simulated data is to validate the proposed method in a
well-controlled environment, where all the parameters (for
example, multipath/direct-only signals) can be manually
defined and clearly labeled.

With respect to validation methods, the metric explains
the performance of an ML model. The chosen metrics influ-
ence how the performance of ML algorithms is measured
and compared. They influence how we weigh the impor-
tance of different characteristics in the results. Furthermore,
the ML model may give satisfying results when evaluated
using a metric like accuracy score but may have poor results
when evaluated against other metrics such as “logarithmic
loss” or any other such metric. Hence, it is very much
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important to choose the right metric to evaluate the ML
model. The metric used depends on if it is a classification,
regression, or clustering problem. Some examples of clas-
sification, regression, and clustering metrics are listed as
follows.

1) Classification Metrics:
a) Accuracy.
b) Logarithmic loss.
¢) ROC, AUC.
d) Confusion matrix.
e) Classification report.
2) Regression Metrics:
a) MAE.
b) Mean Squared Error.
¢) RMSE.
d) Root mean squared logarithmic error.
e) R square.
f) Adjusted R square.
3) Clustering Metrics:
a) Silhouette score.
b) Rand index.
¢) Adjusted rand index.
d) Mutual information.
e) Calinski—Harabasz index.
f) Davies—Bouldin index.

From the selected studies, Holdout, n-fold cross-
validation (n > 1), and comparison with another algorithm
were mostly used. Specifically, the numbers (percentages)
of the studies that used these three validation methods
are 2 (3.84%) for Holdout, 20 (38.46%) when compared
with another algorithm, and 30 (57.69%) for n-fold cross-
validation. Furthermore, accuracy metric should also be
considered in evaluating the ML models. Different metrics
measure the accuracy from different aspects and effort
estimation accuracy can be measured using various met-
rics. It was found from the selected studies that RMSE,
mean square error (MSE), ROC curves, and Standard-
Deviation (StD) were the most popular accuracy metrics.
Specifically, the numbers (percentages) of the studies that
used these three metrics are 45 (56.25%) for RMSE, 7
(8.75%) for MSE, 9 (11.25%) for ROC, and 12 (15%)
for StD.

More details can be seen in Table XI in Appendix B. It
was also seen that when evaluating an ML model, we can
make use of other well established model or methods for
the evaluation.

V. IMPLICATIONS FOR RESEARCH AND PRACTICE

This review has found that the studies on the appli-
cation of ML techniques such as FFNN, RBF-NN, DBN,
and SVR to GNSS use cases are still limited. Some ML
techniques have not even been applied in the GNSS do-
main. Researchers are therefore encouraged to explore the
possibilities of using the unapplied ML techniques to new
GNSS use case context. In order to identify these unapplied
ML techniques and to use them more efficiently in GNSS,
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researchers should keep track of the related disciplines
like ML, artificial intelligence, data mining, and statistics.
Because these disciplines can provide valuable insights and
methods to address GNSS challenges.

High-quality historical GNSS dataset with detailed de-
scriptions of features and data collection process is essential
for building and validating ML models. This review has
shown that, on one hand, most of the available GNSS
datasets are GNSS observations. On the other hand, some
of the studies used simulated GNSS datasets. These data
varied and their means of collected also varied from study
to study. To address this and thereby promote ML utilization
in GNSS research, we suggest that researchers share their
GNSS datasets in the research community after the removal
of confidential information.

In the comparison of different ML models for GNSS use
cases, the limited number of relevant studies and the nonuni-
form experimental designs may account for inconclusive
and/or unclear results. Therefore, aside from performing
more research and experiments, it will benefit the research
community if a uniform experimental framework for eval-
uating the performance of different ML models utilized
for a particular GNSS use case is developed. Without the
use of such a uniform framework, the comparison results
for different ML models may vary when using different
datasets, or different experimental approaches even for the
same GNSS use case.

In the case of the implications for practitioners, this
review has found that very few of the selected studies
focus on industry practice, for example, [76], [77], [78].
This may be evidence that the application of ML models in
the real world of the GNSS industry is still quite limited.
Therefore, we suggest that practitioners should cooperate
with researchers to investigate the possibility of applying
the promising ML models in their practices. For example,
RF, SVM, CNN, and ANN have been investigated most
extensively in academia; therefore, these can first be taken
into consideration by practitioners, as a useful complement
to the existing traditional GNSS model. However, because
of the limited number of studies comparing ML models
and traditional GNSS (non-ML) models found from this
review, we recommend using both ML and non-ML models
in parallel at the early stage of practice, which has been
shown to have promising accuracy by some studies [82],
[118], [149], [236], [237], [238]. The replacement of the
non-ML (traditional GNSS) models with ML models can
only be considered when the ML model performs signifi-
cantly and consistently better than the existing traditional
GNSS model.

This review has shown that different ML techniques
are beneficial to different GNSS use cases. Therefore, prior
to decision making concerning choosing an ML model to
implement, practitioners need to know the contexts of the
GNSS use case; in addition, they need to understand the
characteristics of the ML models of interest. Usually, the de-
gree to which the GNSS use case matches the characteristics
of the chosen ML model can have a direct and significant
impact on the performance of the ML model. This means
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that given the estimation contexts of a GNSS use case, we
have to select ML models appropriate for the contexts. This
concern can be addressed by investigating the candidate
ML models or, more precisely, the ML techniques based on
their characteristics, mainly reflected by the strengths and
weaknesses of the ML techniques. The characteristics of
the ML techniques are mainly associated with four types of
estimation contexts namely: 1) small dataset, 2) outliers, 3)
categorical features, and 4) missing values. For example, DT
is prone to overfitting on small training dataset, while ANN
and DT cannot deal with missing values. Second, ANN
cannot deal with categorical features in their standard forms
but will work as long as the categorical features have been
quantified (or to avoid misleading information for methods
using distance metrics, the categorical features should be
encoded to suitable form, of which one-hot-encoding is
often used). Third, similarly, ANN and DT cannot deal with
missing values in their standard forms but will work as long
as the missing values have been imputed.

In addition to the characteristics summarized above,
there are some other distinct characteristics of ML tech-
niques, which may be considered when choosing appro-
priate ML models. These are as follows: DT are intuitive
and are easy to understand, while ANN has the ability to
learn complex functions; however, it requires a large amount
of data for training and may suffer from overfitting, with
weak explanatory ability; BNN is capable of learning causal
relationships. The topics about model selection, model ap-
plication, and model combination have been discussed by
existing works [239]. These topics are closely related to the
characteristics of ML techniques and estimation contexts.
With respect to model selection, a tree-form framework to
select appropriate ML models was proposed in [239]. The
framework is designed using criteria such as dataset size,
uncertainty, causality, and applicability. These are prelimi-
nary criteria and can, therefore, be extended to include more
criteria related to ML models. Furthermore, this framework
was done for selecting the appropriate ML techniques for
the prediction of software development costs. However, it
can still be adapted to GNSS use cases as the characteristics
of ML are the same irrespective of the field of application.

V. LIMITATIONS OF THIS REVIEW

This review considered accuracy metrics (e.g., RSME)
and validation when evaluating the performance of ML
models or comparing ML models with other models. Ac-
curacy metrics are the most important metrics and were
used by most of the studies. However, besides accuracy
metrics, other performance metrics, such as generalization
ability and interpretability, were ignored in this review.
These may also be important, especially when selecting
appropriate models for given GNSS use case. However, the
summarized strengths and weaknesses of ML models, i.e.,
the outcomes of RQS, are helpful to identify the appropriate
ML models, which may alleviate this limitation to some
extent. Another limitation in this review is that only 50
out of the 213 selected studies compare non-ML and ML
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techniques. Thus, the non-ML versus ML comparison is not
definitely conclusive. Furthermore, while comparing differ-
ent ML techniques, each of the selected study made use of
different experimental settings including datasets, feature
reduction methods, and preprocessing methods. This review
has revealed contradictions in some results of the com-
parisons between ML models and conventional non-ML
models and between different ML models; therefore, it is
difficult to establish which model is more accurate for a
GNSS use case. To improve the chances of identifying
the model which is more accurate for a GNSS use case,
the comparison of the ML algorithms should be done on
common grounds. Some of the comparison parameters may
include: time complexity (how much time the algorithm
takes), space complexity (how much memory an algorithm
needed to run in terms of the input size), sample complexity
(number of training examples needed to train the network
in order to guarantee a valid generalization), bias-variance
tradeoff, online and offline, parallelizability, parametricity,
etc. [245]. The authors will consider these parameters in
future work. Furthermore, it would be important to use
the same data. Section III-D shows that there are plenty of
different datasets used by different researchers. Therefore,
we suggest the development of a common test bench to
study the utilization of ML algorithm in GNSS. Another
limitation is the insufficient number of studies reporting
the desired comparisons, which may have led to these in-
consistencies. In general, drawing conclusions from a large
number of studies is more likely to be reliable. There is also
a possibility that although we have exhaustively searched
all the stated digital libraries, we may have missed a suitable
study. In conducting this review, we have assumed that all
the studies are impartial, and where this is not the case, it
then poses a threat to this study.

Some of the mentioned strengths and weaknesses of the
approach used in the studies were retrieved directly from
the selected studies (see Table IX). This means that it is
possible that some of them may just represent the authors’
opinions and, therefore, may be unreliable. To increase the
reliability of the synthesized results for RQ5, we take only
the synthesized strengths and weaknesses supported by two
or more selected studies. Therefore, care has to be taken in
dealing with any inferences drawn from these synthesized
results.

VI. CONCLUSION

This systematic review investigated ML utilization in
GNSS. The type of ML technique, the performance accu-
racy of the ML model, the comparison between different
models (including ML model versus non-ML model, and
ML model versus other ML model), and the GNSS contexts
(use case) in which the ML models were presented. An
extensive literature search for relevant studies published
in the period 2000-2021 have been performed and which
identified 213 primary studies (referred to as ‘“selected
studies”) that are pertaining to the six research questions
(RQs) raised in this review.
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TABLE VI
Publication Venues of Selected Studies

Publication Venue Paper Type # Studies Percentage
The Institute of Navigation Conference 44 20.66
Remote Sensing Journal 15 7.04
Sensors Journal 12 5.63
Advances in Space Research Journal 9 4.23
GPS Solutions Journal S 235
arXiv Journal 5 235
International Geoscience and Remote Sensing Symposium Conference 5 235
IEEE Journal of Selected Topics in Applied Earth Observations and Journal 5 235
Remote Sensing
Advancing Earth and Space Science Journal 5 235
IEEE Access Journal 4 1.88
IEEE/ION Position, Location and Navigation Symposium (PLANS) Conference 3 1.41
International Conference on Localization and GNSS (ICL-GNSS) Conference 3 141
IEEE Transactions on Geoscience and Remote Sensing Journal 3 1.41
The International Archives of the Photogrammetry, Remote Sensing Conference 3 141
and Spatial Information Sciences
Geodesy and Geodynamics Journal 3 141
Journal of Atmospheric and Solar-Terrestrial Physics Journal 3 1.41
International Conference on Intelligent Transportation Systems (ITSC) Conference 2 0.94
Journal of Sensors Journal 2 0.94
IEEE Transactions on Aerospace and Electronic Systems Journal 2 0.94
IEEE Geoscience and Remote Sensing Letters Journal 2 0.94
International Conf. on Sensing, Measurement Data Analytics in the Conference 2 0.94
era of Artificial Intelligence (ICSMD)
Remote Sensing of Environment Journal 2 0.94
Materials Today: Proceedings Journal 2 0.94
IEEE Internet of Things Journal Journal 2 0.94
Applied Soft Computing Journal 2 0.94
NAVIGATION, Journal of the Institute of Navigation Journal 2 0.94
Information Fusion Journal 2 0.94
Neurocomputing Journal 1 047
ITS World Congres Conference 1 047
IET Radar, Sonar Navigation Journal 1 0.47
University of Nottingham PhD thesis 1 047

