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Multiple Sclerosis and Parkinson’s Disease Gait
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Abstract—This study examined the effectiveness of a
vision-based framework for multiple sclerosis (MS) and
Parkinson’s disease (PD) gait dysfunction prediction. We
collected gait video data from multi-view digital cameras
during self-paced walking from MS, PD patients and age,
weight, height and gender-matched healthy older adults
(HOA). We then extracted characteristic 3D joint keypoints
from the collected videos. In this work, we proposed a
data-driven methodology to classify strides in persons with
MS (PwMS), persons with PD (PwPD) and HOA that may
generalize across different walking tasks and subjects. We
presented a comprehensive quantitative comparison of 16
diverse traditional machine and deep learning (DL) algo-
rithms. When generalizing from comfortable walking (W)
to walking-while-talking (WT), multi-scale residual neural
network achieved perfect accuracy and AUC for classifying
individuals with a given gait disorder; for subject general-
ization in W trials, residual neural network resulted in the
highest accuracy and AUC of 78.1% and 0.87 (resp.), and
1D convolutional neural network (CNN) had highest accu-
racy of 75% in WT trials. Finally, when generalizing over
new subjects in different tasks, again 1D CNN had the top
classification accuracy and AUC of 79.3% and 0.93 (resp.).
This work is the first attempt to apply and demonstrate
the potential of DL with a multi-view digital camera-based
gait analysis framework for neurological gait dysfunction
prediction. This study suggests the viability of inexpensive
vision-based systems for diagnhosing certain neurological
disorders.

Index Terms—NMultiple sclerosis, Parkinson’s disease,
gait videos, pose estimation, deep learning.
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|. INTRODUCTION

EUROLOGICAL gait disorders are associated with an
N increased risk of falls in older adults [1]. Abnormal gait
has been observed in 35% of older adults, and associated with
a greater risk of institutionalization and mortality [2]. While
gait evaluation is common [3], few studies have focused on the
differentiation of neurological disorders, such as Parkinson’s
disease (PD) or multiple sclerosis (MS), using gait analysis [4],
[5]. Various gait evaluations, such as motion capture during the
timed 25 ft walk and timed up and go test have been explored
in clinical settings to assess neurological conditions, such as
MS [6], [7] and PD [8]. Typically, specialized equipment like a
lab-based motion capture system, force plate or electromyogra-
phy sensors often is needed for these clinical quantitative gait
measures, which can be expensive and require skilled personnel
to analyze. Recent work on movement analysis with wearable
inertial measurement unit sensors [9], smartwatches and smart-
phones [10] has overcome some of these constraints, yet these
approaches are not contact-free and may require installation of
multiple sensors. Past studies have explored depth cameras for
gait monitoring [11], but these are relatively costly and not as
easy to use. Herein, we used a standard RGB digital camera
to examine pathological gait. This proposed system allows for
passive and remote gait monitoring at reduced cost and effort,
which should aid in making it a viable point-of-care technology
for early detection of gait alterations in real-world settings.
Moreover, we apply computer vision and deep learning (DL)
algorithms to process our gait videos and extract significant
information for an automated and objective quantification of
neurological conditions. Given the inherently complex gait dy-
namics with little-known direct descriptors for the disorders,
hand engineering of features in this situation is complicated.
DL automates this process of feature extraction and eliminates
the need for domain expertise to allow for a remote real-time
application, possibly at homes, of our entire workflow.

This study introduced and examined a vision-based gait anal-
ysis framework using DL for MS and PD gait dysfunction pre-
diction. We extend prior work examining MS-related variations
in spatiotemporal and kinetic gait characteristics [12], [13]. We
classify strides of persons with MS (PwMS), healthy older adults
(HOA), and persons with PD (PwPD) across three classification
designs:
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1) Task Generalization: We train ternary (HOA, PwWMS or
PwPD) classifiers on walking (W) trials (tasks) and use
them to test on walking-while-talking (WT) trials. This
experimental paradigm might be useful in quantifying
how algorithms trained on normative data collected in a
supervised lab or clinic could be used as a basis to assess
gaitdata collected in areal-world home-based setting with
challenges of divided attention.

2) Subject Generalization: We train ternary classifiers on a
balanced subset of subjects and use them to test on the
remaining subjects. These algorithms may be useful in
detection of disease in new patients.

3) Task-Subject Generalization: We train our classifiers on
a balanced subset of subjects in W trials and use them to
test on the remaining subjects in WT trials. This general-
ization framework is designed to simulate how algorithms
could be used to predict disease in new subjects in more
real-world settings.

Il. RELATED RESULTS AND CONTEXT

Past studies have quantified the decline of gait performance
in PWMS [14]. Most gait-based approaches for MS detection
have been based on statistical analyses of kinematic and kinetic
data [15], [16]. Several recent works have applied traditional
supervised machine learning (ML) to classify MS using gait data
collected via treadmill [ 13], smartwatches and smartphones [10].
Vision methodologies based upon digital cameras have also been
used to estimate clinical gait parameters in human gait analy-
sis [17], [18] and categorize other neurological populations [5],
[19]. Depth cameras capturing 3D movement patterns have been
explored for gait assessment in subjects with motion difficul-
ties [20], [21], but those systems require a relatively costlier
hardware, have some limitations when used outdoors and are
constrained by the camera to object distance. Our contribution
is using DL with a multi-view digital camera-based gait analysis
framework for prediction of gait-related neurological disorders.
Of particular novelty is our focus on MS. We further considered
a dual-task walking paradigm and consequently, a task-subject
generalization classification framework. Most prior work has
been focused on binary healthy-vs.-pathological gait [5], [10],
[13]; we investigated a more challenging multi-class setup which
further involves distinguishing between different causes of the
neurological gait. Unlike past studies [5], [19], we have added
feet features along with other body coordinates in our analysis.

The proposed application of vision and DL to learn gait
dynamics in PwWMS and PwPD across tasks, and over new
subjects is a step towards the identification of worsening of
symptoms in the near term. Our system requires only an inex-
pensive digital camera, and thus can be easily and economically
deployed in homes of older adults for a real-time gait analysis
with negligible user interaction. We provided a comprehensive
quantitative comparison of 16 diverse ML and DL algorithms
for all classification designs which may assist researchers in the
selection of suitable model architectures and hyperparameters.
Moreover, we discussed the global and local importance of
our extracted features in the classification performance; and

explored a potential association between our model predictions
and the lower extremity function of subjects.

I1l. EXPERIMENTAL DESIGN: SUBJECTS AND SETUP

The study consisted of 33 participants; 10 PwMS (age:
66 £ 5 years, 3 male), 9 PwPD (age: 68 + 9 years, 6 male),
and 14 HOA (age: 63 £+ 9 years, 3 male). All participants were
medically stable, had a cognitive status score [22] of above
18, were right-hand dominant, had no lower limb injury in
the past six months, and had normal or corrected-to-normal
vision. PWMS had mild to moderate disability as evaluated
by the Kurtzke Expanded Disability Status Scale (EDSS) [23]
[2.0 — 6.0], were relapse-free for 30 days prior to experimental
trials and had no other cognitive dysfunction or neurological
disorders. PwPD had mild to moderate severity on the Hoehn
& Yahr Scale [24] [1.0 — 4.0], were “ON” anti-Parkinsonian
medication state and had no other cognitive dysfunction. Prior
to testing, all participants provided informed consent approved
by the local Institutional Review Board (Protocol No. 15674).

