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ABSTRACT The consensus optimal control problem for a class of linear multi-agent systems with directed
communication networks is studied in this paper using adaptive dynamic programming. To overcome the
restrictions of the agent’s low processing capability and to extend the actuator’s lifetime, consider the event-
triggered. In the beginning, a dynamic event-triggered is provided, with several existing static event-triggered
serving as special examples. When using the dynamic event-triggered, a longer interval can be shown
between any two consecutive event-triggered. Designing a dynamic event-triggered control law becomes
more challenging when implemented in directed networks. In addition, on the basis of dynamic event-
triggered, a novel adaptive dynamic programming is used to construct a suitable dynamic event-triggered
control law, which employs just the interaction information between agents and does not need model
dynamics, overcoming the difficulty of solving the algebraic Riccati equation. Finally, the effectiveness of
the proposed method is verified by simulation results, and no agent exhibits Zeno behavior.

INDEX TERMS Multi-agent systems, event-triggered, adaptive dynamic programming, reinforcement
learning.

I. INTRODUCTION
Multi-agent systems have found significant use in physics,
social sciences, biology, and engineering in recent years [1],
[2], [3]. It can be used to address issues that are too challeng-
ing for a single agent to tackle. This has consequently led
to an increased interest in distributed control of multi-agent
systems. The consensus problem serves as the theoretical and
practical foundation for agents cooperation in the multi-agent
distributed control issue [4], [5]. However, many studiesmake
the assumption that each agent designs the proper feedback
control laws using the continuous signals of its neighbors.
In actuality, such an assumption means that a perfect commu-
nication network would require limitless bandwidth, which
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is not the case [6], [7]. By allowing each agent to utilize a
sampled signal rather of a continuous signal from its neigh-
bors, sampled signals give an option to control design [8].
Typically, the agent’s signal is sampled at a fixed interval of
time. In cases where the time period of a continuously sam-
pled signal are small, a high number of unnecessary sampled
signals are sent between agents through the communication
channel. If some devices are powered by batteries, a lot of
network bandwidth and energy is squandered [9], [10].

Because it lowers the sample frequency, event-triggered
sampling, an acyclic sampling technique [11], performs better
than periodic sampling. The use of event-triggered sampling
versus periodic sampling for an isolated system was com-
pared in detail by [12]. Based on [13], several theoretical
conclusions were drawn about input-to-state stability under
event-triggered sampling. Recently, some event-triggered
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techniques were included into consensus algorithms for
multi-agent systems with varying dynamics to reduce com-
munication burden among agents. For example, multi-agent
systems with first-order dynamics [15], [16], second-
order dynamics [17], [18] and high-order linear dynamics
[19], [20], with communication periods connected to specific
event-triggered methods, were investigated [14]. More pre-
cisely, in [19], it was believed that all agents’ communica-
tion networks were undirected, but in [20], [21], and [22],
they were considered to be directed. Zeno behavior refers
to an infinite accumulation of executions at one moment,
which is an aberrant phenomena that typically manifests in
a system. The triggering condition is modified so that all
triggering instants must occur more than zero time inter-
vals apart to rule out Zeno behavior. Consensus has been
reached with an error in the inserted constant, which is not
desirable. It was suggested in [22] that a triggering condition
dependent on state exist, but the closed-loop system’s lack
of exhibiting Zeno behavior has just been shown. Using
dynamic triggering, Girard [23] updated the results of [13]
by incorporating them into linear stability analysis. Proto-
cols for event-triggered consensus for complex dynamical
networks with discrete time delay [25] and linear multia-
gent systems [24] introduced the concept of dynamic trig-
gering. [26] introduces a dynamic event-triggered that is a
special case of some existing static event-triggered. Using the
innovative dynamic triggering, a protocol for event-triggered
control is developed. Consensus can be obtained with an
exponential convergence rate using this control system. How-
ever, there is a difficult challenge that dynamic triggering
methods must solve: how to create a dynamic event-driven
control law. The creation of adequate event-triggered con-
trol laws in prior work is dependent on solutions to sev-
eral matrix inequalities, the existence of which is not easily
ensured.

Current study, on the other hand, necessitates a full grasp
of the dynamics of the agents, which is problematic in many
actual settings. Previous research on the design of adaptive
controllers for uncertain linear systems has gone into great
detail. The typical method for developing adaptive optimal
control laws is to first compute the algebraic Riccati equa-
tion using the system parameters. This problem necessitates
exact dynamics, which is problematic since most systems
in practice are too intricate, resulting in erroneous dynam-
ics. As a result, finding a proven solution to this problem
is essential.

ADP is regarded as one of the fundamental ways for
achieving optimal control laws for a variety of optimal
control issues because it has strong self-learning and self-
adaptive capabilities and has evolved into an essential
optimal control method that is similar to the brain [27].
ADP was known by several different names, including
‘‘adaptive critic designs’’ [28] ‘‘approximate dynamic pro-
gramming’’ [29] and ‘‘neural dynamic programming’’ [30].
It includes both value and policy iteration. The value iterative

ADP approach was shown to be convergence [31]. For opti-
mal control of the continuous-time system, policy iteration
is offered [32]. Continuous-time complex-valued systems
have been successfully addressed via policy iteration [33].
Furthermore, convergence and stability proof were developed
for discrete-time policy iteration [34]. In summary, adaptive
dynamic programming has a complete theoretical foundation
and is well suited to solve multi-agent systems’ consen-
sus optimal control problems. Therefore, ADP approaches
have been applied on multi-agent systems to deal with the
optimal distributed control problems [38], [39], [40]. Ref-
erence [38] investigates the robust optimal consensus for
nonlinear multi-agent systems through the local adaptive
dynamic programming (ADP) approach and the event- trig-
gered control method. Reference [39] is concerned with the
design of distributed optimal coordination control for non-
linear multi-agent systems based on event-triggered adaptive
dynamic programming method. In [40], non-quadratic cost
functions are introduced to handle input constraints and a
novel distributed optimal consensus protocol is derived based
on event-triggered adaptive dynamic programming method.

