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ABSTRACT The problem of image segmentation is one of the most significant ones in computer vision.
Recently, deep-learningmethods have dominated state-of-the-art solutions that automatically or interactively
divide an image into subregions. However, the limitation of deep-learning approaches is that they require a
substantial amount of training data, which is costly to prepare. An alternative solution is semi-supervised
image segmentation. It requires rough denotations to define constraints that are next generalized to precisely
delimit relevant image regions without using train examples. Among semi-supervised strategies for image
segmentation, the leading are graph-based techniques that define image segmentation as a result of pixel
or region affinity graph partitioning. This paper revisits the problem of graph-based image segmentation.
It approaches the problem as semi-supervised node classification in the SLIC superpixels region adjacency
graph using a graph convolutional network (GCN). The performance of both spectral and spatial graph
convolution operators is considered, represented by Chebyshev convolution operator and GraphSAGE
respectively. The results of the proposed method applied to binary and multi-label segmentation are pre-
sented, numerically assessed, and analyzed. In its best variant, the proposedmethod scored the average DICE
of 0.86 in the binary segmentation task and 0.79 in the multi-label segmentation task. Comparison with state-
of-the-art graph-based methods, including Random Walker and GrabCut, shows that graph convolutional
networks can represent an attractive alternative to the existing solutions to graph-based semi-supervised
image segmentation.

INDEX TERMS GCN, graph convolutional networks, graph node clustering, region adjacency graph, semi-
supervised image segmentation.

I. INTRODUCTION
The problem of image segmentation has been continuously
gaining the attention of the computer vision research com-
munity. The precise location and delineation of meaningful
objects are crucial in many image processing and analysis
pipelines. Therefore, various approaches have been proposed
to partition an image into regions corresponding to diverse
objects and precisely outline their borders.

Recently, state-of-the-art approaches to image segmenta-
tion have been dominated by convolutional neural networks
(CNN) [1], [2], [3]. The vast majority of these automatic
approaches focus either on semantic segmentation [4], [5],
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[6], [7] or identifying object instances of particular charac-
teristics (e.g., specific organs, tumorous regions, or disease
symptoms in the case of medical images [8], [9], [10], [11]).
However, convolutional neural network architectures were
also leveraged to learn the interactive segmentation task [12],
[13], [14], [15], [16], [17]. The CNN-based approaches to
interactive segmentation additionally need image-user inter-
action pairs at the input in the form of bounding-boxes [15],
user positive and negative clicks or scribbles [12], [13],
[14], or object’s four most extreme points [16]. Although
CNN-based methods have demonstrated exceptional perfor-
mance in various image segmentation problems, they usually
require a substantial amount of precisely annotated train data
which is costly to prepare and, therefore, frequently limited.
Despite current efforts to save for the annotation workload,
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semi-supervised CNN-based segmentation approaches still
require some precisely labeled data to learn from unlabeled
data [18]. At the same time, most self-supervised methods
depend on fully-supervised pre-trained models [19], while
weakly-supervised methods may still require roughly anno-
tating region location (e.g., by drawing bounding boxes,
scribbles, or points on many images [20]). Furthermore,
convolutional neural networks cannot generalize to objects
unrepresented in the train set.

Convolutional neural networks’ exceptional performance
and potential benefits have drawn attention away from semi-
supervised image segmentation that uses user-provided labels
to form a training set. These approaches need coarse indi-
cating the position of relevant objects and background [12],
[13], [14], [15], [16], [17], [21], [22], [23], [24]. The seed
regions can be shown either interactively or in some other
way, e.g., using a priori knowledge about the regions to be
segmented. Initial constraints derived from rough denotations
are generalized to provide label-likelihood for unlabelled
pixels and precisely delimit relevant image regions. The semi-
supervised approach allows adapting the segmentation pro-
cess to a particular image and various objects. As a result,
they can often provide a much more accurate object outline
than automatic algorithms. Besides, semi-supervised seg-
mentation does not require training examples, as CNN-based
methods do. This property can be a significant advantage in
many image processing pipelines.

The most prominent group of semi-supervised segmenta-
tion methods are graph-based algorithms. They define image
segmentation as a result of pixel or region affinity graph
partitioning. Several approaches to graph partitioning have
been proposed over the years, including graph cuts [25], [26],
[27], and random walker [28]. Even though they remain the
most popular semi-supervised image segmentation methods,
graph-based approaches exhibit limitations. The most sig-
nificant one represents the considerable computational cost,
which limits the application of graph-based algorithms in the
case of high image resolutions.