All subjects performed two self-paced walking tasks on an
instrumented treadmill (C-Mill, Motekforce Link): 1) a trial
in single-task walking (W) and 2) a trial in dual-task walking-
while-talking (WT) condition. For the WT task, subjects were
asked to walk and recite alternate letters of the alphabet while
providing an equal priority to both walking and talking. Two
800 x 448 pixels resolution digital cameras were located facing
subject’s front and right side to record their lower half and feet
movements (resp.) at 30 frames per second. Given prior evidence
of increased variability in footfall placement in PwMS [25],
we focused our cameras on subject’s feet and lower extremity
in this study (Fig. 1). All extracted gait videos were truncated
to 60 seconds, to account for alterations in gait speed during
gait initialization and gait arrest. Additionally for validation,
CueFors 2 software was used to collect gait events and raw center
of pressure (CoP) position coordinates at 500 Hz during each
walking trial. A total of 116 gait videos, combining subject’s
front- and side-views, were gathered for 33 (W: 32, WT: 26)
subjects.

IV. DATA ANALYSIS: GAIT VIDEO PROCESSING
A. 2D Body Pose Estimation

OpenPose [26] was used to locate the 2D pixel coordinates,
estimating the skeletal joint positions of a detected subject in
each frame of the collected gait videos. OpenPose provides an
open-source real-time architecture for robust body pose estima-
tion [27] using a fine-tuned VGG-19 convolutional neural net-
work (CNN) [28]. OpenPose generated the 2D location coordi-
nates and corresponding prediction confidence of 12 front-view
lower extremity landmarks (i.e., hips, knees, ankles and foot
keypoints) and 8 side-view ankle and foot landmarks for both
sides of the body (see Fig. 1). OpenPose may occasionally gen-
erate erroneous poses with left and right sides swapped, missing
keypoints, or falsely perceived human body due to a range of
possible reasons, including self-occlusion, varying lighting or
color information. Thus post-processing involved correcting for
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Fig. 1.

switches between the left and right limbs, quadratic interpolation
of missing markers, and identification of erroneous landmarks.
Following processing, 2D skeletal landmark coordinates (in
pixels) were retained from 102,598 front- and side-view gait
postures.

B. Pose Transformation to 3D Global Coordinate Space

Camera calibration was carried out, using intrinsic and ex-
trinsic camera matrices, to transform the estimated front- and
side-view 2D joint locations in local image pixel coordinates
to 3D positions in a global coordinate system. To computation-
ally approximate intrinsic and extrinsic camera parameters, we
calibrated both of our cameras using sample patterns from 3D
real world position and corresponding 2D image coordinates
of square corners in a chess board. Post-processing consisted
of bounding all computed 3D position coordinates using real-
world constraints (i.e., treadmill width and length, and height
of person). An example of computed front- (red markers) and
side-view (blue markers) 3D poses is shown in Fig. 1.

C. Multi View Fusion of 3D Body Poses

We conducted a weighted mean-based multi-view fusion, as
proposed in [19], of 3D joint positions across views in the
two planes; this helps to account for deviations in 2D pose ap-
proximation (IV-A) and 3D transformation (IV-B). Only frames
with both front- and side-view pose available were merged.
Subsequently, 36 (3 (z,y, z) x 12 joints) body keypoint features
were derived from a total of 99,942 multi-view fused poses, split

Workflow pipeline. The proposed vision-based gait analysis framework for MS and PD gait dysfunction prediction.

into 57,708 (HOA: 28,174, PwMS: 16,210, PwPD: 13,324) and
42,234 (HOA: 13,763, PwMS: 13,572, PwPD: 14,899) poses
across 32 and 26 subjects in trials W and WT (resp.). See Fig. 1
for anillustration of a fused 3D pose. Lastly, fused 3D poses were
normalized based on the American median hip height [29].

D. Validating Estimated 3D Poses Through Treadmill’s
CoP

1) Validation Procedure: The average CoP during the sin-
gle support and dual support stance was calculated using the
treadmill’s CoP data and detected gait events. Overall, 2483
strides with 9768 (single support: 4802, dual support: 4966)
valid support phases were retrieved across all subject videos in
both W and WT trials and used to validate the centroid of our
estimated base of support (BoS) against the treadmill’s CoP.

2) Validation Results: Quantitatively, for single support sam-
ples, the aggregated (over all videos) mean and standard devi-
ation of Euclidean, lateral and anterior-posterior distances (in
cm) were 9.95 + 5.68, 0.04 £ 4.85 and 0.61 £ 8.96 (resp.);
and similarly, 8.82 £+ 5.49, —0.04 £ 3.10 and —0.57 + 8.53
(resp.), for the dual support samples. While the CoP of the
participant and centroid of the BoS are not expected to be
perfectly aligned, we found congruence between these measures,
which helped reaffirm the validity of our estimated 3D poses.

V. DATA ANALYSIS: GAIT FEATURE DESIGNS

For our ML and DL classifiers, we derived features across
individual strides. This stride-wise feature extraction approach
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extracts multiple samples from a single subject; thus augmenting
and introducing significant variations to our dataset to improve
the generality of ML and DL learners. Moreover, stride-wise
predictions allow for frequent and even near real-time inferences
for potential clinical applications.

A. Gait Stride Segmentation

After fusing 3D poses (IV-C), we performed automatic gait
stride segmentation. In order to do so, we detected heel strikes
on the right side of body (HSRs) that conventionally mark the
start of every new stride. Let [xq(f )y, zka)] denote the fused
3D joint position coordinates for keypoint k. Then, we defined

HSRs as the local minimas (at least one second apart) in the

filtered right heel height series, 24 9" ¢!,

1) Heel Strike Detection: Overall, 2430 strides were re-
trieved from 33 (HOA: 14, PwMS: 10, PwPD: 9) subjects
across three cohorts and two trials. More specifically, 1380
(HOA: 658, PwMS: 389, PwPD: 333) and 1050 (HOA: 351,
PwMS: 332, PwPD: 367) strides were retrieved from 32 and
26 subjects in trials W and WT (resp.). HOA, PwMS and
PwPD had on average 47.0 & 7.9, 38.9 + 8.3,41.6 + 2.1 strides
and 43.9 + 2.8, 36.9 £ 9.6, 40.8 &= 3.9 strides in trials W and
WT (resp.). Subjects from the same cohort on average walked
fewer strides in the more challenging WT task than in the
W task. Healthy subjects had more strides than impaired in
both the trials. Next, we discarded all the poses before the
start of the first stride and after the end of the last stride.
Thus out of 99,942 (W: 57,708, WT: 42,234) multi-view fused
poses (in section IV-C), now, 56,226 (HOA: 26,541, PwMS:
16,187, PwPD: 13,498) and 41,747 (HOA: 13,638, PwMS:
13,448, PwPD: 14,661) poses remained across 1380 and 1050
detected strides in trials W and WT (resp.). HOA, PwMS and
PwPD averaged 40.3 4+ 10.0,41.6 £ 9.4, 40.5 + 8.8 frames and
38.9+£9.2, 40.5 £ 8.5, 39.9 £ 8.8 frames per stride in trials
W and WT (resp.). A higher frame count per stride indicates
a slower stride speed, i.e., HOA on average walked with an
increased gait speed in both trials.

