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An Oriented SAR Ship Detector With Mixed
Convolution Channel Attention Module and

Geometric Nonmaximum Suppression
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Abstract—Benefiting from deep learning, synthetic aperture
radar (SAR) ship detection based on convolutional neural network
(CNN) has developed rapidly and corresponding performance is
getting better. Nevertheless, most of the existing methods still can-
not achieve a good balance between precision and recall in scenes
with complex background interferences, or in a scene where two or
more ships dock side by side. To address these problems, this article
proposes a novel oriented SAR ship detector, which uses oriented
bounding boxes (OBBs) to describe ships. For the purpose of
reducing missed ships (aiming to improve recall) while suppressing
false alarms (aiming to maintain precision), the proposed detector
embeds a mixed convolution channel attention (MCCA) module
into the backbone network, which highlights the important feature
channels to enhance ship representation features by reweighting all
channels of the feature map. In addition, we consider the geometric
position relationship of neighbor ships and propose geometric non-
maximum suppression (G-NMS) to remove the redundant ship can-
didates or possible false alarms. Extensive experiments conducted
on the SSDD and HRSIDs datasets demonstrate the effectiveness
of MCCA and G-NMS, the proposed detector also achieves better
performance compared to state-of-the-art OBB-based detectors.

Index Terms—Geometric nonmaximum suppression (G-NMS),
mixed convolution channel attention (MCCA), ship detection,
synthetic aperture radar (SAR).

I. INTRODUCTION

THANKS to its all-weather and all-day working mechanism,
synthetic aperture radar (SAR) has wide applications, such

as ship detection [1], [2], [3], [4], [5], [6], ship classification [7],
[8], [9], oil spill detection [10], [11], SAR image segmenta-
tion [12], [13], [14], [15]. Among them, ship detection is a
popular spot in remote sensing community, since it plays an
important role in both military and civilian fields. Specifically,
it is conducive to maritime traffic management, marine pollution
control, combating illegal fishing, and defense and maritime
security [16]. Nowadays, more and more efforts are devoted
to ship detection task based on SAR image. Traditional SAR
ship detection algorithm mainly relies on the statistical analysis
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of image pixels and establishes a model to identify ship pixels
from sea clutter pixels [17], [18], [19], [20]. However, these
methods often require many complex calculations, are very
time-consuming, and have difficulties in achieving satisfactory
results in complex backgrounds. In addition, the traditional
method will lose a lot of ship texture information, making it
difficult to meet the task demands.

With the rapid development of deep learning, object detection
based on convolutional neural network (CNN) has shined in
the field of natural images [21], [22]. According to whether a
candidate region proposal is used or not, CNN-based detectors
are divided into two-stage and one-stage detectors. The role of
the candidate region proposal is to generate rough areas where
there may be targets, then the detector precisely finds targets
in those areas. Representative two-stage detectors are Faster
R-CNN [23], mask R-CNN [24], cascade R-CNN [25]. The
one-stage detector is a direct regression to predict the position
and category of a target, thus improving the detection speed.
Representative one-stage detectors are SDD [26], YOLOv1-
v4 [27], [28], [29], [30]. The success of CNN-based object
detection method makes it widely used in image object detection
tasks [31], [32], [33], it has also enlightened SAR ship detection
research. Although the imaging mechanism is different between
natural images and SAR images, it does not prevent the usage of
CNN-based object detection methods for SAR ship detection.

In recent years, a large number of studies on CNN-based SAR
ship detection have emerged. Chang et al. [34] used YOLOv2
to achieve rapid SAR ship detection. To solve multiscale ship
detection, Cui et al. [35] proposed a dense attention pyramid
network, Deng et al. [36] used dense connection operations to
achieve feature reuse and used filters with different sizes in
the candidate region proposal stage to produce as many ship
regions at different scales as possible, thereby improving recall.
Since the complex background interferences in SAR images can
easily cause false alarms, some methods add attention modules
to the feature extraction network to highlight important ship
features. Lin et al. [37] added squeeze and excitation (SE) to
Faster R-CNN. Zhao et al. [38] used dilated convolution and con-
volutional block attention module to refine ship features. Yang
et al. [39] designed a coordinate attention module to regress the
more accurate position of ships. Besides, considering that optical
remote sensing images are similar to SAR images (they are both
bird’s-eye views) and ships in optical remote sensing images
usually have rich texture features, Bao et al. [40] pretrained
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Fig. 1. Different ship expressions. (a) HBB. (b) OBB. Each yellow rectangle
boxes a ship.

CNN with optical remote sensing ship images and used bridge
neural network to learn common features of ships in optical and
SAR images to extract SAR ship texture features. Furthermore,
to address the problem of low ship detection performance in
inshore scenes, Zhang et al. [41] improved the detection per-
formance by increasing the number of inshore samples in the
training process. Yang et al. [42] adopted to assign different loss
weights to inshore samples and offshore samples to suppress
false alarms.