In previous work, some works have applied dynamic
event-triggered to the problem of multi-agent systems’ con-
sensus, such as [41], in contrast to it, where the update of
the dynamic variable relies on the dynamic variable at the
last sampling moment, our dynamic variable is updated by
the difference between the combined measurement variable
and the measurement error. But under a dynamic triggering
mechanism, there is a challenging issue to be addressed: how
to design a dynamic event-triggered control law. To overcome
this challenge, we propose an online ADP in this study to
build a dynamic event-triggered control law for solving the
optimal consensus issue of multi-agent systems, and success-
fully solved the ARE, avoiding the issue that matrix inequali-
ties may not be easily guaranteed. But unlike [38], [39], [40],
[41], and [42], we have the advantage of using system data
instead of precise dynamics to solve consensus problems in
multi-agent systems. The ADP developed in this chapter only
requires an arbitrary stabilizing control policy for the entire
learning phase and can effectively use the same amount of
online measurements for multiple iteration steps, at the cost
of a higher computational burden at a single iteration time
point. So this work is of great significance.

As for the remainder of the paper, it should be organized
as follows: In Section 2, there is some algebraic graph theory
knowledge presented and problem formulation is derived.
Section 3 shows a dynamic event-triggered, and demonstrates
that it does not exhibit Zeno behavior. A large interevent
time can be achieved by using the dynamic event-triggered.
Unnecessarily requiring no prior knowledge of the dynam-
ics of the system, Section 4 proposes an online ADP tech-
nique for designing a dynamic event-triggered control law.
Section 5 provides an example to show our approach’s effec-
tiveness. The final section of the paper provides a brief
conclusion.
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II. PROBLEM FORMULATION
A. PRELIMINARIES
In this paper, graph theory is used as a powerful mathe-
matical tool to analyze multi-agent systems. Whether the
information flow is unidirectional or bidirectional, a weighted
graph may explain the structure of a communication network.
Assuming that M is a symmetrical real matrix of suitable
size, we define λmin(M ) = mini λi(M ) and λmax(M ) =
maxi λi(M ), where λi(M ) is an arbitrary eigenvalue of M .

Define col (x1, . . . , xn) =
[
xT1 , . . . , x

T
N

]T , where xi ∈ Rn(i =
1, . . . ,N ). If A ∈ Rm×n and B ∈ Rp×q, then A⊗B ∈ Rmp×nq,
where ⊗ is the Kronecker product. All agents’ interaction
topology is directed, as shown by G = (V, E). There are N
agents in total. Then, and the edge set E ⊆ V × V is made
up of all the channels that connect two agents. Particularly,
when a link starts at agent-j and ends at agent-i, as shown
by (i, j) ∈ E . It is here that agent-j can be referred to as an
agent-i’s in-neighbor, and the entire set of in-neighbors can
be considered in-neighbor set of agent-i, which is denoted by
Ni = {j ∈ V | (i, j) ∈ E}. Mi = {j ∈ V | (j, i) ∈ E} denotes
the agent-i’s out-neighbor set. Define A(G) =

(
aij
)
N×N .

In the case where j is agent i’s an in-neighbor, aij = 1, and in
the absence of this, aij = 0, A(G) refers to the adjacency
matrix. We let L =

(
lij
)
N×N , where lii =

∑N
j=1,j6=i aij

and lij = −aij, if i 6= j. The Laplacian matrix of G is
denoted by L. It implies that aij = aji,∀i, j = 1, . . . ,N ,
for an undirected graph, while this is not always the case
for a directed graph. In the directed graph, there are certain
ordered edges (i1, i2) , . . . , (ik−1, ik) that make up a directed
path from ik to ij, and in this situation, it is said that agent-ik
may reach agent-i1. It is possible for any agent in a directed
graph G to contact any other agent in the graph, the graph G
is said to be strongly linked.

B. PROBLEM FORMULATION
It is shown that a class of multi-agent systems has the follow-
ing dynamic of agent-i:

ẋi = Axi + Bui, i = 1, . . . ,N . (1)

The n-dimensional state is represented by xi, while the
m-dimensional control input is represented by ui, there
are two system matrices with the appropriate dimensions,
A and B. Consider a directed graph G in which all agents
communicate with each other. It is possible to achieve con-
sensus between agents in system (1) by using the protocol,
i.e., limt→∞

∥∥xi(t)− xj(t)∥∥ = 0.
Assumption 1: (A,B) is stabilizable.
Assumption 2: The directed graph G is strongly

connected.
Lemma 1 [35]:According to Assumption 2, the vector

ξ = [ξ1, ξ2, . . . , ξN ]T whose elements are all positive.
Furthermore, let 4 = diag (ξ1, ξ2, . . . , ξN ). Then L̂ =[(
4L + LT4

