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ABSTRACT Auriculotherapy is one of the main forms of treatment in Traditional Chinese Medicine, whose
potential as an alternative medicine for both health evaluation and disease treatment has been reported
in many cases. However, its efficacy highly relies on the accurate localization of auricular points, which
are not easy to be remembered due to their complexity. To explore an efficient way of locating auricular
points, this study proposed a deep learning-based method of automatically locating auricular points from
auricular images. A self-collected dataset named EID was created for TCM auriculotherapy research, with
91 auriculotherapy-related landmark points manually annotated according to the Chinese national standard-
ization. A deep neural network structure was trained for landmark detection, and a direction normalization
modulewas proposed to compensate for the detection error caused by the difference between the left and right
ears. The trained model was validated on dataset EID. An average NME of 0.0514±0.0023 was achieved,
which outperformed similar works. In addition, a certain auricular area corresponding to the digestive system
was segmented based on the localized landmarks, and the results were tested in real-time video streaming.
The proposed work for both auricular landmark and area identification can be widely used in auriculotherapy
education and applications.

INDEX TERMS Auriculotherapy, deep learning, landmark detection.

I. INTRODUCTION
Auriculotherapy is a method of alternative therapy, whose
efficacy has been reported in many publications, includ-
ing the treatment for insomnia [1], [2], obesity [3], pain
relief [4], and chronic fatigue syndrome of qi deficiency con-
stitution [5]. In 1990, the World Health Organization (WHO)
published the auricular acupuncture nomenclature and stan-
dardized 43 auricular points [6]. Auriculotherapy is part of
Traditional Chinese Medicine (TCM), for both diagnosis and
treatment. According to the latest National Standardization
of Auricular Point of the People’s Republic of China GB/
T13734-2008 [7], 93 auricular points and 76 acupoint areas
are defined. Correct identification and positioning of auricu-
lar points are essential for auricular point therapy. However,
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because the auricular elements are small and the number
of acupoints is large, it is very difficult to remember them
without years of practice. Therefore, auriculotherapy can only
be performed by professional doctors based on their own
experience. Several tools have been developed to assist the
positioning procedure, with bioelectrical measurement, and
skin dyeing [8], [9], [10], etc., which are time-consuming
and not easy to be operated in general. This paper pro-
poses a deep learning-based method to automatically iden-
tify the acupoints and auricular areas from ear images for
auriculotherapy.

II. RELATED WORK
Currently, research for human auricle-related topics is mainly
focused on ear detection from images [11], [12] or 3D point
clouds [15], [16]. All these studies are focused on the exter-
nal part of the auricle only, the detection of individual
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FIGURE 1. Overview of the proposed method.

auricular landmarks and elements has not yet been studied
in depth. Little research studies the inner part of the auricle,
especially for auriculotherapy-related tasks. Mussi et al. [18]
used an image processing algorithm to segment the auricu-
lar areas based on depth map images. The study segmented
seven major areas inside the auricle including the helix, the
antihelix, and the concha cavity. Similar work is presented
by Lei et al. [19] An ear tree-structured graph (ETG) was
proposed and a 3-D flexible mixture model was trained to
locate 18 landmarks of the auricle anatomy in 3D. How-
ever, no auriculotherapy-related landmarks are localized in
both [18] and [19]. Wen et al. [20] used the ASM algo-
rithm and 25 auricular subzones were divided according to
the WFAM standard. While the deep learning-based meth-
ods have shown promising results in both landmark detec-
tion [29], [30] and area segmentation tasks [21], [42], one
of the possible reasons for limited studies on auricle-related
topics might be the missing of ear image datasets with
annotated landmarks. One closely related research topic is
facial landmark detection, and many studies localize land-
mark points by utilizing deep learning technology, including
various of CNN-based networks [22], [24], [27], multi-
task learning [23], [25], and transform learning [28] etc.
For example, Sun et al. [22] proposed a three-level cas-
caded convolutional network to estimate the positions of
facial keypoints. Zhang et al. [23] proposed a multi-task
learning model to train facial landmark detection together
with head pose estimation and facial attribute inference.
Zhang et al. [25] proposed a deep cascadingmulti-task frame-
work to enhance performance by making use of the intrinsic
relationship between face detection and keypoints location.
Kowalski et al. [26] proposed a deep alignment network
(DAN), a robust face alignment method based on a deep neu-
ral network architecture. Zhang et al. [27] proposed a weakly
supervised landmark-region-based convolutional neural net-
work (LR-CNN) framework to detect facial components
and landmarks simultaneously. However, these CNN-based