2) Heel Strike Validation: To quantify the performance of our
HSR detection procedure, we begin with using the treadmill-
recorded gait event data to mark frames with true HSRs. This
required syncing video and treadmill records for each subject-
trial pair. Heel strike identification segment in Fig. 1 plots a
snippet of the filtered right heel height series for a PwMS with
true and algorithmically detected HSRs shown in red stars and
green diamonds (resp.). We define the HSR estimation error as
the time gap (in seconds) between the pose-estimated HSR and
the corresponding closest true HSR. The error is positive for a
late and negative for an early estimate of the HSR. Heel strike
validation segment in Fig. 1 depicts the frequency distribution
of estimation errors across all our subjects. Overall, detected
HSRs were on average 0.125 + 0.35 seconds late relative to
ones recorded via treadmill. In general, a good correspondence
was attained between true and identified HSR markers across
HOA as well as PwMS and PwPD with likely gait irregularities.

3) Heel Strike Normalization: Following stride segmenta-
tion, we had a varying number of poses grouped by stride. Thus

we carried out temporal down sampling and smoothing (using
a disjoint window-based moving average approach) in order to
normalize poses to 20 per stride. Ultimately, we had 1380 (HOA:
658, PwWMS: 389, PwPD: 333) and 1050 (HOA: 351, PwMS:
332, PwPD: 367) strides (data samples) in trials W and WT
(resp.), where each stride was a 20 x 36-dimensional sequence
with 36 body keypoint coordinates (features/time series) over
20 consecutive time-normalized frames (time steps).

B. Feature Designs

1) Aggregated Pose Features: We utilized descriptive sta-
tistical measures to aggregate our 2D (20 x 36) strides along
the time dimension into a vector with 91 features. These aggre-
gated features were used with traditional ML classifiers (logistic
regression, random forest, etc.) that expect a flattened feature
vector as input data. In particular, to assess deviation in a stride,
we compute the coefficient of variation and range for 36 joint
coordinate series, each with 20 time steps; hence, obtaining 72
aggregate features. Further, to estimate mismatch in gait between
left and right sides of the body, we measured asymmetry as
absolute difference in the range of left and corresponding right
keypoint coordinate series; thus securing 18 (3 (z,y,2) X 6
joints) more features. Finally, we included the original number
of frames per stride as a feature indicative of subject’s gait speed;
thereby, totaling to 91 variation-, asymmetry- and speed-based
characteristics in each stride to distinguish gait variations in
controls from neurological population. As a result, we gathered
a dataset with 2430 strides (data samples/rows) across W and
WT and 91 features (columns) to feed into our traditional ML
classifiers.

2) Sequential Pose Features: In contrast to traditional ML
models, DL-based classifiers do take 2D sequential keypoints
data directly as input; therefore, we did not carry out any
additional feature engineering for our strides. This configu-
ration did not risk losing information during the aggregation
of features. Given the temporal fluctuations and irregularities
in gait features within a stride, DL classifiers should be able
to leverage this sequential information to generate improved
predictions. Similar to the aggregated pose features, we included
the original number of frames per stride as an additional feature,
demonstrative of gait speed, to the model’s input. This resulted in
2430 strides (data samples) across W and WT, each consisting
of a 36-dimensional sequence over 20 consecutive time steps
and scalar speed, as input for the DL algorithms.

VI. DATA ANALYSIS: CLASSIFICATION AND EVALUATION

We utilized the designed features to classify unique gait
dynamics in HOA, PwMS and PwPD on a stride-by-stride basis.
We used nine traditional supervised ML algorithms to establish
baseline performance: logistic regression (LR), support vector
machine with linear (LSVM) and radial basis function (RBF
SVM) kernels, decision tree (DT), random forest (RF), adaptive
boosting (AdaBoost), eXtreme gradient boosting (XGBoost),
gradient boosting machine (GBM) and multilayer perceptron
(MLP). All these classifiers required 1D feature vector and
thereby, the aggregated pose features (V-B1) are used as their
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input. Z-score normalization was applied to all aggregated fea-
tures to eliminate the influence of variable feature ranges in the
model’s input.

A. Deep Learning Classifiers: Convolutional
Architectures

In this segment, we describe the 4 convolutional DL models
used in our study. For these algorithms, temporal data with
concatenated features over 20 consecutive frames (V-B2) was
presented directly as input. We used Z-score normalization
before feeding in data to the models.

1) 1D Convolutional Neural Network (CNN): Our 1D CNN
model included b convolutional blocks (ConvBlocks), where
b is a tuned hyperparameter; each ConvBlock consisted of a
1D convolutional layer (ConvLayer) followed by batch nor-
malization, non-linear activation, dropout [30] and a pooling
operation. ConvLayers take advantage of sparse connectivity
and further impose local connectivity within proximate neural
units, to lessen the parameters learnt as well as the chances of
overfitting. We used batch normalization to standardize the input
for the subsequent ConvLayer over each batch in the training
process; it helps expedite training by offering some regulariza-
tion. Following normalization, we applied an activation function
to introduce non-linearity into ConvLayer’s output neurons. A
rectified linear unit (ReLU), ReLU(x) = max(0, z), is amongst
the most frequently used activation, for it does not saturate or
cause vanishing gradients. Further, dropout disables neurons
and their corresponding connections at random in the model
with probability p (hyperparameter) to help prevent overfitting
during training. Additionally, a pooling (sub-sampling) layer
is intermittently included in between ConvLayers to manage
overfitting; max pooling preserves maximum value from a bunch
of r neurons, thus dividing the current dimensionality by 7.
Following these b ConvBlocks, the 2D output (I x h) is flat-
tened to a vector of length either [h or h (via global average
pooling, where we only retain the average of each feature map).
The additional frames per stride feature is now concatenated
with the 1D model output vector and passed through multiple
DenseBlocks. Each DenseBlock consisted of a fully connected
layer with a non-linear activation at the outcome, except for the
last layer.

Since CNNs do not include any recurrence mechanism, we
used positional encoding to explicitly add information with
each pose about its corresponding order in the input stride.
Specifically, let x; € R3 be the feature vector for the ¢-th pose
(0 <t < 20) in the stride and p; € R3¢ be the corresponding
positional encoding vector, then, 2}, = z; + p; V0 <t < 20 is
the upgraded embedding that is fed as input to the model. We
used the sinusoidal encoding [31] that generated p; as follows:

ifj=2k

() sin(t/10000% #/36),
e if j =2k +1

cos(t/10000% ¥/36),

where t € [0,20) and j € [0, 36) denote the corresponding time
step and index of the feature dimension (resp.).

2) Residual Neural Network (ResNet): To extract more intri-
cate features, deeper CNN networks are generally desired. How-
ever, deeper networks are increasingly challenging to train due to
the degradation issue wherein as the model depth increases, its
corresponding performance saturates and then degrades swiftly
owing to a higher training error than its shallower counterpart.
In theory, the deeper layers could simply be identity maps
stacked to the corresponding shallow architecture to avoid any
degradation in accuracy with added layers. ResNets precisely
leverage this understanding and lets network layers explicitly
learn residual functions relative to the layer inputs [32]. Let g(z)
be the expected function to be fit by a given stack of layers, where
x indicates the input to the first layer. The residual connection

learns f(x) &f g(z) — = and later recasts the learnt mapping
as f(z) 4+ « via element-wise addition to recover the original
function g(z). ResNets benefit from increased model depths by
easing optimization and adding no extra computational cost.