)
/2
]
is a symmetric matrix and

∑N
j=1 L̂ij =∑N

j=1 L̂ji = 0 for all i = 1, 2, . . . ,N

Lemma 2 [36]: Based on Assumption 2, given a directed
network with a Laplacian matrix L:

a(L) = min
xT ξ=0,x 6=0

xT L̂x
xT4x

> 0, (2)

where L̂ =
[(
4L + LT4

)
/2
]
, ξ = [ξ1, ξ2, . . . , ξN ]T , and

4 = diag (ξ1, ξ2, . . . , ξN ), with ξi > 0, i = 1, . . . ,N , ξT

L = 0, and
∑N

i=1 ξi = 1.
It should be noted that for a strongly linked graph, a(L) is

referred to as the general algebraic connectivity. The general
algebraic connection of strongly connected graphs is known
as a(L). In an undirected graph, then a(L) = λ2(L).

III. A DISTRIBUTED DYNAMIC EVENT-TRIGGERED
CONTROL APPROACH
In the spirit of [16], we first define the following combined
measurement variable:

qi(t) =
N∑
j=1

aij
(
xj(t)− xi(t)

)
. (3)

Following that, we provide a state feedback control mech-
anism for agent-i as described in [19] as

ui(t) = Kqi
(
t ik
)
, t ∈

[
t ik , t

i
k+1

)
. (4)

Agent-i only requires qi (t) at certain irregular periods,
called as triggering times, t i0, t

i
1, . . ., (or event times). Agent-i

must use communication with its neighbors to calculate
qi
(
t ik
)
at each trigger time instant. It is possible to determine

the next triggering time instant t ik+1, if the current triggering
time t ik is represented as follows:

 t ik+1 = inf
{
t > t ik ‖ei(t)‖

2
− δi ‖qi(t)‖2 − πiηi(t) ≥ 0

}
,

η̇i(t) = −βiηi(t)+ θi
(
δi ‖qi(t)‖2 − ‖ei(t)‖2

)
, ηi(0) > 0,

(5)

where an internal dynamic state is defined by ηi (t), while a
measurement error must be defined by ei (t), βi > 0, θi ≥∥∥PBBTP∥∥, πi > 0, and δi = (ξiσi/θi) with 0 < σi < 1.
where

ei(t) = qi
(
t ik
)
− qi(t). (6)

Besides the controlled system’s condition, the trigger-
ing function is likewise affected by the internal dynamic
state ηi (t). This type of triggering system is known as a
dynamic event-triggered, and it was initially presented in [23]
for a single controlled plant. Without the internal dynamic
state, dynamic event-triggered is also known as static
event-triggered.

The resulting closed-loop system, which is connected to
the controller (4), is given by

ẋi = Axi + BK (ei(t)+ qi(t)) , i = 1, . . . ,N . (7)
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where q(t) = col (q1(t), . . . , qN (t)), and one has q(t) = −
(L ⊗ In) x(t), according to (7), it follows that:

q̇(t) = (IN ⊗ A− L ⊗ BK ) q(t)-(L ⊗ BK )e(t). (8)

K in the above equation has proven difficult. According
to the literature [26], K may be computed by solving the
following equation to get P.

PA+ ATP− α′PBBTP+ In = 0, (9)

where α′ = 2µa(L)−µ2ξM‖L‖2 > 0, withµ being a param-
eter that has to be calculated, a(L) provided in Lemma 2, and
ξM = maxi (ξ1, . . . , ξN ). This equation can be thought of as
the special ARE with fixed parameters.
Theorem 1: According to Assumptions 1 and 2, let K =

µBTP, where 0 < µ <
(
2a(L)/

[
ξM‖L‖2

])
and P > 0 is

the solution to (9). Under the control protocol (4), the multi-
agent system’s agents reach consensus with t ik+1, determined
by (3). As a result, any agent will not be able to perform Zeno
behavior.
Proof: We take into account the subsequent candidate for

the Lyapunov function:

W (t) = V (t)+
N∑
i=1

ηi(t), (10)

where V (t) = qT (t)(4 ⊗ P)q(t) ≥ 0, it is important to
show that Zeno behavior does not occur in any agent in
order to demonstrate that the triggering mechanism (5) could
be utilized. If just agent-i exists, a Zeno behavior arises at
some point in time T0. Afterwards, there is limk→∞ t ik = T0.
Considering the limit property, it is concluded that for any any
ε0 > 0, there exists N (ε0) such that t ik ∈ (T0 − ε0,T0 + ε0)
for ∀k ≥ N (ε0), which implies that t iN (ε0)+1 − t

i
N (ε0)

< 2ε0.
Note that

∑N
i=1 ‖qi(t)‖

2
= ‖q(t)‖2 ≤ (V (t)/ [ξmλmin(P)])

and V (t) ≤ W (t) ≤ W (0). Then

‖qi(t)‖ ≤ ‖q(t)‖ ≤

√
W (0)
ξmλmin(P)

.
= W0. (11)

Given that ‖ei(t)‖ is continuously piecewise differentiable
in the interval

[
t ik , t

i
k+1

)
, the Dini derivative of ‖ei(t)‖ can be

determined as follows:

D+ ‖ei(t)‖ ≤

∥∥eTi ∥∥
‖ei‖
‖ėi‖

=

∥∥∥∥∥∥−
N∑
j=1

aij
(
ẋj(t)− ẋi(t)

)∥∥∥∥∥∥
= ‖ − Aqi(t)