However, most existing CNN-based SAR ship detection
methods apply a horizontal bounding box (HBB) to describe a
ship, such as abovementioned methods. The main disadvantages
of HBB are that it contains not only ship, but also many useless
backgrounds, and ships in SAR images are in arbitrary orienta-
tions so it is difficult to get the geometric information of a ship
from its HBB. Recent research works proposed using an oriented
bounding box (OBB) to describe a ship. OBB is essentially a
rectangle closest to a target, which can be rotated arbitrarily
according to the direction of a ship. As shown in Fig. 1, A1 and
A2 box the same ship but with HBB and OBB respectively. A1
contains not only the ship area but also some land areas and
sea areas, but most of it is the ship area and only a small land
area or sea area in A2. In addition, HBB cannot keep the aspect
ratio information of ship better, especially when ships appear
small in SAR images. For example, B1 has lost the aspect ratio
information of the ship, while B2 keeps the aspect ratio of the
ship well. Yang et al. [43] proposed an OBB-based ship detector,
which uses adaptive intersection over union (IoU) threshold to
assign positive samples and selects suitable feature maps based
on the scale of ships to avoid feature redundancy. Sun et al. [44]
added an angle classification structure to the detection head to
obtain the angle information of ships. He et al. [45] used polar
coordinates to encode OBB to solve the boundary discontinuity
problem. Anchor is a common means in CNN-based object

detection methods, which helps to improve recall and is widely
used in both HBB and OBB methods. Anchor-based methods
usually require precise presetting of the size and aspect ratio of
anchors and a lot of calculations. Therefore, some anchor-free
SAR ship detection methods are proposed. Cui et al. [46] used
spatial shuffle-Group enhance attention to aggregate more ship
features between channels, detected the keypoints of a ship to
get its HBB, and achieved large-scale SAR image ship detection.
Fu et al. [47] used an attention-guided balanced pyramid that
adaptively learns the weights of different-level feature maps for
fusion, and refines the feature maps to enhance the focus on the
ship region. Sun et al. [48] designed a category-position module
to optimize ship position regression, which can improve ship
localization performance by generating guidance vectors from
classification branch features. Zhang et al. [49] proposed an ori-
ented anchor-free detector by using an oriented non-normalized
Gaussian function to guide the regression of ship rotation angle.
Fu et al. [50] guided the network for ship feature learning by
clustering the scattering keypoints on ships, while an angle
prediction branch was used to obtain the rotation angle of a
ship.

As far as SAR ship detection task is concerned, CNN-based
methods have been developed in many varieties with different
advantages. As presented above, many difficulties have been
solved, such as ship feature extraction and fusion, multi-scale
ship detection, and large-scene ship detection. Nevertheless,
there are still many issues that have not been solved well.
Firstly, limited by the distinguishing ability of ship repre-
sentation features, real ships are often misidentified as land
backgrounds (missed ships), resulting in poor ship detection
recall, and the opposite situation also occurs (false alarms).
Secondly, it is necessary to use a post-processing algorithm
to remove the redundant detection results (usually using non-
maximum suppression (NMS) [51]), but original NMS usually
cannot effectively remove all repeated detections leading to a
decrease in precision. In OBB-based methods, it also tends
to remove high-quality detection candidates but retain low-
quality counterparts produced due to poor angle regression,
especially in the scene where two or more ships dock side
by side.

According to the previous analysis, we believe that CNN
is suitable for SAR ship feature extraction, and compared to
HBB, OBB contains fewer background interferences and is more
suitable as the bounding box (bbox) of a ship. Therefore, we
propose a novel OBB-based SAR ship detector to handle the
aforementioned issues.

Our main contribution is threefold.
1) We propose a mixed convolution channel attention

(MCCA) module to reassign new weight to each channel
of a feature map by considering both the relationship
between neighbor channels and the relationship between
all channels of the feature map. MCCA is embedded into
the backbone network to highlight important channels and
weaken useless channels of feature maps to extract more
discriminative ship features, which effectively improve re-
call by reducing missed ships while maintaining precision
by not increasing false alarms.



8076 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 2. The core structure of the proposed detector. (a) Main workflow and three components. MCCA-ResNet50 is used for ship feature extraction, which
sequentially extracts shallow and deep features (bottom-top, the resolution of the feature map gradually decreases, but the semantic information is richer.). FPN is
used to fuse shallow and deep features (top-bottom, the resolution of the deep feature map is increased by upsampling and fused with the shallow feature map at
the same resolution). During the CRN, feature maps at three scales are selected for ship detection to ensure that both small and large ships are accurately detected.
(b) MCCA-ResNet module, the basic module in MCCA-ResNet50, is used to reweight each channel of feature maps. ⊕ means element-wise addition.

