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ABSTRACT Due to the high level of precision and remarkable capabilities to solve the intricate problems in
industry and academia, convolutional neural networks (CNNs) are presented. Speech emotion recognition
is an interesting application for CNNs in the field of audio processing. In this paper, a speech emotion
recognition system based on a 3D CNN is suggested to analyze and classify the emotions. In the pro-
posed method, the three-dimensional reconstructed phase spaces of the speech signals were calculated.
Then, emotion-related patterns formed in these spaces were converted into 3D tensors. Accordingly, a
3D CNN for speech emotion recognition applied to two datasets, EMO-DB and eNTERFACE05, using a
speaker-independent technique achieved 90.40% and 82.20% accuracy, respectively. By employing gender
recognition, the accuracy rates on EMO-DB increased to 94.42% and on eNTERFACE05 rose to 88.47%.
Realization of the introduced 3D CNN on both Intel CPU and NVIDIA GPU is also explored. The results
of the implemented 3D CNN without and with regard to gender recognition show that GPU-based running
is faster for the EMO-DB and eNTERFACE05 datasets than CPU-based executions (using Python).

INDEX TERMS 3D convolutional neural networks (3D CNNs), speech emotion recognition, reconstructed
phase space, 3D tensor.

I. INTRODUCTION
During the past years, because of the availability of big data
including audio, video, image, text, etc. and progression in
digital electronics devices, deep leaning has received increas-
ing attention by researchers [1], [2], and [3]. Convolutional
neural networks (CNNs) are one of the prominent and credi-
ble deep learning models due to its computational efficiency
and high accuracy in comparison with other artificial intel-
ligence algorithms. CNNs are heavy in computations and
memory requirements. Therefore, running CNNs in embed-
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ded computing devices requires effective hardware/software
co-design [4], [5]. The ability of CNNs in the comprehension
of complex structures is an impressive feature in applications
with high-dimensional data such as text processing [6], [7],
face detection [8], [9], speech recognition [10], [11], char-
acter recognition [12], [13], image classification [14], [15],
video classification [16], and gesture recognition [17]. More-
over, Microsoft, Instagram, Amazon, Google, and Facebook
are examples of high-tech corporations which have applied
CNNs in different types of services [18].

Speech emotion recognition is a challenging topic in the
field of pattern recognition and processing the speech signals
has received a great deal of research interest in the recent
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decades. The purpose of emotion recognition from speech
is classifying the basic emotions including sadness, happi-
ness, fear, anger, disgust, surprise, boredom, and neutral from
speech signals and can be used in a variety of applications in
human-computer interaction [19], [20], and [21].

It is common to use 2D CNN models for visual tasks
[22], [23], [24]. However, these networks have also been
employed for audio-visual purposes. For example, in [25], a
2D CNN have been proposed for emotion recognition from
speech and visual information. Regarding the benefits of 2D
CNNs for image processing tasks, some research introduced
feature engineering techniques to convert one-dimensional
speech signal to 2D images, which allow to benefit from 2D
CNNs in speech processing tasks, and in particular emotion
recognition applications. In this way, spectrogram [26] and
CyTex [27] are two feature engineering-based methods that
have been employed to convert speech signal to images as
a compatible input for 2D DCNNs. Moreover, in [28], the
phase space reconstruction has been employed to represent
the emotional speech in a 3D space. Then, a transforma-
tion technique has been used to convert the 3D speech pat-
terns to 2D chaogram images for speech emotion recognition
task.

3DCNNs have been successfully used for speaker verifica-
tion [29], video scene understanding [30], action recognition
[31], and also introduced as promising models to recognize
the emotions on the base of feature extraction technique in
the speech signals [32], [33]. Although feature extraction is
a very common method, it still suffers from extracting of
the ineffective features. Hereby, finding more practical ways
is inevitable. Phase space reconstruction has been exposed
to discussion for analyzing signals with nonlinear dynamics
and presented as a meritorious alternative to conventional
signal classification approaches [34]. It is also an effective
tool for representing the one-dimensional speech signal in
a multidimensional space, that should be compatible to the
employed model input [35]. It motivates to extract 3D tensors
based onmutual information [36] from speech signals instead
of extracting features. Two famous corpuses named EMO-
DB [37] and eNTERFACE05 [38] are very common and
popular to explore the performance of various algorithms in
recognizing speech emotions [26], [32], [33], [39], [40], [41],
[42], [43], [44], [45], [46], [47].