This paper revisits the problem of graph-based image
segmentation. It approaches the problem as semi-supervised
node classification in the affinity graph using a graph con-
volutional network (GCN). As recent works regarding graph
data show, GCNs exhibit the ability to discover structural
patterns and learn graph data feature representation, which
can be next used for node labeling [29], [30], [31]. The
labeling results remain accurate, even for a limited number
of labeled nodes.

Applications of the graph convolutional networks in image
segmentation are yet limited. To the best of the author’s
knowledge, this is one of the first works exploring the per-
formance of GCNs in the problem of semi-supervised image
segmentation. A few related works regard semantic segmen-
tation [14], [32], [33], [34], [35], which remains a diverse
problem since segmentation is performed fully automatically
in a fully supervised way by models trained from end-to-end
with multiple train examples.

This paper brings the following main contributions:

• graph convolutional neural network is applied for semi-
supervised image segmentation for the first time,

• performance of both spectral and spatial graph convolu-
tion operators is analyzed in the problem of binary and
multi-label image segmentation, and their performance
is compared,

• the advantages and limitations of graph convolutional
networks in the problem of semi-supervised image seg-
mentation are discussed.

The following part of this paper is organized as follows.
Section II briefly revisits graph-based methods of image
segmentation and reviews the basics of graph convolutional
networks. Then follows the formulation of a semi-supervised
image segmentation problem in Section III. Section IV details
the proposed approach and the resulting graph convolutional
network architecture. The results of the semi-supervised
image segmentation with the use of GCN are demonstrated in
Section V and discussed in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORKS
A. GRAPH BASED IMAGE SEGMENTATION
Graph-based methods represent images as weighted graphs
where nodes represent pixels, edges represent relations
between pixels, and weights quantify these relations employ-
ing a similarity measure. Image segmentation is then defined
as a graph partitioning into sub-graphs representing relevant
image regions.

There exist diverse approaches for finding edges to be
removed in graph partitioning. They can be divided into three
main groups: minimal spanning tree (MST) methods, graph
cuts, and the Random Walker approach.

MST-based methods for image segmentation perform
graph division concerning the minimal spanning tree of pixel
adjacency graph [36], [37]. These methods can divide an
image into any number of classes. However, they usually
result in significant over-segmentation and are primarily used
to generate superpixels (i.e., homogeneous image regions).

Graph-cut methods partition affinity graph concerning a
minimal cut (i.e., a set of edges with minimal total weights).
The cut is found either via spectral graph partitioning [25],
[38] or combinatorial graph cuts. In the first case, the gen-
eralized eigenvalue problem is solved to find eigenvectors
of the graph Laplacian and utilize them to perform opti-
mal graph bipartition. Finding the eigenvectors is, however,
a highly complex problem. Therefore spectral graph parti-
tioning methods remain mainly theoretical, and their applica-
tion is limited to low-resolution images. Combinatorial graph
cuts define subgraphs by solving the min-cut/max-flow prob-
lem [26], [27], [39]. Explicitly, the graph bipartition is deter-
mined by computing the global optimum among all possible
bipartitions that satisfy constraints imposed on the object and
background. The optimum is determined by minimizing the
energy that incorporates regional and boundary conditions.
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Extensions to the original min-cut/max-flow approach like
GrabCut [40], and Lazy Snapping [41] up to today remain the
most effective and prevailing approaches to semi-supervised
image segmentation [42], [43], [44].

Random Walker [28] presents an alternative approach to
graph-based segmentation. It assigns labels to nodes based on
the probability that a random walker released from unlabeled
nodes first arrives in nodes with a particular label assigned.
The unlabeled nodes are assigned a label for which the high-
est probability exists. Contrary to graph-cuts, the Random
Walker can partition an image into multiple classes.
When applied pixel-wise, the graph-based approaches to

image segmentation experience significant problems with
efficiency. Explicitly, for high image resolutions, an enor-
mous amount of computer memory is required to represent
the corresponding massive image graph. This overhead
makes graph partitioning highly complex in computations,
providing segmentation results in an unacceptable time.
To alleviate these limitations, graph-based approaches are
routinely used region-wise where nodes represent so-called
superpixels, i.e., groups of connected pixels sharing some
properties [45], [46]. Processing region adjacency graph
reduces time and memory overhead. However, it may
decrease segmentation accuracy near image boundaries.