We experimented with two kinds of residual blocks, namely,
basic and bottleneck blocks. A basic block is a stack of 2 1D
ConvLayers, each followed with a batch normalization and a
ReLU activation. Note that the second non-linearity was applied
after the element-wise addition of the input with the learnt
residual mapping. A 1 x 1 convolution is used on the input when
required to match dimensions for the element-wise addition.
The deeper bottleneck block is similar in design but with 3
ConvLayers instead of 2. The 20 x 36 model input is first parsed
using an initial ConvBlock, comprising a ConvLayer followed
by batch normalization, ReLU activation and max pooling (in
order), to embed features prior to residual blocks. Next, we
used a stack of b (hyperparameter) basic or bottleneck blocks
to set up residual learning within every few layers for deeper
network designs. Eventually, the 2D output is flattened via
global average pooling, concatenated with frames per stride and
transformed using multiple DenseBlocks to a length 3 vector. We
also experimented with using positional encoding with ResNets.

3) Multi-Scale Residual Neural Network (MSResNet): We
applied multi-scale kernel-based ResNet architecture, as pro-
posed in [33], to derive deep-hierarchical features from mul-
tiple scales out of raw poses. MSResNet incorporates both
the residual learning framework and multi-scaled convolutional
kernels to address performance degradation issues and learn
robust characteristics in multi-scale views from pose locations.
Similar to ResNet, the input pose positions are firstly passed
via a ConvLayer followed by batch normalization and ReLU
activation. Next, we traversed the extracted features through
three branches, each applying a different scale of convolutional
kernels to acquire attributes from multiple receptive fields. Each
branch is a stack of 3 basic blocks with {64, 128, 256} filters
(resp.); filter lengths for ConvLayers in three different branches
were set to be 3, 5, and 7 (resp.). The batch of residual blocks
in all branches is followed by a global average pooling layer to
reshape output features into a flattened vector. The vectors from
the three branches are then concatenated into a single vector
of length 768 (= 256 x 3) and appended with the additional
frames per stride feature; finally, this concatenated vector is fed
to a fully connected network with 3 output units.
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4) Temporal Convolutional Network (TCN): Recently intro-
duced TCNs [34] have matched and even exceeded the perfor-
mance of several recurrent models over numerous sequential
modelling tasks. In general, the TCN architecture is relatively
simpler, possesses longer memory to capture a more extended
history and in practice, demands minimal tuning. TCN employs
1) dilated causal convolutions to process temporal data, where
causality ensures no data from the future is leaked to the past
and dilations assist the network to form long histories through
large receptive fields, and 2) residual connections to train deeper
models well. Our TCN model consisted of a stack of n (hy-
perparameter) TCN residual blocks. Each block first learnt the
residual via 2 1D dilated causal fully convolutional layers, each
followed by weight normalization [35], ReLU activation and
a dropout layer (in order), and then, is further succeeded by
another ReLU after the element-wise addition of the input with
the estimated residual mapping. A fully convolutional layer is
simply a ConvLayer with an output of the same size as the input;
causal convolutions ensured that output at time ¢ is convolved
solely with features prior to and at time ¢ in the earlier layer.
Further, a convolution with dilation factor d on an element
x of a 1D input g with filter f of length k£ is computed as
(g *a [)(z) = Z?;é f(4).g(x —d.j); ie., it inserts a fixed
step d between every two adjacent filter taps. In practice, we
set d = 2* for the i-th level (TCN block) of our network; this
allows the receptive field size to exponentially increase relative
to the depth of the network. We extracted the output from the n-th
TCN block at the last time step, concatenated it with frames per
stride and then parsed via a fully connected network to acquire
the prediction output.

B. Deep Learning Classifiers: Recurrent Architectures

We applied 3 recurrent DL models for classification of gait
strides. Similar to VI-A, Z-score normalized temporal features
were provided straightaway as input for these classifiers.

1) Vanilla Recurrent Neural Network (RNN): RNN is one
of the most widely used models for apprehending dynamic
information in sequential data. RNN layers utilize a chain-like
arrangement of repeated units that possess hidden activation
from the past to be propagated over future time steps. The current
hidden state h; at the ¢-th time step is recurrently computed
from the prior hidden state h;_; and the current input x; as
2zt =b+Why_y +Vay, hy=tanh(z;), where V, W, and b
are trainable parameters. Our RNN model consisted of a stack
of n (hyperparameter) RNN layers, where each layer 7 outputs
a sequence of hidden size s; (hyperparameter) features. Along
with the usual unidirectional RNN layers, where the inputs are
run only from past to future, we also tried bidirectional layers in
which our inputs are fed in both past to future and future to past
directions. We extracted the output features from the n-th RNN
layer at the last time step, concatenated it with frames per stride
and followed with a few DenseBlocks to output the prediction
probabilities. We also experimented with using a dropout layer
before the DenseBlocks.

2) Long Short-Term Memory (LSTM): Although powerful
temporal models, vanilla RNNs suffer from the vanishing gra-
dient problem in longer sequences. That is, as we propagate

forward in the network, small weight values for the hidden layers
are multiplied together several times declining the gradients
rapidly. Thus the weights for the initial layers are harder to train
which in turn creates a domino effect for all further weights
as well, making RNNs notably harder to train. LSTM [36], an
extension of RNNs, mitigates these challenges via a memory
cell with different gates to regulate the information flow into
and out of the cell. Thus they are capable of handling long-short
term dependencies in our gait stride inputs. Formally, an LSTM
unit uses a cell state and 3 regulated gates, namely, input, forget
and output gates, to add or remove information to the cell state.
Each gate consists of a sigmoid layer o, with values between
0 and 1 describing the fraction of constituents to allow in via
the gate, and a point-wise multiplication operation. Our LSTM
model had the same architecture as the RNN model described
in VI-B1, but with RNN layers replaced with LSTM layers.

3) Gated Recurrent Unit (GRU): Similar to LSTMs,
GRUs [37] also use a gating mechanism to address the vanishing
gradient issue. However, it eliminated the cell state and has only
2 gates, namely, reset and update gates; therefore, they have
fewer parameters and are a bit faster to train than LSTMs. Update
gate z; = o(W..[hi—1,x]) selects the information to add and
discard in the hidden state, and reset gate 7y = o (W,..[hy_1, 2¢])
determines on how much prior information to forget based on
the current input z; and past hidden state h;_;. Again, our GRU
model had the same architecture as RNN and LSTM models,
but with GRU layers.

C. Model Training and Evaluation

Our ternary (HOA, PwMS or PwWPD) classification was stud-
ied across four different designs, namely, task-, subject- (W
and WT) and task-subject generalization. All classifiers for task
generalization were trained on 1008 (HOA: 334, PwWMS: 341,
PwPD: 333) gait strides in W and tested to categorize 1016
(HOA: 351, PwMS: 332, PwPD: 333; corresponding imbalance
ratio being 1.0: 0.95: 0.95) strides in WT across 25 common
subjects that undertook both W and WT trials. Since our data
set was limited to 1380 (HOA: 658, PwMS: 389, PwPD: 333;
corresponding imbalance ratio being 1.0: 0.59: 0.51) strides
across 32 subjects in W trials and 1050 (HOA: 351, PwMS:
332, PwPD: 367; corresponding imbalance ratio being 1.0: 0.95:
1.05) strides across 26 subjects in WT trials, we used a 5-fold
cross-validation mechanism in all classifiers for both subject
generalization frameworks. Task-subject generalization also uti-
lized 5-fold cross-validation where training splits consisted of
samples from 1380 strides in W and, correspondingly, we vali-
dated on separate subjects (than in training) with samples from
1050 strides in WT. In order to prevent information leakage, we
ensured that no same subject had strides split between training
and validation folds. Further, given the imbalance ratio in W
strides, we applied stratification in all our cross-validation setups
to preserve the class distribution of the whole dataset in each
generated fold.