Conf. on Operations and De- Conference 1 0.47
cisions (ICTMOD)
International Conf. on Signal Processing, Communications and Com- Conference 1 0.47
puting (ICSPCC)
Advanced Information Management, Communicates, Electronic and Conference 1 0.47
Automation Control Conf. (IMCEC)
IEEE Annual Consumer Communications Networking Conference Conference 1 0.47
(CCNC)
KTH ROYAL INSTITUTE OF TECHNOLOGY Msc Thesis 1 0.47
RFI Workshop - Coexisting with Radio Frequency Interference (RFIT) Journal 1 047
Defence Technology Journal 1 047
Asia-Pacific Conf. on Intelligent Robot Systems (ACIRS) Conference 1 0.47
International Conf. on Artificial Intelligence and Data Analytics for Conference 1 0.47
Air Transportation (AIDA-AT)
International Computer Conference, Computer Society of Iran (CS- Conference 1 047
1cC)
International Conf. on Computer Applications Information Security Conference 1 047
(ICCAIS)
Acta Astronautica Journal 1 0.47
Engineering Science and Technology, an International Journal Journal 1 047
Measurement Journal 1 0.47
International Symposium on "A World of Wireless, Mobile and Conference 1 047
Multimedia Networks" (WoWMoM)
International Conf. on Acoustics, Speech and Signal Processing Conference 1 047
(ICASSP)
International Conf. on Signal, Information and Data Processing (IC- Conference 1 0.47
SIDP)
IEEE Intelligent Vehicles Symposium (IV) Conference 1 0.47
Global Oceans 2020: Singapore — U.S. Gulf Coast Conference 1 047
European Navigation Conference (ENC) Conference 1 0.47
IEEE Aerospace Conference (50100) Conference 1 047
International Conf. on Artificial Intelligence in Information and Com- Conference 1 0.47
munication (ICAIIC)
IEEE Sensors Journal Journal 1 0.47
Cognitive C i for Aecrospace Workshop Conference 1 047
(CCAAW)
Systems of Signal Synchronization, Generating and Processing in Conference 1 047
Telecommunications (SYNCHROINFO)

Symposium on’ i (IST) Conference 1 0.47
Forum on Cooperative Positioning and Service (CPGP) Conference 1 047
European Signal Processing Conference Conference 1 047
IEEE International Conf. on Wireless for Space and Extreme Environ- Conference 1 0.47
ments (WiSEE)

i ymp o y Studies and Innovative Conference 1 047
Technologies (ISMSIT)
IEEE Sensors Journal Journal 1 0.47
Animals Journal 1 0.47
Satellite Navigation Journal 1 0.47
Journal of Hydrology Journal 1 047
Wireless Personal Communications Journal 1 0.47
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry | Journal 1 047
and Cartography
Leibniz International Proceedings in Informatics (LIPIcs) Journal 1 0.47
International Journal of Remote Sensing Journal 1 0.47
ISPRS International Journal of Geo-Information Journal 1 0.47
1OP Conference Series: Materials Science and Engineering Conference 1 0.47
Mechatronics Journal 1 0.47
Journal of Geodesy Journal 1 0.47
International Association of Geodesy Symposia book series book- 1 047
chapter

Applied Sciences Journal 1 047
Advances in Artificial Neural Systems Journal 1 0.47
International Journal of Electronics Journal 1 0.47
International Journal of Computer Applications Journal 1 047
Alexandria Engineering Journal Journal 1 047
IEEE Aerospace and Electronic Systems Magazine Journal 1 047
International Conference on Automation and Computing (ICAC) Conference 1 0.47
Iranian Journal of Electrical Electronic Engineering Journal 1 0.47
International Conference on Robotics and Biomimetics (ROBIO) Conference 1 0.47
International Symposium on Signal Processing and Information Tech- Journal 1 0.47
nology (ISSPIT)
Annals Geophysics (AG) Journal 1 0.47
Studia Geophysica et Geodaetica Journal 1 047
Others Journal 5 235
Total 213 100

The principal findings of this review are summarized as
follows.

1) ROI—The ML algorithms that have been applied
in GNSS use cases are presented in Table XI in
Appendix B. Among them, RF, SVM, ANN, and
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Quality Levels of Relevant Studies