B. GRAPH CONVOLUTIONAL NETWORKS
Graph convolutional networks (GCN) have been proposed in
the last few years to generalize convolutional neural networks
into irregular or non-Euclidean domains. Particularly, GCNs
attempt to deal with general (irregular) graphs where comput-
ing convolution is not as straightforward as for the grid graphs
modeling pixel relations. Such irregular graphs may encode
complex geometric data, structure, and pairwise relationships
in numerous problems [47], [48], examples of which are
social networks [49], [50], citation networks [51], [52], [53],
gene data and protein structure [54], chemical molecular
structures [55] or transportation networks [56], [57].

Extending convolutions, which are easy to compute for
regular grids, into non-regular domains remains not a
straightforward problem. It is mainly due to the necessity
of preserving the weight-sharing property in the case of dif-
ferent size node neighborhoods. Therefore, many attempts
have recently been made to extend convolution operation to
irregular graphs. Most of them utilize neighborhood aggrega-
tion schemes or message passing [55] that generalize graph
embedding for the node classification task.

There exist several concepts that generalize convolution
operation into irregular graph domains. They can be classified
into spectral methods and spatial methods [58].

Spectral methods define a convolution through the graph
Fourier transform from graph signal filtering after con-
verting to spectral-domain representation. This approach
involves eigenvectors derived from the spectral decomposi-
tion of the graph Laplacian used as a Fourier basis [29],
[59], [60]. To avoid direct computation of the graph

Laplacian eigenvectors, [61] proposed ChebNet where k-th
order Chebyshev polynomials are used to approximate spec-
tral filters that learn on k-hop neighborhoods of the graph.
In [30] this approach was further simplified by using first-
order polynomials fused with original feature information
of data. The significant drawback of spectral convolution
methods is that they are restricted to a fixed graph structure,
including the number of nodes and their degrees.

The spatial graph convolution performs computations
directly on the graph dependent on nodes’ spatial rela-
tions [59]. Explicitly, the representation of a central node
is updated concerning the representation of its neighbor.
The node information is next propagated along graph edges.
In this approach, two challenges need to be faced. These are
receptive field selection and node ordering. Main approaches
to this problem include: assuming a predefined contribution
of each node [62], employing a graph diffusion process to
incorporate the node context information [63], converting the
graph locally to a linear vector space [64], adopting attention
mechanism [65] or sampling node neighborhood to obtain
a fixed number of neighbors [66]. Compared to spectral
approaches, spatial graph convolution methods are more flex-
ible, allowing variable graph structures. They are also more
efficient in computing than their spectral counterparts.

This paper’s approach to semi-supervised image seg-
mentation combines graph-based image segmentation with
graph convolutional networks. However, instead of graph-
partitioning, it approaches the image segmentation problem
as node clustering in the SLIC region adjacency graph (RAG).
A graph convolutional network performs the classification,
which uses image region relations expressed by RAG to
perform image segmentation. The performance of spectral
and spatial convolutions applied in image segmentation is
compared and analyzed.

III. PROBLEM FORMULATION
Let G = (V, E) be a weighted and undirected graph where
V is a vertex (node) set of cardinalityN = |V| and E ⊆ V×V
is a weighted edge set of cardinality M = |E |. Nodes vi ∈ V
represent either single pixels or groups of connected pixels
sharing similar properties (i.e., superpixels). Edges eij =
(vi, vj) ∈ E where i 6= j connect neighboring nodes vi and vj.
Depending on representation, graph G is thus either a regular
pixel adjacency graph or irregular region adjacency graph.
Each node vi is a C-dimensional feature vector fi, of color (or
intensity) features. Features of all nodes are thus represented
as N × C dimensional matrix X . Additionally, each edge
eij has its corresponding weight describing similarity of the
adjacent nodes vi and vj. All edges in a graph are represented
as an adjacency matrix A of size N × N where entry aij
indicates if nodes i and j are connected.