This work proposes a 3D CNN architecture to recognize
various speech emotions and its realization on both Intel
CPU and NVIDIA GPU. Experiments on two public datasets
known EMO-DB and eNTERFACE05 have shown highly
valuable results for investigating 3D tensors using a 3D CNN
model in speech emotion recognition application. To reach
a better accuracy, gender recognition technique is added to
the suggested method. As envisaged and on the mentioned
corpuses, GPU implementations have less running times than
CPU implementations.

The rest of the paper is organized as follows: Section 2
explains the recommended 3D CNN model for speech emo-
tion recognition. In section 3, the experimental outcomes are

FIGURE 1. The schematic diagram of the proposed method.

shown and compared with other related published works.
Finally, section 4 concludes the paper.

II. PROPOSED METHOD FOR SPEECH EMOTION
RECOGNITION
The presented method consists of two main stages. In the
first stage, 3D tensors are provided using reconstructed phase
space of speech signals, and in the second stage, a 3D CNN
is trained based on the 3D tensors provided in the first stage
and their corresponding emotion labels. As the speech signal
has nonlinear and chaotic behavior, showing the correlation
of the emotional speech parameters in one-dimensional space
is not possible. Reconstruction of signal in the phase space is
an appropriate method for studying signals in higher dimen-
sions. In order to apply the compatible inputs for the 3D CNN
network and to study the relationship between emotional
parameters, speech signals have been modeled and analyzed
in a 3D space. Figure 1 shows a schematic diagram of the pro-
posed method for speech emotion recognition. As displayed,
by using the reconstructed phase space, the one-dimensional
signal is mapped to the three-dimensional space and then a
3D tensor is extracted to apply as the input of the 3D CNN.

A. RECONSTRUCTED PHASE SPACE AND CREATING A 3D
TENSOR OF SPEECH
Phase space reconstruction is a powerful technique
for analyzing nonlinear dynamic systems with chaotic
characteristics and has been presented as a pivotal alternative
to conventional nonlinear signal classification methods [27].
The phase space reconstruction approach transforms a one-
dimensional signal known as a vector to a d-dimensional
signal called a tensor. In order to reconstruct the phase space
of a system, the output signal of the system is assumed as a
time series Sn, n = 1, 2, 3, . . . ,N . Equation (1) shows a row
vector that is a single point in the reconstructed phase space.

s̄n = [sn, sn+τ , sn+2τ , . . . . . . . . . ., sn+(d−1)τ ] (1)

where τ denotes the time delay and d indicates the dimension.
All possible points of the system in the reconstructed phase
space are defined by the following trajectory matrix:

S =



s1 s1+τ s1+2τ . . . s1+(d−1)τ
s2 s2+τ s2+2τ . . . s2+(d−1)τ
s3 s3+τ s3+2τ . . . s3+(d−1)τ
. . . . .

. . . . .

. . . . .

sN sN+τ sN+2τ . . . sN+(d−1)τ


(2)
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Each row vector sn represents a speech element and its
relation to the samples with τ delay. Major methods deter-
mine optimum time delay, τ , and dimension, d, based on
mutual information and the false nearest neighbours, respec-
tively [36]. Because the inputs to be compatible for the 3D
CNN, the false nearest neighbours method is chosen to set
d = 3. To compute the suitable value for τ, the mutual
information approach is employed. The mutual information
between two signals is obtained from the following equation:

I (X;Y )

=

∑
y∈Y

∑
x∈X

p(X ,Y ) (x, y)× log(
p(X ,Y ) (x, y)

p(X) (x) p(Y ) (y)
)

(3)

where p(X ,Y ) is the joint probability distribution function
and p(X) and p(Y ) are the marginal probability distribution
functions. The first minimum of mutual information is opti-
mal [36]. While computing the τ parameter for each speech
sample is time-consuming and imposes heavy computations,
the first minimum of average mutual information as the opti-
mum time delay is considered. Except the dependency of τ
based on the time delay, sampling rates of the speech signals
is another parameter that has effect on τ computing. By find-
ing the appropriate values of τ and d , the reconstructed phase
spaces are modelled. Setting the optimal value of τ is vital in
reconstructed phase space analysis. As shown in Figure 2, the
first minimum of average mutual information as the optimum
time delays in the EMO-DB and eNTERFACE05 datasets are
located on τ = 17 and τ = 31, respectively. Figure 2 (a)
displays 535 mutual information of speech samples from
the EMO-DB dataset, and Figure 2 (b) depicts 1166 mutual
information of speech samples from the eNTERFACE05
dataset. Figure 2 (c) and Figure 2 (d) show the first mini-
mum of average mutual information for each dataset. Each
speech sample has different first minimum value in mutual
information.