+µBBTP
N∑
j=1

aij

(
qi
(
t ik
)
− qj

(
t jk ′j

))
‖

≤ ‖A‖ ‖qi(t)‖

+µ

∥∥∥BBTP∥∥∥ N∑
j=1

aij

(∥∥∥qi (t ik)∥∥∥+ ∥∥∥∥qj(t jk j′
)∥∥∥∥)

≤ W0

(
‖A‖ + µ

∥∥∥BBTP∥∥∥ (1+ |Ni|)
)

.
= Ŵ0, (12)

where k ′j = argmaxk∈N
{
t jk | t

j
k ≤ t

}
, and D+ ‖ei(t)‖ deriva-

tives on the right of ‖ei(t)‖ when t = t ik .
Due to the fact that an event is only triggered when ‖ei(t)‖

is reset to 0 and the triggering condition in (10) is met, one has
‖ei(t)‖ ≥ (δi ‖qi(t)‖2+πiηi)1/2 ≥

√
πiηi at t

i−
k , k = 1, 2, . . ..

Define f
(
t−
)
= lims→t− f (s). Then∥∥∥ei (t i−k )∥∥∥ ≥ √πiηi (t i−k ) = √πiηi(0)e− βi+θiπi2 t i−k . (13)

It follows from (12) and (13) that:

t iN (ε0)+1 − t
i
N (ε0) ≥

1

Ŵ0

√
πiηi(0)e−

βi+θiπi
2 t iN (ε0)+1. (14)

Let ε0 > 0 be a equation solution:

1

Ŵ0

√
πiηi(0)e−

βi+θiπi
2 T0 = 2ε0e

βi+θiπi
2 ε0 . (15)

Then

t iN (ε0)+1 − t
i
N (ε0) ≥

1

Ŵ0

√
πiηi(0)e−

βi+θiπi
2 (T0+ε0)

= 2ε0. (16)

which contracts the fact that t iN (ε0)+1 − t
i
N (ε0)

< 2ε0. There-
fore, it follows that agent-i doesn’t display Zeno behavior
since the aforementioned presumption is false. The proof is
finished.

IV. ADAPTIVE DYNAMIC PROGRAMMING
It is a difficult task to design a dynamic event-triggered con-
trol laws. Because ARE is difficult to solve, especially in high
dimensions, earlier work relied on the solution of multiple
matrix inequalities, but the presence of these inequalities
may not be easily ensured. In adaptive dynamic program-
ming, policy iteration converges faster than value iteration.
In this section, a policy iterative approach is provided to
approximate the algebraic Riccati problem’s solution, and an
ADP is created to solve the ARE equation (9). The policy
iterative approach is paired with an online ADP algorithm.
The developed method can approximate the control gain for
each follower without relying on system matrix knowledge
or the precise inertia, by utilizing all the finite data available,
imposing an initial control policy on the agent at a limited
time interval, collecting online measurements, and iterating
by reusing the same online data.

A. ONLINE OFF-POLICY ALGORITHM
The continuous-time linear system (1), where A and B are
constant matrices of appropriate size. Due to the existence of
a constant matrix K has sufficient dimensions, so A− BK is
Hurwitz, (7) is considered as stable.

u = −Kx, (17)
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which reduces the performance index shown below to the
minimum:

J (x0; u) =
∫
∞

0

(
xTQx + uTRu

)
dt. (18)

where Q = QT ≥ 0, R = RT > 0 with
(
A,Q1/2

)
observable.

By using (17) to (1), we can easily write (18) as follows:

J (x0; u) = xT0 Px0, (19)

where:

P =
∫
∞

0
e(A−BK )

T t
(
xTQx + KTRK

)
e(A−BK )tdt. (20)

When the derivative of XTPX is taken along the solution
of (1), there is only one positive definite solution P in the
Lyapunov equation:

(A− BK )T P+ P (A− BK )+ Q+ KTRK = 0. (21)

WhenA andB are known exactly, the solution to an optimal
control problem can be solved using classical optimal control
theory by solving the following Riccati equation:

ATP+ PA+ Q− PBR−1BTP = 0. (22)

As a result, solving (22) can be difficult, particularly for
high-dimensional matrices. Nevertheless, a number of effec-
tive methods have numerically approximated the solution
to (34). One such technique is Kleinman’s algorithm, which
is detailed more below.
Theorem 2 [37]: Let K0 ∈ Rm×n be any stabilizing feed-

back gain matrix (i.e., A − BK0 is Hurwitz), and repeat the
following steps for k = 0, 1, . . .
(1) Solve for the real symmetric positive definite solution

Pk of the Lyapunov equation

ATk Pk + PkAk + Q+ K
T
k RKk = 0, (23)

where:Ak = A− BKk .
(2) The feedback gain matrix should be updated by:

Kk+1 = R−1BTPk . (24)

Then, the following properties hold:
(1) A− BKk is Hurwitz;
(2) P∗ ≤ Pk+1 ≤ Pk ;
(3) lim

k→∞
Pk = P∗

Proof: Consider the Lyapunov equation (23) with k = 0.
Since A − BK0 is Hurwitz, by (20) we know P0 is finite and
positive definite. In addition, by (20) and (23) we have

P0 − P1 =
∫
∞

0
eA

T
1 τ (K0 − K1)

T R (K0 − K1) eA1τdτ ≥ 0

Similarly, by (20) and (22) we obtain

P1 − P∗ =
∫
∞

0
eA

T
1 τ
(
K1 − K∗

)T R (K1 − K∗
)
eA1τdτ ≥ 0

Therefore, we have P∗ ≤ P1 ≤ P0. Since P∗ is positive def-
inite and P0 is finite, P1 must be finite and positive definite.