Let L and U denote subsets of labeled and unlabeled nodes
such thatL∪U = V ,L∩U = ∅, and |L| � |U |. Each labeled
node vi ∈ L has its corresponding label li ∈ {1, 2, . . . ,NC }
where NC is the total number of classes. With respect to the
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above, the problem of image segmentation can be formulated
as a semi-supervised learning of a classifier F : v → y to
assign a class label li to each unlabeled node vi ∈ U based
on both labeled and unlabeled nodes (transductive learning
settings).

IV. PROPOSED METHOD
A. GENERAL IDEA
The key idea behind the proposed approach is to use a
graph convolutional neural network (GCN) to perform image
segmentation concerning some constraints imposed on the
regions of interest. Mainly, a GCN is applied to the image
region adjacency graph (RAG) to predict region labels given
sample nodes representing resulting regions. A GCN is thus
trained in a semi-supervised learning framework to perform
node-level classification.

Region constraints may be input in many ways. In this
work, they are given as scribbles indicating the rough location
(seed points) of regions of interest and thus representing their
properties. Graph nodes covered by scribbles are considered
labeled nodes L with region labels li assigned regarding
the unique scribble colors. Nodes not covered by scribbles
remain unlabeled. A GCN predicts their region labels. The
general idea of the proposed approach is presented in Fig. 1.
The proposed approach can segment several regions of inter-
est at a time, providing that the seeds for each of them are
given (multi-label segmentation).

B. REGION ADJACENCY GRAPH
To build region adjacency graph G, the input image I was

divided into multiple uniform disjoint regions {Ri}Ni=1 using
the SLIC (Simple Linear Iterative Clustering) superpixel
approach (see Fig. 2). The number of resulting regions was
arbitrarily set to N = d PQ100e, where P × Q is image spatial
resolution. Prior division image features were normalized
to the range of [0, 1] simply by dividing all channels by
2B − 1 where B stands for a bit depth of each channel.
The image was next smoothed with a Gaussian kernel of
size σ = 2. In the resulting region adjacency graph, the
superpixels Ri were represented by vertices vi, each described
by a NC -dimensional feature vector fi derived from the
corresponding region. Mean color (or intensity) within the
region Ri was considered by averaging each color channel
separately.

Weighted edges connected nodes representing adjacent
regions.Weights are derived from aGaussian weighting func-
tion given by the following formula:

wij = e−βd(fi−fj) (1)

where:

d(fi − fj) =
C∑
k=1

(f ki − f
k
j )

2 (2)

and β is a free parameter of the method.

An image RAG is represented by a region adjacencymatrix
A = [aij] ∈ RN×N such that:

aij =

{
1 if regions Ri and Rj are adjacent
0 otherwise

(3)

and a region feature matrix X ∈ RN×C representing the N
vertices each having features in R1×C .

C. GRAPH CONVOLUTION NETWORK MODEL
a: NETWORK GENERAL ARCHITECTURE
The architecture of the graph convolutional neural network
used in this study is detailed in Table 1. The resulting GCN
architecture stacks two convolutional layers such that:

H(p)
= σ (H(p−1)

∗G g) (4)

where:
- H(p)

∈ RN×np denotes feature matrix of p-th layer, np is
the number of feature maps andH0

= X ;
- σ (·) stands for an activation function;
- ∗G denotes graph convolution operator;
- g is some function which aggregates node
neighborhoods.

In the considered architecture graph convolutional layers
are separated by a dropout layer used to reduce overfitting.
The number of input channels to the first layerH(0)

∈ RN×C

is C (which in the case of the RGB images as used in this
study equals 3) and the number of output channels is 16. The
ReLU activation, such that f (H) = max(0,H), is applied to
the output of the first layer. The second convolutional layer
H(1)
∈ RN×16 takes 16 channels at the input and outputs NC

channels, where NC is the number of labels in the segmented
image. Softmax activation is applied to the output of the
second convolutional layer to obtain the probability that the
region Ri represented by node vi belongs to each of the NC
regions. Finally, node vi is the assigned label of a region for
which the greatest probability exists.

TABLE 1. Architecture of the GCN used in this study; C - the number
input feature channels (C = 3 for RGB images, C = 1 for grayscale
images); NC - the number of labels in the segmented image.