2) We innovatively propose G-NMS after analyzing the issue
that arises in OBB-based ship detection and the geometric
position relationship of neighbor ships in real situations.
G-NMS aims to remove the low-quality and/or redundant
detection results more accurately by calculating the center
point distances between different ship candidates, which
further improves precision.

3) We evaluate the proposed methods on SSDD [52] and
HRSIDs

1 [53] datasets to verify their improvements.
Compared with several state-of-the-art detectors, the pro-
posed detector achieves a good balance between recall
and precision, and outperforms comparison detectors by
1%–2% in terms of average precision (AP).

In the subsequent content of this article, Section II details our
proposed MCCA and G-NMS, and Section III conducts ablation
experiments and compares with other state-of-the-art detectors
on two datasets. Finally, Section IV concludes this article.

II. PROPOSED METHODS

A. Overall Workflow

We propose a one-stage OBB-based ship detector, which is
established based on R3Det [54]. The framework of the pro-
posed detector is shown in Fig. 2(a), which has three successive
components: backbone network for feature extraction, feature
pyramid network (FPN) for feature fusion, and classification and
regression networks (CRN) for ship classification and location.
We design MCCA-ResNet50 as the backbone network and select
the feature maps at the last three scales, i.e., F2, F3, F4 whose
size is 1/8, 1/16, 1/32 of the input image. The larger the size
of the feature map, the more accurate the location information,
while the smaller the size of the feature map, the richer the
semantic information. In order to adapt to ship detection at
different scales, we use FPN to fuse F2, F3, F4 to get P2,
P3, P4. In this way, feature maps at three scales can contain
abundant semantic and location information. In the CRN step
(consistent with R3Det [54]), the classification subnet is used to

1This article uses a portion of HRSID, hence names it as HRSIDs.

determine whether a detected object is a ship, and the regression
subnet is used to locate the position information of a confirmed
object (the OBB of an object is defined by five parameters (x,
y, w, h, θ), where (x, y), w, h denote the center point, width,
height, θ ∈[−90◦, 0] is its rotation angle.), then subnets map
classification and location results at all scales back to their
original image. After that, we use G-NMS to remove possible
false alarms and redundant detection outputs (i.e., single ship
marked by multiple OBBs).

B. MCCA-ResNet50

In SAR image, since many land buildings have similar bright-
ness and shape to ships, these buildings are often misidentified
as ships or vice versa, leading to false alarms or missed ships. To
handle this problem, it is necessary to highlight important parts
in ship feature maps, for which we design MCCA and embed it
into the bottleneck of ResNet50 [see Fig. 2(b)] to extract more
discriminative ship representation features.

MCCA is a channel attention module, which aims to reweight
each channel of a feature map so that important channels get a
higher weight, and useless channels get a lower weight, thereby
enhancing the representation ability of the feature map. In order
to comprehensively consider the importance of each channel
of a feature map, MCCA applies alternately two-dimensional
convolution operation (conv2d, kernel size is 1 × 1) to establish
the relationship between a channel and all channels of the ship
feature map, one-dimensional convolution (conv1d) to establish
the relationship between neighbor channels, and its process of
reassigning channel weights is shown in Fig. 3(a). The difference
between conv2d and conv1d is shown in Fig. 3(b), and the kernel
number k of conv1d is set to 5. Compared with other chan-
nel attention modules SE [55] and efficient channel attention
(ECA) [56], SE reweights each channel of the feature map by
fully-connected (FC) operation, so the weight of each channel
is only the result of considering all channels [see Fig. 3(c)].
Contrary to SE, ECA only focuses on the relationship between
neighbor channels of the feature map, so it uses conv1d to
reassign new weight to each channel of the feature map, as
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Fig. 3. Different attention modules. (a) MCCA. (b) The difference between
conv1d and conv2d operation. (c) SE. (d) ECA. H, W, C are the height, width
and channel number of the input feature map, r is channel number attenuation
factor. GAP is global average pooling, FC is fully connected, ReLU and sigmoid
are activation function.

Fig. 4. Detail in FPN. 1 × 1 and 3 × 3 represent the kernel size of conv2d.

shown in Fig. 3(d). We believe that MCCA jointly considers
both all channels and neighbor channels, the reweighted weights
will be more helpful to enhance the distinguishing ability of
representation features.