This implies that A − BK1 is Hurwitz. Repeating the above
analysis for k = 1, 2, . . . proves Properties (1) and (2) in
Theorem 2. Finally, since {Pk} is a monotonically decreasing
sequence and lower bounded byP∗, limk→∞ Pk = P∞ exists.
By (23) and (24), P = P∞ satisfies (22), which has a unique
solution. Therefore, P∞ = P∗. The proof is thus complete.
Remark 1: When A and B are known, the Lyapunov equa-

tion (23) may be used to solve Pk and update Kk repeatedly.
So, it is numerically approximated to find a solution for
equation (22).

Theorem 2 will then be used to propose an offline policy
iteration approach to address the optimal control problem.

According to (24) and (23), the method is offline and
requires precise understanding of the dynamic. However, it is
frequently difficult to construct a model of system dynamics
or to get exact information about the dynamics of systems.
In the spirit of Jiang et al. [43], an online ADP approach
is proposed to handle this issue without the necessity for
previous knowledge of system dynamics.

B. ADAPTIVE DYNAMIC PROGRAMMING BASED ON
POLICY ITERATION
Based on the policy iteration algorithm presented above,
we will describe an online ADP method that does not need
A and B.

Along with the solutions of (1) by (24) and (23), one can
obtain:

x(t +1t)TPkx(t +1t)− x(t)TPkx(t)

= −

∫ t+1t

t
xTQkxdτ

+2
∫ t+1t

t
(u0 + Kkx)T RKk+1xdτ (25)

where Qk = Q+ KT
k RKk .

Remark 2: It is worth mentioning in Equation (25), that the
system matrices can be replaced with the states and inputs
measured online. As a consequence, Equation (25) may be
used to calculate Pk and Kk+1 without knowing the precise
of A and B.

As a result, we use the Kronecker product to get (Pk ,Kk+1)
with unknown system matrices under a known stabilizing
feedback gain matrix Kk :

xTQkx =
(
xT ⊗ xT

)
vec (Qk) . (26)

(u+ Kkx)T RKk+1x =
[(
xT ⊗ xT

) (
In ⊗ KT

k R
)

+

(
xT ⊗ uT0

)
(In ⊗ R)

]
Kk+1,

(27)

denote ζxx ∈ R1×n2 , ϕxx ∈ R1×n2 and ϕxu ∈ R1×mn.

ζxx =
[
x ⊗ x|t1+δtt1 , x ⊗ x|t2+δtt2 ,

. . . , x ⊗ x|ti+δtti

]T
, (28)
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ϕxx =

[∫ t1+δt

t1
x ⊗ xdτ,

∫ t2+δt

t2
x ⊗ xdτ,

. . . ,

∫ t1+δt

t1
x ⊗ xdτ

]T
, (29)

ϕxu =

[∫ t1+δt

t1
x ⊗ u0dτ,

∫ t2+δt

t2
x ⊗ u0dτ,

. . . ,

∫ tl+δt

tl
x ⊗ u0dτ

]T
, (30)

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tl then 8k ∈ Rl×
(
n2+mn

)
and

9k ∈ Rl .

8k =

[
ζxx ,−2ϕxx

(
In ⊗ KT

k R
)
− 2ϕxu (In ⊗ R)

]
. (31)

9k = −ϕxx vec (Qk) . (32)

This is the form of Equation (25) when written as a linear
equation:

8k

[
vec (Pk)
vec (Kk+1)

]
= 9k . (33)

Lemma 3 [43]: It is possible to have a sufficiently large
integer l > 0 such that:

rank ([ϕxx , ϕxu]) =
n(n+ 1)

2
+ mn.

Lemma 4 [44]: Whenever k0 is an initial stabilizing feed-
back control gain, and Lemma 3 holds, the sequences and
obtained by solving (33) will respectively converge to optimal
{Pk}∞k=0 and {kk}∞k=0. Obtained by solving (33) will respec-
tively converge to optimal P∗ and K∗.
As a consequence, we can employ an online ADP to solve

the optimal control problem without system dynamics.
Off-policy ADP algorithm
Step 1: Find K0 such that A− BK0 is Hurwitz. Let k = 0;
Step 2: Utilize u0 = −K0 + e as the control input, e is the

exploration noise. Compute, ζxx , ϕxx and ϕxu to satisfy the
rank condition in Lemma 3;

Step 3: Solve for Pk and Kk+1 from (33);
Step 4: Let k = k + 1 and repeat Step (3), until
|Pk − Pk−1| ≤ ε, where the constant ε > 0 is a predefined
small threshold;

Step 5: use u = −Kkx as the approximate optimal control
policy.

The above algorithm may be used to get the solution of (9)
for P so that the control law K can be found.

V. SIMULITION
The problem of spacecraft formation flying is taken into
account in this section to verify the theoretical approaches.
The multi-agent system in this example consists of six agents,
each of which represents a spacecraft that is in low Earth
orbit. Several conversions can be done to translate the space-
craft formation flying problem into the consensus problem of
a linear multi-agent system. The general linear dynamics of

FIGURE 1. Graph G in the example.

(1) apply to each agent in this case.