The GCN architecture outlined in Table 1 was tested in two
variants, the spectral and the spatial one. They differ in the
approach used for calculating convolution on a graph in the
convolutional layers of the neural network. The most popular
graph convolution operators representing the spatial and the
spectral approach were considered and comparatively tested.
Particularly, the GraphSAGE and Chebyshev convolutional
operator were considered.
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FIGURE 1. Method is initialized with user-provided seeds (scribbles) corresponding to regions of interest. The input image is divided into superpixels
using the SLIC approach. A superpixels adjacency graph is next generated to represent an image. Grah nodes correspond to superpixels. Edges connect
neighboring superpixels. Graph nodes corresponding to superpixels that overlap with user-provided seeds are assigned labels of the corresponding
regions. Labels of the remaining graph nodes are determined by the graph convolutional network. The final segmentation result is obtained by assigning
predicted labels to the corresponding superpixels.

FIGURE 2. Image division into superpixels; sample input image (top
panel) image divided into SLIC superpixels (middle panel); the
corresponding region adjacency graph overlaid on superpixels (bottom
panel).

b: ChebNet-THE SPECTRAL GCN VARIANT
The spectral variant of the considered GCN architecture
(referred later herein as ChebNet) uses the Chebyshev convo-
lutional layers (ChebConv) as proposed in [61]. The informa-
tion between layers was propagated following the equation:

H(p)
j={1,2,...,np}

= σ (
np−1∑
i=1

(
K∑
k=0

θkTk (L̃)H(p−1)
i )) (5)

where:
- Tk (·) denotes recursive series of Chebyshev polynomi-
als, where T0(X ) = 1, T1(X ) = X , and Ti(X ) =
2XTi−1(X )− Ti−2(X );

- θ is learnable filter coefficient matrix (namely, the vec-
tors of Chebyshev coefficients θk );

- K stands for the order of network neighborhood on each
convolutional layer; for of the first order neighborhood
(K = 1) only the nodes’ immediate neighboors are
considered when computing convolution, higher orders
indicate that nodes K-hoops away are considered.

- L̃ = 2L
λmax
−In, where L is a normalized graph Laplacian,

such that L = In − D−
1
2AD−

1
2 , λmax is the largest

eigenvalue of graph Laplacian, and D is graph degree
matrix with Di =

∑
j aij, and A = [aij] denoting graph

adjacency matrix.

c: SageNet- THE SPATIAL GCN VARIANT
The spatial variant of the considered GCN architecture
(referred later herein as SageNet) uses the GraphSAGE oper-
ator as proposed in [66]. The information between layers was
propagated following the equation:

H(p)
v =

H̃(p)
v

||H̃(p)
v ||2

∀v ∈ V (6)

where:

H̃(p)
v = σ (W ·MEAN({H(p−1)

v } ∪ {H(p−1)
u ∀u ∈ N (v)})

(7)

and W is a weight matrix, N (·) is a node neighborhood

function, andH(p)
v is a feature vector of node v in p-th layer.

D. EXPERIMENTAL SETUP
The method was implemented in Python 3.7 programming
language. Mainly, the GCN was implemented using PyTorch
Geometric, i.e., a geometric deep learning extension library
for PyTorch. PyTorch ran at the top of TensorFlow. Experi-
ments were performed on a desktop computer with Intel Core
i9-7940X (3.10 GHz) processor, 128 GB RAM, and NVidia
GeForce GTX Titan X GPU.

The GCN was trained for 5000 epochs with the patience of
500 epochs (i.e., the training was stopped after 1000 epochs
with no improvement). The Adam optimizer with the learning
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rate of 0.005 and weight decay of 0.0005 was applied to min-
imize the negative log-likelihood loss. The weights ensuring
the lowest loss were used for graph node classification.

V. EXPERIMENTAL RESULTS
A. EVALUATION PROCEDURE
The assessment of the proposed approach was performed
concerning two available publicity datasets, namely the
Berkeley Segmentation Dataset [67] and the GrabCut Vision
Dataset [40]. In total, 100 images and the corresponding
ground-truth segmentation results, were considered. The
performance of the GCN-based approach was assessed in
both binary (single object vs. background) and multi-label
segmentation task. In the first case, the GrabCut dataset,
containing 50 images in total, was used. The evaluation of
multi-region segmentation accuracy was performed concern-
ing 50 images randomly selected from the Berkeley dataset.
The test images represented challenging scenes in both exper-
iments, including complex content, multiple objects, and
similar foreground and background. The rough location of
regions of interest was given as scribbles with different scrib-
ble colors representing different labels.