C. Feature Fusion

Ships in SAR images are different scales, so the feature fusion
structure is used to accommodate ship detection at different
scales. The shallow features extracted by the backbone network
are rich in position information and the deep features are rich in
semantic information. Therefore, the deep and shallow features
are fused to obtain more informative ship features, as shown in
Fig. 4. The up2× means 2× upsampling, its purpose is to increase
the scale of P(i) to be consistent with F(i-1), conv2d1×1 is used
to adjust channel numbers of F(i-1) to be consistent with P(i),
⊕ means element-wise addition, conv2d3×3 is used to refine the
feature after element-wise addition. Notably, F4 is the deepest
feature, so a conv2d with kernel size 3 × 3 is directly applied to
F4 to obtain P4. The process is formulated as follows:

P4 = conv2d3×3(F4) (1)

P(i− 1) = conv2d3×3(conv2d1×1(F(i− 1))

+ up2×(P(i))), i = 3, 4. (2)

D. G-NMS

CNN-based detectors usually use NMS to remove repeated
candidates from the detection results, which is expressed as

ci =

{
ci, IoU(bi, bmax) ≤ T
0, IoU(bi, bmax) > T

(3)

where bi is a bbox whose classification confidence is ci, and
bmax is the bbox with maximum confidence. It shows that NMS
selects the one with high confidence as the final result for two
or more intersecting bboxes with high overlap, while for those
with a low overlap (i.e., IoU ≤ T), it keeps them directly. For
the OBB method, the angle difference between a predicted bbox
and the corresponding ground truth (GT) largely determines the
quality of the predicted box. In general, the larger this difference,
the lower the quality of the predicted bbox. The original NMS is
difficult to effectively balance how to preserve high-quality OBB
with low confidence without increasing false alarms. As shown
in Fig. 5, it is more expected to retain high-quality OBBs (green)
and remove low-quality ones (red). However, for original NMS,
whenT is set to a small value, some high-quality OBBs with low
confidence are removed [see Fig. 5(b)], while when T is set to a
large value, although high-quality OBBs are preserved, a large
number of low-quality OBBs are also retained [see Fig. 5(c)].

To solve the above problem, we carefully consider the geomet-
ric position relationship of neighbor ships and conclude that the
distance between the center points of two ships must be higher
than a specific threshold, no matter how close they are. With this
idea, we propose G-NMS that considers the geometric position
relationship to handle intersecting bboxes. First, assuming that
Q = {b1, b2, . . ., bN} is the set of detection bboxes, and the
corresponding confidences are {c1, c2, . . ., cN} which are sorted
from smallest to largest, i.e., c1 ≤ c2 ≤ . . .≤ cN . Next, we select
bi (i = 1, . . .,N ) from Q one by one in order, and compare it with
other bboxes bj (j = i+ 1, . . ., N ) with greater confidences
according to the following:

ci=

⎧⎪⎪⎨
⎪⎪⎩

0, IoU(bi, bj) > T
α ∗ ci, IoU(bi, bj) ≤ T, ρ ≤ m, cj − ci ≤ n
β ∗ ci, IoU(bi, bj) ≤ T, ρ ≤ m, cj − ci > n
ci, IoU(bi, bj) ≤ T, ρ > m

(4)

where ρ is the Euclidean distance between the center points of
bi and bj whose sizes are wi × hi and wj × hj , respectively.
m = min{wi, hi, wj , hj}, n is the threshold of the difference in
confidences. α, β ∈ (0, 1) are attenuation factors. When IoU(bi,
bj) is higher than T, since ci ≤ cj , the confidence of bi is set to
zero. When IoU(bi, bj) is less than T, the following conditions
are considered, respectively: 1) If bi, bj are very close (ρ ≤ m)
and have similar confidences (cj − ci ≤ n), they are most likely
to describe the same ship and a large attenuation factor α is used
to attenuate ci. 2) If bi, bj are very close (ρ ≤ m) but have a large
difference (cj − ci > n) in confidence, they are more likely to
describe two different ships and a small attenuation factor β
is used to attenuate ci. 3) If bi, bj are far apart, ρ > m, their
confidences are not adjusted. During this process, ci is at most
attenuated once. Through the above operations, the confidence
of low-quality detection results will be attenuated to a very low
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Fig. 5. Redundant candidate elimination. (a) GT. (b) NMS with small T. (c) NMS with large T. (d) G-NMS with large T. The blue, green, and red represent
GT, high-quality and low-quality OBBs.

level. In practical applications, low-quality or repeated results
can be removed by setting the relevant condition thresholds (i.e.,
T, n, α, β) reasonably, and high-quality results can be retained.
An example is shown in Fig. 5(d).

E. Loss Function

The loss function consists of classification loss (Lcls) and
regression loss (Lreg). Classic focal loss (FL) [57] is used as
Lcls, which is formulated as

Lcls = FL = −αt(1− pt)
γ log(pt) (5)

where αt is weighting factor, γ is tunable focusing parameter,
pt ∈(0,1] is the model’s estimated probability.

