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Abstract—As communication technology advances, various and
heterogeneous data are communicated in distributed environ-
ments through network systems. Meanwhile, along with the
development of communication technology, the attack surface
has expanded, and concerns regarding network security have
increased. Accordingly, to deal with potential threats, research
on network intrusion detection systems (NIDSs) has been actively
conducted. Among the various NIDS technologies, recent interest
is focused on artificial intelligence (AI)-based anomaly detection
systems, and various models have been proposed to improve the
performance of NIDS. However, there still exists the problem
of data imbalance, in which AI models cannot sufficiently learn
malicious behavior and thus fail to detect network threats accu-
rately. In this study, we propose a novel Al-based NIDS that can
efficiently resolve the data imbalance problem and improve the
performance of the previous systems. To address the aforemen-
tioned problem, we leveraged a state-of-the-art generative model
that could generate plausible synthetic data for minor attack
traffic. In particular, we focused on the reconstruction error and
Wasserstein distance-based generative adversarial networks, and
autoencoder-driven deep learning models. To demonstrate the
effectiveness of our system, we performed comprehensive evalu-
ations over various data sets and demonstrated that the proposed
systems significantly outperformed the previous Al-based NIDS.

Index Terms—Anomaly detection, generative adversarial
network (GAN), network intrusion detection system (NIDS),
network security.

I. INTRODUCTION

ITH the development of the fifth-generation (5G)
mobile communication technology that diversifies the
access environments and constructs distributed networks,
various and heterogeneous data are communicated through
network systems. In general, these data originate from diverse
domains, such as sensors, computers, and the Internet of
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Things (IoT), and the capacity of network systems has been
expanded to process these data reliably. However, as the access
points are diversified, the attack surface expands, thereby
leaving the network systems vulnerable to potential threats.
Moreover, cyber-attack techniques have become more com-
plex and sophisticated, and the frequency of attacks has also
increased. Accordingly, the importance of cybersecurity is
emphasized, and various studies have been actively conducted
to prevent potential network threats.

One of the fundamental challenges in cybersecurity is
the detection of network threats, and various results have
been reported in the field of network intrusion detection
systems (NIDSs). In particular, the most recent studies have
been focused on applying the artificial intelligence (Al) tech-
nology to NIDS, and Al-based intrusion detection systems
have achieved remarkable performance. Initially, the research
primarily focused on applying traditional machine learning
models, such as decision trees [1] (DTs) and support vector
machines [2] (SVMs) to existing intrusion detection systems,
and it has now been extended to deep learning approaches [3],
such as convolutional neural networks (CNNs), long short-
term memory (LSTM), and autoencoders. Although these
results have achieved remarkable performance in detecting
anomalies, there still exist limitations in deploying them in
real systems.

In general, most of the network flow data is normal traffic,
and malicious behavior that can cause service failure occurs
rarely. Moreover, within the category of malicious behavior,
most of the data are well-known attacks, and specific types of
attacks are extremely rare. Due to this data imbalance problem,
Al models deployed in NIDS cannot sufficiently learn the char-
acteristics of specific network threats, and this may leave the
network systems vulnerable to the attacks owing to the poor
detection performance.

In this study, to address this inherent problem, we propose
a novel Al-based NIDS that can resolve the data imbal-
ance problem and improve the performance of the previous
systems. To address the aforementioned problem, we leveraged
a state-of-the-art deep learning architecture, generative adver-
sarial networks [4] (GANs), to generate synthetic network
traffic data. In particular, we focused on the reconstruction
error and Wasserstein distance-based GAN architecture [5],
which can generate plausible synthetic data for minor attack
traffic. By combining the generative model with anomaly
detection models, we demonstrated that the proposed systems
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Fig. 1. Entire systemic architecture of our Al-based NIDS.

outperformed previous results in terms of the classification
performance.

The entire architecture of our system consists of four main
stages (see Fig. 1): 1) preprocessing; 2) generative model
training; 3) autoencoder training; and 4) predictive model
training. In the preprocessing stage, the system refines the raw
data set into a format that deep learning models can learn.
After preprocessing, the system sequentially trains generative
models and an autoencoder model, where the trained genera-
tive models are utilized to train the autoencoder model. Finally,
the system trains predictive models by applying the trained
generative models and the encoder of the trained autoencoder,
where the generative models are used to generate scarce data
and the encoder is used as a feature extractor. In the case of the
classifier models, we consider three deep learning models that
have been widely utilized in Al-based NIDS: 1) deep neural
networks (DNNs); 2) CNNs; and 3) LSTM model. To evalu-
ate our system, we experimented with four network flow data
sets considering different scenarios: 1) NSL-KDD [6], [7];
2) UNSW-NB15 [8]; 3) IoT data set [9]; and 4) real-world
data set. Through experiments on these various data sets, we
show that the proposed system outperformed previous results.
Moreover, we demonstrate that our methodology can improve
the performance of existing Al-based NIDS by resolving the
data imbalance problem.

The main contributions of the proposed approach can be
summarized as follows.

1) By combining the state-of-the-art GAN model that

can generate plausible synthetic data and measure the
convergence of training, we show that the proposed

system outperforms existing Al-based NIDS in terms
of detection rate.

2) Through comparative experiments with various deep
learning models, we present that the detection
performance for rare attacks can be improved by apply-
ing our methodology it as a base module.

3) By experimenting with data sets collected from vari-
ous scenarios, we show that the proposed system can be
effectively applied to real-world environments.

The remainder of this article is organized as follows.
Section II briefly reviews related research from the perspec-
tive of NIDS based on machine learning and deep learning
approaches, and Section III provides a background with a
focus on autoencoders and GANSs. In Section IV, we describe
our methodology and the proposed framework as well as the
four main stages in detail. In Section V, we evaluate the
proposed system in various environments and present exper-
imental results with detailed analysis. Finally, we present
concluding remarks and future work directions of this study
in Section VI

II. RELATED WORK

In the field of Al-based NIDSs, many studies have been
conducted to apply machine learning and deep learning tech-
nologies as anomaly detection. Ingre and Yadav [10] proposed
multilayer perceptron-based intrusion detection system and
showed that the proposed approach achieve 81% and 79.9%
accuracy in experiments on the NSL-KDD data set for
binary and multiclassification, respectively. Gao et al. [11]
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proposed a semi-supervised learning approach for NIDSs
based on fuzzy and ensemble learning and reported that
the proposed system achieved 84.54% accuracy on the
NSL-KDD data set. By applying the deep belief network
(DBN) model, Alrawashdeh and Purdy, [12] developed an
anomaly intrusion detection system and showed that the
proposed DBN-based IDS exhibited a superior classifica-
tion performance in subsampled testing sets (sampled subsets
from the original data set). By considering the software-
defined networking environment, Tang et al. [13] proposed
a DNN-based anomaly detection system and reported that the
DNN-based approach outperformed traditional machine learn-
ing model approaches (e.g., Naive Bayes, SVM, and DT).
Imamverdiyev and Abdullayeva [14] proposed a restricted
Boltzmann machine (RBM)-based intrusion detection system
and showed that the Gaussian—Bernoulli RBM model outper-
formed other RMB-based models (such as Bernoulli-Bernoulli
RBM and DBN). From the perspective of utilizing both
behavioral (network traffic characteristics) and content fea-
tures (payload information), Zhong et al. [15] introduced a
big data and tree architecture-driven deep learning system into
the intrusion detection system, where the authors combined
shallow learning and deep learning strategies and showed
that the system is particularly effective at detecting subtle
patterns for intrusion attacks. With the ensemble model-like
approach, Haghighat et al. [16] proposed an intrusion detec-
tion system based on deep learning and voting mechanisms.
Haghighat and Li [16] aggregated the best model results and
showed that the system can provide more accurate detec-
tions. Moreover, they showed that the false alarms can be
reduced up to 75% compared to the conventional deep learn-
ing approaches. Considering data streams in industrial IoT
environments, Yang et al. [17] proposed a tree structure-
based anomaly detection system, where the authors incorporate
the window sliding, detection strategy changing, and model
updating mechanisms into the locality-sensitive hashing-based
iForest model [18], [19] to handle the infiniteness of data
streams in real-time scenario. Similarly, Qi et al. [20] proposed
an intrusion detection system for multiaspect data streams by
combining locality-sensitive hashing, isolation forest, and prin-
cipal component analysis (PCA) techniques. Qi et al. [20]
showed that the proposed system can effectively detect group
anomalies while dealing with multiaspect data and process
each data row faster than the previous approaches.