TABLE VII

D Authors Q1 Q2 Q3 Qda Q4b Q5 Score
S1 Simon et al. 1 1 0 0 1 1 4
S3 Machado et al. 1 1 1 0 1 0 4
S4 Bhatt et al. 1 1 0.5 0 1 0 35
S5 Socharoentum et al. 1 1 1 0 1 0 4
S6 Z. Zhou et al 1 1 1 1 1 1 6
S7 Jiao et al. 1 1 1 0 1 0 4
S9 Favenza et al. 1 1 0.5 0.5 0.5 0 35
S10 Y. Quan 1 1 1 0 1 0 4
S11 Yang et al. 1 1 0.5 0 1 0 35
S12 L.-T. Hsu 1 1 1 0 1 1 5
S14 Suzuki et al. 1 1 1 0 1 0.5 4.5
S15 Jiao et al. 1 1 1 0 1 0 4
S16 B. GUERMAH et al. 1 1 1 0 1 0 4
S18 Y. Liu et al. 1 1 1 0 1 0 4
S19 Y. Quan et al. 1 1 1 0 1 1 5
S20 P. Huang et al. 1 1 1 1 1 0 5
S21 Gogliettino et al. 1 1 1 0.5 0.5 0.5 4.5
S22 Zhidong Zhang et al 1 1 1 0 1 0 4
S23 Z. Liu et al. 1 1 1 0 1 0 4
S25 H.-U. Kim and T-S. Bae 1 1 1 0 1 1 5
S26 N. Linty et al. 1 1 0.5 0 1 0.5 4
S27 M. R. Manesh et al. 1 1 1 0 1 0.5 4.5
S28 ALEJANDRO KURATOMI 1 1 1 0 1 0 4
S29 Q. Liu et al. 1 1 1 0 1 0 4
S30 R. Morales Ferre et al. 1 1 1 0 1 0.5 45
S31 A. LOUIS 1 1 0.5 0 1 0 35
S$32 K. Lamb et al. 1 1 1 0 1 1 5
S33 S. Semanjski et al. 1 1 1 0 1 1 5
S34 R. Orus Perez 1 1 1 0 1 1 5
S35 R. Sun et al. 1 1 1 0 1 1 5
S36 D. Brum et al. 1 1 1 0 1 0 4
S37 H. Dai et al. 1 1 1 0 1 1 5
S38 Z.Zou et al. 1 1 1 0.5 1 1 55
S39 Chang et al. 1 1 0.5 0.5 0.5 0 35
S40 E. Munin et al. 1 1 1 0 1 0.5 4.5
S42 Li et al. 1 1 0.5 0.5 0.5 0.5 4
S43 Borhani-Darian et al. 1 1 1 0 1 0 4
S44 P. Borhani-Darian et al. 1 1 1 0 1 0 4
S45 S. Tohidi et al. 1 1 0.5 0.5 0.5 0 35
S46 Munin et al. 1 1 1 0 0.5 0 35
S47 M. Alshaye et al. 1 1 1 0 1 0 4
S48 Yunxiang Liu et al. 1 1 1 0 1 0 4
S49 L. Mallika I et al. 1 1 1 0 1 0 4
S50 Suzuki et al. 1 1 1 0 1 0 4
S51 M. O. Selbesoglu 1 1 1 0 1 0 4
852 Y. Xia et al. 1 1 1 0 1 0 4
S53 Q. Yan et al. 1 1 1 0 1 0.5 4.5
S54 R. Calvo-Palomino et al. 1 1 1 0 1 0 4
S55 i 1 1 1 0 0.5 0 35
S56 1 1 1 0 1 0 4
S57 S. Semanjski et al. 1 1 1 0 1 0 4
S58 F. Dovis et al. 1 1 0.5 0 1 0 35
859 Y. Jia et al. 1 1 1 0 1 0 4
S60 E. I. Adegoke et al. 1 1 1 0 1 0 4
S61 Y. Jia; et al. 1 1 1 0 1 0 4
S62 Q. Yan et al. 1 1 1 0 1 0 4
S63 M. Asgarimehr; et al. 1 1 1 1 1 0 5
S65 L. Miotti et al. 1 1 1 1 1 0 5
S67 Y. Liu et al. 1 1 1 0 1 0 4
S68 T. Mortlock et al. 1 1 1 1 1 0 5
569 L. Mengying et al. 1 1 1 0 1 0 4
S71 A. Lwin et al. 1 1 1 0 0.5 0 35
S73 S. J. Cho et al. 1 1 1 0 1 0 4
S74 J. Wang et al. 1 1 1 0 1 0 4
S75 X. Chu et al. 1 1 1 0 1 0 4
S76 G. Zhang et al. 1 1 0.5 0 1 0 35
S77 D. R. Kartchner et al. 1 1 0.5 0 1 0 35
S79 R. Klus et al. 1 1 1 0 1 0 4
S80 M. Y. Klimenko et al. 1 1 0.5 0.5 0.5 0 35
S82 Y. Liu et al. 1 1 1 1 1 0.5 55
S84 A. Hu et al. 1 1 0.5 0 1 0 35
S86 A. R. Kazemi et al. 1 1 0 0.5 1 0.5 4
S87 Y. Yang et al. 1 1 0.5 1 1 0 4.5
S88 Q. Yan et al. 1 1 1 0 1 0 4
S89 J. -. De Boer et al. 1 1 0.5 0 1 1 4.5
S90 J. Reynolds et al. 1 1 1 1 1 1 6
S91 R. Tmam et al. 1 1 1 0 1 0 4
S92 S. Li et al. 1 1 0.5 0 1 0 35
S93 Y. Su et al. 1 1 0.5 1 1 0 4.5
S94 7. A~ZDEMA°R et al. 1 1 0.5 0 1 0 35
S95 W. Ye et al. 1 1 1 0 0.5 0 35
S98 Y. Luo et al. 1 1 0.5 0.5 1 0.5 4.5
S99 Y. Wang et al. 1 1 1 1 1 0 5
S100 Q. Yan et al. 1 1 1 0 1 0 4
S101 L. Cong et al. 1 1 1 0 1 0 4
S102 L. He et al. 1 1 1 0 1 0 4
S103 J Mendez-Astudill et al. 1 1 1 0 1 0 4
S104 M Kiani et al. 1 1 1 1 1 0 5
S105 M Kiani et al. 0.5 1 0.5 1 1 0 4
S106 Liu et al. 1 1 0.5 0.5 0.5 0 35
S107  ES Fogarty et al. 1 1 1 0 1 0 4
S108 K Maschera et al. 1 1 1 0 1 0 4
S110 M Eos et al. 1 1 1 0 1 0 4
S111 Y Jia et al. 1 1 1 0 1 0 4
S112 M Kiani et al. 1 1 1 1 1 0 5
S113 Alessandro Neri et al. 1 1 0.5 0 0.5 0.5 35
S114 Y Zhu et al. 1 1 1 0 1 0 4
S115 Y Liu et al. 1 1 1 0 1 0 4
S116 H Xu et al. 1 1 1 0 1 0 4
S117 V Senyurek et al. 1 1 1 0 1 0 4
S118 Y Jia et al. 1 1 1 0 1 0 4
S119 Q Yuan et al. 1 1 1 0 1 0 4
S121 A Lwin et al. 1 1 1 0 0.5 0 35
S122 H Liu et al. 1 1 1 0 1 0 4
S124 J Wang et al. 1 1 1 1 1 0 5
S125 N Liu et al. 1 1 1 0 1 0 4
S126 HU Kim et al. 1 1 1 0 1 0 4
S127 S Li et al. 1 1 1 0 1 0 4
S130 M Kaselimi et al. 1 1 1 0 1 0 4
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TABLE VII
(Continued.)
S131 K Kasantikul et al. 1 1 1 0 1 0 4
S132 J Hu et al. 1 1 1 0 1 0 4
S132 J Hu et al. 1 1 1 0 1 0 4
S133 Dongchan et al. 1 1 0.5 0 0.5 1 4
S134 V Otugo et al. 1 1 1 0 1 0 4
S136 X Zou et al. 1 1 1 0 1 0 4
S137 O Eroglu et al. 1 1 1 0 1 0 4
S138 M Kiani et al. 1 1 1 1 1 1 6
S139 E. Piccolomini et al. 1 1 1 0 1 0 4
S140 M. Moses et al. 1 1 1 0 1 0 4
S141 Veronez et al. 1 1 1 1 1 0 5
S142 Y Liang et al. 1 1 1 0 1 0 4
S144 Y Shi et al. 1 1 1 0 0.5 0 35
S143 M Zeybek et al. 1 1 1 1 1 0 5
S145 L Zhao et al. 1 1 0.5 0 1 0 35
S146 M Kaselimi et al. 1 1 1 1 1 1 6
S147 S Miyazawa et al. 1 1 1 0 0.5 0 35
S148 Shamshiri et al. 1 1 1 1 1 1 6
S149 Surisetty et al. 1 1 1 1 1 0 5
S150 Mutchakayala et al. 1 1 1 0 1 0 4
S151 Wojtusiak et al. 1 1 1 0 1 0 4
S152 Osah et al. 1 1 1 0 1 0 4
S153 Salar et al. 1 1 1 0 1 0 4
S155 Xia et al. 1 1 1 1 1 0.5 55
S156 Li et al. 1 1 1 0 1 0 4
S157 Mohammed et al. 1 1 1 0 1 0 4
S158 Okoh et al. 1 1 1 1 1 0 5
S159 Rafatnia et al. 1 1 1 1 1 0 5
S160 Sahu et al 1 1 1 1 1 0 5
S161 Sivavaraprasad et al. 1 1 1 1 1 0 5
S162 Ferreira et al. 1 1 1 1 1 1 6
S163 P. Preseren et al. 1 1 1 0 1 1 5
S164 Rahimi et al. 1 1 1 1 1 0 5
S165 Kemal Tiitiincii et al. 1 1 1 1 1 1 6
S166 R.E. Guinness et al. 1 1 1 0 1 0 4
S167 N. Yamaga et al. 1 1 1 1 1 0 5
S168 Q. Yuan et al. 1 1 1 0 1 0 4
S169 L. Li et al. 1 1 1 0 1 0 4
S170 B. Huang et al. 1 1 1 1 1 0.5 55
S171 M. Kim et al. 1 1 1 1 1 0 5
S172 B. Zhang et al. 1 1 1 0 1 0 4
S173 C. Herbert et al. 1 1 1 0 1 0 4
S174 Taro Suzuki et al. 1 1 1 0 1 0 4
S175 Marco Mendonga et al. 1 1 1 0 1 0 4
S179 Selbesoglu et al. 1 1 1 1 1 0 5
S180 Mohamad Orabi et al. 1 1 1 0.5 0.5 0 4
S181 Yu Jiao et al. 1 1 1 0 1 0 4
S183 Hany Ragabet et al. 1 1 1 0 1 0 4
S185 J. Merwe et al. 1 1 0.5 0 1 0 35
S186 Yung-Cheng et al. 1 1 1 0.5 1 0 4.5
S187 Hamad Yousif et al. 1 1 1 0.5 0.5 0.5 4.5
S188 J. Wang et al. 1 1 0.5 0.5 0.5 0 35
S190 T Désert et al 1 1 1 0.5 1 0.5 5
S191 Li He et al 1 1 0.5 0 1 0.5 4
S192 W. Vigneau et al. 1 1 1 0 1 0.5 45
S194 Ramos-Bosch et al. 1 1 1 0 1 0 4
S195 Chengquan Xu et al. 1 1 1 0.5 1 0 45
S196 Heekwon No et al 1 1 1 0 1 0.5 4.5
S197 Qiming Zhong et al 1 1 1 0 1 0.5 45
S198 Chengjun Guo et al 1 1 1 0 1 0 4
S199 N. HARBAOUI et al 1 1 1 0 1 0 4
S200 S. Kozhaya et al 1 1 0.5 0 1 0 35
S201 Adyasha Mohanty et al 1 1 1 0 1 0 4
5202 Kahn-Bao Wu et al 1 1 1 0 1 0 4
S203 A. Kanhere et al 1 1 1 0 1 1 5
S204 A. Siemuri et al 1 1 1 0 1 0 4
S207 G. Caparra et al 0.5 1 1 0 0.5 0.5 35
S208 N. Ziedan 1 1 1 0 0.5 0 35
S$209 A. Gomez et al 1 1 1 0 1 0 4
S210 Lei Liu et al 1 1 1 0 0.5 0 35
S211 Yunxiang Liu et al 1 1 0.5 0 1 0 35
S213 Quoc-Huy Phan et al 1 1 1 0 0.5 0 35
S214 Azami Hamed et al 1 1 1 0 1 0 4
S215 Nadali Zarei 1 1 0.5 0 1 0.5 4
S216 A. Noureldin et al 1 1 0.5 0 1 0 35
S217 Yu Jia et al 1 1 1 0 1 0.5 45
S218 E. Abdolkarimi et al 1 1 0.5 0 1 0 35
$220 A. Elnaggar 1 1 1 0.5 0.5 0 4
S221 Yiming Quan et al 1 1 1 0 1 0 4
5222 Habarulema et al 1 1 1 0.5 0.5 0.5 4.5
§223 J. Habarulema et al 1 1 1 0 0.5 0.5 4
S224 R. Sharaf et al 1 1 1 0 1 0 4
8225 C. Pikridas et al 1 1 0.5 0 1 0 35
5226 P. Benevides et al 1 1 1 0 1 0 4
8227 G. Panice et al 1 1 0.5 0.5 1 0 4
S228 Rui Sun et al 1 1 1 0.5 0.5 0 4
S229 Mosavi et al 1 1 1 0 0.5 0 35
S231 Li Jing et al 1 1 0.5 0 0.5 0.5 35
S232 Yimin Zhou et al 1 1 1 0 1 0 4
S233 Guangcai Wang et al 1 1 0.5 0 1 0 35
S234 Fangni Lei et al 1 1 1 0 1 0 4
8235 Zhengxie Zhang et al 1 1 1 0 1 0 4
$236 Li et al. 1 1 1 0 1 0 4
$237 Wu et al 1 1 0.5 0 1 0 35
$238 Savas et al 1 1 0.5 0.5 0.5 0.5 4
$239 Liu et al 1 1 1 0 1 1 5
S241 David et al 1 1 1 0 0.5 1 4.5
S242 Huang et al 1 1 1 0 1 1 5
5243 Yilmaz et al 1 1 0.5 0 1 0 35
S244 Habarulema et al 1 1 1 0 0.5 0 35
S245 Sabzehee et al. 1 1 1 0 1 0 4
S246 Leandro et al 1 1 1 0 1 1 5
5247 Wang et al 1 1 0.5 0 1 1 4.5
5248 Lyu et al 1 1 1 0 1 1 5
S249 Shafiee et al 1 1 1 0 1 1 5
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TABLE VIII
Selected studies