In this article, a predicted OBB of an anchor box is B =
(xp, yp, wp, hp, θp), and the corresponding GT of the anchor
box is G = (xg, yg, wg, hg, θg). To avoid the loss discontinuity
caused by angle periodicity and sudden change of related width
and height, Lreg is set based on [58].

Lc = s(|xp − xg|) + s(|yp − yg|) (6)

Lr1 = s(|wp − wg|) + s(|hp − hg|) + s(|θp − θg|) (7)

Lr2 = s(|wp − hg|) + s(|hp − wg|) + s(|90− |θp − θg||)
(8)

Lr = Lc +min{Lr1, Lr2} (9)

Lreg =
∑
i∈Np

Li
r. (10)

Np represents the number of positive samples, s(·) represents
smooth-L1 [59].

Thus, the total loss function is expressed as

Ltotal =
1

Np
Lcls +

1

Np
Lreg (11)

III. EXPERIMENTS AND ANALYSIS

A. Datasets and Experimental Settings

1) Datasets: We employ SSDD [52] and HRSIDs datasets
to validate the proposed method. SSDD contains 1160 images

TABLE I
PARAMETERS SETTING

(2456 ships), which are collected from various satellites with
resolutions differing from 1 to 15 m. HRSIDs is composed of
700 images (3546 ships) from randomly selected inshore and
dense scenes in HRSID [53], it contains SAR images with a
resolution of 0.5, 1, 3 m. Besides, there are a large number of
small ships in HRSIDs (as shown in the second row of Fig. 1), so
detecting ships on HRSIDs is more difficult than SSDD. Based
on their original annotations (i.e., GT), we relabel the GT in OBB
format to evaluate all comparison methods. In our experiments,
we divide training set and test set into the ratio of 8:2, the test
data of SSDD is the data whose file names end with 0 and 9, and
test data of HRSIDs is randomly selected. During the training,
all images are resized to 800 × 800 and random flip is used to
enhance datasets.

2) Parameters Setting: We set the aspect ratio of anchor
as {1/5, 1/3, 1/2, 1, 2, 3, 5}, the rotation angle of anchor as
{−90◦,−75◦,−60◦,−45◦,−30◦,−15◦}. The setting of other
relevant parameters used in experiments is listed in Table I.

3) Implementation Details: All our experiments are based on
MMDetection toolbox [60]. We use stochastic gradient descent
(SGD) optimizer to train model, the initial learning rate is 0.005,
momentum is 0.9, and weight decay is 0.0001. The experiments
run on a computer with Intel i9-9980XE CPU 3.00 GHz and
GeForce GTX 2080 Ti, the operating system is Ubuntu 20.04.3.

B. Evaluation Criteria

We evaluate detectors based on PR-curve, which shows the
relationship between precision (P) and recall (R) for every
possible cut-off (i.e., detection threshold). A detector with a
higher AP, which is corresponding to a larger area under the
curve (AUC) and has a better overall performance. It is desired
that a detector should have both high P and high R. However,
most detection algorithms often involve a trade-off between the
two. Break-even point (BEP) is the point on PR-curve where
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TABLE II
PERFORMANCE OF PROPOSED COMPOSITIONS ON TWO DATASETS

P = R, which is utilized to evaluate the balance performance. In
this article, if the IoU of a predicted bbox with its corresponding
GT is larger than 0.5, this predicted bbox is considered to be a
correct detection

R =
TP

TP + FN
(12)

P =
TP

TP + FP
(13)

AP =

∫ 1

0

P(R)dR (14)

where TP, FP, FN are the number of correctly detected ships,
false alarms, and missed ships, respectively.

C. Ablation Experiments

We take R3Det [54] as the baseline and perform an ablation
study on SSDD and HRSIDs, the experimental results are shown
in Table II . First, we only add MCCA to R3Det (with NMS).
On SSDD dataset, AP and BEP are, respectively, improved by
1.46% and 0.015 compared to the baseline, which shows that
after MCCA is added, more ships are detected, and accuracy is
also higher. On HRSIDs dataset, AP increased by 0.93%, but
BEP decreased by 0.001, which means that while improving
recall, it also increases false alarms, but this is acceptable
because there are a large number of small ships in HRSIDs

dataset. Small ships in SAR images have little or no texture
information, which leads to small ship features are very similar
to some background features. When recall is improved, some
backgrounds are also recognized as ships, resulting in a decrease
in the accuracy. Next, when adding only G-NMS to R3 Det. The
improvement of AP on two datasets is not high, it is 1.01%
on SSDD, and only 0.64% on HRSIDs. BEP is improved by
0.002 (slightly not obvious) on SSDD and 0.014 on HRSIDs,
this reveals that after using G-NMS, false alarms are effectively
suppressed, and precision is significantly improved, thereby
improving BEP. Finally, we add both MCCA and G-NMS to
R3 Det, which achieves significant performance improvements
on two datasets, AP and BEP improved by 2.61% and 0.019,
respectively, on SSDD, 1.59% and 0.013 on HRSIDs, the results
fully show that both recall and precision have been improved.
In addition, it is worth noting that the possible false alarm of
the detector on HRSIDs dataset due to adding MCCA (when
only adding MCCA, BEP drops compared to the baseline) is
well resolved after using G-NMS (while AP is improved, BEP
is also significantly improved), which indicates that MCCA
and G-NMS can complement each other and work together to
improve detection performance.