A =
[
0 I3
A1 A2

]
, B =

[
0
I3

]
,

A1 =

 0 0 0
0 3ω2

0 0
0 0 −ω2

0

 , A2 =

 0 2ω0 0
−2ω0 0 0
0 0 0

 .

The state is expressible as xi = col
(
x̄i, ȳi, z̄i, vxi , v

y
i , v

z
i

)
,

where (x̄i, ȳi, z̄i) denotes the distance in X −Y −Z directions
from the desired position;

(
vxi , v

y
i , v

Z
i

)
is the velocity in the

three directions; ω0 = 0.001 is the angular rate of the satel-
lite. Assume that the directed communication graph shown
in Figure 1 is used by the agents to communicate with one
another.

The validity of Assumptions 1 and 2 can be verified, as a
result, Theorem 1’s requirements are met. It is possible to
construct a triggered mechanism for the multi-agent system
concerned based on Theorem 1. It is discovered via Lemma 2
that

ξ =
[
0.1250 0.1667 0.2083 0.0833 0.1667 0.25

]
which satisfies ξTL = 0 and

∑N
i=1 ξi = 1, and other

parameters are

a(L) = 0.6902, µ = 0.0869 ≤
2a(L)
ξM‖L‖2

= 0.2480

It is simple to solve for P in equation (9) utilizing the
ADP provided in the previous chapter. Figure 2 demonstrates
that Pk have reached their optimal values. As shown in the
equation at the bottom of the next page.

Define the x-axis position error as eij = x̄i − x̄j,
∀i 6= j. Fig.3 and Fig.4 depict the evolution curves of agents’
location error eij and velocity vxi using the event-triggered
consensus procedure. It is demonstrated that all agents
finally reach consensus on their positions and velocities
on the x-axis. Furthermore, six agents’ the triggering time
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FIGURE 2. Triggering time instants for the agents.

FIGURE 3. Evolution of agents’ position error via the event-triggered
control protocol.

instants are recorded, it is also clear to see in Fig. 5 how
long the interval between events is for each agent. Further-
more, Figure 6 shows the trajectory of agent 1’s combined
measurement error and associated triggering threshold in
triggering condition (5). The simulations, for comparison,

FIGURE 4. Evolution of agents’ velocity error via the event-triggered
control protocol.

FIGURE 5. Triggering time instants for the agents.

are also built with the static event-triggering technique.
Table 1 shows the triggering frequency using the static
and dynamic triggering mechanisms, respectively. It can be
seen that the dynamic triggered greatly lowers the triggering
numbers.

P =


2.8576 0.0000 − 0.0000 3.5829 0.0090 − 0.0000
0.0000 2.8576 − 0.0000 − 0.0090 3.5829 − 0.0000
−0.0000 0.0000 2.8576 0.0000 − 0.0000 3.5829
3.5829 − 0.0090 − 0.0000 10.2383 − 0.0000 − 0.0000
0.0090 3.5829 − 0.0000 − 0.0000 10.2384 − 0.0000
−0.0000 0.0000 3.5829 0.0000 − 0.0000 10.2383


K = µBTP

=

 0.3114 − 0.0008 0 0.8897 0 0
0.0008 0.3114 0 0 0.8897 0

0 0 0.3114 0 0 0.8897


δ =

[
1.1 1.4 1.8 0.7 1.4 2.1

]
× 10−3

θi =

∥∥∥PBBTP∥∥∥ = 117.6614, βi = 0.004, πi = 0.003.
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FIGURE 6. Triggering time instants for the agents.

TABLE 1. Units for magnetic properties.

VI. CONCLUSION
This paper describes how to design control laws for
dynamic event-triggered mechanisms. Designing a dynamic
event-triggered control law under a dynamic triggeringmech-
anism is a difficult problem to solve. The multi-agent systems
under consideration have directed communication graph and
generic linear dynamics. This issue requires precise dynam-
ics, which is difficult since most systems in practice are too
complicated, and the resulting dynamics may be inaccurate.
We designed model-free adaptive dynamic programming,
which perfectly solves this problem, to address these two
issues. The findings demonstrate that the event-triggered con-
trol protocol with this laws allows exponential consensus
among all agents and that none of the agents exhibit Zeno
behavior. But the dynamic event triggering mechanism in this
article relies on the ARE equation with fixed parameters.
Future research will focus on the design of flexible ARE
equations for dynamic event triggering mechanisms to design
control laws.

REFERENCES
[1] T. Chu, J. Wang, L. Codecà, and Z. Li, ‘‘Multi-agent deep reinforcement

learning for large-scale traffic signal control,’’ IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 3, pp. 1086–1095, Mar. 2020.

[2] H. Liu, Q. Meng, F. Peng, and F. L. Lewis, ‘‘Heterogeneous
formation control of multiple UAVs with limited-input leader via
reinforcement learning,’’ Neurocomputing, vol. 412, pp. 63–71,
Oct. 2020.

[3] X. Zhang, Z. Cheng, J. Ma, S. Huang, F. L. Lewis, and T. H. Lee, ‘‘Semi-
definite relaxation-based ADMM for cooperative planning and control of
connected autonomous vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 7, pp. 9240–9251, Jul. 2022.

[4] V. Borkar and P. P. Varaiya, ‘‘Asymptotic agreement in distributed esti-
mation,’’ IEEE Trans. Autom. Control, vol. AC-27, no. 3, pp. 650–655,
Jun. 1982.