For a better understanding, the reconstructed phase spaces
from a speaker in 7 various emotions of the EMO-DB dataset
have been shown in Figure 3.

The procedure of the creating 3D tensors from the 1D
raw speech signals to be compatible with the suggested 3D
CNN for speech emotion recognition has been displayed in
Figure 4. As shown in this figure, the appropriate values of
time delays have been set to τ = 17 for the EMO-DB dataset
and τ = 31 for the eNTERFACE05 dataset.

Typically, the reconstructed phase space of a speech signal
is presented in a multidimensional space. Since the goal is to
create the compatible inputs for the 3D CNN using speech
samples, the 3D reconstructed phase space of each speech
signal is formed and then converted into a 3D tensor. To this
end, each axis of the 3D space is split into 256 segments.
Consequently, the space is converted to a 256 × 256 ×
256 grid net. The frequency of points in each cell of the grid is
calculated. Therefore, a 3D matrix considered as a 3D tensor.
In other words, the output 3D tensor of this stage is a 3D his-
togram of points in the space. In summary, each 3D tensor can

FIGURE 2. The mutual information of the speech signals for the EMO-DB
and eNTERFACE05 datasets. (a) 535 mutual information of speech
samples extracted from the EMO-DB dataset. (b) 1166 mutual information
of speech samples extracted from the eNTERFACE05 dataset. (c) The first
minimum of average mutual information for EMO-DB (τ = 17) (d) The first
minimum of average mutual information for eNTERFACE05 (τ= 31).

FIGURE 3. Reconstructed phase spaces of the speech signals expressed
by a speaker in 7 different emotions from the EMO-DB dataset.
(a) 11a01Aa (Fear), (b) 11a01Ld (Boredom), (c) 11a01Nd (Neutral),
(d) 11a01Wc (Anger), (e) 11a02Ec (Disgust), (f) 11a04Fd (Happiness), and
11a02Tc (Sadness) with d = 3, andτ = 17.

FIGURE 4. The schematic of the proposed method for speech emotion
recognition based on the average mutual information on the datasets.

be considered as a new representation of the corresponding
speech signal that is labeled with the corresponding emotion
in the dataset. Finally, this 3D tensor would be applied to the
3D CNN model for training and testing. The number 256 is
set arbitrarily, as it can be matched to the network input size
via a resize procedure. However, it is preferable to choose a
close value to the size of the network input to avoid additional
computations.
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FIGURE 5. The proposed 3D CNN architecture.

B. PROPOSED 3D CNN FOR EMOTIONS CLASSIFICATION
The structure of the suggested 3D CNNmodel is displayed in
Figure 5. This model has been inspired from the architecture
of VGG16 [48], which have gained great achievements in
classification of two-dimensional images. In this research,
a similar architecture proposed in three-dimensional manner.
Experiments have been done to check whether simplifying
the model by removing some of the layers, or using additional
layers, can improve the classification performance. To this
end, first, a convolutional layer added before the first layer
of the suggested model. This resulted in decreasing of the
overall classification rate. Next, a convolutional layer added
to the end of the model, just before the flatten layer. It also
led to falling in the classification rate. In other experiments,
the first and last convolutional layers of the model have
been removed, respectively. These experiments also result in
decrease in overall classification performance. Consequently,
the proposed structure of the model is set similar to the
VGG16 architecture [48].

This 3DCNNwill train on 3D tensors obtained from recon-
structed phase space representation of speech signals. In con-
trast to classical pattern recognition systems, CNNs usually
combine the feature extraction and classification stages in
an end-to-end model that perform both tasks. Hence, the 3D
CNN can be considered as a model that can train the features
of the 3D tensors (which are a new representation of the input
speech signals) related to the target emotion labels. As shown
in Figure 5, the 3D CNN uses 3D filters to analyze input data,
which refers to feature extraction. Then, it assigns the weights
to the outputs of the filters to emphasize or ignore informative
or redundant features, respectively. These weights are com-
puted through the training procedure by minimizing a loss
function trying to link input data to the output target classes.