The computations for this work were implemented on a 12 GB
NVIDIA Tesla P100 GPU using PyTorch v1.7.0 DL platform in
Python 3.6. In all DL algorithms, the last layer outputs z; for
class ¢ were converted to normalized prediction probabilities
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TABLE |
TASK GENERALIZATION: COMPARING STRIDE- AND SUBJECT-WISE TEST SET PERFORMANCE ACROSS TOP-3 ML AND DL ALGORITHMS

| | | Stride-wise evaluation metrics | Subject-wise evaluation metrics |

’ ‘ Algorithm | Accuracy  Precision  Recall F} score  AUC | Accuracy  Precision  Recall  Fj score  AUC |
LSVM 0.781 0.784 0.780 0.780 0.905 0.960 0.963 0.963 0.961 1.0
ML XGBoost 0.831 0.835 0.830 0.830 0.944 0.920 0.926 0.926 0.920 1.0
GBM 0.825 0.834 0.823 0.824 0.945 0.960 0.963 0.963 0.961 1.0
ResNet 0.876 0.877 0.876 0.876 0.972 1.0 1.0 1.0 1.0 1.0
DL MSResNet 0.899 0.903 0.898 0.899 0.975 1.0 1.0 1.0 1.0 1.0
GRU 0.862 0.863 0.861 0.862 0.961 1.0 1.0 1.0 1.0 1.0

Note: ML is machine learning, DL is deep learning, AUC is area under the receiver operating curve, the numbers in bold
represent the highest model performance. See section VI for details on algorithms.

p; =e%i/ Z;;l e%i. These p; were then used to compute the
cross entropy loss [, = — Z?:l y; log p;, where y; is the binary
truth label for class i. Next, the backpropagation algorithm
computed the gradients of the loss relative to the weight param-
eters for all the layers. These gradients were used to iteratively
update the weights via stochastic gradient descent optimization
algorithm in order to minimize the loss function. We experi-
mented with various optimizers including, stochastic gradient
descent with and without momentum, adaptive moment esti-
mation (Adam), Adam with decoupled weight decay (AdamW)
and root mean square propagation (RMSprop), all with varying
learning rate schedules and weight decay regularization. We
used early stopping to decide optimal number of training epochs,
i.e., our training stops if the validation set accuracy did not
improve after patience (hyperparameter) epochs. Exploratory
hyperparameter optimization was performed.

In order to evaluate the prediction efficiency for the task
generalization classifiers, we used the test set classification
metrics, namely, precision, recall, accuracy, F} score and area
under receiver operating characteristic curve (AUC), whereas
for the subject- and task-subject generalization frameworks,
we computed mean and standard deviation in cross-validation
metrics. All models were evaluated at stride- and subject-level
categorizations, where majority voting was used to classify
subjects as HOA, PwMS or PwPD. Thus a correctly classified
subject’s video had majority of strides accurately detected as
of the appropriate cohort. Precisely, we annotate the stride and
subject-level performance metrics with str (i.e. Pgsr, Rstr, Astr,
Flstr: AUCstr) and sub (le Psuln Rsub’ Asub, Flsub’ AUCsub)
in the subscript, respectively.

VIl. EXPERIMENTAL RESULTS
A. Prediction Models

Overall, 16 classifiers were compared to categorize strides and
subjects between HOA, MS and PD cohorts for task (VII-Al),
subject (VII-A2) and cross (VII-A3) generalization.

1) Task Generalization: Table 1 summarizes the stride- and
subject-wise evaluation metrics for top-3 ML and DL task
generalization classifiers on categorizing the test set strides of
trial WT. The aggregated performance of all the subject’s strides

via majority voting improved upon the accuracy of individual
stride-wise predictions, for instance from 83.1% to 92% on XG-
Boost. The top-3 DL models, viz. ResNet, MSResNet and GRU,
all had perfect accuracy for classifying individuals with a given
gait disorder (Agy;) and the corresponding stride-level accuracy
(Agtr) of 87.6%, 89.9% and 86.2% (resp.). In contrast, the top-3
ML models i.e. LSVM, XGBoost and GBM, all resulted in an
Astr of less than 85%. Analogously, the highest stride-level Fq
(F1s¢r) was 0.90 using MSResNet followed by 0.88 and 0.86
by ResNet and GRU (resp.), whereas Fy s, was lower than 0.85
applying any traditional ML approach. In Table I, MSResNet had
the highest accuracy, F1 and AUC of 89.9%, 0.90 and 0.98 (resp.)
at stride-level, followed by ResNet and GRU with a matching
perfect subject-level classification. The top task generalization
algorithm was MSResNet trained for 40 epochs (as determined
by the early stopping paradigm with patience 10) with a batch
size of 128, AdamW optimizer along with a learning rate of
0.002 and a weight decay of 0.01; with nearly 2.1 million model
parameters, this model took 45 minutes (min) to train and 10
seconds to evaluate on a GPU.

2) Subject Generalization: Table Il summarizes the mean
and standard deviation of 5-fold cross-validation performance
metrics for the top-3 ML and DL subject generalization clas-
sifiers across W and WT trials independently. Similar to Ta-
ble I, the subject-wise diagnostic performance is higher than
the stride-wise measures. The top DL model, viz, ResNet for
W trials and CNN for WT trials, outperformed all classical ML
classifiers across all subject evaluation metrics in Table II, except
AUC for WT trials. Interestingly, none of the recurrent models
made it to top-3 DL algorithms for subject generalization in W.
The highest-performing subject generalization algorithm for W
trials was ResNet with mean accuracy, F; and AUC of 78.1%,
0.76 (class-wise F1: (HOA: 0.87, PwMS: 0.8, PwPD: 0.7)) and
0.87 (resp.), at subject-level. However, the top-3 ML models,
namely, LR, DT and MLP, all ended up with a mean Agy;,
F1sup and AUCgy;, of less than 70%, 0.70 and 0.85 (resp.). Our
highest-performing ResNet architecture employed positional
encoding layer followed by an initial ConvBlock and 3 basic
residual blocks, first with 64 filters and subsequent two with 128
filters, each with 2 ConvLayers with stride 1 and kernel sizes 8
and 5 (resp.). It was trained for 13 epochs with a batch size of
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TABLE Il
SUBJECT GENERALIZATION: COMPARING STRIDE- AND SUBJECT-WISE MEAN CROSS-VALIDATION PERFORMANCE ACROSS TOP-3 ML AND DL ALGORITHMS