D Authors Research Questions Addressed (#RQ) Ref. D Authors Research Questions Addressed (#RQ) Ref.
S1 Simon et al. 1 2 4b 5 [144] S127 S Lietal 1 2 3 4b [209]
Q3 Machado et al. 1 2 3 4b [189] S130 M Kaselimi et al. 1 2 3 4b [210]
S4 Bhatt et al. 1 2 3 4b [68] S131 K Kasantikul et al. 1 2 3 4b [45]
S5 M. Socharoentum et al. 1 2 3 4b [180] S132 J Hu et al. 1 2 3 4b [179]
S6 Z. Zhou et al. 1 2 3 4a 4b 5 [71] S133 Dongchan et al. 1 2 3 4b 5 [211]
S7 Jiao et al. 1 2 3 4b [971 S134 V Otugo et al. 1 2 3 4b [92]
S9 Favenza et al. 1 2 3 4a 4b [94] S136 X Zou et al. 1 2 3 4b [212]
S10 Y. Quan et al. 1 2 3 4b [31 S137 O Eroglu et al. 1 2 3 4b [38]
S11 Yang et al. 1 2 3 4b [190] S138 M Kiani et al. 1 2 3 4a 4b 5 [166]
S12 L.-T. Hsu et al. 1 2 3 4b 5 [191] S139 E Loli Piccolomini et al. 1 2 3 4b [15]
S14 Suzuki et al. 1 2 3 4b 5 [192] S140 M Moses et al. 1 2 3 4b [213]
S15 Jiao et al. 1 2 3 4b [98] S141 MR Veronez et al. 1 2 3 4a 4b [73]
S16 B. GUERMAH et al. 1 2 3 4b [16] S142 Y Liang et al. 1 2 3 4b (571
S18 Y. Liu et al. 1 2 3 4b [89] S143 Y Shi et al. 1 2 3 4a 4b [58]
S19 Y. Quan et al. 1 2 3 4b 5 [158] S144 M Zeybek et al. 1 2 3 4b (1]
S20 P. Huang et al. 1 2 3 4a 4b [143] S145 L Zhao et al. 1 2 3 4b [214]
S21 Gogliettino et al. 1 2 3 4a 4b 5 [159] S146 M Kaselimi et al. 1 2 3 4a 4b 5 [167]
S22 Zhidong Zhang et al. 1 2 3 4b [193] S147 S Miyazawa et al. 1 2 3 4b [74]
S23 Z. Liu et al. 1 2 3 4b [137] S148 Shamshiri et al. 1 2 3 4a 4b 5 [107]
S25 H.-U. Kim and T.-S. Bae 1 2 3 4b 5 [69] S149 Surisetty et al. 1 2 3 4a 4b [59]
S26 N. Linty et al. 1 2 3 4b 5 [95] S150 Mutchakayala et al. 1 2 3 4b [215]
S27 M. R. Manesh et al. 1 2 3 4b 5 [117] S151 Wojtusiak et al. 1 2 3 4b [75]
S28 ALEJANDRO KURATOMI 1 2 3 4b [63] S152 Osah et al. 1 2 3 4b [216]
S29 Q. Liu et al. 1 2 3 4b [87] S153 Salar et al. 1 2 3 4b [217]
S30 R. Morales Ferre et al. 1 2 3 4b 5 [122] S155 Xia et al. 1 2 3 4a 4b 5 [168]
S31 A. LOUIS 1 2 3 4b [194] S156 Li et al. 1 2 3 4b [46]
S32 K. Lamb et al. 1 2 3 4b 5 [195] S157 Mohammed et al. 1 2 3 4b [111]
S33 S. Semanjski et al. 1 2 3 4b 5 [120] S158 Okoh et al. 1 2 3 4a 4b [169]
S34 R. Orus Perez 1 2 3 4b 5 [104] S159 Rafatnia et al. 1 2 3 4a 4b [172]
S35 R. Sun et al. 1 2 3 4b 5 [13] S160 Sahu et al. 1 2 3 4a 4b [170]
S36 D. Brum et al. 1 2 3 4b [22] Si61 Sivavaraprasad et al. 1 2 3 4a 4b [171]
S37 H. Dai et al. 1 2 3 4b 5 [135] S162 Ferreira et al. 1 2 3 4a 4b 5 [173]
S38 Z. Zou et al. 1 2 3 4a 4b 5 [129] S163 P. Pavlov¢ic PreSeren et al. 1 2 3 4b 5 [83]
S39 Chang et al. 1 2 3 4a 4b [82] S164 Rahimi et al. 1 2 3 4a 4b [60]
S40 E. Munin et al. 1 2 3 4b 5 [181] S165 Kemal Tiitiincii et al. 1 2 3 4a 4b 5 [239]
S42 Li et al. 1 2 3 4a 4b 5 [161] S166 R.E. Guinness et al. 1 2 3 4b [86]
S43 Borhani-Darian et al. 1 2 3 4b [182] S167 N. Yamaga et al. 1 2 3 4a 4b [160]
S44 P. Borhani-Darian and P. Closas 1 2 3 4b [12] S168 Q. Yuan et al. 1 2 3 4b [186]
S45 S. Tohidi and M. R. Mosavi 1 2 3 4a 4b [118] S169 L. Li et al. 1 2 3 4b [218]
S46 Munin et al. 1 2 3 4b [196] S170 B. Huang et al. 1 2 3 4a 4b 5 [174]
S47 M. Alshaye et al. 1 2 3 4b [24] S171 M. Kim et al. 1 2 3 4a 4b [105]
S48 Yunxiang Liu et al. 1 2 3 4b [183] S172 B. Zhang et al. 1 2 3 4b [61]
S49 L. Mallika 1 et al. 1 2 3 4b [106] S173 C. Herbert et al. 1 2 3 4b [30]
S50 Suzuki et al. 1 2 3 4b [197] S174 Taro Suzuki et al. 1 2 3 4b [17]
Ss51 M. O. Selbesoglu 1 2 3 4b [109] S175 Marco Mendonga et al. 1 2 3 4b [240]
S52 Y. Xia et al. 1 2 3 4b [85] S179 Mahmut Oguz Selbesoglu et al. 1 2 3 4a 4b [112]
Ss53 Q. Yan and W. Huang 1 2 3 4b 5 [26] S180 Mohamad Orabi et al. 1 2 3 4a 4b [163]
S54 R. Calvo-Palomino et al. 1 2 3 4b [119] S181 Yu Jiao et al. 1 2 3 4b [90]
S55 Haiyu et al. 1 2 3 4b [198] S183 Hany Ragabet et al. 1 2 3 4b [219]
S56 S. Semanjski et al. 1 2 3 4b [238] S185 J. Rossouw van der Merwe et al. 1 2 3 4b [124]
S57 S. Semanjski et al. 1 2 3 4b [199] S186 Yung-Cheng et al. 1 2 3 4a 4b [138]
S58 F. Dovis et al. 1 2 3 4b [200] S187 Hamad Yousif and Ahmed El-Rabbany 1 2 3 4a 4b 5 [164]
S59 Y. Jia et al. 1 2 3 4b [32] S188 Jianguo Jack Wang et al. 1 2 3 4a 4b [139]
S60 E. I. Adegoke et al. 1 2 3 4b [201] S190 T. Désert et al 1 2 3 4a 4b 5 [103]
S61 Y. Jia et al. 1 2 3 4b [33] S191 Li He et al 1 2 3 4b 5 [20]
S62 Q. Yan and W. Huang 1 2 3 4b [27] S192 W. Vigneau et al. 1 2 3 4b 5 [147]
S63 M. Asgarimehr et al. 1 2 3 4a 4b [40] S194 Pere Ramos-Bosch et al. 1 2 3 4b [148]
S65 L. Miotti et al. 1 2 3 da 4b [110] S195 Chengquan Xu et al. 1 2 3 4a 4b [175]
S67 Y. Liu et al. 1 2 3 4b [41] S196 Heekwon No et al 1 2 3 4b 5 [220]
S68 T. Mortlock and Z. M. Kassas 1 2 3 4a 4b [146] S197 Qiming Zhong et al 1 2 3 4b 5 [221]
S69 L. Mengying et al. 1 2 3 4b [99] S198 Chengjun Guo et al 1 2 3 4b [21]
S71 A. Lwin et al. 1 2 3 4b [35] S199 Nesrine HARBAOUI et al 1 2 3 4b [222]
S73 S. J. Cho et al. 1 2 3 4b [184] S200 Sharbel E. Kozhaya et al 1 2 3 4b [149]
S74 J. Wang et al. 1 2 3 4b 202] S201 Adyasha Mohanty et al 1 2 3 4b [134]
S75 X. Chu et al. 1 2 3 4b [42] 5202 Kahn-Bao Wu et al 1 2 3 4b [223]
S76 G. Zhang et al. 1 2 3 4b [70] 5203 Ashwin V. Kanhere et al 1 2 3 4b 5 [76]
S77 D. R. Kartchner et al. 1 2 3 4b [123] S204 Akpojoto Siemuri et al 1 2 3 4b 771
S79 R. Klus et al. 1 2 3 4b [88] 5207 Gianluca Caparra et al 1 2 3 4b 5 78]
S80 M. Y. Klimenko et al.A. V. Veitsel 1 2 3 4a 4b [203] S208 Nesreen 1. Ziedan 1 2 3 4b [79]
S82 Y. Liu et al. 1 2 3 4a 4b 5 [43] 5209 Annabel R. Gomez et al 1 2 3 4b 911
S84 A. Hu et al. 1 2 3 4b [115] S210 Lei Liu et al 1 2 3 4b [224]
$86 A. R. Kazemi et al. 1 2 4a 4b 5 [165] s211 Yunxiang Liu et al 1 2 3 4b [225]
S87 Y. Yang et al. 1 2 3 4a 4b [114] S213 Quoc-Huy Phan et al 1 2 3 4b [226]
S88 Q. Yan et al. 1 2 3 4b [25] S214 Azami Hamed et al 1 2 3 4b [236]
S89 J. -. De Boer et al. 1 2 3 4b 5 [132] S215 Nadali Zarei 1 2 3 4b 5 [237]
S90 J. Reynolds et al. 1 2 3 4a 4b 5 [44] S216 AboelmagdNoureldin et al 1 2 3 4b [140]
S91 R. Imam et al. 1 2 3 4b [96] S217 Yu Jia et al 1 2 3 4b 5 [100]
S92 S. Li et al. 1 2 3 4b [47] S218 E. S. Abdolkarimi et al 1 2 3 4b [131]
S93 Y. Su et al. 1 2 3 4a 4b [49] $220 Aly M.El-naggar 1 2 3 4a 4b [93]
594 7. A~ZDEMA®R et al. 1 2 3 4b [204] $221 Yiming Quan et al 1 2 3 4b [227]
S95 W. Ye et al. 1 2 3 4b [205] 5222 Habarulema et al 1 2 3 4a 4b 5 [176]
S98 Y. Luo et al. 1 2 3 4a 4b 5 [162] 5223 John Bosco Habarulema et al 1 2 3 4b 5 [228]
S99 Y. Wang et al. 1 2 3 4 4b [14] $224 R. Sharaf et al 1 2 3 4b [136]
S100 Q. Yan et al. 1 2 3 4b [28] $225 Christos Pikridas et al 1 2 3 4b [113]
S101 L. Cong et al. 1 2 3 4b [133] S$226 Pedro Benevides et al 1 2 3 4b [62]
S102 L. He et al. 1 2 3 4b [206] §227 G. Panice et al 1 2 3 4a 4b [126]
S103 J Mendez-Astudill et al. 1 2 3 4b [50] S228 Rui Sun et al 1 2 3 4a 4b [80]
S104 M Kiani et al. 1 2 3 4a 4b [51] $229 Mosavi et al 1 2 3 4b [81]
S105 M Kiani et al. 1 2 3 4a 4b [52] S231 Li Jing et al 1 2 3 4b 5 [187]
S106 Liu et al. 1 2 3 4a 4b [1o1] $232 Yimin Zhou et al 1 2 3 4b [127]
S107 ES Fogarty et al. 1 2 3 4b [207] $233 Guangcai Wang et al 1 2 3 4b [128]
S108 K Maschera et al. 1 2 3 4b [185] S234 Fangni Lei et al 1 2 3 4b [229]
S110 M Lo§ et al. 1 2 3 4b [54] $235 Zhengxie Zhang et al 1 2 3 4b [108]
S111 Y Jia et al. 1 2 3 4b [34] S236 Li et al. 1 2 3 4b [121]
S112 M Kiani et al. 1 2 3 4a 4b [53] $237 Wu et al 1 2 3 4b [18]
S113 Alessandro Neri et al. 1 2 3 4b 5 [72] $238 Savas et al 1 2 3 4a 4b 5 [177]
S114 Y Zhu et al. 1 2 3 4b [29] $239 Liu et al 1 2 3 4b 5 [230]
S115 Y Liu et al. 1 2 3 4b [102] S241 David et al 1 2 3 4b 5 [231]
S116 H Xu et al. 1 2 3 4b [208] S242 Huang et al 1 2 3 4b 5 [232]
S117 V Senyurek et al. 1 2 3 4b [39] 5243 Yilmaz et al 1 2 3 4b [188]
S118 Y Jia et al. 1 2 3 4b [36] S244 Habarulema et al 1 2 3 4b [233]
S119 Q Yuan et al. 1 2 3 4b [48] 5245 Sabzehee et al. 1 2 3 4b [178]
S121 A Lwin et al. 1 2 3 4b [37] S246 Leandro et al 1 2 3 4b 5 [234]
S122 H Liu et al. 1 2 3 4b [55] 5247 ‘Wang et al 1 2 3 4b 5 [235]
S124 J Wang et al. 1 2 3 4a 4b [31] S248 Lyu et al 1 2 3 4b 5 [19]
S125 N Liu et al. 1 2 3 4b [130] S249 Shafiee et al 1 2 3 4b 5 [125]
S126 HU Kim et al. 1 2 3 4b [56]
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TABLE IX

Strengths and Weaknesses of Mostly Used ML Techniques

Strengths

Weaknesses

Studies Ref.