networks usually have a large model size and may be not well
applied to mobile devices, such as VGG16, and ResNet50.
Zhao et al. [28] propose a lightweight model, namely Mobile
Face Alignment Network (MobileFAN), using a simple back-
bone MobileNetV2 as the encoder and three deconvolu-
tional layers as the decoder. Guo et al. [29] utilized a
similar idea as Zhao’s work, and applied MobileNetV2 as
a backbone network but for facial keypoints localization.
Saxen et al. [31] used two lightweight CNN, MobileNetV2
and Nasnet-Mobile for facial attributes detection, which per-
formed faster than similar works. As these works indicated,
MobileNetV2 has the advantages of being lightweight and
high efficiency, therefore can be used on mobile devices.

The main contributions of this paper are as follows:
(1) A new dataset of auricle images is specifically collected

for auricular acupoint localization using specially designed
equipment, with 91 landmarks manually annotate;

(2) A deep learning-based landmark detection method is
introduced with a direction normalization module to compen-
sate for the asymmetry of the auricle shape;

(3) The special auricle area, i.e., cymba conchae is seg-
mented according to the corresponding points for further
application of auriculotherapy.

III. METHOD
An overview of our work was shown in Fig. 1. The main dia-
gram of the proposed method included offline model training
for landmark prediction and online application for both land-
mark detection and auricle area segmentation. The detailed
steps are described in the following sections.

A. DATASET
1) IMAGE COLLECTION
To train the deep learning model for acupoints identification,
the images showing the clear surface structure of the auri-
cle are a prerequisite. However, most of the current datasets
of auricular images are captured in wild without detailed
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FIGURE 2. Specially designed device for image collection. (a) device
appearance, (b) embedded light source for lighting consistence.

TABLE 1. Details of the dataset EID.

information. About annotations for landmarks that are needed
for supervised training. Therefore, a handheld device (as
shown in Fig. 2) was designed and used for data acquisition.
The device is embedded with a stable light source cover-
ing the entire auricle so that the captured image contains a
clear surface structure of the auricle. Both static images and
dynamic videos could be captured with this device.

A self-collected image dataset consisting of a total of
252 participants’ auricle images were collected with the
device shown in Fig. 2. The statistical distribution of the par-
ticipants is provided in Table 1. For each participant, a pair of
images of the left and the right ear, and the size of each image
with 500× 500, were collected. The dataset is composed of
252 pairs resulting in a total of 504 images. In the following
of this paper, Ear Image Dataset (EID) will be used as the
short-term for this ear image dataset.

2) LANDMARK SPECIFICATION
All the landmarks are defined according to GB/T13734-2008
[7], under the instruction of a qualified TCM auriculotherapy
practitioner. A total of 91 landmarks are defined as shown
in Fig. 3, including 31 primary and 60 secondary landmarks,
denoted with red and yellow dots, respectively. Primary land-
marks are acupuncture points and some special points on
the contour of the ear. To denote the auricular acupoint area
better, 60 secondary landmarks are further introduced in
between the primary landmarks. The numbering of landmarks
is denoted in Fig. 3.

FIGURE 3. The landmark scheme was applied to the dataset. Red/yellow
dots denote primary and secondary landmarks, respectively.

FIGURE 4. Annotating landmarks with a labeling tool.

FIGURE 5. Landmarks annotation for (a) right and (b) left ear samples.

3) LANDMARK ANNOTATION
Labeling Tool - ‘‘CasiaLabeler’’ [13] is used for landmark
annotation, which is shown in Fig. 4. All the landmarks are
annotated in sequence from #1 to #91 as defined in Fig. 3 by a
qualified TCM auriculotherapy practitioner. The coordinates
of all the landmark points are recorded.

Fig. 5 illustrates the spatial distribution of the annotated
landmarks for the right and left ear samples, respectively.
Blue arrows indicated the directions when connecting the
adjacent primary landmarks in sequence.

Four individuals participated in the landmark annota-
tion task for the 504 images in the dataset. A qualified
TCM auriculotherapy practitioner is invited to train all the
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TABLE 2. Results of intraclass correlation efficient.

annotators beforehand and provide inspection during the
annotating procedure.