[5] J. N. Tsitsiklis, ‘‘Problems in decentralized decision making and computa-
tion,’’ Massachusetts Inst. Technol. Lab. Inf. Decis. Syst., Cambridge, MA,
USA, Tech. Rep., 1984.

[6] X.-M. Zhang and Q.-L. Han, ‘‘Network-based H∞ filtering using a
logic jumping-like trigger,’’ Automatica, vol. 49, no. 5, pp. 1428–1435,
May 2013.

[7] B.-L. Zhang, Q.-L. Han, and X.-M. Zhang, ‘‘Recent advances in vibration
control of offshore platforms,’’NonlinearDyn., vol. 89, no. 2, pp. 755–771,
Apr. 2017.

[8] G. Xie, H. Liu, L. Wang, and Y. Jia, ‘‘Consensus in networked multi-agent
systems via sampled control: Fixed topology case,’’ in Proc. Amer. Control
Conf., 2009, pp. 3902–3907.

[9] X.-M. Zhang, Q.-L. Han, and B.-L. Zhang, ‘‘An overview and deep inves-
tigation on sampled-data-based event-triggered control and filtering for
networked systems,’’ IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 4–16,
Feb. 2017.

[10] X.-M. Zhang, Q.-L. Han, and X. Yu, ‘‘Survey on recent advances in
networked control systems,’’ IEEE Trans. Ind. Informat., vol. 12, no. 5,
pp. 1740–1752, Oct. 2016.

[11] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, ‘‘A survey on recent
advances in distributed sampled-data cooperative control of multi-agent
systems,’’ Neurocomputing, vol. 275, pp. 1684–1701, Jan. 2017.

[12] K. J. Åström and B. Bernhardsson, ‘‘Comparison of periodic and event
based sampling for first-order stochastic systems,’’ IFAC Proc. Volumes,
vol. 32, no. 2, pp. 5006–5011, 1999.

[13] P. Tabuada, ‘‘Event-triggered real-time scheduling of stabilizing con-
trol tasks,’’ IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685,
Sep. 2007.

[14] Z. Zuo, Q.-L. Han, B. Ning, X. Ge, and X.-M. Zhang, ‘‘An overview of
recent advances in fixed-time cooperative control of multiagent systems,’’
IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, Jun. 2018.

[15] D. Dimarogonas, E. Frazzoli, and K. Johansson, ‘‘Distributed event-
triggered control for multi-agent systems,’’ IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1291–1297, May 2020.

[16] Y. Fan, G. Feng, Y. Wang, and C. Song, ‘‘Distributed event-triggered
control of multi-agent systems with combinational measurements,’’ Auto-
matica, vol. 49, no. 2, pp. 671–675, Feb. 2013.

[17] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, ‘‘Event-based
broadcasting for multi-agent average consensus,’’ Automatica, vol. 49,
no. 1, pp. 245–252, Jan. 2013.

[18] H. Li, X. Liao, T. Huang, and W. Zhu, ‘‘Event-triggering sampling based
leader-following consensus in second-order multi-agent systems,’’ IEEE
Trans. Autom. Control, vol. 60, no. 7, pp. 1998–2003, Jul. 2015.

[19] W. Hu, L. Liu, and G. Feng, ‘‘Consensus of linear multi-agent systems by
distributed event-triggered strategy,’’ IEEE Trans. Cybern., vol. 46, no. 1,
pp. 148–157, Jan. 2016.

[20] W. Zhu, Z.-P. Jiang, and G. Feng, ‘‘Event-based consensus of multi-
agent systems with general linear models,’’ Automatica, vol. 50, no. 2,
pp. 552–558, Feb. 2014.

[21] H. Li, G. Chen, and L. Xiao, ‘‘Event-triggered nonlinear consensus in
directed multi-agent systems with combinational state measurements,’’ Int.
J. Syst. Sci., vol. 47, no. 14, pp. 3364–3377, Oct. 2016.

[22] X. Liu, C. Du, H. Liu, and P. Lu, ‘‘Distributed event-triggered consensus
control with fully continuous communication free for general linear multi-
agent systems under directed graph,’’ Int. J. Robust Nonlinear Control,
vol. 28, no. 1, pp. 132–143, 2018.

[23] A. Girard, ‘‘Dynamic triggering mechanisms for event-triggered control,’’
IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997, Jul. 2015.

[24] W. Hu and C. Yang, ‘‘Consensus of linear multi-agent systems by dis-
tributed dynamic event-triggered control,’’ in Proc. Int. Workshop Complex
Syst. Netw. (IWCSN), Dec. 2017, pp. 284–289.

[25] Q. Li, B. Shen, Z. Wang, T. Huang, and J. Luo, ‘‘Synchronization
control for a class of discrete time-delay complex dynamical networks:
A dynamic event-triggered approach,’’ IEEE Trans. Cybern., vol. 49, no. 5,
pp. 1979–1986, May 2019.

[26] W. Hu, C. Yang, T. Huang, and W. Gui, ‘‘A distributed dynamic event-
triggered control approach to consensus of linear multiagent systems with
directed networks,’’ IEEE Trans. Cybern., vol. 50, no. 2, pp. 869–874,
Feb. 2020.

[27] D. Li and J. Dong, ‘‘Robust control for a class of nonlinear systems with
input constraints based on actor-critic learning,’’ Int. J. Robust Nonlinear
Control, vol. 2022, pp. 1–15, Jun. 2022.