DT and ensemble DTs

1. Decision trees can learn non-linear relationships and are
fairly robust to outliers.

2. It can avoid overfitting by pruning or making use of
ensembles.

3. Intuitive and easy to understand.

1. Unconstrained, individual trees are prone to overfitting
as they can keep on branching until the training data is
memorized.

[13, 16, 29, 63, 94-96,
124, 180, 201]

DL models

1. Perform very well on images, audio, and text data.

2. They can be updated easily with new datasets

using batch propagation.

3. Their architectures (that is, the number of layers and the
structure of the layers) can be adapted to

fit many types of problems.

4. Capable of dealing with noisy data.

5. Hidden layers reduce the need for feature engineering.

LSTM (a special type of RNN)

1. Easy to implement.

2. Scaleable with the dataset.

3. Perform well even with small data sets.

1. Require a very large amount of data (therefore, cannot
be used as a general-purpose algorithm).

2. Computationally intensive to train.

3. Require much more experience to tune them (that is,
hyperparameters tunning).

4. Weak explanatory ability.

LSTM (a special type of RNN)

1. Outperformed by NN models that have been properly
trained and tuned.

2. LSTMs take longer to train.

3. LSTMs require more memory to train.

NN models: [3, 12, 17,
18, 20, 21, 25, 27, 30,
38-41, 43-46, 56, 60, 62,
73,77, 78, 81, 82, 86, 88,
92, 93, 103, 105, 109-
113, 115, 118, 123, 125,
130, 132, 134, 136, 138—
140, 144, 147, 148, 160,
163-165, 169-171, 173,
175, 176, 178, 184, 186,
188, 189, 195-197, 203,
210, 212, 213, 227, 232—
234, 236, 237] and

LSTM: [15, 56, 69, 74,

91, 97, 123, 130, 149,
167, 174, 217, 225]
SVM
1. Fairly robust against overfitting, especially in 1. Trickier when tuning because picking the right kernel
high-dimensional space. is very important in the process. [14, 16, 17, 19, 28, 33,

2. Used to model non-linear decision boundaries with
many kernels to choose from.

2. They also don’t scale well to larger datasets.

36, 37, 39, 68, 72, 86,
89, 90, 97-102, 108, 120,
121, 126, 133, 162, 168,
184, 192, 198, 199, 207,
208, 223, 238, 240]

CNN and their combinations have been used most

models depending on the GNSS use case were com-

frequently. pared with ML models in 50 out of 213 selected
2) RO2—The ML algorithms were used for classifi- studies.
cation, clustering, forecasting, and anomaly detec- 5) RQ5—Different ML techniques have different

3)

4)

SIEMURI ET AL.: SYSTEMATIC REVIEW OF MACHINE LEARNING TECHNIQUES FOR GNSS USE CASES

tion depending on the GNSS use case. Some of
these GNSS use cases include signal acquisition,
signal detection and classification, Earth observa-
tion, GNSS/INS integration, anomaly detection, and
spoofing and jamming detection, etc.

RQ3—Some of the data used were simulated data
gotten from different simulation tools and SDRs,
while others were real data collected using GNSS
receivers. The utilized datasets can be publicly avail-
able (for free) or private in nature (not shared by re-
searchers; therefore, results on such datasets cannot
be verified and such studies are not replicable).
RQ4a and RQ4b—Regarding ML performance, in
general, ML model is more accurate than non-ML
model, which has been supported by most stud-
ies. Regression model and other traditional GNSS

6)

strengths and weaknesses and thus favorable to dif-
ferent GNSS applications. The strengths and weak-
nesses of the studies based on the implemented ML
algorithms were extracted from the selected studies
and presented in this review. This was done because
the quality assessment process of the selected studies
can help ensure that they are from studies with ac-
ceptable quality. The strength and weaknesses from
a list comprising of the most implemented algorithm
in the selected studies was also presented.

RQ6—Regarding validation, it has been shown from
the selected studies that for the validation of the
ML models, most studies made use of Holdout,
n-fold cross-validation, and comparison with another
algorithms. While for accuracy metric, most made
use of RMSE, ROC, MSE, and StD. Furthermore,
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TABLE X

Strengths and Weaknesses of the approaches used in the Selected Studies

1D ML Technique Used Strengths ‘Weaknesses Ref.
$6 Teasi-squares support_vector ma- Unlike classical KF, it adaptively identifies the dynamic model bias, which is then used (o 1]
chine (LSSVM) technique compensate for the dynamic model.
S12 Support Vector Machine (SVM) Classifier developed is applied only for static [191]
S19 Convolutional Neural Network The proposed methods can be used in carrier phase-based kinematic positioning, including [158]
(CNN) RTK applications.
521 MLP, Autoencoder network Autoencoder approach is very promising as it needs samples not affected by errors. [159]
825 Long-Short Term Memory (LSTM) Needs to be elaborated to incorporate sensors with more features as input data and [69]
the strategy on how to balance the weight between sensor data.
526 Decision tree Machine learning helps in facilitating the work of analyzing big sets of GNSS data affected [95]
by amplitude scintillation
S27 Neural Network (NN) Need to include online learning in the neural network or use unsupervised algorithms [117]
530 Support vector machine (SVM) Classification will be more accurate if the complexity of the training layers is [122]
increased
S32 Convolutional ~ Neural ~ Network A novel methodology which predicts GNSS phase scintillations 1 hour in advance. [195]
(CNN)
533 C-Support_Vector Machines (C- Correlation analysis is a good approach for the selection of variables that serve as an input [120]
SVM) for the supervised machine learning approach.
S34 Neural Network (NN) Applicability should be assessed if other techniques such as convolutional neural [104]
networks are used and the hardware requirements for analyzing large amounts of
data.
S35 Gradient boosting _decision tree Removing NLOS based on the proposed method can improve the static positioning accuracy [13]
(GBDT) to some extent
537 Recurrent neural network (RNN) Anticipates_proposed method can be applied in the field of multi-sensors integrated [135]
navigation system.
S38 Convolutional ~ Neural ~ Network The limitation of the proposed algorithm is that one trained estimator is bound to [129]
(CNN) specific sensors. The neural network model should be retrained when used on a new
navigation system.
540 Convolutional Neural _Network Proposed algorithm needs to be validated with the real signals [181]
(CNN)
S42 Deep Neural Network (DNN) The investigated NN model requires a multi-correlation scheme, thus involving an [161]
increased computational cost when compared to standard methods.
S53 Convolutional ~ Neural ~ Network The usage of filters in the convolution layer reduces the noise in the DDM. [26]
(CNN)
S82 Neural Network (NN) Further investigation on the relationship between the wind speed or the wind vector [43]
and the last hidden layer neurons can potentially provide a better understanding of
the underlying physical meaning of the network
S86 Neural Network (NN) Classification algorithm outperforms the original PD- ML detector and PSO-NN classifier, [165]
but it comes with more computation complexity
S89 Neural Network (NN) NN-aided GNSS/MEMS integration provides more accurate position estimates than [132]
GNSS/MEMS without NN corrections.
S90 Artificial Neural Network (ANN) The ANN methodology has difficulty to estimate unusual occurrences of very low [44]
or very high wind speed and the need for a large training set to obtain accurate
retrievals over a time frame of several months or years.
SO8 Support vector machine (SVM) The proposed method does not require the radio telescope, and can achieve all-time, all- [162]
weather detection by processing large quantities of data at the same time and the detection
results whether multiple stations are affected by SRBs.
S133 Deep Neural Network (DNN) SVM has low performance than the NN model while RNN performance is the best, but [211]
needs initial time and takes a long time to train and DNN has less performance than RNN
but does not require initial time and is faster to train.
S138 Generalized Regression NN Tt is purely a mathematical model with high accuracy, up to centimeter level. Including [166]
observation accuracy and the physical conditions of the environment may lead to a more
accurate algorithm, capable of achieving higher accuracies, possibly up to the millimeter
level.
S146 Long-Short Term Memory (LSTM) Inclusion of selected features in the supervised LSTM algorithm and that LSTM networks [167]
are equipped with memory cell which holds information content in the input STEC data,
gives superiority and an extra boost to the proposed method. Non-linearity and long-term
prediction are additional advantages of the proposed LSTM method.
5148 GP regression The approach has a good generalization capability cven with a small set of training samples. [107]
Wider range of sampling results in better izati iliti
S155 Support vector machine (SVM) The model cannot accurately predict the ionospheric TEC in high years of solar [168]
activity
S162 Neural Network (NN) The NN model does not have the ability to calibrate VTEC by itself, it relies on [173]
data provided by the calibration technique.
S163 ‘Wavelet Neural Network (WNN) The problem of optimal wavelet network adjustment remains and because of that [83]
wavelet function selection should always be based on practical experimentation and
trial and error tests.
S170 Long-Short Term Memory (LSTM) SL-LSTM method achieves a better long-term prediction accuracy and stability than the [174]
other three methods. The quality of satellite clock bias prediction is better than that of
other three methods.
S187 Neural Network (NN) The ANN consumes computer resources while training large dataset [164]
S190 Neural Network (NN) The proposed method is effect on an equatorial region [103]
S191 Artificial Neural Network (ANN) Installing an antenna with a non-trivial and confidential radiation map, the security of the [20]
GPS signal for a specific fixed receiver can be increased.
S192 Neural Network (NN) The performances and complexity of both algorithms has been analyzed and those [147]
results are to be finalized to assess the cost of integration of those techniques inside
a LEO GNSS receiver.
5196 Quantile Regression The proposed model is well overbounding up to desired probability achieving better position 1220
accuracy, lower alarm rate, and tighter protection level.
S197 Bayesian Filter Filtering has a greater impact on the results of the mobile positioning with significant [221]
d to static posi
5203 Deep Neural Network (DNN) Using pseudorange residuals and LOS vectors from the initial position guess as inputs and 1761
NED position corrections as outputs to the DNN improves the numerical conditioning of
the DNN and provides global applicability to the algorithm.
S207 Neural Network (NN) The method does not require changes in the architecture of the GNSS receivers and can 78]
be deployed as a software service.
s215 Neural Network (NN) trained with i.is..fr[:, ]?;lef;lsi"” eming"ﬂ‘;pmacm are [237]
PSO, NPSO, GA, and ICA s
S217 Support vector machine (SVM) New phase detectors based on phase observations need o be developed [100]
S§222 Neural Network (NN) The availability of historical data affects the NN model [176]
S223 Feed Forward Neural Networks NN model makes more accurate predictions on TEC than GPS-derived TEC due to the [228]
(FFNN) availability of data within the NN model from nearby stations.
$231 Ensemble learning algorithm (LS- The accuracy of the proposed algorithm is not good as SINS error does not have [187]
Boost or Bagging) noticeable divergence in a short period of time
238 Komeans clustering Tmplementation parameters of the w
algorithm must be well optimized.
5239 convLSTM CconvLSTM-based architecture forecasts an entire regions’ ionospheric irregularity occur- [230]
rence and intensity values
S241 Neural Network (NN) MSEs were very low for most of the months, hence accuracy is high [231]
S242 Radial basis function (RBF) Neural RBF network is a reliable and alternate tool for the ionospheric TEC forecast of single [232]
Network (RBF-NN) station
S246 Neural Network (NN) The TEC values for each station based on the technique used is not an optimal [234]
approach as it depends on ambiguity term
S247 ‘Wavelet Neural Network (WNN) The i of WNN employed is not to be the best and unique [235]
design due to the theoretical limitations inhering in ANN
S248 Support vector machine (SVM) The proposed weight scheme is superior to the traditional weight scheme as it can better [19]
model the GNSS measurement NLOS error in urban environments.
5249 n Multi-layer NN Spoofing detection using the algorithm after training is low-cost, easy to implement, and [125]
reliable
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TABLE XI