From the perspective of dealing with time-series data, sev-
eral results have been reported focusing on recurrent models.
Kim et al. [21] proposed an LSTM-based IDS model and
proved the efficiency of the proposed IDS. Yin et al. [22]
proposed a recurrent neural network-based intrusion detec-
tion system and achieved 83.3% accuracy and 81.3% accuracy
in binary and multiclassification, respectively. Xu et al. [23]
developed a recurrent neural network-based intrusion detec-
tion model and reported that the gated recurrent unit was
more suitable as a memory unit for intrusion detection than
the LSTM unit. By considering supervisory control and data
acquisition (SCADA) networks, Gao et al. [24] proposed
an omni-intrusion detection system. Gao et al. [24] com-
bined LSTM and a feedforward neural network through an
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ensemble approach and showed that the proposed system
can effectively detect intrusion attacks regardless of tempo-
ral correlation. Moreover, they demonstrated that the proposed
omni-IDS outperformed previous deep learning approaches
through experiments on a SCADA testbed.

In addition to the previous approach of applying supervised
learning as an anomaly detection model, several studies have
focused on the application of unsupervised learning, espe-
cially autoencoder models. Javaid et al. [25] proposed a sparse
autoencoder-based NIDS and reported that the proposed model
achieved 79.1% accuracy for multiclassification on the NSL-
KDD data set. Similarly, Yan and Han [26] leveraged the
sparse autoencoder model to extract high-level feature repre-
sentations of intrusive behavior information and demonstrated
that the stacked sparse autoencoder model could be applied
as an efficient feature extraction method. Shone et al. [27]
proposed a stacked nonsymmetric deep autoencoder-based
intrusion detection system. Shone et al. [27] showed that the
proposed model could achieve 85.42% accuracy in multiclassi-
fication. As one of the significant results, Ieracitano et al. [28]
proposed an autoencoder-driven intrusion detection model.
Ieracitano et al. [28] proposed autoencoder-based and LSTM-
based IDS models and compared their performance with
conventional machine learning models. Through experiments
on the NSL-KDD data set, they reported that the proposed
autoencoder-based systems outperformed other models and
achieved 84.21% and 87% accuracy for binary and multiclas-
sification, respectively.

As another approach to applying unsupervised learning,
several studies have investigated using generative models to
improve the performance of existing NIDS. In particular,
they have focused on applying the basic GANs [4], which
are based on the Jensen—Shannon divergence (or Kullback—
Leibler divergence) [29], [30], [31]. Thereafter, along with
the development of various GAN models, studies have been
conducted to apply appropriate GAN models for specific
purposes. Li et al. [32] and Lee et al. [33] utilized the
Wasserstein divergence-based GAN model to generate the syn-
thetic data, and Dlamini et al. [34] proposed a conditional
GAN-based anomaly detection model to improve the classi-
fication performance in the minority classes. By focusing on
specific industrial environments, Li et al. [35] and Alabugin
and Sokolov [36] proposed LSTM-GAN and bidirectional
GAN-based anomaly detection models, respectively. Through
experiments on the secure water treatment (SWaT) data set,
they demonstrated that GAN models could be effectively
applied to IDS. Siniosoglou et al. [37] proposed an anomaly
detection model that could simultaneously detect anomalies
and categorize the attack types. Siniosoglou et al. [37] encap-
sulated the autoencoder architecture into the structure of the
basic GAN model (i.e., deploying the encoder as a discrimina-
tor and the decoder as a generator) and proved the efficiency
of the proposed model in various smart grid environments.

Unlike previous GAN approaches that are based on the
distance between data distributions, we considered the recon-
struction error-based GAN model to generate more plausible
synthetic data. In particular, we leveraged the boundary equi-
librium GAN (BEGAN) model [5], which is based on the
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concept of autoencoders and the Wasserstein distance between
reconstruction error distributions of samples (real and synthetic
samples). Moreover, we incorporated the autoencoder model
into the detection models to extract meaningful features from
the data and extend the adaptability and demonstrated that the
proposed framework outperforms previous Al-based network
intrusion detection models.

III. BACKGROUND

In this section, we briefly illustrate the concepts of autoen-
coders and GAN, which are key components of our anomaly
detection system.

A. Autoencoder

The autoencoder [38], [39] is one of the fundamental deep
learning models and is trained with an unsupervised learn-
ing process. The objective of autoencoders is to return the
output as close to the original input as possible. Therefore,
the parameters are updated progressively during the training
process to minimize the reconstruction error. In general, the
architecture of an autoencoder consists of two components:
1) an encoder and 2) a decoder (see Fig. 2). The encoder is
responsible for mapping the given raw input data x into the
latent space of representation

z=f(xW +b) (1)

where f denotes the activation function of the encoder, and W
and b represent the weight matrix and the bias vector, respec-
tively. Conversely, the decoder plays the role of reconstructing
the representation z into the corresponding input data as close
as possible (i.e., X)

X = g(zW’ + b’) 2)
where g denotes the activation function of the decoder, and
W’ and b’ are the weight matrix and the bias vector, respec-

tively. Therefore, the autoencoder is trained to minimize the
reconstruction error Lrg

Lre(x, % W, W) = |x — X3
=x—g(W -fcW+b) +0)I. (3)
One of the fundamental characteristics of the autoencoder is
to represent high-dimensional input data as lower dimensional

information (summarized but meaningful information). Herein,
we utilized autoencoders with the aim of feature extraction
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(dimension reduction) on the input data. Although PCA has
traditionally been utilized to project high-dimensional data into
a lower dimensional space, we leveraged the autoencoders for
nonlinear transformations on complex data sets. Although we
only present the basic architecture of autoencoders, models
can be built in multiple layers and an asymmetric manner.

B. Generative Adversarial Networks

Generative models are designed to approximate the probabil-
ity distribution of a training data set and aim to generate synthetic
data that is close to the real data (training data). Recently, among
these generative models, research on GAN [4] has been of sig-
nificant interest. Accordingly, various GAN models have been
proposed to improve the performance and advance function-
ality (e.g., [40], [41], and [42]). A GAN model consists of
two neural network-based models: 1) a generator G and 2) a
discriminator D (see Fig. 3). The generator G aims to generate
synthetic data (fake data) that is close to the real data, while
the discriminator D aims to discriminate between the real and
fake data. In other words, these two components have opposing
objectives during the training process.

More formally, let p, and pgaa be the probability distribu-
tions of the latent code and the real data, respectively. Then,
the objective function V(D, G) of a GAN that consists of a
generator G and a discriminator D is a minimax game and
can be formulated as follows:

V(D, G) = m(%n max Ex~pae [108 (Do (X)) ]

+ Ezp,[log (1 — Dg, (Goy (2)))] @

where 6p and 6g denote the model parameters of D and G,
respectively. Therefore, the discriminator is trained to output
a higher confidence value in real data, and the generator is
trained to generate synthetic data that can maximize the con-
fidence score in the discriminator. After a sufficient number of
iterations of this training process, both the discriminator and
generator will settle to a point, where there is no scope for
further improvement (i.e., a Nash equilibrium is achieved).
Since the basic concept of the GAN model was introduced,
numerous variants have been proposed to develop the original
model by adjusting the objective function or by modifying the
model architecture. Among these various models, we focus
on the BEGAN model [5], which is based on the concept
of autoencoders and reconstruction errors. Unlike other GAN
models wherein the objective function is defined based on the
distance of distributions between confidence vectors (on real
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and synthetic samples), the objective of BEGAN is defined
based on the Wasserstein distance between reconstruction error
distributions as follows:

Lp = L(x;6p) — k- L(G(z; 66); Op)
L = L(G(z;66); 6p) &)
kix1 = ki + X - (v - L(x; 0p) — L(G(z; 06); 6p)

where the hyperparameter y € [0, 1] is the diversity ratio,'
and Ay serves as the learning rate for k. Note that £(-) denotes
the reconstruction error of the autoencoder, and ¢ indicates the
iteration step.

IV. PROPOSED METHODOLOGY

As shown in Fig. 1, the entire architecture of the proposed
Al-based NIDS consists of four main streams: 1) preprocess-
ing; 2) generative model training; 3) autoencoder training; and
4) predictive model training. In this section, we describe the
proposed methodology and each module (process) in detail.

A. Preprocessing

Before building and training Al models, the system refines
a given raw data set via the preprocessing module that consists
of three subprocesses: 1) outlier analysis; 2) one-hot encoding;
and 3) feature scaling.

In the outlier analysis phase, the system eliminates outliers,
which can negatively affect the model training. Typically, out-
liers are detected by quantifying the statistical distribution of
the data sets via robust measures of scale. There are several
standard robust measures of scale for detecting outliers, such
as interquartile range (IQR) and median absolute deviation
(MAD). Among these measures, we leveraged the MAD.

For a numeric attribute A = {x{, xo, ..., x,}, the MAD of
the attribute is defined as follows:

MAD = median(|x; — median(A)|). (6)

We assume that numeric attributes appearing in the data set
follow a normal distribution. Then, a consistent estimator & for
the estimation of the standard deviation is 1.4826 x MAD. In
terms of this estimator, we determine that for a given numeric
attribute, values exceeding 10 x & are outliers. Obviously, out-
lier analysis is performed only on the numerical attributes
and conducted independently for each class. Note that out-
lier removal should be performed before scaling features, as
it can potentially obscure information about outliers.