The Intraclass Correlation Coefficient (ICC) [14] is used to
evaluate the annotation reliability. ICC is one of the indicators
used to measure and evaluate inter-observer reliability. The
ICC value is between 0 and 1, and a high ICC close to 1 indi-
cates the high reproducibility of numerical measurements
made by different annotators. It is generally suggested that
an ICC lower than 0.40 indicates poor reliability, and greater
than 0.75 indicates high reliability [32]. The ICC is calculated
as follows

ICC =
MSobserved −MSerror

MSobserved + (k − 1)MSerror
. (1)

n which, MSobserved is the mean square of the observed
objects,MSerror is the mean square of the errors,MSobserver is
the mean square of the observer, k is the number of observers.
The four annotators are asked to annotate a total of

8 images, respectively, which are composed of 4 images of
the left ear and 4 images of the right ear. For each image, the
X and the Y coordinates of each landmark point are recorded
for analysis, and the mean and the standard deviation of the
ICC calculated from the eight images are reported in Table 2.
In this paper, the error between annotators is not considered,
and the calculation is based on the original data. Therefore,
the calculation mode ICC (C, 1) is selected, where C repre-
sents consistency and 1 represents a single measurement:

It can be seen that the ICC values are 0.988±0.004
(95%CI: 0.974∼0.994) and 0.993±0.002 (95%CI:
0.986∼0.997) for annotating in the X- or Y-axis, which indi-
cates a high annotation consistency.

B. IMAGE PREPROCESSING
1) EAR DETECTION AND SIZE NORMALIZATION
A neural network is trained for ear detection with Dlib [33].
A total of 100 images are randomly chosen as the training
data for the detector. The auricle area is manually annotated
in the 100 images, and the model has trained accordingly.

With the trained ear detector, the bounding box of the entire
auricle is achieved, which is expanded 1.1 times larger to form
a new square-size bounding box. Images inside this square
box are cropped and resized to 112×112 (Fig. 6) to speed up
the landmark detection procedure.

2) DIRECTION NORMALIZATION
There are certain differences between the left and right ears of
humans [34]. As seen in Fig. 5, the annotated point sequences
for left and right ears show obvious diversity differences
in their directions. In our experiments, it is found that the

FIGURE 6. Ear detection and size normalization.

efficacy of landmark detection is highly influenced by the
ear direction captured in the sample image. To eliminate the
influence caused by the difference in the directionality of
the left and right ears, it is important to normalize the ear
direction. The Haar [35] cascade detector in the OpenCV
library is used to identify the ear direction as left or right.
The image is flipped horizontally according to ‘‘Algorithm:
Direction Normalization’’.

Algorithm 1 Direction Normalization
Input: original image (I )
Output: flipped image (If )
1: Detect ear direction (ed) from I
2: if ed is not standard
3: Calculate the width (W ) of I
4: Set i, j as the row and column indexes in I
5: for i 0 to W -1 do
6: for j 0 to W -1 do
7: If (i, j) = I (W -i, j)
8: end.
9: end.
10: return If .

The coordinates of the annotated landmarks in the orig-
inal image are flipped according to formula (2), where W
represents the width of the image, (x0, y0) represents the
coordinates of a landmark in the original image, and (xf , yf )
represents the corresponding coordinates after the flipping. xf

yf
1

 =
−1 0 W

0 1 0
0 0 1

  x0
y0
1

 (2)

3) DATA AUGMENTATION
Due to the relatively small amount of data in the data set
EID, data augmentation techniques are applied to the training
samples to expand the number of training data. To simu-
late different camera angles that possibly occur during the
image capturing, rotation is performed for each image with
a rotation angle between −30◦ and 30◦, in every 5◦. A linear
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FIGURE 7. The network structure for landmark detection.

TABLE 3. Sample size before and after data augmentation.

interpolation method as described in [36] is used to fill the
rotated image. Therefore, 12 new samples are generated for
each original training sample. The sample size before and
after data augmentation is shown in Table 3.

C. LANDMARK DETECTION
1) NETWORK CONSTRUCTION
A convolutional neural network (CNN) can extract fea-
tures of input layer by layer from low-dimensional to
high-dimensional, which makes the feature extraction more
accurate and achieves remarkable results. Backbone networks
with stronger feature representation capabilities are intro-
duced in recent years, such as VGG16 [37], ResNet50 [38],
etc. However, the training of these networks requires a large
amount of calculation, therefore it is hard to be run on mobile
devices with limited computing power. The ultimate goal of
our research is a mobile-based application for auriculother-
apy, choosing a backbone network that can be used for mobile
devices or embedded devices becomes the primary consid-
eration. MobileNetV2 is used as the backbone network in
this paper [29]. The network structure is shown in Fig. 7, the
output contents of the latter three layers are fused to increase
the performance.