Algorithms, GNSS Use Case, Data Type, and Validation Method

D Authors Year ML ique Study A Data type Accuracy/Validati Type Ref.
Sl Simon et al. 1995 Neural Network (NN) Satellite selection Real Not mentioned Journal 144]
S3 Machado et al. 2011 Artificial Neural Networks (ANN) Earth monitoring Real Root-mean-squared (RMS) and standard-deviation (StD) Conference 189]
S4 Bhatt et al. 2012 Support Vector Machines (SVM) GNSS navigation Real not Conference 68]
S5 Socharoentum et al. 2016 Logistic Regression (LR), SVM, NLOS Detection Real Validation data set Conference 180]
Naive Bayes (NB), and Decision
Tree (DT)
S6 Z. Zhou et al 2016 Least-squares SVM (LSSVM) GNSS navigation Real k-fold cross-validation Journal [71]
S7 Jiao et al. 2016 SVM Tonospheric scintillation Real Receiver operating characteristic (ROC) curves and confusion Conference 971
matrices and hold-out for validation.
S9 Favenza et al 2017 DT GNSS Scintillation Real Cross-validation, and F-score Conference [94]
S10 Y. Quan 2017 ANN, Convolutional Neural Net- Multipath Detection Real and Simu- Not mentioned PhD  the- 3]
work (CNN), Random Forest (RF) lated sis
S11 Yang et al. 2017 Deep Neural Network (DNN) GNSS Interference Real Not mentioned Conference [190]
S12 L.-T. Hsu 2017 Recurrent Neural Network (RNN) Multipath Detection Real Not mentioned Conference [191]
Si4 Suzuki et al. 2017 SVM Multipath Detection Real Using different numbers of correlation outputs Conference [192]
S15 Jiao et al. 2016 SVM Tonospheric scintillation Real Five-fold cross-validation, receiver operating characteristic Journal [98]
(ROC) curves and confusion matrices
S16 B. GUERMAH et al. 2018 DT, SVM and KNN LOS/Multipath Signal Classifier Real Not mentioned Conference [16]
SI8 Y. Liu et al. 2018 SVM Tonospheric scintillation Real 10-folds cross validation, and validation datasets Conference [89]
S19 Y. Quan et al. 2018 Convolutional ~ Neural ~ Network Multipath Detection Real and Simu- Simulated and Real GPS data and compared with existing Journal [158]
(CNN) lated multipath mitigation methods in position domain.
S20 P. Huang et al. 2018 PointNet and VoxelNet networks Satellite selection Real Test data from 220 IGS stations. Journal [143]
S21 Gogliettino et al. 2019 Multi-Layer Perceptron (MLP), au- GNSS security Simulated ROC, and area under the curve (AUC) Conference [159]
toencoder network, LR
S22 Zhidong et al 2019 NN GNSS/INS integration Real Not mentioned Conference [193]
S23 Z. Liu et al. 2019 NN GNSS/INS integration Simulated Validation test with the help of STM32. Conference 137]
S25 H.-U. Kim et al. 2019 LSTM GNSS positioning Real Not mentioned Journal 69]
S26 N. Linty et al. 2019 DT Tonospheric scintillation Real Not mentioned Journal 95]
S27 M. R. Manesh et al. 2019 NN Detection of GPS Spoofing Attacks Real K-fold cross validation Conference 117]
S28 A. KURATOMI 2019 DT, SVM GNSS Position Error Estimated Real Root mean square error (RMSE) Msc The- 63]
sis
529 Q. Liu et al. 2019 NLOS and multipath detecting net- Indoor Navigation Real Support vector machine (SVM) Journal [87]
work (NMDN)
S30 Ferre et al. 2019 SVM Jammer Classification Real Validation dataset Journal 122
S31 A. LOUIS 2019 NN Evil waveforms (EWF) detction Real ROC curves Journal 194!
S32 K. Lamb et al. 2019 CNN Tonospheric i Real Not n Journal 195
S33 S. Semanjski et al. 2019 C-Support  Vector Machines (C- Detection of GNSS Signal Spoof- Real and Simu- Validation dataset Conference 120
SVM) ing lated
S34 R. Orus Perez 2019 NN Tonospheric delay Real Not mentioned Journal [104]
S35 R. Sun et al. 2020 Gradient Boosting Decision Tree Signal classification Real RMSE value Journal [13]
(GBDT), Traditional Decision Tree
(DT), distance weighted KNN,
adaptive network-based fuzzy in-
ference system (ANFIS)
S36 D. Brum et al. 2020 ANN Earth monitoring Real Matthews Correlation Coefficient (MCC), and Mean square Journal [22]
error (MSE)
S37 H. Dai et al. 2020 RNN, Extreme Learning Machine GNSS/INS integration Real and Simu- RMSE value Journal [135]
(ELM) lated
S38 Z. Zou et al. 2020 CNN GNSS/INS integration Real Not mentioned Conference 129]
S39 Chang et al. 2020 Genetic Algorithm (GA), NN GNSS integrity Real Averaged and the standard deviation Conference 82]
S40 E. Munin et al. 2020 CNN Multipath Detection Real Accuracy percentage Conference 181]
S42 Li et al. 2020 DNN GNSS signal correlation i MSE Conference 161]
S43 Borhani-Darian et al. 2020 Multi-layer  perceptron  (MLP), GNSS spoofing attack Simulated ROC curves Conference 182]
CNN
S44 Borhani-Darian et al. 2020 MLP, CNN GNSS Signal Acquisition Real ROC curves Conference [12]
S45 S. Tohidi et al. 2020 MLP trained by Particle Swarm Detection of GPS Spoofing Attacks Real Compared with results achieved via classification based Bayes Conference [118]
Optimization (PSO) rule.
S46 Munin et al. 2020 Deep CNN Multipath Detection Real and Simu- ROC curves Conference [196]
lated
S47 M. Alshaye et al. 2020 Earth monitoring Simulated MSE Conference [24]
S48 Yunxiang Liu et al. 2020 GNSS abnormaly detection Real dataset, and cross Conference [183]
S49 L. Mallika I et al. 2020 Process  Regression Tonospheric delay Real Mean Absolute Error (MAE), MeanAbsolute Percentage Error Journal [106]
(MAPE), Mean Square Error (MSE), Root Mean Square Error
(RMSE), and i ffici
S50 Suzuki et al. 2020 CNN Multipath Detection Real Cross-validation Conference [197]
S51 M. O. Selbesoglu 2020 ANN Tropospheric delay Real Comparison with the values estimated from Global Navigation Journal [109]
Satellite System observations
S52 Y. Xia et al. 2020 RNN Indoor Navigation Real Using new test sets. Journal [85]
S53 Q. Yan et al. 2020 CNN Earth monitoring Real Reference SIC data Journal [26]
S54 Calvo-Palomino et 2020 LST™M Detection of GNSS Signal Spoof- Real Not mentioned Conference [119]
al. ing
S55 Haiyu et al. 2020 SVM GNSS/INS i Real ROC, and AUC Conference [198]
S56 S. Semanijski et al. 2020 Support Vector Machine classifica- Detection of GNSS Signal Spoof- Real and Simu- Not mentioned Journal [238]
tion (C-SVM), PCA ing lated
S57 S. Semanjski et al. 2020 C-SVM Detection of GNSS Signal Spoof- Real and Simu- Not mentioned Journal [199]
ing lated
S58 F. Dovis et al. 2020 K-means classes, SVM Multi-path, interference and atmo- Real Not mentioned Conference [200]
spheric limitations
S59 Y. Jia et al. 2019 RF Earth monitoring i Not Conference 32]
S60 E. I. Adegoke et al. 2019 DT GNSS navigation Real Not mentioned Conference 201]
S61 Y. Jia; et al. 2021 RFE, SVM, XGBoost, ANN Earth monitoring Real Not mentioned Journal 33]
S62 Q. Yan et al. 2020 CNN, SVR Earth monitoring Real TDS-1 measurements in 2017 and 2018 of thin sea ice with Conference 27]
thickness less than 1 m.
S63 M. Asgarimehr; et al. 2020 NN Earth monitoring Real Not mentioned Journal 40]
565 L. Miotti et al. 2000 ANN Tropospheric delay Real Saastamoinen model Conference | [110]
S67 Y. Liu et al. 2019 NN Earth monitoring Real Not mentioned Conference 41]
S68 T. Mortlock et al. 2021 Time delay neural network LEO satellite Real Ground vehicle Doppler measurements extracted from two Conference 146]
(TDNN) Orbcomm LEO satellite signals.
569 L Mengying et al. 2020 SVM Tonospheric scintillation Real Not mentioned Conference | [99]
S71 A. Lwin et al. 2020 Bayesian Regularization Neural Earth monitoring Real Not mentioned Conference [35]
Network (BRNN)
S73 S. J. Cho et al. 2019 RNN, SVM, LSTM Multipath Detection Real Not mentioned Conference 184]
S74 J. Wang et al. 2019 Deep belief network(DBN) Earth monitoring Real 10-fold Cross Validation Conference 202]
S75 X. Chu et al. 2020 HMDL Earth monitoring Real Validation dataset Journal 42]
S76 G. Zhang et al. 2021 Fully connected NN (FCNNs), GNSS Navigation Real Validation dataset Journal 70]
LSTM
S71 D. R. Kartchner et al. 2021 LSTM, CNN GNSS security Real Validation accuracy Conference [123]
S79 R. Klus et al. 2021 NN GNSS denied environments Real Not mentioned Conference [88]
S80 M. Y. Klimenko et 2021 NN Multipath Detection Real Not mentioned Conference [203]
al.
S82 Y. Liu et al. 2019 NN Earth monitoring Real and Simu- Conventional wind speed retrieval method and other prevailing Journal [43]
lated ML algorithms.
S84 A, Hu et al. 2018 ANN Earth monitoring Real Using Constellation Observing System for Meteorology, Tono- | Journal [115]

sphere, and Climate/FC-3 atmPhs (level 1b) data and compared
with SVM.
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TABLE XI

(Continued.)