The DICE coefficient and Jaccard index (also known as
Intersection over Union, IoU) were used for the numerical
evaluation of the segmentation results. The measures are
defined by (8) and (9) respectively.

DSC =
2|S ∩ T |
|S| + |T |

(8)

IoU =
|S ∩ T |
|S ∪ T |

(9)

where S and T stand for segmentation result and ground truth,
respectively.

In the case of multi-label image segmentation, individual
scores were determined for each label and then averaged.

The proposed approach to semi-supervised image segmen-
tation was also compared to the most popular state-of-the-
art graph-based competitors. For binary segmentation, these
included Random Walker and GrabCut. In the case of multi-
label segmentation, only the Random Walker was consid-
ered since the GrabCut is intended for binary segmentation
(object extraction from background). All considered methods
were initialized with the same scribbles to facilitate a fair
comparison.

A qualitative evaluation of the considered method was
also performed for medical and microscopy images randomly
collected over available publicity sources. For these images,
the ground truths were not given. However visual assessment
of the segmentation allowed to observe some properties of the
proposed approach.

B. BINARY SEGMENTATION
The visual results of object extraction from the background
using the proposed approach are presented in Fig. 3. Sample
images from the Microsoft dataset were selected for pre-
sentation. The top panel presents original images with user

input (scribbles) overlaid on them. Consecutive rows present
segmentation results obtained by the considered methods
with method names indicated on the left side of each row.
ChebNet corresponds to a graph convolutional network with
two Chebyshev spectral convolutional layers, while SageNet
corresponds to a network of the same architecture but with
SAGE spatial convolutional layers.

The distributions of the considered image segmentation
accuracy measures obtained for each of the considered meth-
ods over the Microsoft dataset are presented in Fig. 4.

Finally, the visual results of the GCN-based approach
applied to random histopathological images1 are presented
and compared to the results of the competitors in Fig. 5.

C. MULTI-LABEL SEGMENTATION
The visual results of multi-label segmentation are presented
in Fig. 6. Sample images were selected from the Berkeley
dataset. As in the case of binary segmentation, the top panel
presents original images with user input (scribbles) over-
laid on them. Consecutive rows present segmentation results
obtained by the considered methods with method names indi-
cated on the left side of each row.

The distributions of the considered image segmentation
accuracy measures obtained for each of the considered meth-
ods over the Berkeley dataset are presented in Fig. 7. The
measures were determined for each resulting region sepa-
rately and then averaged over the number of regions.

Finally, the visual results of the GCN-based multi-label
segmentation applied to random microscopy, and medical
images are presented and compared to the results of the
competitors in Fig. 8.

D. SENSITIVITY TO INITIALIZATION
The influence of initial seeds on image segmentation results
is presented in Fig. 9. Selected examples present cases with
seeds changing gradually from precise and dense markings
spreading across whole regions (cf. Fig. 9a) to very scarce
annotations (cf. Fig. 9d). For both considered samples, the top
panel presents seeds overlaid on the original image, while the
panels below present the corresponding results with colors of
the regions complying with the colors of initial annotations.
Again, ChebNet and SageNet are consideredwith themodel’s
name on each row’s left side.

VI. DISCUSSION
The results presented in Section V confirm that graph con-
volutional networks can be successfully applied for semi-
supervised image segmentation in both binary (see Fig. 3, 5)
and multi-label (see Fig. 6, 8) segmentation tasks. Based
on the visual assessment, it can be observed that the
GCN-based approach is universal. Particularly, it performs
reasonably well for different images, representing diverse
scenes and exhibiting different properties, including natural
scene images, microscopic images, and medical images of

1credit to http://www.publicdomainfiles.com/
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FIGURE 3. Results of semi-supervised binary segmentation of natural scene images using the graph convolutional neural network compared to the
results of state-of-the-art methods. The method names are indicated on the left side of each row.

FIGURE 4. Distribution of image segmentation accuracy measures scored by the considered methods in the binary image segmentation task.

various modalities. The results of image partitioning by the
GCN mostly precisely match the regions’ boundaries, even if
the background, object, or both are nonuniform and complex.
This observation regards both variants of the considered GCN
architecture, i.e., the spectral one represented by the ChebNet
and the spatial one represented by the SageNet.