2) EVALUATION METRICS FOR LANDMARK DETECTION
For the evaluation of landmark detection accuracy, the eval-
uation metric used in this paper is a normalized mean error
(NME), and its definition is shown in formula (3):

NME =
1
M

∑M

i=1

||pi− p̂i||2
d

. (3)

where M is the number of landmark points in the image; pi
and p̂i are the actual and predicted coordinates for the ith

point, respectively; d is the normalization factor, which is set
as the ear width in our case.

FIGURE 8. Illustration of the cymba conchae.

FIGURE 9. Illustration of IoU.

D. AURICULAR AREA SEGMENTATION
1) TARGET AREA CONSTRUCTION
After detecting all of 91 landmarks on the ear, the segmen-
tation for some special auricular areas is also performed.
In this paper, the cymba conchae is chosen as the target area
for the segmentation, defined according to GB/T13734-2008.
This area corresponds to the kidney, urinary system, and
other organs, according to TCM theory. The health status
of the digestive system inside the abdominal area could
be reflexed by the appearance of the cymba conchae. The
cymba conchae is illustrated in Fig. 8, as the area inside
the red line. The segmentation of this area is done based
on the identified landmarks #29∼34, #55∼60, as defined in
Fig. 3.

2) EVALUATION METRICS FOR AREA SEGMENTATION
Intersection over Union (IoU) is used as the evaluation
metric for the segmentation of the target auricular area.
As shown in Fig. 9, ‘‘predicted’’ indicates the predicted

112902 VOLUME 10, 2022



X. Sun et al.: Deep Learning-Based Auricular Point Localization for Auriculotherapy

FIGURE 10. Comparison of results of different training strategies.

TABLE 4. Experimental environments and settings.

region, ‘‘groundtruth’’ indicates the ground-truth region, and
‘‘overlap’’ indicates the overlapping region of the two.

Its calculation is shown in the following formula (4):

IoU =
overlap

groundtruth+ predicted − overlap
. (4)

IV. AURICULAR AREA SEGMENTATION
Experiments are carried out to evaluate the effectiveness of
our proposed method for landmark detection and area seg-
mentation. The detailed information on experimental envi-
ronments and settings for model training is shown in Table 4.

To obtain a more reliable and stable model, this paper
uses the 5-fold cross-validation method. All the experimental
results are reported by the 5-fold mean± standard deviation.

A. LANDMARK DETECTION
Three strategies are designed and tested for model training,
and the specific amount of experimental data is shown in
Table 5:

Strategy #1: training two separate models with prepro-
cessed data for the left and right ears, respectively;

Strategy #2: training a single model with left and right ear
samples mixed;

Strategy #3: training a single model with direction normal-
ization applied to preprocessed data.

Considering the asymmetry in the shape of one’s left- and
right-side ear, images captured for the left and right ear are
trained separately for two models in Strategy #1. A total of
25 left samples and 25 right samples are tested with both two
trained models, and the landmark detection results are listed
in Table 6.

Results from Strategy #1 indicated that a model trained
with single-side ear images only achieves low landmark
detection accuracy for the opposite side ears. Therefore, sam-
ples with left and right ears are mixed in Strategy #2 for
model training. The same testing data are used to evaluate
the landmark detection accuracy, and the results are shown in
Table 6.

To fully utilize the training samples for higher accuracy,
in Strategy #3, the direction normalization module is intro-
duced to normalize the direction of all the samples into the
single one. The direction normalization operator as defined
in session ‘‘DIRECTION NORMALIZATION’’ is applied to
left ear samples before the model training. In this way, all the
samples are treated in one direction, so that the best model
performance can be expected. The experimental results are
also shown in Table 6.

Fig. 10 shows the landmark detection results for two testing
samples using different strategies, where the two sample cap-
tures left- and right-side ear, respectively. From the results,
it is showed that model TMmixed and TMnormalized performed
well in predicting the mixed ear samples, and TMnormalized
achieved better results.