The input of the proposed network is a 3D tensor with the
size of 256 × 256 × 256. While the smaller size of input
can reduce the resolution and consequently cause loss of
useful information, larger size can complicate computations.
The 3D CNN consists of three types of layers, including
the convolution, pooling, and fully connected layers, where
each layer performs its particular task. The proposed 3D
CNN architecture consists of five convolutional layers with
64, 128, 256, 512, and 512 3D filters. The kernel size of
convolutional layers is 3 × 3 × 3 with the stride size of 1.
There is a max pooling layer with a kernel size of 2×2×2 and

TABLE 1. The details of each layer parameters of the proposed 3D CNN
model.

the stride size of 2 after each convolutional layer. This max
pooling layer is not only responsible for sampling but also
reduces the features dimensions. Finally, a flattening and two
fully connected layers are located afterwards. The flattening
layer converts the 3D tensor into a vector. The first fully
connected layer (FC1) consists of 1000 neurons and the last
fully connected layer (FC2) is a classifier layer with 6 or
7 neurons corresponding to 6 or 7 emotions. The number
of emotions in the EMO-DB and eNTERFACE05 datasets is
7 and 6, respectively. In the first fully connected layer and
convolutional layers, rectified linear unit (ReLU) activation
function is used as follows:

ReLU (xi) =

{
xi xi ≥ 0
0 xi < 0

(4)

where, xi is the ith input to the convolutional layer. Also,
in the classifier layer or the last fully connected layer, softmax
activation function is employed as follows:

softmax (zi) =
ezi∑K
j=1 e

zj
(5)

where, zi and K refer to the values and total number of
the neurons from the last layer in the 3D CNN model. The
parameters of the proposed 3D CNN model are shown in
Table 1.

C. SPEECH EMOTION RECOGNITION BASED ON GENDER
Because of the key role of τ in reconstructed phase spaces
and mutual information analysis, an interesting idea to obtain
a better accuracy lead us to compute τ based on the gender
recognition. To that end, the speech signals from men and
women are independently modelled in each dataset. The
results show that there is a considerable difference between
average of τ for men and women in the EMO-DB and
eNTERFACE05 datasets. Figure 6 proposes the structure of
a schematic diagram for speech emotion recognition based
on gender recognition. As depicted, gender recognition has
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FIGURE 6. The Schematic diagram of the proposed method with
considering gender recognition.

FIGURE 7. The schematic of the proposed method for gender recognition
based on the average mutual information on the datasets.

FIGURE 8. The proposed 3D CNN architecture for gender recognition.

been added to the proposed method. To this end, the pro-
posed 3D CNN should classify the input speech signals based
on genders into two categories, including female and male.
Then, the reconstructed phase spaces and 3D tensors have
been extracted from females’ and males’ speech signals,
separately.

As illustrated in Figure 7, a 3D tensor made from a 1D raw
speech signal has been applied to the 3D CNN for classifying
females or males. In this stage, the optimal time delays have
been put on τ = 17 for the EMO-DB dataset and τ = 15
for the eNTERFACE05 dataset similar to the same way used
in this work for emotion recognition without considering
genders.

The block diagram of the proposed 3D CNN model for
gender recognition is shown in Figure 8. The parameters of
this 3D CNN are the same described in Table 1. The first fully
connected layer (FC1) consists of 1000 neurons and the last
fully connected layer (FC2) is a classifier layer with 2 neurons
corresponding to female or male.

The first minimum of overall mutual information as the
optimum time delay for female and male speech samples in
the EMO-DB and eNTERFACE05 datasets are shown in Fig-
ure 9. Figure 9 (a) exhibits 302 mutual information of speech
samples from females in the EMO-DB dataset, and Figure 9
(b) shows the corresponding first minimum of averagemutual

FIGURE 9. The mutual information of the speech signals for females and
males in the EMO-DB and eNTERFACE05 datasets. (a), (b) 302 mutual
information of speech samples for females from EMO-DB with the first
minimum of average mutual information τ = 15. (c), (d) 233 mutual
information of speech samples for males from EMO-DB with the first
minimum of average mutual information τ = 19. (e), (f) 264 mutual
information of speech samples for females from eNTERFACE05 with the
first minimum of average mutual information τ = 25. (g), (h) 902 mutual
information of speech samples for males from eNTERFACE05 with the
first minimum of average mutual information τ = 33.

information τ = 15. Figure 9 (c) displays 233 mutual
information of speech samples from males in the EMO-DB
dataset, and Figure 9 (d) shows the corresponding τ = 19.
By the similar way and as illustrated in Figure 9 (e)-(h), the
first minimum of average mutual information for females and
males in the eNTERFACE05 dataset are located on τ =
25 and τ = 33, respectively. In this dataset, 264 mutual
information of speech samples from women and 902 mutual
information of speech samples from men are considered.