After filtering out the outliers, the system transforms nomi-
nal attributes into one-hot vectors. Each nominal (categorical)
attribute is represented as a binary vector with the size of
the number of attribute values, where 1 is assigned only to
a point corresponding to the expressed value and 0 to all
others. For example, in the case of the “protocol” attribute
(commonly included in network traffic data) with the values
tep, udp, and icmp, the attribute is transformed into a binary
vector of length 3, and the attribute values are converted into
[1, 0, 0], [0, 1, O], and [0, O, 1], respectively. Together with
the one-hot encoding process, the system scales the numeric

lOriginally, the diversity ratio y is defined as y = E[L(G(2))]/E[L(x)].
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attributes. In general, normalization (e.g., [28]) and standard-
ization (e.g., [24]) can be considered as scaling for numeric
features. Between these two approaches, we adopted the min-
max normalization method.” The normalization function f4(-)
for a numeric attribute .4 that maps Vx € A into a range [0, 1]
can be defined as follows:
- X; — minx;
falxi) =% = ————— (N
max x; — minx;

where x; denotes the ith attribute value in the attribute A.

In general, existing deep-learning-based approaches con-
sider feature extraction (e.g., PCA, Pearson correlation coeffi-
cient, etc.) at this step to feed the model as many informative
features as possible, and, consequently, feature extraction can
significantly impact the performance of models in anomaly
detection. However, we do not consider the computational
feature extraction process, as our framework embeds an
autoencoder model that can replace functionalities of feature
extraction. Note that, in our framework, the model with a
computational feature extraction process did not show sig-
nificant improvement compared with the model without the
feature extraction. A detailed description for deploying the
autoencoder as a feature extractor is presented later.

B. Synthetic Data Generation With Generative Model

The synthetic data generation module builds and trains
generative models using the data set refined in the data pre-
processing module. In the case of the generative model, we
utilize a state-of-the-art GAN model, BEGAN, which is based
on the concept of autoencoders and the reconstruction error-
based objective function. For the model architecture, we built
the discriminator as a symmetric autoencoder model with five
layers and the generator with the same architecture as the
decoder of the discriminator (autoencoder). Fig. 4 illustrates
the entire architecture of the BEGAN model. Before train-
ing the BEGAN model, the system first splits the given data
set according to the classes and then builds generative mod-
els for each split subdata set. That is, generative models are
built in a number equal to the number of classes, and (after
training) each generative model produces only synthetic data
corresponding to a particular class.

One of the important factors that must be considered when
applying GAN models to NIDS is the determination of the
termination criteria of training, which has a significant impact
on the performance of anomaly detection, as it is directly
related to the quality of the synthetic data to be trained on
the detection model. The determination of the termination cri-
teria stems from the tracking of the training convergence,
and this is a difficult problem, as the objective function of
GAN models is defined to have the properties of a zero-
sum game. In general, monitoring the training progress has
been conducted indirectly through visual inspection of syn-
thetic (generated) data. However, even this approach is not
feasible in NIDS environments because the data being han-
dled is not in the form of an image. Fortunately, unlike other

2In our experiments, there was no significant difference between the two
feature scaling methods in terms of the performance of detection models.
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GAN models, BEGAN can approximate the convergence of
training through the concept of equilibrium, and this char-
acteristic facilitates the determination of the criteria for the
training termination. The convergence measure M of BEGAN
is formulated as follows:

M= L&) + |y L) — LIG@)] ®)

where L(-) is the reconstruction error function, and y is the
diversity ratio.

By utilizing the convergence measure, the system termi-
nates the generative model’s training process. That is, when
training the generative model, the system considers a thresh-
old as an input parameter and terminates the training process
if the convergence measure M outputs a value less than the
given threshold. In the experiment, we set the threshold of the
convergence measure M to 0.058.3

After training the generative model, the system generates
synthetic data according to the classes using the trained gen-
erator and integrates the generated data set into the original
training data set. This expanded data set is used to train the
autoencoder and detection model in the next stage. Note that
although we designed the synthetic data generation module to
build multiple generative models according to the number of
classes, it can be built as a single model by integrating the
concept of the conditional GAN architecture [41], where class
attributes are embedded in the input space.

C. Learning the Autoencoder and Detection Model

To build the intrusion detection model, the system first trains
an autoencoder model that can provide feature extraction and
dimensionality reduction functionalities. In our framework,
we designed the autoencoder to possess the same architec-
ture as the discriminator of the generative model. Because
the deployed generative model is BEGAN, the discriminator
has the form of an autoencoder, as depicted above, and is
compatible in terms of the model architecture, as it handles
the same data format as the detection model. After build-
ing an autoencoder model, the system trains it using the

3In the learning process, if the convergence measure M does not fall below
a given threshold, the process may fall into an infinite loop. To prevent this,
we additionally set the maximum number of iterations.

Algorithm 1 Autoencoder Training With Generators

Input: training dataset Dyin, a set of generators G
1: Initialize Autoencoder parameters BXE
2: for G; € G, where 1 <i <k do

3 sample z = {z;}j=1,....m; from the latent space
4 Di = Gi(z)

5: end for

6: D=Dyain UD, U---UDy

7: Opp = Train_Autoencoder(@XE, 75)

8: Oene = Extract_Encoder(64r)

Qutput: trained encoder 6,

expanded data set composed in the previous module and then
utilizes the trained encoder as the feature extraction module.
Algorithm 1 presents a detailed process for autoencoder train-
ing, where m; (1 < i < k) indicates the magnitude of synthetic
data to be generated for the class i. Note that the trained
encoder is placed at the forefront (input layer) of the detec-
tion models as a feature extractor and is set not to learn any
more when training detection models (i.e., we fix the model
parameters of the trained encoder when training the detection
models).

For detection models, we utilized the basic DNN, CNN, and
LSTM as classifiers. We designed the DNN model to possess
two hidden layers, and it could naturally process the refined
network traffic data in terms of the model training and clas-
sification task. In the case of the CNN model, because the
model was originally designed to be more suitable for analyz-
ing image data, it required additional transformation processes
in the input data space or the layers of the model depend-
ing on the approach followed. In our system, we built the
CNN model with one-dimensional (1-D) convolutional layers
to process the network traffic data, rather than converting the
input data (i.e., network traffic data) into a 2-D space. As
shown in Fig. 5, we configured the CNN classifier to have
two 1-D convolutional layers and one fully connected layer.
For LSTM, we designed the model to possess two recurrent
layers with the LSTM units and a fully connected layer, as
shown in Fig. 6. LSTM is known to be particularly effective
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in analyzing temporally correlated features [24]. Taking these
characteristics into account, we omitted the process of com-
bining with the autoencoder model for the LSTM model, since
the encoder may obscure the temporal features. For all models,
we designed the output layer with a binary field when the task
was to detect anomalies, and with multivalued fields when the
purpose was to distinguish not only the anomalies but also the
detailed threat types. Algorithm 2 presents a detailed workflow
for training a detection model with the trained generators and
the trained encoder. As with the autoencoder training process,
the magnitude m; (1 < i < k) of synthetic data generation
can be set differently depending on the weight of each class.
Note that the process of combining with the trained encoder
(lines 7 and 8 in Algorithm 2) can be omitted according to
the predictive model.

From the perspective of the entire framework, the system
sequentially processes the data preprocessing, synthetic data
generation, and detection model training modules, and we refer
to the whole system as G-DNNag, G-CNNaEg, and G-LSTM,
according to the type of the detection model. Additionally, we
subdivide the whole system into subsystems for a comprehen-
sive comparison. In particular, we consider the DNN, CNN,
and LSTM models as naive deep learning models and DNNag
and CNNjg, which are models combined with the autoen-
coder, as advanced deep learning models. In the experiment,
we conducted a comparative analysis of G-LSTM, G-DNNgg,
and G-DNNug with the subsystems.

V. EXPERIMENTS AND EVALUATIONS

In this section, we first review the target data sets and
describe the detailed implementation of each component.
Then, we present the experimental results with comparative
analysis and evaluate the proposed systems.

A. Data Set Description

In this work, we focused on three network traffic data sets
that are widely used as benchmark data sets in the field of
intrusion detection systems. Furthermore, we collected the
real data from a large enterprise system and analyzed the
performance of the proposed model on the real data set.