B. AURICULAR AREA SEGMENTATION
The cymba conchae is segmented based on landmarks identi-
fied using Strategy #3. The IoU results for the testing samples
are listed in Table 7. For the left ears, the IoU is 0.6629 ±
0.0458. For the right ears, the IoU is 0.6826 ± 0.0103.
The average IoU is 0.6731 ± 0.0233. Fig. 11 shows the
results of landmark detection and auricular area segmenta-
tion for one of the testing images, where red and blue lines
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TABLE 5. Statistics of experimental data.

TABLE 6. Results of different training strategies.

FIGURE 11. Illustration of the segmentation result. (Red / blue lines
indicate the boundary of the annotated and segmented area,
respectively).

TABLE 7. Segmentation results with TMnormalized.

indicate the boundary of the annotated and segmented area,
respectively.

The segmentation is also tested in real-time with video
streams captured by using the device described in session
‘‘IMAGE COLLECTION’’. Fig. 12 provides the segmenta-
tion results for the cymba conchae area in the video stream.
It is seen that the segmentation is accurate and stable with a
frame rate of 25fps.

V. DISCUSSION
A self-collected dataset of ear images is introduced in this
paper, namely EID. To the best of our knowledge, EID is

FIGURE 12. Segmentation results displayed in the real-time video
streaming.

the first dataset created for TCM auriculotherapy research,
in which the acupoints related landmarks are annotated
according to the Chinese national standardization. The com-
parison of EID with some of the popular ear image databases
is given in Table 8, including UND-Collection E [39],
WPUTEDB [40], iBUG-ears [17], and USTB Human Ear
Image Library [41]. UND-Collection E includes 464 images
from 114 human subjects, which were taken at different poses
and lighting conditions, with only the right ears were cap-
tured. WPUTEDB contains 2071 images from 501 objects,
which were collected as a testing tool for biometric algo-
rithms. Images were acquired both outdoors and in a dark
environment, with occlusions caused by hair, glasses, and
earrings. All the above datasets contain ear images only, but
no landmark annotation is provided. iBUG-ears database is
an ‘‘in-the-wild’’ images dataset, which includes two sets of
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TABLE 8. Comparison of our dataset (EID) with other datasets.

ear images: Collection A and Collection B, where 605 and
2058 images are collected from the Google Images and VGG
databases, respectively. Because all the images are collected
‘‘in the wild’’, the surface structure of the ear in the images
is usually not clear. iBUG-Collection A database includes
55manually annotated landmark points for each image. How-
ever, these points are mainly based on the anatomical shape
of the auricle only. USTB Human Ear Image Library uses a
digital camera to take 180 images of the right ear from 60 par-
ticipants, and the images are in 256 gray levels.Wen et al. [20]
used some images in the USTB human ear dataset and man-
ually labeled 65 landmarks, but only 30 images were anno-
tated. Our EID dataset contains ear images collected with
the specially designed device, therefore images with clear
structure and color information are acquired. Compared with
the 55 landmarks in iBUG-CollectionA, EID annotates a total
of 91 landmark points on the data. With the detailed images
and annotated landmarks which identifies the acupoints in
addition to the ear shape, EID can help researchers to identify
the acupoints better.

Three training strategies are designed and tested. By com-
paring the results from Strategy #1 and #2, it can be seen that
training with mixed samples improves the landmark detec-
tion results in general. Further experiments are performed
to evaluate how the proportion of samples for different ear
direction influence the final landmark detection accuracy, and
the results are shown in Table 9. As shown in Fig. 13, for a
certain ear sample, higher accuracy is achieved when more
training samples of the same side ear are included, where
the x-axis is the ratio of left ear samples to right ear sam-
ples, and the y-axis gives the resulted accuracy in average
NME.

The possible explanation for this might be that the net-
works learned both the structural and directional features
of the auricles. Because the 91 landmarks are annotated in
sequential order, the shapes constructed from the annotated
points of the left and right ear are different. With Strategy #3,
the directional features provided with all the training samples
are the same, therefore, the structural features i.e., the local-
izations of landmarks are extracted in the biggest content.

FIGURE 13. Influence of training sample distribution on the detection
results.

TABLE 9. Experimental results of different sample proportions.

The training Strategy #1 could be considered as the special
case of Strategy #2, where the split for the ear samples with
different directions is all to none. Therefore, for single-sided
ears, Strategy #1 results in higher accuracy than Strategy #2,
but it requires the training of two models separately. The
results from Strategy #1 also indicate that the accuracy for
right ears is higher than for left ears (0.0588±0.0024 vs.
0.0556±0.0038). Therefore, the normalization direction is set
to right-sided in Strategy #3 for better performance. Whether
such a difference exists for all cases or only for our dataset
requires further exploration.
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TABLE 10. Comparison of our results with others.