Figure 10 shows a general overview of the suggested 3D
CNN for the speech emotion recognition with gender des-
ignation. By obtaining the optimal time delays based on the
gender recognition, the 3D tensors from females and males
are employed to the propounded 3DCNN as inputs to classify
various emotions in each dataset.

III. EXPERIMENTAL RESULTS AND COMPARISON
The recommended approach has been evaluated on two pub-
lic datasets titled EMO-DB [37] and eNTERFACE05 [38].
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FIGURE 10. The overview of the proposed 3D CNN based on gender
recognition for speech emotion recognition.

The EMO-DB database is an emotional speech dataset con-
tains 535 utterances by 10 German actors (5 women and
5 men) in 7 emotions (sadness, fear, happiness, boredom,
anger, disgust, and neutral). The eNTERFACE05 database
is an emotional audio-visual dataset which is created by
42 people from 14 different nationalities. All the participants
spoke English and most of them were male (19% women
and 81% men). It includes 6 basic emotions (surprise, fear,
happiness, disgust, sadness, and anger). This dataset contains
1166 video samples.

In this work, workstation hardware with specifications of
Intel Core i7-7500U CPU, NVIDIA GeForce GTX 960M
(4GB) GPU, and RAM-16GB DDR4 is used to design and
evaluate the proposed 3D CNN model. Python was utilized
for all implementations which are conducted in the Spyder
platform under the Anaconda environment. Skedm library
was applied for creating phase space reconstruction. Keras
library that is running on the top of TensorFlow frame-
work was employed to design the 3D CNN model. CUDA
Toolkit v8 and cuDNN v6 were utilized libraries for GPU
executions in the TensorFlow framework. A dropout tech-
nique with a rate of 0.5 has been adopted to the fully con-
nected layers. This technique avoids the risk of overfitting
by temporarily removing the neurons from each layer. The
choice of which neurons to drop is random. The proposed
3D CNN was trained on the training set, with categorical
cross-entropy as the loss function and Adam as the optimizer
algorithm with learning rate of 1e-4 (lr = 0.0001, beta_1 =
0.9, beta_2 = 0.999). Our tests are performed on EMO-
DB and eNTERFACE05 datasets based on the 3D CNN
architecture using cross-validation strategy titled speaker-
independent. In speaker-independent strategy, the test-runs
are executed by applying leave-one-speaker-out (LOSO)
and leave-one-speakers-group-out (LOSGO) schemes. When
there are a few people in a dataset, the LOSO technique
is chosen and if there are many people in a dataset, the
LOSGO technique is selected. Thus, the LOSO scheme is
applied for EMO-DB and the LOSGO scheme is employed
for eNTERFACE05 [41].

As discussed, the gender recognition has been used in
this research. For evaluating the accuracy of recognizing
females and males, k-fold cross-validation technique has
been employed. In this technique, the database is divided
into K sections and in each iteration, K − 1 sections are

TABLE 2. Accuracy of the gender recognition for EMO-DB (535 Samples).

TABLE 3. Accuracy of the gender recognition for eNTERFACE05 (1166
Samples).

TABLE 4. Speaker-independent average speech emotion recognition
accuracy with the SGD optimizer.

selected for training and one section is chosen as a test. This
process is repeated until all samples participate in the training
and testing. Although defining K parameter is arbitrary, it is
commonly considered to 10 in which 9 parts of the datasets
are given for training and 1 remained part is assigned for
testing. Table 2 and Table 3 show the average accuracy of
gender recognition for d = 3 and different time delays τ .
The highest accuracy is available on τ = 17 for EMO-DB
by 99.06% and τ = 31 for eNTERFACE05 by 98.28%,
as indicated in both tables. These results have been attained
in 10 iterations by randomizing the datasets and prove that
the presented method for females’ and males’ speech signals
recognition is remarkably reliable. The symbols± refer to the
standard deviation.

The average accuracy of the speech emotion recogni-
tion employing speaker-independent without and with gen-
der recognition explained in the proposed method section
has been demonstrated in Table 4. The used optimizer was
stochastic gradient descent (SGD).