Stride-wise evaluation metrics

Subject-wise evaluation metrics

| ‘ Algorithm ‘ Accuracy  Precision Recall Fy score AUC ‘ Accuracy  Precision Recall Fy score AUC
LR 0.576+£0.07 0.565+0.06 0.5584+0.06 0.542+0.05 0.732+0.05 | 0.690+0.17 0.7114+0.18 0.70+£0.21 0.671£0.19 0.80640.13
ML | pr 0.557+0.07 0.550+0.06 0.5324+0.07 0.51740.06 0.691+0.05 | 0.633+0.13 0.61140.15 0.611£0.22 0.574+0.17 0.84440.10
w MLP 0.541+£0.05 0.530+0.04 0.5284+0.05 0.514+0.05 0.678+0.04 | 0.5954+0.11 0.58940.11 0.589+0.10 0.558+0.12 0.78340.08
CNN 0.547+0.07 0.526+0.05 0.5264+0.07 0.506+0.07 0.704+0.07 | 0.7524+0.11 0.72240.12 0.638+0.19 0.647+0.15 0.8104+0.12
DL | ResNet 0.523+0.05 0.5034+0.05 0.504+0.05 0.492+0.05 0.680+0.05| 0.781+0.21 0.789+0.22 0.767+0.25 0.758+0.24 0.869+0.11
MSResNet 0.544+0.08 0.501+0.07 0.49840.08 0.492+0.08 0.708+0.06 | 0.686+0.14 0.65640.15 0.644+0.20 0.622+0.16 0.72440.12
DT 0.516£0.07 0.525+0.08 0.5214+0.06 0.501+0.08 0.643+0.05 | 0.650+0.13 0.6334+0.12 0.60+0.15 0.580+0.13 0.917+0.06
ML | rp 0.514+0.12 0.532+0.11 0.50840.13 0.489+0.13 0.707+0.13 | 0.5674+0.17 0.567+0.17 0.538+0.25 0.514+0.22 0.80+0.20
WT MLP 0.546£0.17 0.557+£0.15 0.54740.16 0.523+0.18 0.734+0.16 | 0.683+0.27 0.70£0.24 0.667+0.34 0.640+0.31 0.8424+0.23
CNN 0.486+0.12 0.47940.12 0.488+0.11 0.470+0.13 0.663+0.12| 0.750+0.17 0.767+0.13 0.711+0.21 0.707+0.18 0.771+0.17
DL | MSResNet 0.513+0.07 0.523+0.07 0.5034+0.06 0.482+0.06 0.709+0.05 | 0.7204+0.08 0.70+0.12 0.644+0.18 0.631+0.14 0.8254+0.09
GRU 0.522+0.10 0.503+0.08 0.51940.08 0.489+0.09 0.687+0.08 | 0.633+0.20 0.6334+0.16 0.589+0.27 0.571+0.22 0.7254+0.16
Note: W is walking trial, WT is walking-while-talking trial; the numbers in bold represent the highest model performance in W and WT.
TABLE IlI
TASK-SUBJECT GENERALIZATION: COMPARING STRIDE- AND SUBJECT-WISE MEAN CROSS-VALIDATION PERFORMANCE ACROSS TOP-3 ML AND DL
ALGORITHMS
| | | Stride-wise evaluation metrics | Subject-wise evaluation metrics
’ ‘ Algorithm ’ Accuracy Precision Recall Fy score AUC ‘ Accuracy Precision Recall F| score AUC
LR 0.4584+0.12  0.485+0.09  0.459+0.12  0.450+0.12  0.663+0.10 | 0.50+0.33 0.50+0.33  0.450+0.33  0.467+0.33  0.706+0.18
ML AdaBoost 0.447£0.16  0.468+0.12  0.460+£0.16  0.441+0.16  0.6674+0.12 | 0.57740.29 0.60+0.31 0.578+0.32  0.5644+0.30  0.732+£0.19
MLP 0.5054£0.09  0.506+0.10  0.5054+0.09  0.486+0.10  0.679+0.08 | 0.507+0.16 ~ 0.522+0.17  0.444+0.23  0.438£0.20  0.710+0.09
CNN 0.5574£0.08  0.567+0.06  0.5574+0.08  0.5454+0.08 0.718+0.07 | 0.793+0.24 0.811+0.25 0.789+0.29  0.782+0.27 0.933+0.11
DL ResNet 0.5384+0.04  0.589+0.04  0.5474+0.05 0.523+0.05 0.747+0.05 | 0.7074+0.26  0.756+0.25  0.694+0.30  0.689+0.28  0.936::0.07
MSResNet | 0.561+0.09  0.612£0.06  0.566+0.07  0.552+£0.08  0.748+0.06 | 0.753+£0.21 0.789+0.19  0.822+0.16 0.760+0.20  0.922+0.09

Note: The numbers in bold represent the highest model performance.

128 and AdamW optimizer (learning rate: 0.22 x 1073, weight
decay: 0.01); with nearly 360 K model parameters, training
took around 15 min on GPU. Further, to tackle imbalance, we
weighed our loss function by 0.18, 0.36 and 0.45 for strides in
HOA, PwMS and PwPD (resp.). Correspondingly, the highest-
performing algorithm for subject generalization in WT was CNN
with mean Ay, F1up and AUC,,, 0of 75%,0.71 (class-wise Fy :
(HOA: 0.8, PWMS: 0.9, PwPD: 0.6)) and 0.77 (resp.). The top-3
ML models, namely, DT, RF and MLP, all had mean Ag,,; and
F1sup less than 70%, 0.65 (resp.), however surprisingly, DT had
the highest mean AUCj,;, of 0.92. Our tuned CNN architecture
had 2 ConvBlocks, first one having a ConvLayer with 64 filters
of length 3 and stride 1 followed by batch normalization, ReLU
and dropout layer with probability p = 0.4 and next one with a
ConvLayer with 128 filters of length 2 and stride 1 followed by
just ReLU activation layer. This CNN was trained for 25 epochs
(35 min, 86 K parameters) with 128 samples per batch and Adam
optimizer with learning rate 0.001; no weight balancing was
done in this case.

3) Task-Subject Generalization: Table III summarizes the
mean and standard deviation for stride- and subject-wise eval-
uation metrics of 5-fold cross-validation across top-3 ML and

DL task-subject generalization classifiers. The top-3 DL models,
i.e.,CNN, ResNet and MSResNet, attained mean A ,,;, of 79.3%,
70.7% and 75.3% (resp.), and mean Fy 4, of 0.78, 0.69 and 0.76
(resp.). The top-3 ML models, namely, LR, AdaBoost and MLP,
all had a mean A, and Fy 4, of less than 60% and 0.60 (resp.).
A 1D CNN had the highest overall subject-wise performance
for task-subject generalization with the mean Ay, Fisyp and
AUC,, of 79.3%, 0.78 (class-wise Fi: (HOA: 0.9, PwMS:
0.9, PWPD: 0.63)) and 0.93 (resp.). This optimal CNN used
positional encoding followed by 3 ConvBlocks, each having a
ConvLayer with 64, 128 and 64 filters (resp.), of corresponding
lengths 9, 5 and 3 and stride 1 each. Further, batch normalization
and dropout with p = 0.4 were used in the first ConvBlock and
max pooling with kernel size 2 was applied in the last ConvBlock
to manage overfitting. It was trained for 20 epochs (10 min)
with RMSprop optimizer (learning rate: 0.001) processing 128
samples per batch with loss function weighed by 0.1, 0.35 and
0.55 for samples belonging to HOA, PwMS and PwPD (resp.).
The model had total 86 K parameters.