TABLE III
PERFORMANCE OF DIFFERENT ATTENTION MECHANISMS

D. Comparing the Proposed Compositions With Other
Methods

1) Comparing MCCA With Other Attention Mechanisms: In
order to validate the effectiveness of the proposed MCCA, we
compare it with the SE and ECA attention mechanisms by adding
three modules in turn to the R3Det (with NMS). The detection
results on two datasets are shown in Table III.

It can be seen that adding the attention module can improve AP
of the detector, among which MCCA is better than SE and ECA.
This result confirms our assumption that the reweighted weights
obtained by jointly considering both all channels and neighbor
channels are more helpful to enhance the distinguishing ability
of representation features. However, it can be found that MCCA
is lower than SE and ECA in terms of BEP on HRSIDs. This
is because small ships are easily missed in detection process.
Especially in inshore, improving recall often results in a decrease
in precision. Fortunately, MCCA does not cause too much
decrease in BEP (only 0.009 lower than ECA, and 0.002 lower
than SE) while bringing considerable AP improvement.

2) Comparing G-NMS With Other Postprocessing
Algorithms: In order to validate the effectiveness of the
proposed G-NMS. Taking R3Det as the basis, we replace
NMS with Soft NMS [61], DIoU NMS [62], Weighted
Boxes Fusion (WBF) [63], and G-NMS in turn to test the
detection performance. As described in Section II-D, NMS
takes a barbarous approach, i.e., it keeps the bbox with the
highest confidence while zeroing the confidences of other
bboxes with IoU larger than the threshold (it is equivalent
to removing the bboxes). However, since the threshold is
difficult to determine, NMS can easily cause missed detections
or false alarms. To solve this problem, Soft NMS designs a
confidence attenuation function based on IoU (the one with
lower confidence is attenuated, and the larger the IoU, the more
severe the confidence attenuation), which is different from
NMS that directly sets confidence to 0. However, only using
IoU to measure the distance between bboxes is not enough
in dense scenes, so DIoU is proposed, which considers both
IoU and center point distance between bboxes. DIoU NMS
is formed by replacing the IoU in NMS with DIoU, and still
retains the operation of directly attenuating confidence to 0.
WBF abandons the idea of directly removing a bbox based on
a certain measure (IoU or DIoU), and it performs a weighted
fusion for bboxes whose IoU is larger than threshold to get a
new bbox. In this process, the larger the confidence of a bbox,
the greater the role it plays. However, the new bbox may be
affected by the low-quality bboxes, resulting in poor fusion.

Fig. 6 shows the results of two samples (a and b) with different
postprocessing algorithms. From (a-2), it can be seen that NMS
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Fig. 6. Results of different post-processing algorithms. (a-1) and (b-1) are GT. (a-2) and (b-2) are results of NMS. (a-3) and (b-3) are results of Soft NMS.
(a-4) and (b-4) are results of DIoU NMS. (a-5) and (b-5) are results of WBF. (a-6) and (b-6) are results of G-NMS. The blue, green, red, and purple rectangles
represent respectively GT, correct detection (TP), false alarms (FP), and missed ships (FN).
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TABLE IV
PERFORMANCE OF DIFFERENT POSTPROCESSING ALGORITHMS

(a) (b)

Fig. 7. PR-curves of different detectors on two datasets. (a) Results of different
detectors on SSDD. (b) Results of different detectors on HRSIDs.

is prone to remove correct ship detections when ships are parked
side by side. Soft NMS can reduce this situation, but it retains
more false alarms. Compared with NMS, DIoU NMS leaves
more false alarms with the same number of removing correct
results, perhaps DIoU is approximately equal to IoU in some
situations and DIoU NMS uses a larger threshold to cause
it. Besides, comparing (a-2) and (a-5), it can be found that
since the fusion of multiple OBBs causes high-quality OBBs
to be corrupted, some OBBs do not surround the ships well.
Therefore, WBF may not be suitable for the postprocessing
of oriented SAR ship detection. Observing (a-6), G-NMS not
only preserves high-quality detection results for all ships, but
also leaves fewer false alarms than other methods. However,
from the results of (b-2)–(b-6), it can be seen that the detection
of small ships in dense scenes is very challenging and prone
to false alarms and missed detections. The detector alone uses
NMS, Soft NMS, DIoU NMS, and G-NMS are similar in missed
detection, but G-NMS has the best effect of removing false
alarms. Besides, WBF leaves the fewest false alarms among
several methods, but it misses a large number of ships, which
may be due to the low-quality fusion effect that causes some
correct detection results to be removed. Although G-NMS also
may remove some correct detections and retain some false
alarms, it achieves the best results and outperforms comparative
methods.