The datasets used in this research contain a limited num-
ber of samples, far fewer than the minimum requirements
for a desirable training of a CNN, making it necessary to
increase the number of samples. To address this problem, it is
common to employ data augmentation techniques to increase
the size of the dataset [26]. Data augmentation refers to any
technique that increases the amount of data using original
data. In speech emotion recognition, it can be performed by
splitting each speech sample into several shorter segments.
In the data augmentation procedure, all samples were split
into 315ms segments [26], which are greater than the min-
imum required length of 250ms for emotion recognition,
recommended by [40]. All new samples were labeled as the
corresponding emotion of the original sample. These result
in 11629 segments obtained from 535 EMO-DB utterances
and 25712 segments achieved from 1166 video samples of
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TABLE 5. Speaker-independent average speech emotion recognition
accuracy with the SGD optimizer and data augmentation.

TABLE 6. Speaker-independent average speech emotion recognition
accuracy by various optimizers and data augmentation without gender
recognition.

TABLE 7. Speaker-independent average speech emotion recognition
accuracy by various optimizers and data augmentation with gender
recognition.

TABLE 8. Speaker-independent average speech emotion recognition
accuracy by employing dropout technique without gender recognition.

TABLE 9. Speaker-independent average speech emotion recognition
accuracy by employing dropout technique with gender recognition.

eNTERFACE05. This data augmentation approach, in addi-
tion to a dropout procedure, can effectively increase the test
accuracy rate by reducing the risk of overfitting. Furthermore,
a proper optimization technique helps to gain the highest
possible accuracy rate using the proposed 3Dmodel. Accord-
ingly, the average recognition accuracy has considerably risen
on the presented datasets for speaker-independent strategy.
Table 5 demonstrates the average accuracy of the speech
emotion recognition with the SGD optimizer and data aug-
mentation.

There are various algorithms such as SGD [49], RMSprop
[50], Adam [51], Adamax [51], Adadelta [52], Adagrad [53],
and Ftrl [54] are used to minimize and optimize errors. All the
mentioned algorithms are evaluated in the proposed method
with data augmentation technique. As shown in Table 6 and
Table 7, the average recognition accuracy of the speech emo-
tions without and with considering gender recognition has
been compared by employing different optimizers with data
augmentation. The results prove the best possible solution is
achieved by the Adam optimizer.

TABLE 10. Comparison of the speaker-independent average emotion
recognition accuracy (%) of the proposed 3D CNN models with other
published works.

TABLE 11. Comparison of the speedups of the CPU and GPU executions.

FIGURE 11. Confusion matrixes of the proposed 3D CNN without gender
recognition. (a) An average accuracy of 90.40% on the EMO-DB dataset.
(b) An average accuracy of 82.20% on the eNTERFACE05 dataset.

Finally, the dropout technique is used for reaching a better
training, avoids overfitting, and increases the recognition
rates. Table 8 and Table 9 represent the average accuracy rates
of the speech emotion recognition when dropout technique is
employed. These tables show the highest recognition accu-
racy rates with the lowest tolerance have been obtained just
after applying dropout in the fully connected layers.

Figure 11 shows the confusion matrixes of the presented
3D CNN for speech emotion recognition experiments on the
datasets without specifying gender recognition. In the con-
fusion matrix, while each row represents the goal emotion,
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FIGURE 12. Confusion matrixes of the proposed 3D CNN with gender
recognition. (a) An average accuracy of 94.42% on the EMO-DB dataset.
(b) An average accuracy of 88.47% on the eNTERFACE05 dataset.

columns demonstrate the recognized emotions. The diago-
nal line of the matrix shows the recognition rate of each
emotion. It is clear from Figure 11 (a) that happiness with
the recognition accuracy of 94.56% has the highest accuracy
and disgust with the recognition accuracy of 86.23% has
the lowest accuracy. The average recognition accuracy of
90.40% has been achieved on EMO-DB dataset. Similarly,
and as understood from Figure 11 (b), sadness has the best
recognition accuracy of 84.89% and surprise has the worst
recognition accuracy of 78.48%.

The average recognition rate of 82.20% was obtained on
eNTERFACE05 dataset. Comparing Figure 11 (a) and Fig-
ure 11 (b) reveals that the most emotional misclassifica-
tion rates are 8.69% between disgust and boredom for the
EMO-DB dataset and 10.20% between surprise and disgust
for the eNTERFACE05 dataset.