It is interesting to note that convolutional models were top-
performers across all designs. Next, we 1) perform an ablation
study to quantify the value of features from different body areas
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TABLE IV
ABLATION STUDY IN SUBJECT- AND TASK-SUBJECT GENERALIZATION FRAMEWORKS

‘ | Subject generalization (W)

I Subject generalization (WT)

I Task-subject generalization |

Data Top-performing Agup Figup Top-performing Agup Frsup Top-performing Agup Fisup
stream algorithm algorithm algorithm
F ResNet 0.629+0.12  0.508+0.11 | CNN 0.583+0.11  0.523+0.09 | CNN 0.707+0.20  0.620+0.23
F+A CNN 0.624+0.08  0.48340.07 | ResNet 0.650+0.24  0.61640.27 | MSResNet 0.713+0.25  0.67440.29
F+A+K | CNN 0.66240.10  0.62040.11 | CNN 0.683+0.11  0.62740.18 | CNN 0.723+0.15  0.67340.18
All ResNet 0.781+0.21  0.758+0.24 | CNN 0.750+0.17  0.707+0.18 | CNN 0.793+0.24  0.782+0.27
Note: F is feet, A is ankle and K is knee features; the numbers in bold represent the highest model performance.
(VII-B1), 2) analyze feature importance (VII-B.2) and 3) assess 1
. . . . . i i 1
our DL predictions relative to physical performance of subjects Right hip 0.953 I
Left hip 0.970H |
(VII-O). , 1
Right knee 0.900 — 1
Left knee 0.913 H :
Right ankle 0.960 H |
|
B. Post Hoc Analysis Left ankle 0963 |
Left heel 0.934 :
1) Ablation Study: We compared the task-, subject- and task- Right big toe 0.939 H I
. . ) 1
subject generalization performances on features from several Right heel 0.948 1
. . f |
body subsets, i.e, 18 (= 2 (left, right) x 3 (2 toes, 1 heel) x Left big toe 4853 1 [
3 (z, y, 2)) feet-extracted (F), 24 combined feet-ankle (F+A) R'Let: :'I::e :°e 9.957 % :
. . ight little toe 0.963 H
and 30 feet-ankle-knee (F+A+K) coordinates, to that of using all H
0.85 0.90 0.95 0.98

36 lower body features. Precisely, we studied the impact of elim-
inating body parts in turn as we descend from hips to feet. All
ML and DL models were trained and tuned from scratch on these
data streams for comparison. Table TV reports Agyp, and Figyp
for the highest-performing model on each subset with subject-
and task-subject generalization schemes. DL models, specifi-
cally, CNN, ResNet and MSResNet, surpassed conventional ML
performance across all data streams and model designs. Not
surprisingly, the same three convolutional models were highest
performers in VII-A as well. Task generalization revealed the
top stride-wise performance when using all 36 features with
MSResNet (Agt-: 90%), closely followed by F+A+K also with
MSResNet (Agt,-: 89%) and then, F+A with ResNet (Ag;,-: 83%);
although, all data subsets, except using only feet features, had
comparable subject-wise metrics. For subject generalization in
both W and WT trials, using all features resulted in the highest
mean cross-validation accuracy (Ag,p in W: 78%, WT: 75%)
followed by F+A+K (W: 66%, WT: 68%) and F+A (W: 62%,
WT: 65%). A similar trend was noted in task-subject general-
ization where employing all 36 features achieved top Ag,p of
79% via CNN, succeeded by F+A+K at 72% also with CNN
and F+A at 71% with MSResNet. In all model frameworks,
adopting entire lower body coordinates outperformed any other
considered combination. Further, we saw a consistent improve-
ment in performance as we augment additional coordinates, i.e,
F < F+A < F+A+K < All, where < denotes an increase in
our defined performance metrics. This indicated the importance
of adding feet features to our study as their use in solidarity
represented a major chunk of the overall model performance,
for instance, Ag,;, = 71% using only feet in comparison to 79%
with all features in task-subject generalization. In conclusion,
these ablation results indeed support our decision to use all lower
body features for prediction.

Stride-wise AUROC (AUCstr)

Fig. 2. Permutation feature importance in task generalization. A low
score (relative to best AUC,,,- of 0.98) after permutation signifies more
importance. Hip, knee, ankle and feet keypoints are grouped in green,
violet, yellow and pink (resp.), where features are sorted in decreasing
order of importance within each group.

2) Analysis of Feature Importance: In an attempt to explain
and thereby, establish trust in our classifications from DL mod-
els, we examined global (via permutation feature importance)
and local (via Shapley additive explanations (SHAP)) feature
importance for our top models. Local feature importance focused
on understanding the contribution of factors that led to a specific
prediction, while global feature importance took all predictions
into account.

(i) Permutation feature importance: Permutation feature
importance measured the decrease in performance of our leading
and optimally tuned DL algorithms, i.e., MSResNet for task
generalization, ResNet and CNN for subject generalization in W
and WT, respectively, and again, CNN for task-subject general-
ization, as we shuffle (z, y, z) position values of an individual
body part, such as right knee and left heel. This permutation
cuts the association between actual feature values and the corre-
sponding class labels. Thus a lower performance after shuffling
signified the dependence of our model on the associated feature
for classification and consequently, a greater importance of the
respective body part. We repeated our permutation process for
the test set 10 times and averaged performance metrics over
these repetitions for a robust result. Fig. 2 plots the AUCg;,. after
permuting features relative to each body part for the optimal task
generalization model i.e. MSResNet.

Both knees followed by heels and big toes were the most
informative features with the least AUC,,, after permutation;
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Right hip 0.847 Q @)
Left hip 0.902 A O (@)
Right knee 0.821 QA (@)
Left knee 0.878 A O (@)
Left ankle 0.887 (@)
Right ankle 0.922 ) (@)
Left little toe 0.849 Q @)
Right little toe{  0.862 Ql O
Right heel 0.870 O (@)
Left big toe 0.883 O (@)
Left heel 0.905 O (@]
Right big toe 0.907 O (@)
0.7 0.8 0.9 1.0

Relative subject-wise AUROC (AUCsyp)

() Subject generalization (W)
() Subject generalization (WT)

Task-subject generalization

Fig. 3. Permutation feature importance in subject- and task-subject
generalization. The ratio of model’s AUC;,,;, after permuting a feature
relative to its original AUC,,,;, (0.87, 0.77 and 0.93 for subject general-
ization in W, WT and task-subject generalization (resp.)). Yellow/blue
circles and green triangles denote the ratio in subject generalization
W/WT and task-subject generalization resp; bars depict the average
ratio across the three designs. A lower ratio indicates higher importance.
Hip, knee, ankle and feet keypoints are grouped, where features are
sorted in decreasing order of importance within each group.

however, left hip positions were the least predictive of labels.
Overall, we observed that right-side features were more domi-
nant than their left-side counterparts, for instance, features from
the right knee were more important than left knee. Fig. 3 plots
the ratio of AUC,,;, after shuffling with respect to the original
AUCg,;, of the subject- and task-subject generalization models.
On average, right knee and hip followed by both little toes were
the most relevant features, whereas, right ankle was the least
important. It was interesting to observe that there were a few
features, namely, right big toe, ankle and left knee, that had little
effect on model performance for subject generalization in WT. In
task-subject generalization (green triangles), all features seemed
to be highly important as permuting any body part resulted
in a loss of significant chunk in accuracy. This might indeed
occur due to it being a highly complex classification paradigm
and therefore, all features together were essential to diagnose
the heterogeneity present in new subjects in an unseen trial.
Altogether, knee coordinates followed by several feet features
seemed to be the most important for our analysis.

(ii) Shapley additive explanations: SHAP [38] is based on
a classic notion in game theory for optimal credit allocation,
namely, Shapley values, where our classifier is considered anal-
ogous to a multi-player cooperative game with features as dif-
ferent players interacting together to produce the classification
label as an outcome. Thus it is a local model-agnostic approach
to assess feature importance by computing fair contribution
of each player in our game. This kind of local explainability
helps to understand individual stride characteristics that led
to an accurate or erroneous prediction, which is indeed vital
to facilitate targeted interventions in a medical setting. Fig. 4
applies a SHAP decision plot to depict the highest performing
task-subject generalization model’s (CNN) output trajectory for
a single test-set stride that was correctly anticipated to belong
to a PWMS.
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Fig. 4. SHAP for the top-performing task-subject generalization model.
Multi-output decision plot for a randomly selected stride, that was cor-
rectly classified to belong to a PwWMS.