D Authors Year ML Study Applicati Data type Accuracy/Validation Type Ref.
S86 A. R. Kazemi et al. 2020 NN GNSS Interference Real Maximum-Likelihood Power-Distortion (PD-ML) detector and Conference [165]
Particle Swarm O izati al Network (PSO-NN).
S87 Y. Yang et al. 2017 BP neural network tropospheric delay Real UNB3m and GPT2 models. Conference [114]
S88 Q. Yan et al. 2017 NN Earth monitoring Real Mean error, MAE, Standard deviation, and correlation coeffi- Journal [25]
cient
S89 T.-. De Boer et al. 2009 NN GNSS Navigation Real Mean absolute error (MAE) Conference | [132]
S90 J. Reynolds et al. 2020 ANN Earth monitoring Real Validation data set with global root mean square (RMS) differ- Journal [44]
ence (RMSD)
S91 R. Imam et al. 2020 DT Tonospheric scintillation, multipath Real Validation dataset Conference 96
592 S. Li et al. 2019 RF Earth monitoring Real 10-fold cross-validation, and RMSE Conference 47
S93 Y. Su et al. 2021 RF Earth monitoring Real Validation dataset with cross-validation Journal 49
S94 7. A-ZDEMA°R et 2019 Logistic Regression GNSS navigation Real Mean square error (MSE) Conference 204]
al.
S95 W. Ye et al. 2020 Gaussian Process Regression GNSS Navigation Real Validation dataset Journal [205]
S98 Y. Luo et al. 2020 SVM GNSS Interference Real 5-fold cross-validation Conference [162
S99 Y. Wang et al. 2020 SVM GNSS signal detection Real Using Spire’s GNSS-R with C [14]
5100 Q. Yan et al. 2019 SVM Earth monitoring Real Using Delay-Doppler maps (DDMs) datasets Tournal 28]
S101 L. Cong et al. 2020 SVM GNSS/INS integration Real Simulation using two 180-s GNSS outages, while the observa- Journal [133]
tion window size stays at 60 s.
S102 L. He et al. 2020 ELM Satellite clock Real Accuracy percentage Journal [206]
S103 J Mendez-Astudill et 2021 ML regression, SVR Earth monitoring Real Mean absolute error (MEA), the residual sum of squares Journal [50]
al. (MSE), and the coefficient of determination R2
S104 M Kiani et al. 2020 MLP, Bayesian NN, radial basis Earth monitoring Real Traditional statistical method called Theta, Mean Absolute Journal [51]
function (RBF) functions, Gaussian Scaled Error (MASE), Mean of Absolute Errors (MAE), and
processes, k-nearest neighbor, gen- Root of Mean Squared Errors (RMSE)
eralized regression neural network,
classification and regression trees,
and support vector regression.
S105 M Kiani et al. 2020 ML Earth monitoring Real Theta - a statistical method , StD and MAE values Journal [52]
S106 Liu et al. 2020 RBF-SVM Tonospheric scintillation Real Compared with threshold method, the linear SVM, the thresh- Conference [101]
old voting, and the logistic regression
S107 ES Fogarty et al. 2021 SVM GNSS/ACCL integration Real Validation dataset Journal [207]
S108 K Maschera et al. 2021 Logistic Regression, SVM, RF, GNSS Navigation Real Validation dataset Conference [185]
ANN in form of a Multilayer Per-
ceptron (MLP)
S110 M Los et al. 2020 RF Earth monitoring Real 5-fold cross-validation Journal [54]
SI11 Y Jia et al. 2019 XGboost Earth monitoring Simulated Using two GNSS-R ground-based campaigns with different soil Journal [34]
conditions and compositions, which corresponds to the soil
composition of the Simulated data set.
S112 M Kiani et al. 2020 KNN, SVR, MLP, BNN, GRNN, Earth monitoring Real RMSE, Mean Absolute Scaled Error (MASE), and Mean of Journal [53]
GP, CART Absolute Errors (MAE)
S113 Alessandro Neri et 2020 LR, Linear Discriminant Analy- GNSS navigation Real Not mentioned Conference [72]
al. sis (LDA), SVM, KNN, Classifica-
tion and Regression Trees (CART),
Gaussian Naive Bayes (NB)
Si14 Y Zhu et al. 2020 DT, RF Earth monitoring Real Validation data: Comparing with the sea ice edge (SIE) data Journal [29]
from the Special Sensor Microwave Imager Sounder (SSMIS)
data. Two sea ice datasets are used to evaluate the performance
of the proposed sea ice monitoring approach. The sea ice
edge (SIE) data provided by the Ocean and Sea Ice Satellite
Application Facility (OSISAF) are used as the reference data.
S115 Y Liu et al. 2020 RBF-SVM Tonospheric scintillation Real Validation datatset with cross-validation Conference [102]
S116 H Xu et al. 2020 SVM NLOS Detection Real Mean error Journal [208]
S117 V Senyurek et al. 2020 ANN, RE, SVM Earth monitoring Real 5-fold, site-i and year-based c d: meth- Journal [39]
ods
S118 Y Jia et al. 2020 RE, SVM Earth monitoring Real Using GNSS-R system and ground-truth rod sensor used to Journal [36]
make measurements before and after rain in bare and smooth
fields (Gruliasco/Agliano)
ST19 Q Yuan et al. 2019 back-propagation neural network Earth monitoring Real 10-fold cross-validation method, Correlation coefficient (R) and Tournal [48]
(BPNN), generalized ~regression the RMS
neural network (GRNN), RF
S121 A Lwin et al. 2020 SVM Earth monitoring Real Cross-validation with RMSE Conference 371
S122 H Liu et al. 2021 Xgboost Earth monitoring Real Validation dataset Journal [55]
S124 J Wang et al. 2020 DBN model: composed of a back Earth monitoring Real Correlation coefficient (R), mean absolute error (MAE), root- Journal [31]
propagation (BP) layer and sev- mean-square error (RMSE), and 10-fold cross-validation
eral restricted Boltzmann machine
(RBM) layers.
S125 N Liu et al. 2021 CNN-LSTM GNSS/INS integration Real Not mentioned Journal [130]
S126 HU Kim et al. 2017 LSTM, ANN Earth monitoring Real Validation dataset with RMSE values Journal 56]
S127 S Li et al. 2021 LSSVM tropospheric delay Real RMSE value Journal 209]
S130 M Kaselimi et al. 2020 CNN Ionospheric delay Real MAE, RMSE value Conference 210]
S131 K Kasantikul et al. 2018 ANN, particle filter Earth monitoring Real RMSE value Journal 45]
S132 J Hu et al. 2018 BPNN GNSS navigation Real Dual EKF design used to improve the position accuracy, and Journal 1791
provide low-noise training and validation samples
S133 Dongchan et al. 2019 DNN Multipath Detection Real Standard deviations (StD with TTFF Conference [211]
S134 V Otugo et al. 2019 ANN Tonospheric scintillation Real Validation dataset, root-mean-square deviations (RMSDs), and Journal [92]
RMSE
S136 X Zou et al. 2019 CNN GNSS/INS integration Real Not mentioned Journal [212]
S137 O Eroglu et al. 2019 ANN Earth monitoring Real Validation dataset Journal [38]
S138 M Kiani et al. 2020 generalized regression NN GNSS Navigation Real Mean Absolute Percentage Error (sSMAPE), Standard Deviation Journal [166]
(StD), and Mean Absolute Errors (MAE)
S139 E Loli Piccolomini et 2019 LST™M GNSS signal detection Real Validation dataw with Mean Squared Error (MSE) value and Journal [15]
al. standard deviation (STD)
S140 M Moses et al. 2020 NN Earth monitoring Real By comparing the ARITM predictions with ground-based Journal [213]
GNSS TEC, the space-based F3/C ionospheric profiles TEC
estimates and the existing GIMs. Also using RMSE and Mean
Absolute Error (MAE)
S141 MR Veronez et al. 2011 ANN GNSS Navigation Real Compared with the Brazilian Geoid Model (MAPGEO2004) Journal [73]
S142 Y Liang et al. 2019 BPNN Earth monitoring Real Cross-validation Journal [57]
S143 Y Shi et al. 2021 GA-BP Earth monitoring Real Pearson correlation coefficient R, RMSE, bias, and ubRMSE Journal 58]
S144 M Zeybek et al. 2014 Linear Regression Earth monitoring Real Standard deviation (StD), and Mean values Journal 11]
S145 L Zhao et al. 2019 Regularized Softmax Regression GNSS/INS integration Real RMSE value Conference 214]
S146 M Kaselimi et al. 2020 LSTM Earth monitoring Real Mean absolute error (MAE), and RMSE Journal 167]
S147 S Miyazawa et al. 2020 LSTM GNSS Navigation Real Using Real data the model with different parameter settings and Journal 74]
based on categorical accuracy
S148 Shamshiri et al. 2020 GP regression Tropospheric delay Real RMSE value Journal [107]
S149 Surisetty et al. 2021 SVR Earth monitoring Real Compared with in-situ_depth points. Also using Bias, Root Journal [591
Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Normalized bias (MNB) and Difference Median (DM)
S150 Mutchakayala et al. 2020 Extreme Kernel-Based Learning Earth monitoring Real With the error measurements like MAE, MAPE, and RMSE Journal [215]
Machine (KELM)
S151 ‘Wojtusiak et al. 2021 ML GNSS Navigation Real 10-fold cross-validation, and validation data Journal [75]
S152 Osah et al. 2021 DL tropospheric delay Real Mean Bias (MB), Root Mean Squared Error (RMSE), Mean Journal [216]
Absolute Percentage Error (MAPE), coefficient of determina-
tion (R2), Nash-Sutcliffe coefficient of Efficiency (NSE), and
the fraction of prediction within a Factor of Two (FAC2)
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D Authors Year ML ique Study A Data type Accuracy/Validati Type Ref.
S153 Salar et al. 2021 LST™M Tonospheric TEC content Real Root mean square error (RMSE), and mean absolute error Journal [217]
(MAE)
S155 Xia et al. 2021 SVM Earth monitoring Real RMSE, and relative error (RE) Journal [168]
S156 Li et al. 2021 ANN Earth monitoring Real RMSE value Journal [46]
S157 Mohammed et al. 2021 ANN tropospheric delay Real Cross-validation, Mean Square Error (MSE) or Sum of Square Journal [111]
Error (SSE), and RMSE
S158 Okoh et al. 2016 NN Earth monitoring Real Validation dataset with RMSE Journal [169]
S159 Rafatnia et al. 2018 Recurrent wavelet neural network GNSS/INS integration Real Mean value and standard deviation: Highly accurate Vitans Journal [172]
(RWNN) navigation system is used to provide reference values for
evaluatio
S160 Sahu et al. 2021 NN Tonospheric TEC content Real Comparison of hourly values of NN TEC with GPS TEC using Journal [170]
relative error.
S161 Sivavaraprasad et al. 2020 NN Tonospheric TEC content Real RMSE value Journal [171]
S162 Ferreira et al. 2017 NN Tonospheric TEC content Real Comparison with Global Ionospheric Maps provided by CODE Journal [173]
is performed using RMSE.
S163 P. Pavlov¢i¢ Preseren 2013 Wavelet Neural Network (WNN) GNSS  ephemerides  distribution Real Minimum value of differences mmi7; Maximum value of Journal [83]