1) NSL-KDD Data Set: The NSL-KDD data set is a refined
version of the KDDcup99 data set [6], [7] and consists of
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Algorithm 2 Classifier Training With Generators

Input: training dataset Dy, a set of generators G, trained
encoder O,

1: Initialize classifier parameters
2: for G; € G, where 1 <i<kdo

3 sample z = {zj}j—1,....m; from the latent space
4 Di = Gi(z)

5: end for A A

6: D= Dypagin UD U ---UDy

7: Set Trainable_State on 6,,. = False

8: Build Wg = Concatenate_Models(04, WO)

9: Wope = Tram Clasmﬁer(We , D)

Output: trained classifier W,

enc

training and testing data sets, KDDTrain and KDDTest, with
125973 and 22544 rows, respectively.* In each data point,
there exist 41 attributes (3 nominal, 6 binary, and 32 numeric
attributes) presenting different features of the network flow and
a label indicating an attack type or normal behavior. For the
attack type, there exist four distinct attack profiles: 1) Denial
of Service (DoS); 2) Probing; 3) Remote to Local (R2L); and
4) User to Root (U2R). DoS is an attack that depletes resources
by sending excessive traffic to the target system, thereby ren-
dering it incapable of handling legitimate network traffic or
service access. In the case of a probing attack, attacker’s
objective is to gain information about the target system (e.g.,
scanning ports in use and sweeping IP addresses). R2L is
an attack that attempts to obtain local access from a remote
machine by sending remote fraudulent traffic to the target, and
behaviors, such as password guessing and HTTP tunneling, are
considered R2L attacks. In the case of U2R, an attacker first
gains access to the target system as an honest user and then
attempts to gain root privileges by causing system faults (e.g.,
buffer overflow and rootkit). Table I presents the entire distri-
bution of the NSL-KDD data set with respect to the classes
(attack classes and normal).

2) UNSW-NBI5 Data Set: Together with the NSL-KDD
data set presented above, the UNSW-NBI15 data set [8], which
was created by the IXIA PerfectStorm tool, has been widely

4The original configuration of the data set includes several subdata sets.
However, we only present the main training and testing data sets.
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TABLE I
DATA DISTRIBUTION IN NSL-KDD

Class Training Weight (%) Testing Weight (%)
Normal 67,342 53.46% 9,710 43.07%
DoS 45,927 36.46% 7,460 33.09%
Probing 11,656 9.25% 2,421 10.74%
R2L 995 0.79% 2885 12.79%
U2R 52 0.041% 67 0.29%
Total 125,973 100% 22,543 100%

used as an experimental data set in the field of anomaly
detection systems. Similarly, UNSW-NB15 consists of training
and testing data sets, UNSW-NBI15_training and UNSW-
NB15_testing, with 175341 and 82332 records, respectively.
Each record possesses 43 attributes that present network flow
features and two class attributes.” The class attributes con-
sist of an attribute that indicates whether or not the record is
normal traffic (binary-valued attribute) and the type of attack
(when the record is abnormal). For the attack type, there are
nine distinct attack profiles that are intuitively labeled as fol-
lows: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode, and Worms. Table II presents the
entire distribution of the UNSW-NB15 data set. Note that we
excluded any unnecessary attribute that did not affect the train-
ing of the models (“id” field) and combined the two class
attributes into a single field. Therefore, the data set is consid-
ered to have 42 attributes (4 nominal, 2 binary, and 36 numeric
attributes) and a class attribute.

3) IoT Data Set: In addition to the data sets NSL-KDD and
UNSW-NBI15, we evaluated the performance of our system
on a network traffic data set, called IoT-23 [9], collected from
the IoT devices. The I0T-23 data set consists of 20 subdata
sets collected from malicious IoT scenarios and three subdata
sets collected from benign scenarios. For these data sets, we
utilized the data set collected on the Mirai botnet scenario
(named CTU-IoT-Malware-Capture-34-1). The data set con-
tains 23 145 IoT network flows, where each data point belongs
to one of the following four classes: 1) Benign; 2) C&C;
3) DDos; and 4) PortScan. Benign matches the normal class,
and the others are treated as threats. C&C indicates commu-
nication connected to the command and control server, and
PortScan refers to the activity of scanning ports to gather
information in order to conduct further attacks. For each
data point, there are 21 attributes (11 nominal, 2 binary, and
8 numeric attributes) presenting different features of network
flow, and we removed four features that did not affect the

5The raw data set contains 47 attributes (excluding class attributes),
including source/destination IPs and ports. However, we used the provided
training/test data set, in which features that do not affect Al training are
excluded.
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TABLE II
DATA DISTRIBUTION IN UNSW-NB15

Class Training ~ Weight (%)  Testing  Weight (%)
Normal 56,000 31.94% 37,000 44.94%
Generic 40,000 22.81% 18,871 22.92%
Exploits 33,393 19.04% 11,132 13.52%
Fuzzers 18,184 10.37% 6,062 7.36%
DoS 12,264 6.99% 4,089 4.97%
Reconnaissance 10,491 5.98% 3496 4.25%
Analysis 2,000 1.14% 677 0.82%
Backdoors 1,746 0.99% 583 0.71%
Shellcode 1,133 0.65% 378 0.46%
Worms 130 0.07% 44 0.05%
Total 175,341 100% 82,332 100%

learning, such as id and IP address. To adjust the magnitude
of normal class data considering the data imbalance scenario,
we randomly sampled 98 077 data from data sets in the benign
scenarios. Consequently, we configured the IoT data set to
have 100 000 Benign data, 6706 C&C data, 14 394 DDos data,
and 122 PortScan data.

4) Real Data Set: To evaluate the performance of our
system in real-world environments, we collected raw secu-
rity events from a large enterprise system. The data were
collected over five months, where threats were logged sepa-
rately by security operations center (SOC) analysts whenever
an intrusion occurred. In the data set, we investigated 798
cyber threats, which occurred evenly over the collection period
(not focused on a specific period) and observed 547 system
attacks, 240 scanning, and 11 warm attacks (the categorizing
was conducted by the SOC analysts). In terms of the cate-
gories, the system attack includes cross-site scripting, DDoS,
brute force attack, and injection attack, whereas the scanning
attack includes Trojan and backdoor attacks. In total, we col-
lected 4782342 security event data, of which 230026 were
identified as cyber threats (i.e., 4 552316 data were labeled as
“Normal,” and 230026 data were labeled as “Threat”). Each
raw data has 16 basic features for network flow information,
such as the protocol type, service, and source bytes (eight
nominal and eight numeric attributes). Moreover, because the
collected data are raw security events, each data includes
information regarding the suspicious security event.® Table III
presents a distribution of the collected data set with respect to
the suspicious security events, and it can be seen that the false

SNote that the suspicious security event can be different from the labels
classified by the SOC analysts.
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TABLE III
DISTRIBUTION OF RAW SECURITY EVENTS IN THE REAL DATA SET

Event ID Prefix Count Weight (%)
Eo UDP Packet Flooding 1,048,926 21.9%
E4 UDP Source-IP Flooding 718,788 15.2%
E40 SIP Vulnerability Scanner 644,683 13.5%
E7 TCP Connect DoS 553,362 11.6%
Eo3 HTTPD Overflow 115,477 2.4%
2.3%

Eag NTP Amplification DDoS 107,617

positives are relatively high (see [43] for a detailed description
of the collected real data set). Note that, although there were
several detailed classes of detected attacks, each data was cat-
egorized as Normal and Threat only (related to the privacy
issues of the enterprise).

B. Implementation and Hyperparameters Tuning

As described in the previous section, we set the discrimi-
nator of the generative model to be a symmetric autoencoder
model with three layers. For this model, we constructed the
first hidden layer with 80 neurons and a latent space dimen-
sion with a size of 50. Therefore, the generator is set to have
the latent space of size 50 and a hidden layer of size 80.
Additionally, we applied batch normalization to each hidden
layer for the stability of learning and used the rectified lin-
ear unit (ReLU) as the activation function. Note that because
we configured the autoencoder as a feature extractor with the
same architecture as the discriminator, the above configura-
tion corresponds to that of the autoencoder as well. In the
case of the generative model, we set the convergence threshold
to 0.058 and terminated training when the convergence mea-
sure fell below the given threshold, or the number of epochs
reached 250. For autoencoder learning, we set the default num-
ber of epochs to 300 and stop training when the reconstruction
accuracy was above 0.97.

For the classifier models, we deployed three distinct deep
learning models: DNN, CNN, and LSTM. Considering the
number of features, we explored the depth of the models up to
three layers. In the experiment, the one-layer structure showed
high volatility, and the three-layer structure showed a tendency
to overfit. As a result, the models were most stable in the
two-layer structure and showed the highest performance.

For the DNN model, we set the first hidden layer to have 32
neurons and the second layer to have 16 neurons. For CNN,
we used a 1-D-CNN model with two convolutional layers. The
convolutional layers are configured to have 32 convolution fil-
ters with windows of size 5, and a fully connected layer of 16
neurons follows. Additionally, we applied a max-pooling layer
with windows of size 3 to the first convolutional layer, and the
batch normalization layer after each convolutional layer. For
the activation function, we used ReLU as in the generative

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 3, 1 FEBRUARY 2023

model. In the case of LSTM, we connected 64 LSTM cells in
each layer and concatenated a fully connected layer with 32
neurons. For these detection models, we set the default num-
ber of epochs to 300 and applied the early stop technique (we
stopped learning when relative differences of loss are less than
107 consecutively for 35 epochs [24]).