As indicated in Table 6, the highest accuracy for landmark
detection is achieved when Strategy #3 is applied, where all
the training samples are processed in one single direction
as well as the testing samples. The direction normalization
module not only maximizes the size of training samples with
the same side ear but also provides randomness to the training
samples.

Further experiments are performed to find how sufficiently
different strategies utilize the samples in the dataset. In the
experiments reported in Table 5, the size of the training
sample for Strategy #2 and Strategy #3 are set unchanged
with Strategy #1 (202 training samples in total), so only
the impact of the sample direction can be revealed. When
all the available samples (202 left and 202 right samples)
are used for training, the average NME can be improved
from 0.0652±0.0034 to 0.0554±0.0011 with Strategy #2,
and from 0.0514±0.0023 to 0.0500±0.0011 with Strategy
#3. Among all these results, training with the direction nor-
malization module achieved the highest accuracy.

Both tasks of landmark detection and auricular area seg-
mentation for auriculotherapy are completed in this paper.
Experiments show that the proposed method achieved an
average NME of 0.0514±0.0023 for landmark detection of
a total of 91 points, and the IoU for left and right ears are
0.6629±0.0458 and 0.6826±0.0103, respectively. For each
testing sample, its NME and IoU’ are shown in Fig. 14, where
IoU’=1-IoU. Since the segmentation accuracy is negatively
correlated with the localization accuracy, the area segmenta-
tion accuracy is slightly higher with right ears than with left
ears.

Research reported for similar tasks are very limited.
The results of our work are compared with some other
research, and the results are listed in Table 10. Among these,
Wen et al. [20] proposed an ASM-based method for landmark
detection and auricular division. 65 points were selected by
the authors according to WFAS STANDARD-002:2013 [43],
and 32 divisionswere divided by interpolating adjacent points
on the arcs. However, only 30 images from USTBwere anno-
tated and used for model training. 10 images were tested
in their paper, which was even selected in the training sets,

FIGURE 14. Relationship of NME and IoU’.

and no quantitative results were reported for area division.
As seen in their paper, only images with right-sided ears
were selected, which is partly because the ASM algorithm
is sensitive to the initialization. Such a problem could also
benefit from the direction normalization module we intro-
duced in the paper. Mussi et al. [18] identified the contours
of anatomical regions of ears. Although the segmentation
accuracy was higher than ours, however, such results were
based on depth map images, which were not as convenient as
color images for data collection. In [17], Zhou et al. explored
the ear landmark localization results with iBug-Collection
A using a different method. The best result reported was
0.0522±0.0246, which was slightly better than the result we
achieved. To better evaluated the proposed landmark detec-
tion method, it was also tested on iBug-Collection A. The
final result (0.0493±0.0012) showed that our method was
superior to that proposed in [17].We also testedMTCNN [25]
and TCDCN [23] networks on our dataset, and the average
NME were 0.0765±0.0143, and 0.0715±0.0046.

VI. CONCLUSION
In this paper, an end-to-end auricular acupoint localization
method based on the deep model MobileNetV2 was pro-
posed. A direction normalization module was introduced
to compensate for the differences between left and right
ears. A total of 91 auriculotherapy-related landmark points
were detected from the image automatically and an aver-
age NME of 0.0514±0.0023 was achieved with the 5-fold
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cross-validation, which outperforms similar works. An anno-
tated ear image dataset EID was collected to help studies on
acupoints localization. Auricular area segmentation was also
performed in this paper, and the average IoU for the target
area (cymba conchae) was 0.6731±0.0233. This method can
also be extended to the detailed division of the auricular
areas including the triangular fossa, the helix, and other areas.
Experiments indicated that by using the proposed method,
acupoints could be detected in both static images and video
streams in real-time, which provided the potential to identify
the localization of auriculotherapy practice.

Limitation remains in this study. Firstly, the dataset con-
tains the ear images of healthy and young students only.
According to TCM experience, the auricular appearance
could be different between unhealthy and healthy people.
In our future work, more data will be collected with various
age and health status distribution, so that an in-depth study
could be performed. Secondly, the reported results for auric-
ular area segmentation are not high. The area was segmented
based on the detected landmarks. In future work, methods
to improve the accuracy of landmark detection with various
deep-models will be studied, and the deep learning-based
segmentation algorithm will also be explored.
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