Figure 12 demonstrates the confusion matrixes of the
presented 3D CNN for speech emotion recognition exper-
iments on the datasets with specifying gender recognition.
As realized from Figure 12 (a), the maximum recognition
accuracy of 95.48% has been dedicated to disgust and the
minimum recognition accuracy of 92.43% has been allocated
to anger. The average recognition accuracy of 94.42% has
been obtained on the EMO-DB dataset. By similar way from
Figure 12 (b), the most recognition accuracy of 90.61% is
devoted to sadness and the least recognition accuracy of
86.18% is allotted to happiness. The average recognition rate
of 88.47% has been obtained on eNTERFACE05 dataset.
As can be seen from Figure 12 (a) and Figure 12 (b),
the foremost emotional misclassification rates are 3.50%
between boredom and disgust for the EMO-DB database and
8.01% between disgust and surprise for the eNTERFACE05
database.

Concerning Figure 11 and Figure 12, the number of
zero values for gender-based speech emotion recognition is
higher than the one for speech emotion recognition with-
out considering gender. Hence, the larger number of zero
value cells in the matrixes from Figure 12, proves that
the classification task has been more accurately done. The
accuracy and loss factors help to authenticate the conse-
quences of our work. The superb training and validation

FIGURE 13. Accuracy and loss parameters on the EMO-DB database
without gender recognition. (a) Training and validation accuracy per
epoch. (b) Training and validation loss per epoch.

FIGURE 14. Accuracy and loss parameters on the eNTERFACE05 database
without gender recognition. (a) Training and validation accuracy per
epoch. (b) Training and validation loss per epoch.

accuracy are acquired when converging upwards, and the
supreme training and validation loss are gained while con-
verging downwards. Figure 13 describes the accuracy and
loss parameters for speech emotion recognition on the EMO-
DB database in speaker-independent experiments without
defining gender recognition over 200 iterations. The rise
in training and validation accuracy has been presented in
Figure 13 (a). The fall in training and validation loss has
been shown in Figure 13 (b). Figure 14 demonstrates the
accuracy and loss parameters for speech emotion recogni-
tion on the eNTERFAC05 database in speaker-independent
experiments without determining gender recognition over
200 iterations. Figure 14 (a) shows the training and validation
accuracy increasing, while Figure 14 (b) exhibits the train-
ing and validation loss decreasing. The analogous analysis
is expected for explaining Figure 15 and Figure 16 which
illustrates the accuracy and loss parameters with considering
gender recognition. As comprehended from Figure 13, Fig-
ure 14, Figure 15, and Figure 16, the training and validation
accuracy of the proposed 3D CNN with regard to genders
for EMO-DB and eNTERFAC05 are superior to the state
without regard to genders. Furthermore, the training and val-
idation loss from the datasets in the suggested gender-based
3D CNN are notably lower than the status without gender
consideration.

For showing the differences when gender recognition is
added to the proposed method, two bar charts have been
drawn. The graphs have categorized the average accuracy of
the speech emotion recognition without and with considering
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FIGURE 15. Accuracy and loss parameters on the EMO-DB database with
gender recognition. (a) Training and validation accuracy per epoch.
(b) Training and validation loss per epoch.

FIGURE 16. Accuracy and loss parameters on the eNTERFACE05 database
with gender recognition. (a) Training and validation accuracy per epoch.
(b) Training and validation loss per epoch.

gender recognition on each dataset. Figure 17 depicts the
average rate for EMO-DB and Figure 18 illustrates the aver-
age rate for eNTERFACE05. In Figure 17, themagenta colour
is specified to the average rate without gender recognition ori-
entation and the cyan colour is defined to the average rate with
gender recognition direction. In Figure 18, the green colour
shows the average rate without recognizing genders and the
blue colour displays the average rate with recognizing gen-
ders. As perceived from comparing Figure 17 and Figure 18,
the improvements of average accuracy by employing gen-
der recognition technique on the eNTERFACE05 dataset are
more sensible than the effects on the EMO-DB dataset. For
example, the amelioration of average accuracy for happiness
and sadness emotions on EMO-DB is negligible; however,
the enhancements of average accuracy for those emotions on
eNTERFACE05 are completely visible.

Table 10 compares the speaker-independent average
speech emotion recognition accuracy of the proposed 3D
CNN without and with designating gender recognition tech-
nique in this work with the related publications and proves
that our results are greatly substantial. [26] discussed an
approach comprising a combination of a deep convolutional
neural network with a discriminant temporal pyramid match-
ing strategy for automatic affective feature learning to rec-
ognize speech emotions with the accuracy rates of 87.31%
on EMO-DB and 79.25% on eNTERFACE05. [32] presents
a 3DCNN including two convolutional layers and one fully
connected layer applying k-means clustering and spectro-

FIGURE 17. Average accuracy of the speech emotions on EMO-DB. The
magenta colour refers to the average rate without gender recognition and
the cyan colour refers to the average rate with gender recognition.