We utilized two additional basic machine learning models
as comparative models.

1) SVM is a supervised learning model based on the sta-
tistical learning theory and aims to locate the best
hyperplane that can optimally separate input domains
according to the classes. In the experiment, we imple-
mented the linear kernel SVM model [2].

2) DT is a nonparametric supervised learning model, and
it recursively splits input domains based on the corre-
lation between each feature and class. In this study, we
implemented the C4.5 algorithm [1].

For a more extensive comparison, we subdivided the com-
ponents of our system, DNN, CNN, LSTM, DNNug, and
CNNaE, and utilized them as comparative models with the
whole system. Note that we regard these submodels to cor-
respond to the existing Al-based NIDS. In particular, DNN,
CNN, and LSTM are considered as naive deep learning
approaches. In the case of DNNag and CNN4E, they are con-
sidered as advanced deep learning approaches combined with
autoencoders.’

In the experiment, we utilized four metrics to evaluate the
performance of Al models: Accuracy, Precision, Recall, and
F1-score. Accuracy refers to the fraction of correctly inferred
results and is commonly used to quantify the performance of
Al models. For a given class in a data set, Precision presents
the fraction of positive values inferred by the model that is
correct, while Recall refers to the fraction of data with positive
values that are correctly inferred by the model. The F1-score
is the harmonic mean of Precision and Recall. The formulas
of these metrics are defined as follows:

TP + TN
1) Accuracy =
TP + FP + TN + FN
. TP
2) Precision = ——
TP + FP
TP
3) Recall = ———
TP + FN

Precision x Recall

4) Fl-score =2 x —
Precision 4+ Recall

where TP, TN, FN, and FP denote the true positive, true
negative, false negative, and false positive, respectively.

Using these metrics, we evaluated each model on the exper-
imental data sets. Note that, although we built the models
with a stable structure, there was still the issue of volatility.
Accordingly, with respect to comparison and evaluation, we
independently trained each model 100 times and displayed the
results for the model with the best detection rate in the test
data set.

7Although the detailed architecture and configurations may differ from
those of the previous approaches, we stress that the implemented models are
comparable or outperform in terms of performance to the existing systems.
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TABLE IV
BINARY CLASSIFICATION RESULTS FOR THE TEST DATA SET IN NSL-KDD

Normal Abnormal
Classifier ; Accuracy ; Recall  Preciston  F'l-score ‘ Recall  Preciston  F'l-score
SVM : 72.1% : 97.8% 61.2% 752% ' 53.1% 96.9% 68.6%
\
DT I 81.5% ! 97.3% 70.8% 81.9% | 69.6% 97.1% 81.0%
| | |
DNN I 795% 1 96.2% 67.7% 79.6% 1 67.8% 96.2% 79.6%
\ | \
CNN | 805% | 96.5% 68.7% 80.3% | 69.5% 96.6% 80.8%
|
LSTM . 82.0% : 97.5% 71.0% 82.1% : 70.0% 97.2% 81.3%
DNNag : 85.5% : 98.8% 78.0% 87.2% : 72.5% 98.5% 83.5%
CNNAsE : 86.4% : 98.8% 79.0% 87.8% : 74.1% 98.4% 84.6%
****** T - - - - - - - - - - - = - - = - - == - - - = - - - —- - - - - - — -
G-LSTM : 85.5% + 98.5% 78.3% 872% + 72.5% 98.5% 83.5%
| |
G-DNNag : 89.8% | 982% 84.3% 90.6% | 81.5% 97.9% 89.0%
G-CNN g | 903% ' 972% 85.3% 90.9% ' 83.5% 96.8% 89.7%
C. Experiments on the NSL-KDD Data Set 100
For the NSL-KDD data set, we explored both binary and N
multiclassification tasks. Note that NSL-KDD is provided sep- 80 iz R
arately as a training data set and a test data set as mentioned
above, and we used these data sets in our experiments as pro- o
vided. In other words, we used KDDTrain (125973 rows) as %
a training data set and KDDTest (22 544 rows) as a test data S 40
set, and there was no data shuffling between the two data <
sets. In the experiments on our system (i.e., G-DNNag, G- 20
CNNQag, and G-LSTM), we generated synthetic data for each
class via the generative model and integrated them into the 0 , .
.. . . Sy 05 Ly, < " 457»1 )«’Z//V C'l//,/ %,
training data set. Obviously, the evaluation of all models was 7 v Y e

conducted on the original test data set (KDDTest) for unbiased
comparisons.

1) Binary Classification: Table IV presents the experimen-
tal results for the binary classification task on the NSL-KDD
data set. Note that the data belonging to the attack classes are
naturally considered anomalies in the binary classification task
(labeled as abnormal). In the experiments on our system, we
generated a total of 35000 additional data (synthetic data) for
each class via the trained generative module. Fig. 7 shows a
comparison of experimental results for the NSL-KDD data set
in the binary classification scenario.

Overall, the models output relatively high recall values for
the data belonging to the normal class and, conversely, showed
relatively high precision values for the abnormal class. For
the basic machine learning models, the DT outperformed the
SVM model, with an accuracy of 81.5%. Moreover, the DT
model performed better than the naive DNN and CNN mod-
els, where DNN achieved an accuracy of 79.5% and CNN
achieved an accuracy of 80.5%. Among the basic models
and the naive models, the LSTM model outperformed others
with an accuracy of 82.0%. For the advanced deep learn-
ing approaches, both DNNag and CNNug exhibited better
results than the basic machine learning and the naive deep
learning models. The advanced models, DNNag and CNNag
achieved an 85.5% accuracy and 86.4% accuracy, respec-
tively. The proposed models, to which the generative and

Fig. 7. Comparison of binary classification results on the NSL-KDD data set.

autoencoder had been applied, were found to significantly
outperform all the aforementioned models. In particular, both
G-DNN4g and G-CNNaEg achieved an accuracy close to 90%,
and it was observed that G-CNNag produced the highest
performance with an accuracy of 90.3%. In the case of LSTM,
the generator combined LSTM model performed slightly bet-
ter than the naive LSTM, but was measured to be inferior
to CNNaE.

2) Multiclassification: Table V presents the experimental
results for the multiclassification task on the NSL-KDD data
set.® Unlike the binary classification scenario, the system could
further recognize the type of threat that the data belonged to
and hence, generate synthetic data with different magnitudes
based on weights in the population. In the experiments on our
system, we generated synthetic data for minor classes with
less than 10% weight in the distribution. That is, we generated
synthetic data for Probe, R2L, and U2R classes (10000 syn-
thetic data for each class) via the trained generative model.

8In the multiclassification scenario, we only presented experimental results
for the attack classes. Experimental results for the normal class follow the
previous experiment (i.e., experiments in the binary classification scenario).
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TABLE V
MULTICLASSIFICATION RESULTS FOR THE TEST DATA SET IN NSL-KDD
DoS Probe
Algorithm | Accuracy ; Recall  Precision  F'l-score ‘ Recall  Precistion  F'l-score
SVM : 75.4% : 76.3% 96.7% 80.0% ! 33.3% 80.0% 47.1%
|
DT I 80.5% I 84.2% 94.1% 889% | 50.0% 85.7% 63.2%
| | |
DNN I 79.6% I 83.8% 94.8% 89.0% 1 31.5% 65.4% 42.5%
| | |
CNN I 80.1% | 89.6% 94.4% 919% | 30.8% 69.5% 42.7%
| |
LSTM | 82.6% | 92.1% 98.4% 95.1% : 28.7% 69.5% 40.6%
DNNAsg : 88.3% : 94.9% 99.0% 96.9% : 93.0% 78.6% 85.2%
CNNag : 88.5% : 95.7% 99.0% 97.3% : 93.7% 78.4% 85.4%
777777 T - - -"—-—"--""%m - -"=-""-""-""="-""-""-"""="=""="=""—"\)\-”"-"=-"=-"=-"=-"=-"=-"=-"=—-"=- = = = = °
G-LSTM : 87.3% " 92.2% 98.4% 95.1% '+ 94.7% 80.2% 84.8%
| |
G-DNNA g : 92.7% | 96.0% 98.2% 97.1% | 95.2% 81.1% 87.6%
G-CNN4g ! 93.2% I 96.0% 97.3% 96.7% ' 98.2% 80.5% 88.5%
' R2L U2R
|
Algorithm | Recall  Precision  F'l-score ‘ Recall  Precision  F1l-score
SVM L - - ] -
DT } 11.1% 50.0% 182% | - - -
|
DNN : 26.0% 48.6% 339% 1 4.6% 74.9% 8.8%
|
CNN : 24.1% 65.1% 352% | 62% 79.9% 11.5%
LSTM : 21.8% 63.4% 32.4% : 5.9% 76.8% 10.9%
DNNAsg I 42.7% 93.7% 58.7% : 7.8% 83.3% 14.2%
|
CNNa g I 41.1% 93.2% 57.0% : 9.3% 85.7% 16.8%
|
e T L
G-LSTM I 54.9% 80.4% 652% ' 102% 81.7% 18.1%
‘ [
G-DNN g ! 79.8% 80.5% 80.1% | 12.4% 79.9% 21.5%
|
G-CNNsg | 92.8% 70.2% 80.0% ' 11.4% 81.9% 20.1%
100 In particular, the DT model showed better results than the
o SVM, DNN, and CNN models in terms of the accuracy
80 . 77 metric. However, the basic machine learning models showed
poor results for the minor classes. In particular, they showed
60 extremely low Fl-scores for the R2L and U2R classes, and
§ even failed to classify. On the contrary, although the detec-
§ 40 tion performance was insufficient, the neural network-based
g models performed better than the SVM and DT models in the
20 minor classes R2L and U2R. In comparison with the basic
models and the naive models, the LSTM model outperformed
o others as with the binary classification scenario, and showed
Ly Oor Omy Wy 7, 'M,{ '/V/,V.,{_ better performance in the temporally correlated attack (i.e.,

Fig. 8. Comparison of multiclassification results on the NSL-KDD data set.