Spectral and spatial convolution operators perform simi-
larly well in the case of image segmentation. However, the
SageNet (i.e., spatial approach) is less sensitive to local inten-
sity and color variations. As a result, it provides slightly better
segmentation results with more regular edges and less noise.
Image segmentation quality metrics also confirm this visual
observation. Notably, in the case of binary segmentation, the
average and median values of the DICE coefficient scored by

the SageNet were at the level of 0.86 and 0.90 vs. 0.82 and
0.85 scored respectively by the ChebNet. The corresponding
values of the Jaccard index were almost equal for both vari-
ants and equal on average to 0.77, with themedian value equal
to 0.82. However, in the case of multi-label segmentation,
both variants of the GCN performed equally well, scoring on
average the DICE coefficient at the level of 0.79 and amedian
value equal to 0.83.

When compared to the competitive approaches, the
GCN-based methods exhibit certain advantages. The advan-
tage over the Random Walker is evident and confirmed by
visual and numerical results. The Random Walker com-
promises details of region shapes over the compactness of
the resulting regions. As a result, object shape details are
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FIGURE 5. Results of the proposed approach applied for binary segmentation of random microscopic and medical images compared to the results of the
competitors. The method names are indicated on the left side of each row.

FIGURE 6. Results of semi-supervised multi-label segmentation of natural scene images using the graph convolutional neural network compared to the
results of state-of-the-art methods. The method names are indicated on the left side of each row.

often lost while object boundaries are smoothed. At the
same time, the GCN-based approach retains even the finer
details of object shapes. This effect can be observed, for
example, in Fig. 3a where eyes, ears, and eyebrows are
visible in the segmentation results, in Fig. 3h where swim-
mer’s arms and legs were precisely retained in the result-
ing image or Fig. 5ab where the shape of the cells was

precisely represented. The proposed approach is also resistant
to the nonuniform background color or intensity distribu-
tion. In such a case, it precisely extracts objects from the
background while the Random Walker experiences serious
problems (see Fig. 3bcei). In the case of themulti-label image
segmentation task, the Random Walker approach is not able
to segment small regions and merges them. In contrast, the
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FIGURE 7. Distribution of image segmentation accuracy measures scored by the considered methods in the multi-label image segmentation task.

FIGURE 8. Results of semi-supervised multi-label segmentation of
random medical and microscopy images using the graph convolutional
neural network compared to the results of the state-of-the-art method.
The method names are indicated on the left side of each row.

GCN approach retains even the smallest regions. This effect
can be seen in the natural scene images in Fig. 3ef, as well
as microscopy image in Fig. 8a. Overall, the GCN-based
approach scores higher measures than the Random Walker
in both binary (see Fig. 4) and multi-label segmentation tasks
(see Fig. 7).

When the comparison with the GrabCut is considered, the
main advantage of the proposed GCN-based approach is the
ability to perform multi-label segmentation. The GrabCut is
intended to extract an object from the background. As a result,
its application is limited to binary segmentation tasks. When
compared numerically, the GrabCut slightly outperforms the
proposed approach in the natural scene segmentation task (see
Fig. 4). This effect is caused mainly by the exclusion from the
results of the proposed approach, some subregions like eyes
in Fig. 3aei. Depending on the application, this can be both a
disadvantage and an advantage of the method.

In the case of microscopy images presented in Fig. 5ab, the
GrabCut performed significantly worse than in the case of

FIGURE 9. Influence of method initialization on the image segmentation
result; a) precise and dense seeds; b) moderately accurate seeds;
c) scarce seeds; d) very scarce seeds. Initial seeds (scribbles) are overlaid
on original images in top panels. The method names are indicated on the
left side of each row.

the natural scene images. Although the ground truth results
are not given for these images, based on the visual assess-
ment, it can be seen that the GrabCut causes significant
over-segmentation. In contrast, the results of the GCN-based
approach precisely match the tissue shape.