et al. and short-time prediction differences mawx; Mean value of differences; Normal-
ized root mean square crror (NRMSE): NRMSE =
RMSE/(max — min)
S164 Rahimi et al. 2018 ANN Earth monitoring Real Using six IGS stations. The collected ZTD products were used Journal [60]
to compare and validate the accuracy of the estimated ZTD by
GNSS analysis MIT (GAMIT)
S165 Kemal Tiitiincii et al. 2021 ELM GNSS/leveling geoid determina- Real Checkpoints serving as a kind of validation Journal [239]
tion
S166 R.E. Guinness et al. 2013 SVM, ANN, LR, BN, DT, NB, Situation/Context Awareness Real 10-fold cross-validation Journal [86]
1Bk, LWL and KStar
S167 N. Yamaga et al. 2019 NN Earth monitoring Real Not mentioned Journal [160]
S168 Q. Yuan et al. 2019 ANN, RF Earth monitoring Real 10-fold cross-validation Journal [186]
S169 L. Li et al. 2020 GRNN tropospheric delay Real A popular R-ratio is used as the validation method and a Journal [218]
threshold value is set to 2.5
S170 B. Huang et al. 2021 LSTM satellite clock Real Not mentioned Journal [174]
S171 M. Kim et al. 2016 NN Tonospheric delay Real Not mentioned Journal [105]
S172 B. Zhang et al. 2021 GRNN Earth monitoring Real 10-fold cross-validation (CV) Journal 61
S173 C. Herbert et al. 2021 Regression NN Earth monitoring Real Validation dataset Journal 30
S174 Taro Suzuki et al. 2021 SVM, NN Multipath Detection Real Cross-validation Journal 17
S175 Marco Mendonga et 2020 SVM GNSS/INS integration Real Not mentioned book- 240]
al. chapter
5179 Selbesoglu et al. 2019 ANN tropospheric delay Real Cross validation Journal [112]
S180 Mohamad Orabi et 2020 NN Multipath Detection Simulated RMSE value Conference [163]
al.
Si8l1 Yu Jiao et al. 2017 Linear SVM, medium Gaussian Tonospheric scintillation Real 5-fold cross-validation, and ROC curve Conference [90]
kernel SVM with a kernel scale of
9.1
S183 Hany Ragabet et al. 2020 MLPNN GNSS/INS Real RMSE value Conference [219]
S185 J. Rossouw van der 2020 Logistic regression (LR), K-nearest GNSS spoofing attack Real and Simu- Fl-score Conference [124]
Merwe et al. neighbors (KNN), naive Bayes lated
(NB), DT, SVM
S186 Yung-Cheng et al. 2006 NN GNSS/INS/Odometer integration Real RMS value (degree) Conference [138]
S187 Hamad Yousif and | 2008 NN GNSS Navigation Real Corresponding precise rapid ephemeris before any improvement | Conference | [164]
Ahmed El-Rabbany is applied
S188 Jianguo Jack Wang 2007 NN GNSS/INS integration Real Mean RMS Conference [139]
et al.
S190 T. Désert et al 2015 NN Real EGNOS Conference [103]
S191 Li He et al 2016 ANN GNSS signal detection Real Not Conference [20]
S192 W. Vigneau et al. 2006 NN LEO satellites simulalted Mean square error (MSE) Conference [147]
S194 Pere  Ramos-Bosch 2007 NN LEO satellites Real 3D RMS Journal [148]
et al.
S195 Chengquan Xu et al. 2008 NN Earth monitoring Real Not Conference [175]
S196 Heekwon No et al 2021 Quantile Regression Multipath Detection Real By an integrity assessment of the experimental data. Conference [220]
S197 Qiming Zhong et al 2021 Bayesian Filter GNSS Navigation Real Not mentioned Conference [221]
S198 Chengjun Guo et al 2021 CNN GNSS Interference Simulated Validation dataset Conference 21]
S199 Nesrine HARBAOUI 2021 DCNN GNSS Navigation Real Maximum error, and RMSE Conference [222]
et al
S$200 Sharbel E. Kozhaya 2021 TDNN which are a type of Feed GNSS Navigation Real RMSE value Conference [149]
et al Forward Neural Network (FFNN),
LSTM a type of Recurrent Neural
Network (RNN)
S201 Adyasha Mohanty et 2021 CNN GNSS/INS integration Real RMSE value Conference [134]
al
S202 Kahn-Bao Wu et al 2021 SVM Oscillator Anomaly detection Real Grid-search-based cross-validation Conference [223]
S203 Ashwin V. Kanhere 2021 DNN GNSS Navigation Real and Simu- Comparison of the absolute localization error to a weighted Conference [76]
et al lated least squares (WLS) baseline with positioning error
S204 Akpojoto Siemuri et 2021 LR, BR, NN GNSS Navigation Real Validation dataset Conference [771
al
S207 Gianluca Caparra et 2021 NN GNSS Navigation Real Percentile, cumulative distribution function (CDF) Conference (78]
al
S208 Nesreen 1. Ziedan 2021 Self-Organizing Map (SOM) neu- GNSS Navigation Simulated RMS error Conference [79]
ral network
S209 Annabel R. Gomez 2021 Ridge Regression, LSTM, Classi- Tonospheric scintillation Real Validation dataset Conference [91]
et al fication Neural Network (CNN),
Autoencoder Classification Neural
Network (ACNN), LSTM Autoen-
coder Classification Neural Net-
work (LACNN)
S210 Lei Liu et al 2021 custom- designed loss function Lc Tonospheric scintillation Real Validation dataset Conference [224]
(convLSTM-Lc)
S211 Yunxiang Liu et al 2021 spatiotemporal _ deep  learning Tonospheric scintillation Real ROC curve, and AUC Conference | [225]
(STDL) LSTM network
S213 Quoc-Huy Phan et al 2013 SVR Multipath Detection Real Standard deviations Journal [226]
S214 Azami Hamed et al 2013 NN (including Leven- GNSS GDOP classification Real Classification rate Journal [236]
berg-Marquardt (LM), modified
LM, and resilient BP (RBP),
scaled conjugate gradient, one-step
secant (0SS) and quasi-Newton
methods), PCA
S215 Nadali Zarei 2014 PSO. NPSO, GA and ICA, to train GNSS GDOP classification Real Classification rates Journal [237]
an NN.
S216 Noureldin et al 2010 NN GNSS/INS integration Real Simulation using 100s GPS outages with RMSE values Journal [140]
S217 Yu Jia et al 2017 SVM Tonospheric scintillation Real A 25% hold-out validation is configured to evaluate the perfor- Journal [100]
mance of the training with ROC curve
S218 E. S. Abdolkarimi et 2018 ELM GNSS/INS integration Real RMSE value Journal [131]
al
S220 Aly M.El-naggar 2013 ANN Tonospheric Real Not mentioned Journal 93]
S221 Yiming Quan et al 2018 CNN Multipath Detection Simulated  and RMSE value Journal [227]
Real
8222 Habarulema et al 2009 NN Earth monitoring Real RMSE value Journal [176]
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233 Tohn Bosco | 2009 FFNN Earth monitoring Real RMSE value Journal 228]
Habarulema et
al
234 R Sharaf ot al 3005 RBF-ANN GNSS/INS i Real MSE value Journal [136]
$225 S{h;:“‘“ Pikridas 2010 ANN tropospheric delay Real RMSE value Journal [13]
$2%6 Pedro Benevides ot | 2019 NN Earth monitoring Real RMSE value Journal ]
al
$227 G. Panice ot al 2017 SVM GNSS security Real False Positive Rate (FPR); True Posiive Rate (TPR); and | Conference | [126]
Accuracy
5228 Rui Sun et al 2020 GBDT GNSS Navigation Real RMSE value Journal 1801
5329 Mosavi et al 2017 RBF-NN GNSS Navigation Real Validation datasel, with RMSE Journal [81]
S231 T3 Jing ot al 2016 ensemble Tearming algorithm (LS- | GNSS/INS integration Real Position error Journal (1871
Boost or Bagging)
232 imin Zhou et al 2017 BPNN GNSS/INS integration Real MSE value Conference | [127]
5333 Guangcal Wang etal | 2019 BPNN GNSS/INS integration Real Mean value of absolute errors (MAE) Journal T128]
234 Fangni Lei ot al 2020 ML Earth monitoring Real Correlation coefficient (R) and unbiased rool-mean-square- | _Conference | [229]
difference (UbRMSD)
235 Zhengxic Zhang etal | 2019 SVM Tonospheric delay Real RMSE value Journal [108]
5236 Tictal. 2016 Twin SYM GNSS Tnterference Simulated Not mentioned Journal T121]
237 Wu ot al 2017 CNN GNSS Interference Real Accuracy percentage Journal 71
238 Savas et al 2019 K-means clustering Multipath Detection Real and Simu- | Standard deviation Conference | [177]
lated
5239 Tiu et al 2021 ConvLSTM Tonospheric irregularities Real Not mentioned Journal 12301
241 David et al 2016 Neural Network Tonospheric Scintillation Real Validation dataset Journal 231
242 Fuang ot al 2014 RBFNN Tonospheric Scintillation Real Not mentioned Journal 32
243 Yilmaz et al 3009 NN Earth monitoring Real Sum-squared error (SSE) Journal 88|
244 Habarulema et al 2007 NN Earth monitoring Real RMSE value Journal 33
5245 Sabrehee ot al. 2018 ANN Earth monitoring Real RMSE, and R2 values Journal 178
5246 Leandro e al 2007 NN Earth monitoring Real Not mentioned Journal 234
247 Wang et al 2017 WRN satellite clock Simulated Not mentioned Journal 233
243 Tyu ot al 2020 SVM GNSS Navigation Real Comparison with the built-in RTK solutions of a dual-frequency | Journal 191
u-blox FOP, and multi-frequency Trimble BD9S2.
5249 Shafiee et al 2017 Multi-layer NN GNSS security Real and Simu- | K-fold cross-validation Journal [125]
lated

regarding the type of data used for evaluating the
model, the studies made use of either simulated data,
real data or semisimulated data when evaluating the
model.

In a multi-GNSS environment, due to the availability
of large number of satellite signals and capable hardware,
the issue of optimum geometry (i.e., dilution of precision,
DOP) can be easily taken care of by use of multiple satellites
giving the lowest DOP. However, error situations, such
as multipath, can benefit from optimal selection of the
satellites. ML plays a major role in this area of research,
as this review indicates.

This review provides recommendations as well as guide-
lines for researchers and practitioners. For researchers,
we recommend that they conduct more empirical studies
making use of the rarely-used ML algorithms, keeping in
mind the GNSS application context, in order to further
strengthen the evidence about their performance. For future
work, we encourage exploring the possibilities of using
unapplied ML techniques to new or already studied GNSS
use cases. Additionally, more studies should be performed
using the combination of non-ML and ML algorithms to
further strengthen the evidence about their performance
when utilized in GNSS. Furthermore, it would be important
to use the same data. Section III-D shows that there are
plenty of different datasets used by different researchers.
Therefore, we suggest the development of a common test
bench to study the utilization of ML algorithm in GNSS.

Appendix A
See Table X.

Appendix B
See Table XI.
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