Fig. 8 shows a comparison of experimental results for the
NSL-KDD data set in the multiclassification scenario.

In the case of the basic machine learning models and the
naive deep learning approaches, the results obtained were sim-
ilar to those obtained for the binary classification scenario.

DoS attack).

The advanced deep learning models, however, achieved bet-
ter overall classification performance than the basic machine
learning models and the naive deep learning models, where
DNNAE achieved an accuracy of 88.3%, and CNNag achieved
an accuracy of 88.5%. In particular, the models combined with
autoencoder demonstrated significant improvement in the Dos,
Probe, and R2L classes. However, compared with the naive
deep learning models, they did not improve the classification
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TABLE VI
CLASSIFICATION ACCURACY FOR EACH THREAT CLASS ON THE UNSW-NB15 DATA SET

Algorithm ‘ Generic  Exploit  Fuzzers DoS Reconnaissance  Analysis  Backdoors  Shellcode =~ Worms
DNN : 76.8% 48.5% 729%  28.0% 49.8% 76.3% 87.3% 57.9% 52.2%
CNN I 76.7% 48.6% 752%  27.9% 49.9% 76.8% 88.3% 58.2% 52.2%
LSTM : 76.8% 48.6% 732%  29.4% 49.9% 76.6% 87.3% 58.0% 52.2%
DNNAg : 76.8% 48.4% 741%  28.4% 50.1% 77.1% 88.5% 58.7% 52.2%
CNNag : 76.8% 49.1% 743%  28.4% 49.9% 77.5% 88.5% 58.2% 54.5%
,,,,,, e
G-LSTM : 80.1% 49.0% 79.6%  29.4% 50.1% 77.1% 90.8% 58.2% 56.8%
G-DNNu g : 80.6% 50.3% 81.6%  29.4% 51.3% 77.2% 91.4% 58.7% 56.8%
G-CNN g | 82.0% 50.2% 81.9%  29.1% 51.3% 77.5% 91.5% 58.9% 56.8%

performance for U2R, which is extremely minor. Note that,
although the results seem to have improved numerically, there
is not much difference in terms of the number of data. In
the case of our models, G-DNNag and G-CNNag achieved
the best performance compared with that of the other models
and achieved an accuracy of 92.7% and 93.2%, respectively.
From the perspective of the minor classes, the proposed mod-
els comprehensively improved the classification performance
and showed a notable improvement in the classification for the
R2L class. Note that we did not generate additional synthetic
data for the DoS class (a major class) as mentioned above, and
it can be observed that the results were measured in a manner
similar to the advanced deep learning models.

In summary, we found that neural network-based models
combined with autoencoders could significantly improve the
classification performance in both the binary and multiclassi-
fication tasks, and they can be further improved by applying
the generative model. From the perspective of the base model
architecture, the DNN-based model and the CNN-based model
showed similar classification performance under the same con-
ditions, and no significant differences were found between the
two models.

D. Experiments on the UNSW-NBI15 Data Set

To compare the performance of models in a data set
with more diverse classes, we conducted experiments on the
UNSW-NBI15 data set as another multiclassification scenario.
As described above, UNSW-NBI15 has ten classes, including a
normal class, three major, and six minor classes. For the minor
classes, we determined that classes with a weight of less than
1% are extremely minor. As with the experiments on the NSL-
KDD data set, we used the original UNSW-NB15 training and
testing data sets (175341 and 82332 records, respectively).
Similarly, we generated synthetic data for each class via the
generative model in the experiments on our system and inte-
grated them into the training data set. Note that the evaluation
of all models was conducted on the original UNSW-NB15
testing data set.

Table VI presents the experimental results for the multi-
classification scenario on the UNSW-NBI15 data set. In the
experiments, we generated synthetic data for all classes. In
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Fig. 9.  Comparison of multiclassification results on the UNSW-NBI15
data set.

particular, we generated synthetic data to reach a total size
of 50000 for each major class and a total size of 30000 for
each minor class. Additionally, we assumed that for a given
threat data, the classification was correct if the model clas-
sified the data into one of the classes corresponding to the
attack category (even if the model did not predict the exact
class). Accordingly, we only indicated the accuracy of the
performance measure in the experiment on the UNSW-NB15
data set, considering whether the attack was well classified
as an attack. Fig. 9 shows a comparison of experimental
results for the UNSW-NBI1S5 data set in the multiclassification
scenario.

As shown in Table VI, G-DNNag and G-CNNag out-
performed other models in terms of the classification
performance. For the major classes, Generic, Exploit, and
Fuzzers, the naive and advanced deep learning models showed
similar performance, and it was observed that the proposed
models could improve the classification performance for the
major classes even in the LSTM-based model. In particular, the
generator combined models showed significant performance
improvement in the Generic and Fuzzers classes (up to about
5%). In the case of the minor classes, the proposed mod-
els showed a moderate performance improvement overall.
Especially, G-LSTM, G-DNNag, and G-CNNag achieved
about 3% performance improvement in the Backdoors class
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TABLE VII
EXPERIMENTAL RESULTS ON THE 10T-23 DATA SET FOR MULTICLASSIFICATION TASKS
DDoS C&C PortScan
Classifier ; Accuracy ; Recall  Precision  F'l-score ‘ Recall  Precision  F'l-score ‘ Recall ~ Precision  F'l-score
DNN b931% ! 100% 100% 100% | 47.0% 100% 63.9% | 100% 83.7% 91.1%
| | | |
CNN I 937% 1 100% 100% 100% 1 48.4% 100% 65.2% 1 100% 86.4% 92.7%
| | | |
LSTM I 935% | 100% 100% 100% | 47.0% 100% 63.9% | 100% 85.4% 92.1%
|
DNN4g L 93.7% : 100% 100% 100% : 48.4% 100% 65.2% : 100% 86.4% 92.7%
CNNAp : 93.7% : 100% 100% 100% : 48.4% 100% 65.2% : 100% 86.4% 92.7%
77777777777777 - -5V - - - - - - - - - - - - - - -" "S- - - - - - - - - - - - - - - Sa- - - - - - - - - - - - - - -°
G-LSTM, DNN 4, CNN4 g : 95.9% 100% 100% 100% 80.0% 100% 88.9% 100% 90.4% 95.0%
each class (i.e., 84 855 training data and 36367 test data). In
0 74 7 i “ B the experiments on the proposed system, we generated syn-
Z - i . . . ..
e 7 - i thetic data to attain a total size of 30000 for each malicious
2 %%% (2
2 7 7 class in the training data set and evaluated the performance
2 27 (2 . .
60 7 7 4 of all models using the previously separated test data (36367
) 555, % 5525
Se U TOWS).
v . .
£ - : 7 Table VII presents the experimental results for the multi-
9 2 . . .
<30 7 o . classification task on the IoT-23 data set, and Fig. 10 shows
7 = i a comparison of experimental results. Overall, all the mod-
s - o 1 :
o Z i els achieved an accuracy greater than 93%, and the models
24 27 (2
0 S i were observed to have perfect classification performance for
V) o LS a7 <, . .. .
Y W Ve Ve the DDoS class, even in the naive deep learning approach.
Moreover, we observed that there was no significant differ-
Fig. 10. Comparison of multiclassification results on the IoT-23 data set. ence in the performance between the advanced model and the

(which possessed weights of approximately 1% within the
distribution) compared with the other models. Through exper-
iments on the UNSW-NB15 data set containing more diverse
classes, we found that the proposed model could improve the
classification performance for major classes. Moreover, we
found that the implemented generative model could further
improve the classification performance in minor and extremely
minor classes.