The z-axis of this plot illustrates the model’s output value,
i.e., the probability of stride getting classified (vs. not) as HOA,
PwMS or PwPD; the y-axis lists the model’s top-20 features in
the descending order of importance. Note that this importance is
calculated only over the stride examined. SHAP essentially eval-
uated the affect on model performance in presence vs. absence of
each feature. Moving from bottom to top, SHAP values for each
feature drove the model’s output from the base value (average
model output over the training samples) to the overall prediction
output; features pushing the model output higher increased the
class prediction probability and otherwise. Observe that the
outlined stride was correctly classified as from MS cohort with
the highest predicted probability of 0.95, via an aggregated
impact from nearly all features. This matched our remark in
permutation feature importance where all body parts together
were critical for task-subject generalization. Moreover, knee
coordinates seemed to dominate top features in Fig. 4, similar
to what we had observed in permutation feature importance.

C. Association With Lower Extremity Function

We attempt to inspect a potential association between our top
DL model predictions and the corresponding lower extremity
physical function of subjects. We used the short physical perfor-
mance battery (SPPB) assessment [39] as a common measure to
evaluate the lower extremity functioning in all our older adults.
SPPB integrates the performance of subjects in gait speed, chair
stand and balance tests to create a summary score between 0
(worst) and 12 (best); lower scores indicate severe mobility lim-
itations and higher scores indicate better performance. We had
subjects with minimal to moderate frailty, i.e. SPPB: 9.85 &£ 2.35
[6 — 12],inour data. Fig. 5 visualizes the predictions made by the
highest performing subject generalization in W model (ResNet)
with respect to the frailty level in corresponding subjects, as
measured by SPPB.

The markers, i.e. circles, squares and triangles, represent
actual HOA, PwMS and PwPD, respectively, where marker
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Fig. 5. Visualizing the predictions of subject generalization (W) model
with respect to the corresponding lower extremity strength of subjects.

face-color shades denote the subject’s SPPB. Moreover, marker
positions are the barycentric coordinates representing the 3D
predicted probability vector on an equilateral triangle. Conse-
quently, our triangle is trisected in 3 equal parts, where back-
ground color depicts the predicted class by model, i.e, markers
on green, blue and purple segments are predicted as HOA, PwMS
and PwPD, respectively; and centroid represents an equal prob-
ability for each class. Therefore, a perfect classification would
correspond to all circles in the north, squares in the south-west
and triangles in the south-east vertex of the triangle. Not surpris-
ingly, we observed that HOAs with a lower SPPB (higher frailty)
had greater number of strides misclassified as belonging to MS
cohort and likewise, PwWMS with a higher SPPB (lower frailty)
had majority of strides incorrectly predicted as from the healthy
cohort. We also see from Fig. 5 that it is hard to distinguish
between MS and PD subjects, which was again expected given
the existent heterogeneity in these neurological disorders.

VIII. DISCUSSION

This study proposed a novel framework using multi-view
visual data driven DL for MS and PD gait dysfunction predic-
tion. Our system provides a convenient, low-cost, accurate, and
rapid remote monitoring tool for neurological gait classification.
Our architecture does not need any certified professional in
charge, and being contact-less, it provides convenience and
automaticity in the gait assessments of older adults in the wild.
Our workflow is end-to-end open source, available at https:
//github.com/kaurrachneet6/ VGA4MS.git. A few other works
have explored vision data to categorize neurological gait [5],
[19]. In contrast to our comprehensive comparison with 16
diverse models across four different designs, namely, task-,
subject- (W and WT) and task-subject generalization, others [5],
[19] have only examined CNN and ResNet, respectively, for a
subject generalization in W trials. Further, [5] performed manual
feature engineering after the extraction of 2D positions, which is
now automated in our work. Our work thoroughly explored the
interpretability of optimal models via post hoc analysis, which
was missing in past studies. In comparison with prior work ex-
amining the binary classification of PWMS versus only controls
using wearable-derivable measures [13], where 80% accuracy
has been achieved when generalizing across new subjects, the
ternary classification approach explored here, provides a proof of
concept of a gait classification framework capable of identifying

different origins of neurological gait disorders at a similar level
of performance.

We observed that convolutional models were highest-
performing across all generalization frameworks, which should
provide guidance for future work in neurological gait classi-
fication. However, no one specific architecture was found to
yield the best performance across different features, tasks, and
frameworks. These findings suggested the importance of explor-
ing different DL architectures in future work examining gait to
extract as much information as possible from the input data.
From a clinical perspective, stride-wise classification allowed
for the use of a single stride, or brief duration walking trial,
to serve as the basis for disease monitoring, which might be
well suited for clinical settings with limited space and time.
We used OpenPose-extracted position coordinates as input to
our DL models instead of raw images as trained models with
the latter might be sensitive to subject’s footwear, clothing,
and background, whereas OpenPose is robust to most of these
factors. Our ablation study results demonstrated the importance
of feet features in neurological gait classification, particularly in
our task-subject generalization framework, which generalizes
to new participants in different walking tasks. Further, through
an analysis of permutation feature importance, we found the
importance of right knee features, which might be partly due
to the right-side dominance of participants in this study or
positioning of video camera on right side of treadmill. SHAP
visualizations (Fig. 4) provided a compact and efficient view
of our model explanations to highlight relevant features for
practitioners. These interpretable explanations not only helped
to understand, but also trust the findings from our system.

The current study explored an automated gait screening model
but the small sample size and gender differences between groups
recruited for this study limits making generalized interpreta-
tions. While 3D joint coordinate trajectories used for classi-
fication were not compared with a lab-based motion capture
system, prior work suggests an accuracy of 30 mm or less with
removal of failed body segment recognition [40]. Since we relied
on cross-validation to gauge the performance of subject- and
task-subject generalization models, evaluating on a holdout data
set would be essential to establish robustness. Exploration and
analysis on the optimal number of continuous strides needed
for best results is a crucial next step. Future research should
examine inclusion of more types of pathological populations
and the effect of number and position of digital cameras on the
performance. Finally, evaluating the utilization of a 3D body
mesh instead of sparse 3D coordinates might help improve the
pose estimation block of our system. Future work might also
involve exploring recent hybrid intelligence-driven and graph
neural network-based approaches [41], [42].

IX. CONCLUSION

The expression of neurological conditions over time and aging
is heterogeneous, making the identification of sudden changes
in PwMS and PwPD particularly difficult. We presented a novel
vision and DL pipeline for classification of PwWMS and PwPD
using gait dynamics. In this study, we extracted 3D multi-view
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fused body keypoint positions from the recorded gait videos and
demonstrated the benefits of DL architectures to differentiate
neurological gait. Further, we evaluated the effectiveness of
this framework to generalize across different walking tasks
and subjects. Our entire code is open source and available
at https://github.com/kaurrachneet6/ VGA4MS.git. The studied
digital camera-based framework provides a potential in-home
gait monitoring tool to aid in diagnosis. This might in turn
benefit both patients as well as clinicians to curtail MS and PD
therapy expenses; and further facilitate low-cost and data-driven
telemedicine systems for PwWMS and PwPD.
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