FIGURE 18. Average accuracy of the speech emotions on eNTERFACE05.
The green colour refers to the average rate without recognizing genders
and blue colour refers to the average rate with recognizing genders.

grams techniques in parallel for speech emotion recognition
on the eNTERFACE05 dataset, obtaining the accuracy rate of
72.33%. In [33], a 3D attention-based convolutional recurrent
neural network for speech emotion recognition on the EMO-
DB database with the accuracy rate of 82.82% by extract-
ing features known static, deltas, and delta-deltas from the
speech signals employing as the input to the 3D convolutional
network has been introduced. [39] suggested a hybrid CNN
involving 1D CNN and 2D CNN. In this method, a 1D CNN
and a 2D CNN were designed and then merged together.
Moreover, transfer learning was employed to speed up the
training process in themergedCNN. The emotion recognition
rate on the EMO-DB was 91.78%. In [40], a generalized
discriminant analysis (GerDA) on the base of deep neural net-
works was recommended for acoustic emotion recognition.
The accuracy rates on the EMO-DB and eNTERFACE05
corpuses were obtained 81.90% and 61.10%, respectively.
As explained from [41], two standard toolkits, frame-level
by means of hidden Markov model and supra-segmental
modeling using openEAR, have been applied for emotion
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recognition task. The accuracy of 85.60% for EMO-DB and
72.40% for eNTERFACE05 in supra-segmental modeling
was much better than the accuracy rates on the both cor-
pora in frame-level modeling. In [42], BAUM-1 was pre-
sented as a new spontaneous audio-visual Turkish database
and a multi-modal affective recognition algorithm according
to apex frame selection was utilized. The experiments on
the BAUM-1s and eNTERFACE05 datasets for audio emo-
tion recognition were 29.41% and 72.95%. [43] proposed
to learn emotion-salient features using semi-CNN with the
recognition accuracy of 85.20% on the EMO-DB database.
[44] introduced a method to utilization of the shuffle box
cryptographic structure for feature generation and iterative
neighborhood component analysis for feature selection to
recognize the emotions from speech with the accuracy rate
of 90.09% on the EMO-DB dataset. [45] discussed a bagged
ensemble of support vector machines with a Gaussian kernel
for the purpose of recognizing speech emotions. The accuracy
rate on the EMO-DB corpus was 92.45%. [46] explained
an approach for speech emotion recognition that combines
attention-based long short-term memory (LSTM) recurrent
neural networks with frame-level speech features. The accu-
racy rate of the emotion recognition on the eNTERFACE05
database was 89.60%. Due to the complexity of the method
used in [46], its accuracy is slightly better than our work.
Finally, [47] described a deep neural network trained by
multi-conditioning and data augmentation employing Gen-
erative noise model to address the resilience of the speech
emotion recognition with the accuracy rate of 82.73% on
the EMO-DB dataset. According to the comparison of this
researchwith the state of the arts as understood fromTable 10,
our suggested methods are remarkably worthwhile.

The comparison of the speedups between CPU- and GPU-
based 3D CNN model executions is presented in Table 11.
It shows the GPU speeds up the 3D CNN model without
gender recognition by ≈1.33× and ≈1.30× faster for the
EMO-DB and eNTERFACE05 datasets than the CPU-based
running in our work. Besides and for the 3D CNN with
gender recognition, the GPU implementations present shorter
execution times by≈1.31× and≈1.30× faster for the EMO-
DB and eNTERFACE05 dataPbases than the CPU-based
implementations.

IV. CONCLUSION
This research presents a 3DCNN for speech emotion recogni-
tion application. The suggested 3D CNN directly employ the
generated 3D tensors from the reconstructed phase space of
speech signals. The results on EMO-DB and eNTERFACE05
datasets show that the proposed 3D tensors contain essential
emotional cues of the speakers and consequently the 3D
CNN can effectively and accurately classify the correspond-
ing emotions. Employing gender recognition technique to the
proposed 3D CNN conducts to the noteworthy accuracy rates
on the datasets. Finally, a GPU has been applied to expedite
the 3D CNN on the datasets by providing lower runtimes than
the CPU executions.
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