Although the proposed framework can improve the classi-
fication performance, there is still the problem of relatively
low detection rates for some classes. In particular, all the
experimented models were observed to have relatively low
detection rates for the DoS class, even in the LSTM-based
model, which is suitable for detecting temporally correlated
attacks. Regarding these results, we infer that the domain space
between classes is heavily overlapping [34], resulting in low
detection rates for some classes.

E. Experiments on the IoT Data Set

To evaluate the performance of the proposed systems in
IoT environments, we conducted experiments on the IoT-
23 data set. As described above, we utilized the data set
collected on the Mirai botnet scenario (CTU-IoT-Malware-
Capture-34-1) and intentionally simulated an extreme data
imbalance scenario. For evaluation, we randomly split the
data set into training and test data sets at a ratio of 7:3 in

naive model. In the case of the C&C class, all models showed
100% probability in precision. For the proposed models, all
the generator combined models showed the same performance
and achieved significant improvement in recall with a proba-
bility of 80%. These results are presumably due to the fact that
the IoT data set is very simple and has features that contain
powerful information related to the nature of the attack (e.g.,
“history”). In addition, regarding these results, we conjecture
that the trained generative model has generated plausible data
points that fall within a certain region of the C&C distribu-
tion (appearing in the test data set, but not in the training data
set), and partially covered the missing region in the (extended)
training data set. Moreover, since there is a portion of the data
in the corresponding region in the test data set, we estimate
that G-LSTM, G-DNNag, and G-CNNug performed signifi-
cantly higher than other models. For the PortScan class, which
is extremely minor, all models achieved 100% probability in
recall, and the proposed systems achieved the highest precision
value with a probability of 90.4%.

F. Experiments on the Collected Real Data Set

To analyze the feasibility of the proposed system in a real
environment, we collected real network flow data with raw
security events from a large enterprise system and conducted
experiments on this real data set. As in the above experiment,
we randomly split the collected data set into training and test
data sets at a ratio of 7:3 in both normal and abnormal classes
(i.e., 3347 639 training data and 1434 703 test data). Note that
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TABLE VIII
EXPERIMENTAL RESULTS ON THE REAL DATA SET FOR BINARY CLASSIFICATION TASKS

Normal Abnormal
Classifier | Accuracy ; Recall  Precision  F'l-score ‘ Recall  Preciston  F'l-score
DNN : 94.7% : 97.0% 93.0% 94.9% : 89.5% 76.9% 82.7%
CNN : 95.0% : 97.0% 94.5% 95.7% : 90.0% 77.5% 83.2%
LSTM : 952% | 97.4% 94.6% 959% | 89.8% 77.4% 83.1%
DNN4g : 95.2% : 97.2% 94.7% 95.9% : 90.0% 77.5% 83.2%
CNNag : 95.2% : 97.3% 94.6% 95.9% : 90.2% 77.3% 83.2%
‘ e e e e .
G-LSTM : 952% + 97.3% 94.6% 959% + 89.8% 77.4% 83.1%
G-DNNsg | 955% : 97.2% 94.5% 95.8% : 95.2% 92.5% 93.8%
G-CNNg : 95.6% ' 97.2% 94.5% 95.8% ' 952% 92.5% 93.8%
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Fig. 11. Comparison of binary classification results on the real data set.

we only considered the binary classification scenario in exper-
iments on the real environment. As shown in Table VIII, the
data set possesses a severe imbalance between the normal and
abnormal classes. In the experiments on the proposed system,
we generated synthetic data for the abnormal class to be the
same size as the normal class and evaluated the performance
of all models using the previously partitioned test data set as
in the previous experiments.

Table VIII presents the experimental results on the real
data set, and Fig. 11 shows a comparison of experimental
results. First, it can be seen that all models achieve a superior
performance in terms of the accuracy, as the data set consists of
95.1% normal data and 4.9% anomalous data. Moreover, there
was no significant difference between the naive and advanced
models in terms of the classification performance, as in the
experiment on the IoT data set. From the perspective of each
class, the models achieved high F1-scores for normal data as
expected, but relatively low recall values were measured for
abnormal data. In the case of the proposed model, G-DNNg
and G-CNNjg achieved 93.8% F1-scores in the abnormal
class, and we observed that the deployed generative model
could significantly improve the classification performance of
minor classes even in the real system.

G. Evaluation

Through comprehensive experiments on various data sets,
we demonstrated that the proposed system significantly out-
perform previous deep learning approaches and showed that
the classification performance for minor classes can be greatly
improved through the generative model. In particular, the
proposed models showed a noticeable performance improve-
ment for the R2L and Probe classes on the NSL-KDD data
set. In addition, we confirmed that the proposed model can
significantly improve the detection rate for most classes on
the UNSW-NB15 data set. Moreover, through experiments
on the IoT data set, we observed that our system can effi-
ciently detect network threats in a distributed environment.
To demonstrate the feasibility in real-world environments, we
collected real data and tested our system in the binary clas-
sification scenario. Through experiments on the real data set,
we demonstrated that the proposed model could improve the
detection performance of network anomalies by resolving the
data imbalance problem, and that the proposed system can be
effectively applied in real-world environments.

VI. CONCLUSION

In this study, we presented a novel Al-based NIDS that can
efficiently resolve the data imbalance problem and improve
the classification performance of the previous systems. To
address the data imbalance problem, we leveraged a state-of-
the-art generative model that could generate plausible synthetic
data and measure the convergence of training. Moreover, we
implemented autoencoder-driven detection models based on
DNN and CNN and demonstrated that the proposed mod-
els outperforms previous machine learning and deep learning
approaches. The proposed system was analyzed on various
data sets, including two benchmark data sets, an IoT data set,
and a real data set. In particular, the proposed models achieved
accuracies of up to 93.2% and 87% on the NSL-KDD data
set and the UNSW-NB15 data set, respectively, and showed
remarkable performance improvement in the minor classes. In
addition, through experiments on an IoT data set, we demon-
strated that the proposed system can efficiently detect network
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threats in a distributed environment. Moreover, in order to
investigate the feasibility in real-world environments, we col-
lected real data from a large enterprise system and evaluated
the proposed model on the collected data set. Through this
experiment, we demonstrated that the proposed model can
significantly improve the detection rate of network threats by
resolving the data imbalance problem in the real environment.

In the future, by considering practical distributed environ-
ments, we will focus on applying our framework to federated
learning systems and ensemble Al systems to enhance network
threat detection. In addition, we will study adversarial attacks
that can bypass Al-based NIDS through vulnerabilities in Al
models and conduct research on enhanced NIDS that can resist
these attacks in real-world environments.

[1]

[2]

[3]
[4]
[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan
Kaufmann Series in Machine Learning). San Mateo, CA, USA: Morgan
Kaufmann, 1993.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

1. J. Goodfellow et al., “Generative adversarial nets,” in Proc. 27th Int.
Conf. Neural Inf. Process. Syst. (NIPS), 2014, pp. 2672-2680.

D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Boundary equilibrium
generative adversarial networks,”2017, arXiv:1703.10717.

S. Hettich and S. D. Bay. “KDD cup 1999 data.” 1999. [Online].
Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed anal-
ysis of the KDD CUP 99 data set,” in Proc. IEEE Symp. Comput. Intell.
Secur. Defense Appl., Jul. 2009, pp. 1-6.

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’in
Proc. Military Commun. Inf. Syst. Conf. (MilCIS), 2015, pp. 1-6.

A. Parmisano, S. Garcia, and M. J. Erquiaga, “A labeled dataset with
malicious and benign IoT network traffic.” 2020. [Online]. Available:
https://www.stratosphereips.org/datasets-iot23

B. Ingre and A. Yadav, “Performance analysis of NSL-KDD dataset
using ANN,” in Proc. Int. Conf. Signal Process. Commun. Eng. Syst.,
Andhra Pradesh, India, Jan. 2015, pp. 92-96.

Y. Gao, Y. Liu, Y. Jin, J. Chen, and H. Wu, “A novel semi-supervised
learning approach for network intrusion detection on cloud-based robotic
system,” IEEE Access, vol. 6, pp. 50927-50938, 2018.

K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion
detection system based on deep learning,” in Proc. IEEE 15th Int. Conf.
Mach. Learn. Appl. (ICMLA), Anaheim, CA, USA, 2016, pp. 195-200.
T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in Proc. Int. Conf. Wireless Netw. Mobile Commun.
(WINCOM), 2016, pp. 258-263.

Y. Imamverdiyev and F. Abdullayeva, “Deep learning method for denial
of service attack detection based on restricted Boltzmann machine,” Big
Data, vol. 6, no. 2, pp. 159-169, Jun. 2018.

W. Zhong, N. Yu, and C. Ai, “Applying big data based deep learn-
ing system to intrusion detection,” Big Data Min. Anal., vol. 3, no. 3,
pp. 181-195, Sep. 2020.