[28] D. V. Prokhorov and D. C.Wunsch, ‘‘Adaptive critic designs,’’ IEEE Trans.
Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

110292 VOLUME 10, 2022



Q. Zhang et al.: Dynamic Event-Triggered Consensus Control for Multi-Agent Systems Using Adaptive Dynamic Programming

[29] D.Molina, G. K.Venayagamoorthy, J. Liang, andR.G.Harley, ‘‘Intelligent
local area signals based damping of power system oscillations using virtual
generators and approximate dynamic programming,’’ IEEE Trans. Smart
Grid, vol. 4, no. 1, pp. 498–508, Mar. 2013.

[30] D. P. Bertsekas and J. N. Tsitsiklis, ‘‘Neuro-dynamic programming:
An overview,’’ in Proc. 34th IEEE Conf. Decis. Control, vol. 1, Dec. 1995,
pp. 560–564.

[31] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, ‘‘Reinforcement learning
and feedback control: Using natural decision methods to design optimal
adaptive controllers,’’ IEEE Control Syst. Mag., vol. 32, no. 6, pp. 76–105,
Dec. 2012.

[32] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, ‘‘Adaptive dynamic
programming,’’ IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 32,
no. 2, pp. 140–153, Oct. 2002.

[33] R. Song,W. Xiao, H. Zhang, and C. Sun, ‘‘Adaptive dynamic programming
for a class of complex-valued nonlinear systems,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 9, pp. 1733–1739, Sep. 2014.

[34] D. Liu and Q. Wei, ‘‘Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[35] W. Lu and T. Chen, ‘‘New approach to synchronization analysis of linearly
coupled ordinary differential systems,’’ Phys. D, Nonlinear Phenomena,
vol. 213, no. 2, pp. 214–230, 2006.

[36] W. Yu, G. Chen, M. Cao, and J. Kurths, ‘‘Second-order consensus for
multiagent systems with directed topologies and nonlinear dynamics,’’
IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 40, no. 3, pp. 881–891,
Jun. 2010.

[37] D. L. Kleinman, ‘‘On an iterative technique for Riccati equation compu-
tations,’’ IEEE Trans. Autom. Control, vol. AC-13, no. 1, pp. 114–115,
Feb. 1968.

[38] J. Wang, Z. Zhang, B. Tian, and Q. Zong, ‘‘Event-based robust optimal
consensus control for nonlinear multiagent system with local adaptive
dynamic programming,’’ IEEE Trans. Neural Netw. Learn. Syst., early
access, Jun. 27, 2022, doi: 10.1109/TNNLS.2022.3180054.

[39] W. Zhao and H. Zhang, ‘‘Distributed optimal coordination control for
nonlinear multi-agent systems using event-triggered adaptive dynamic
programming method,’’ ISA Trans., vol. 91, pp. 184–195, Aug. 2019.

[40] Z. Shi and C. Zhou, ‘‘Distributed optimal consensus control for nonlin-
ear multi-agent systems with input saturation based on event-triggered
adaptive dynamic programming method,’’ Int. J. Control, vol. 95, no. 2,
pp. 282–294, Feb. 2022.

[41] T. Wu, J. Hu, and D. Chen, ‘‘Non-fragile consensus control for nonlinear
multi-agent systems with uniform quantizations and deception attacks via
output feedback approach,’’ Nonlinear Dyn., vol. 96, no. 1, pp. 243–255,
Apr. 2019.

[42] J. Hu, C. Jia, H. Yu, and H. Liu, ‘‘Dynamic event-triggered state estimation
for nonlinear coupled output complex networks subject to innovation
constraints,’’ IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 941–944,
May 2022.

[43] Y. Jiang and Z.-P. Jiang, ‘‘Global adaptive dynamic programming for
continuous-time nonlinear systems,’’ IEEE Trans. Autom. Control, vol. 60,
no. 11, pp. 2917–2929, Nov. 2015.

[44] W.-X. Jing and C. R.McInnes, ‘‘Memorised quasi-time–fuel-optimal feed-
back control of perturbed double integrator,’’ Automatica, vol. 38, no. 8,
pp. 1389–1396, Aug. 2002.

QI ZHANG received the bachelor’s degree from
Shijiazhuang Tiedao University, Hebei, China,
in 2018. He is currently pursuing the master’s
degree with the Changchun University of Science
and Technology, Changchun, China.

His research interests include multi-agent sys-
tems, event-triggered, adaptive dynamic program-
ming, and reinforcement learning.

YANG YANG (Member, IEEE) received the M.S.
and Ph.D. degrees from the Changchun University
of Science and Technology, Changchun, China, in
2005 and 2013, respectively.

He was a Visiting Scholar at the University of
Notre Dame, USA, in 2011. He is currently a Pro-
fessor with the Changchun University of Science
and Technology. His research interests include
cyber physical systems, intelligent algorithms, and
data-driven control.

XIAORAN XIE received the bachelor’s degree
from ShanDong JiaoTong University, Shandong,
China, in 2020. She is currently pursuing the mas-
ter’s degree with the Changchun University of Sci-
ence and Technology, Changchun, China.

Her research interests include multi-agent net-
works and distributed algorithm.

CHUNMING XU is working with Changchun
Shikai Science and Technology Industry Com-
pany Ltd., China. His research interests include the
Internet of Things and emergencies.

HAN YANG is working with the Beijing Engi-
neering Research Center of Emergency Survival
Security, China. His research interests include the
Internet of Things and emergencies.

VOLUME 10, 2022 110293

http://dx.doi.org/10.1109/TNNLS.2022.3180054