Next, we quantitatively analyze these postprocessing algo-
rithms, the results are shown in Table IV. Compared to NMS,
Soft NMS achieves better performance on two datasets, although
the improvement is slightly small (mainly 0.32% AP improve-
ment on SSDD, and 0.005 BEP improvement on HRSIDs), but
this result still shows that it is not appropriate to directly attenuate

the confidence of a bbox to 0. Soft NMS attenuates confidence
of a bbox according to IoU, the larger the IoU, the more severe
the confidence attenuation. This is because the larger the IoU,
the greater the possibility that the attenuated bbox is redundant,
so that high-quality nonredundant bboxes may be attenuated,
but not removed directly. For DIoU NMS, the BEP on SSDD
is consistent with NMS, and the AP is improved by 0.37%, but
the AP is improved by 0.29% and the BEP is improved by 0.011
on HRSIDs. This result shows that the center points distance
between bboxes is a factor worth considering because no matter
how close two targets are, their center points are always different.
Because of this, DIoU NMS achieves better performance than
NMS. In addition, comparing soft NMS and DIoU NMS, it can
be found that the performance of DIoU NMS is better than
soft NMS, which once again illustrates the importance of the
center points distance between bboxes. Meanwhile, the superior
performance of these two algorithms over NMS proves that
our idea of designing G-NMS is reasonable. However, what is
surprising and expected is that when WBF is used instead of
NMS, the performance of the detector drops on two datasets
and AP on HRSIDs is only 76.51%, which is 6.22% lower than
NMS. The possible reason is that WBF adopts a coordinate
weighted fusion method for the OBBs whose IoU are higher
than the threshold. In the OBB method, the weighted fusion
result of multiple OBBs is a quadrilateral instead of a rectangle,
so the final result can only be taken as the smallest bounding
rectangle of the resulting quadrilateral. During this process,
many high-quality OBBs are destroyed, resulting in inaccurate
position prediction [as shown in Fig. 6(a-5)] and causing a
large number of ships to be missed (recall drops). Although
recall is severely affected, the high precision still maintains the
BEP at a stable level (0.009 and 0.005 lower than NMS on
SSDD and HRSIDs, respectively). However, this is not what
we want, we would like to achieve a higher level of both recall
and precision.

Going back to the proposed G-NMS, it achieves the best
performance on SSDD and HRSIDs (AP and BEP are, respec-
tively, 1.01% and 0.002 higher than NMS on SSDD, AP and
BEP are, respectively, 0.64% and 0.014 higher than NMS on
HRSIDs), while outperforming Soft NMS, DIoU NMS, and
WBF. However, we can find that it is mainly the improvement
of AP on SSDD and the improvement of BEP on HRSIDs.
This is because SSDD contains a small number of small ships,
mostly larger ships (larger ships are relatively easy to detect), it
is easy to achieve a good balance between recall and precision
so the difference between the BEP of different algorithms is
not obvious, and the improvement of AP also means that the
correct detections of more ships are retained after using G-
NMS. Different from SSDD, there are a large number of dense
small ships on HRSIDs, which is extremely challenging for the
postprocessing algorithm. Although the improvement of AP by
G-NMS is not very large, mainly because small ships are easier to
be missed, the BEP gets an obvious improvement, which shows
that G-NMS is beneficial not only for improving recall, but also
for precision. In other words, these results fully demonstrate the
effectiveness of G-NMS in dense ship detection.
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Fig. 8. Two detection examples of four detectors. (a) GT. (b) S2ANet. (c) ReDet. (d) R3Det. (e) Proposed. The blue, green, red, and purple represent GT,
high-quality OBBs, false alarms, and missed ships.

TABLE V
EVALUATION ON DIFFERENT DETECTORS

E. Comparison With State of the Art

We compare the proposed detector with several state-of-
the-art OBB-based detectors, i.e., R3Det [54], S2ANet [64],
R-RetinaNet+[43], ReDet [65]. S2ANet and ReDet are retrained
and tested based on MMDetection toolbox. For R-RetinaNet+,
since we do not have access to the code, we directly compare
with the results in the literature [43]. Therefore, there is no result
of R-RetinaNet+ on HRSIDs and only its result on SSDD is used
in this article.