The main parameter of the method is β used to deter-
mine edge weights in (1). In this study, the values of
β = {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} were tested.
In the case of ChebNet for the k values below 100, no signif-
icant influence on image segmentation results was observed.
However, for values higher or equal to 100, the segmentation
result became noisier with the increasing value of the param-
eter. The GCN mostly failed to produce consistent results
for the highest considered value of β. All subpixels were
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FIGURE 10. Influence of the Chebyshev polynomial order k on image
segmentation results using the SegNet variant of the considered GCN
architecture.

predominantly assigned one label, with clear scribbles, and
other labels randomly distributed over the image. SageNet
remained insensitive to all considered values of parameter β.
The additional parameter of the ChebNet variant of the

considered GCN architecture was the order of Chebyshev
polynomials used to approximate spectral filters that learn on
k-hop neighborhoods of the graph. The best results (regarding
the image segmentation accuracy measures) were obtained
for k = 2. These results were presented in Section V. In the
case of unambiguous scenes, for k = 1, the ChebNet was
more sensitive to local intensity variations, in some cases
producing a small amount of noise. The increasing values of
k decreased the resulting noise level and the level of details
in the segmentation result, with the borders of regions being
softer and smoother. However, increasing the value of k may
be necessary to perform the segmentation of unambiguous
regions. These two effects can be observed in Fig. 10
The property of the proposed approach is that it does not

preserve the resulting region connectivity, which can be both
an advantage and a disadvantage depending on the applica-
tion. Notably, the GCN assigns one label to regions similar
to the region coarsely indicated by a user regardless of the
location in the image and the connectivity to the seed region.
As a result, it can extract objects split into disconnected
regions. This effect (seen e.g. in Fig. 3f, Fig. 5ab or Fig. 8)
is stronger for spectral variant of the GCN. It also discerns
the GCN-based approach from the Random Walker, which
always outputs the number of regions equal to the number
of scribbles and does not assign a region a label when it is
disconnected with a scribble (see, e.g., Fig. 8b).
As shown in Fig. 9 the segmentation results obtained for

different initial seeds are very similar. They demonstrate
that the proposed method moderately depends on the ini-
tialization. Good quality region segmentation results can be
similarly obtained for scribbles accurately covering regions
and scarce seeds (cf. Fig. 9a-c). The method can also perform
accurately in the case of very scarce seeds. However, in such
a case, image segmentation accuracy may deteriorate for
some images with strongly heterogeneous regions, especially
for the ChebNet variant of the proposed approach. SageNet

FIGURE 11. Results of the GCN-based multi-label segmentation of
random medical and microscopic images compared to the results of the
Random walker; a) input images; b) ChebNet; c) SageNet; d) Random
walker.

remains even resistant to scarce initialization with seeds
(cf. Fig. 9d).

The limitation of the GCN-based approach is that it
cannot complete a segmentation task when similar regions
are assigned different labels. This effect can be observed
in Fig. 11 where both ChebNet (Fig. 11b) and SageNet
(Fig. 11c) failed to extract regions of interest, while the
Random Walker achieved this goal (Fig. 11d).
Depending on the image resolution and complexity of the

segmented scene, image segmentation lasted up to a second
for the spatial variant (SageNet) and from several seconds
to three minutes for the spectral variant (ChebNet) in the
case of computations performed on a GPU. For the Cheb-
Net, the computation time significantly increased with the
Chebyshev polynomial order. However, the computation time
can be decreased by diminishing the number of superpixels.
No computer memory limitations were observed regardless
of image resolution (the resolution of images considered in
this study was not higher than 512 × 512 pixels).

VII. CONCLUSION
The proposed method introduces graph convolutional neu-
ral networks to semi-supervised image segmentation. The
approach is universal and performs equally well when applied
to images of different characteristics. As a result, it seems
to be a noteworthy alternative to existing graph-based seg-
mentation methods. Notably, the proposed GCN-based image
segmenter can be helpful when precise object-shaped delin-
eation is required, fine shape details need to be preserved,
or disconnected regions of similar characteristics need to be
extracted.

The spatial variant seems to be a better choice from the
considered graph convolution operators. Although both vari-
ants scored similar image segmentation accuracy, the spatial
approach was much more efficient in computation time.

Even if the GCN-based approach performs well in binary
and multi-label segmentation tasks, there is still room for
improvements. They could potentially regard the develop-
ment of dedicated graph weighting functions. The function
used in this work considers only region color or intensity
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differences. Extending the weighting function by a factor that
considers the spatial location of regions and a mechanism
to control the influence of this factor could probably allow
adjusting the balance between regions’ similarities and com-
pactness of segmentation results. This issue will be the main
objective of future works.
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