M. H. Haghighat and J. Li, “Intrusion detection system using vot-
ingbased neural network,” Tsinghua Sci. Technol., vol. 26, no. 4,
pp. 484-495, Aug. 2021.

Y. Yang et al., “ASTREAM: Data-stream-driven scalable anomaly detec-
tion with accuracy guarantee in IIoT environment,” IEEE Trans. Netw.
Sci. Eng., early access, Mar. 8, 2022, doi: 10.1109/TNSE.2022.3157730.
F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 1-39,
Mar. 2012.

X. Zhang et al., “LSHiForest: A generic framework for fast tree isolation
based ensemble anomaly analysis,” in Proc. IEEE 33rd Int. Conf. Data
Eng. (ICDE), Apr. 2017, pp. 983-994.

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 3, 1 FEBRUARY 2023

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

L. Qi, Y. Yang, X. Zhou, W. Rafique, and J. Ma, “Fast anomaly
identification based on multi-aspect data streams for intelligent intru-
sion detection toward secure industry 4.0,” IEEE Trans. Ind. Informat.,
vol. 18, no.9, pp. 6503-6511, Sep. 2022.

J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory
recurrent neural network classifier for intrusion detection,” in Proc. Int.
Conf. Platform Technol. Service (PlatCon), 2016, pp. 1-5.

C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intru-
sion detection using recurrent neural networks,” IEEE Access, vol. 5,
pp. 21954-21961, 2017.

C. Xu, J. Shen, X. Du, and F. Zhang, “An intrusion detection system
using a deep neural network with gated recurrent units,” /EEE Access,
vol. 6, pp. 48697-48707, 2018.

J. Gao et al.,, “Omni SCADA intrusion detection using deep learn-
ing algorithms,” IEEE Internet Things J., vol. 8, no. 2, pp. 951-961,
Jan. 2021.

A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” EAI Endorsed Trans. Security
Safety, vol. 3, no. 9, p. €2, May 2016,

B. Yan and G. Han, “Effective feature extraction via stacked sparse
autoencoder to improve intrusion detection system,” IEEE Access, vol. 6,
pp. 41238-41248, 2018.

N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Trans. Emerg. Topics Comput.
Intell., vol. 2, no. 1, pp. 41-50, Feb. 2018.

C. Ieracitano, A. Adeel, F. C. Morabito, and A. Hussain, “A novel sta-
tistical analysis and autoencoder driven intelligent intrusion detection
approach,” Neurocomputing, vol. 387, pp. 51-62, Apr. 2020.

J. Y. Kim, S. J. Bu, and S. B. Cho, “Malware detection using deep
transferred generative adversarial networks,” in Proc. Int. Conf. Neural
Inf. Process., 2017, pp. 556-564.

M. H. Shahriar, N. I. Haque, M. A. Rahman, and M. Alonso, “G-IDS:
Generative adversarial networks assisted intrusion detection system,”
in Proc. IEEE 44th Annu. Comput., Softw., Appl. Conf. (COMPSAC),
Jul. 2020, pp. 376-385.

I. Yilmaz, R. Masum, and A. Siraj, “Addressing imbalanced data
problem with generative adversarial network for intrusion detection,”
in Proc. IEEE 2Ist Int. Conf. Inf. Reuse Integr. Data Sci. (IRI), Las
Vegas, NV, USA, 2020, pp. 25-30.

D. Li, D. Kotani, and Y. Okabe, “Improving attack detection
performance in NIDS using GAN,” in Proc. IEEE 44th Annu. Comput.,
Softw., Appl. Conf. (COMPSAC), Jul. 2020, pp. 817-825.

W. Lee, B. Noh, Y. Kim, and K. Jeong, “Generation of network traf-
fic using WGAN-GP and a DFT filter for resolving data imbalance,”
in Proc. Int. Conf. Internet Distrib. Comput. Syst. (IDCS), Oct. 2019,
pp- 306-317.

G. Dlamini and M. Fahim, “DGM: A data generative model to improve
minority class presence in anomaly detection domain,” Neural Comput.
Appl., vol. 33, pp. 13635-13646, Apr. 2021.

D. Li, D. Chen, J. Goh, and S.-K. Ng, “Anomaly detection with
generative adversarial networks for multivariate time series,” 2018,
arXiv:1809.04758.

S. K. Alabugin and A. N. Sokolov, “Applying of generative adversarial
networks for anomaly detection in industrial control systems,” in Proc.
Global Smart Ind. Conf. (GloSIC), Nov. 2020, pp. 199-203.

I. Siniosoglou, P. Radoglou-Grammatikis, G. Efstathopoulos, P. Fouliras,
and P. Sarigiannidis, “A unified deep learning anomaly detection and
classification approach for smart grid environments,” IEEE Trans. Netw.
Service Manage., vol. 18, no. 2, pp. 1137-1151, Jun. 2021.

D. E. Rumelhart and J. L. McClelland, “Learning internal representations
by error propagation,” in Parallel Distributed Processing: Explorations
in the Microstructure of Cognition: Foundations, vol. 1. Cambridge,
MA, USA: MIT Press, 1987, pp. 318-362.

G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length and helmholtz free energy,” in Proc. 6th Int. Conf. Neural Inf.
Process. Syst., 1993, pp. 3-10.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2016,
arXiv:1511.06434.

M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. 34th Int. Conf. Mach. Learn. (ICML), 2017,
pp. 214-223.

J. Lee, J. Kim, I. Kim, and K. Han, “Cyber threat detection based on
artificial neural networks using event profiles,” IEEE Access, vol. 7,
pp. 165607-165626, 2019.


http://dx.doi.org/10.1109/TNSE.2022.3157730

PARK et al.: ENHANCED AI-BASED NETWORK INTRUSION DETECTION SYSTEM

Cheolhee Park received the B.S. degree from
the Department of Applied Mathematics, Kongju
National University, Gongju, South Korea, in 2014,
and the M.S. and Ph.D. degrees from the Department
of Mathematics, Kongju National University in 2017
and 2021, respectively.

He joined Electronics and Telecommunications
Research Institute, Daejeon, South Korea, in 2021,
where he is currently working as a Researcher.
His research interests include data privacy, differ-

ential privacy, machine learning, deep learning, Al
security, and network security.

Jonghoon Lee received the B.S., M.S., and Ph.D.
degrees in computer engineering from Kyungpook
National University, Daegu, South Korea, in 2000,
2002, and 2020, respectively.

He joined Electronics and Telecommunications
Research Institute (ETRI), Daejeon, South Korea, in
2002. Since 2002, he has been involving in vari-
ous research projects for cyber security and network
fields. He is currently a Principle Researcher with
the Cyber Security Research Division, ETRI. His
research interests include cyber security, 5G network
security, Al-based network intrusion detection, AI-SIEM techniques for 5G,
and network big data analytics for cyber security.

Youngsoo Kim received the B.S. degree from
the Department of Information Engineering,
Sungkyunkwan University, Seoul, Republic of
Korea, in 1998, and the M.S. and Ph.D. degrees
from the Department of Computer Engineering,
Sungkyunkwan University in 2000 and 2009,
respectively.

He joined Electronics and Telecommunications
Research Institute, Daejeon, Republic of Korea, in
2000, where he is currently working as a Principal
Researcher. From 2012 to 2015, he was an Adjunct
Professor with Chungnam National University, Daejeon. He is currently
interested in 5G security, network security, digital forensics, cryptography,
and Al security.

2345

Jong-Geun Park received the B.S. and M.S.
degrees from the Department of Industrial
Engineering, Sungkyunkwan University, Seoul,
Republic of Korea, in 1997 and 1999, respectively,
and the Ph.D. degree from the Department of
Computer  Engineering, Chungnam  National
University, Daejeon, Republic of Korea, in 2013.
From 1999 to 2001, he was a Researcher with
ADD, Daejeon. Then, he joined Electronics and
Telecommunications Research Institute, Daejeon, in
2001, where he is currently working as a Principal

Researcher. He is currently interested in mobile network security, SDN/NFV,
cloud security, and Al security.

Hyunjin Kim received the B.S. degree in
information communications engineering and the
M.S. and Ph.D. degrees in computer science and
engineering from Chungnam National University,
Daejeon, South Korea, in 2015, 2017, and 2021,
respectively.

He is currently a Researcher with Electronics and
Telecommunications Research Institute, Daejeon. He
is interested in information security, both theoretical
and practical, and his recent research is largely about
network security and applied cryptography.

Dowon Hong received the B.S., M.S., and Ph.D.
degrees in mathematics from Korea University,
Seoul, South Korea, in 1994, 1996, and 2000,
respectively.

He has been a Principal Member of Engineering
Staff of Electronics and Telecommunications
Research Institute, Daejeon, South Korea, from
2000 to 2012. He joined the Department of Applied
Mathematics, Kongju National University, Gongju,
South Korea, in 2012, where he has been a Full
Professor since 2015. His research interests include

cryptography, data privacy, differential privacy, and network security.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