1) Overall Performance: According to Table V, on SSDD
dataset, the proposed detector achieves the highest AP (96.47%),
which is 1.66%, 1.81%, 2.61%, 2.98% higher than ReDet,
R-RetinaNet+, R3Det, S2ANet, respectively. From Fig. 7(a),
the curve of the proposed method is significantly better than
other methods are significantly better than other methods, when
the R is the same, the proposed method can achieve a higher
P, and when the P is the same, a higher R can be achieved. On
HRSIDs dataset, the AP of the proposed detector ranks second,
only 0.41% lower than that of ReDet [65]. Fig. 7(b) shows that
this tiny gap is mainly attributed to that ReDet is slightly better
than the proposed method in the low R high P and low P high R
regions. However, in real application scenes, we tend to prefer
the performance of the detector in the high P and high R region.
Comparing Fig. 7(a) and (b), it can be seen that the performance
of several detectors on HRSIDs is not as good as on SSDD,
mainly because HRSIDs contains a large number of small ships
(As shown in Fig. 1), the texture features of small ships in SAR

images far inferior to large ships, and are easily confused with
backgrounds so that small ships are easy to be missed. The
performance gap of several detectors in HRSIDs is not large,
which shows that it is very difficult to ensure high R and high P
for small ship detection. Fortunately, the proposed can improve
in this regard, although the improvement is not quite significant,
the improvement brought by the proposed is comprehensive.
As shown in Fig. 7, the PR-curves of the proposed detector
are consistently above the other detectors in high P and high R
region, which indicates that the proposed one has better overall
performance.

2) Balance Ability: The proposed detector exhibits an ability
to balance R and P that is better than other methods, which
can be derived from comparing the BEP of different methods
in Table V. The proposed method achieves the highest BEP
on both datasets, i.e., 0.949 on SSDD and 0.840 on HRSIDs.
The BEP of several detectors on HRSIDs is inferior to that
on SSDD, and the BEP difference of different detectors on
SSDD is larger than on HRSIDs, which once again shows the
difficulty of detecting small ships, and some current studies are
working on this problem. However, the proposed method does
not specifically design for small ship detection, it still achieves
performance improvements, which is enough to demonstrate its
effectiveness. Besides, it can also be seen from Fig. 7 that the
proposed detector can simultaneously achieve high R and high
P, which indicates its balance ability is better.

3) In-Depth Analysis: In order to provide a more intuitive
comparison and reveal the reasons behind the quantitative data,
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the detection results of two randomly selected test samples
No.000750 from SSDD and No.P0099_1200_2000_1800_2600
from HRSIDs are shown in Fig. 8. It shows that in inshore envi-
ronment, the land buildings are similar to ship’s appearance and
ships are docked side by side have brought a great challenge to
detection and postprocessing. All detectors produce false alarms,
in which ReDet produces 3(1+2), R3 Det produces 5(1+4),
while S2ANet and the proposed detector only produce 1(0+1).
The false alarms are mainly due to the poor discriminative
features extracted by network, resulting in some backgrounds
being identified as ships by the classification subnet, but the
proposed detector can extract better ship features to avoid it.
In terms of missed ships, the detectors that missed ships all
use NMS and the missed ships are mainly in the areas where
ships are parked side by side. The proposed G-NMS is designed
to consider this situation, so only the proposed detector does
not miss ships. In addition, comparing Fig. 8(d) and (e), the
proposed detector well solves the problems of false alarms and
missed ships that exist in the original R3Det. This result once
again proves the advantages of the proposed detector in extract-
ing discriminative representation features through the backbone
network with MCCA and removing redundancy and false alarms
by G-NMS. However, the proposed detector is not perfect, and
false alarms may occur in the inshore scenes when backgrounds
behave extremely similar to ships, as shown in Fig. 8(e). The
generation of false alarms indicates that the background features
extracted by the detector have a certain degree of similarity
with ship features. Although the proposed method improves
the discrimination of ship features well, there is still room for
improvement.

IV. CONCLUSION

Focusing on the unsolved issues of SAR ship detection task in
inshore and densely distributed scenarios, this article proposes
a novel oriented SAR ship detector that achieves high recall and
precision together. To enhance the ship feature representation
extracted by the backbone network, we propose an MCCA
module to reweight ship features so that important features
are highlighted. In addition, G-NMS is proposed based on
the geometric position relationship of ships, which effectively
solves the problem of missed detection in scenes where ships
are docked side by side and densely distributed. The detector
with MCCA and G-NMS also achieves better performance.
Extensive experiments on SSDD and HRSIDs datasets validate
the effectiveness and advantages of the proposed method.
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