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I. INTRODUCTION

The problem of estimating the amplitude, phase, and
frequency of multiple (say L) tones in additive white Gaus-
sian noise (AWGN) has received significant attention for a
number of years because of its relevance in various fields,
including radar systems and wireless communications (see,
e.g., [1], [2], [3], and [4], respectively). It is well known that
the maximum likelihood (ML) approach to this problem
leads to a complicated nonlinear optimization problem.
Substantial simplifications can be made when the L tone
frequencies are sufficiently well separated and the number
N of available signal samples is large enough [5], [6], [7].
In fact, under these assumptions, each tone has a limited
influence on the estimation of the others, so that approxi-
mate ML estimation can be achieved through a conceptually
simple sequential procedure that consists in iteratively ex-
ecuting two steps [6]. In the first step of this procedure, the
parameters of the dominant tone (i.e., of the tone associated
with the largest peak in the periodogram of the observed
signal) are estimated in an ML fashion. In its second step,
instead, the estimated tone is subtracted from the available
signal samples, and a new periodogram is computed for
the resulting residual. These steps are repeated until all
the detectable tones are estimated. The technical relevance
of this procedure is motivated by the following relevant
advantages [8].

1) It turns a complicated multidimensional problem
(whose dimensionality is usually unknown a priori)
into a sequence of lower dimensional subproblems.
Consequently, its overall complexity is proportional
to that required to solve each of such subproblems
and is usually much lower than that of parametric
estimation methods (e.g., the MUSIC [9] and the
ESPRIT [10]) and nonparametric spectral estima-
tors (e.g., the Capon method [11], the APES [12],
and the IAA-APES [13]).

2) It performs better than independently estimating the
tones associated with the largest peaks of the original
periodogram. In fact, it allows us to identify peaks
that are initially masked by the leakage due to nearby
tones.

3) It is able to estimate an unknown L in a simple
fashion. In fact, this result can be achieved setting the
initial value of this parameter to zero and applying a
suitable test to establish whether, at each repetition
of its first step, the largest peak detected in the
periodogram of the last residual is significant [5] or
whether, at each repetition of its second step, the
energy of the new residual is large enough [14]. If
one of these conditions is satisfied, the estimate of
L is incremented by one and the next step is carried
out; otherwise, the estimation process is terminated.
It is worth stressing that various estimation methods
(e.g., the MUSIC and the ESPRIT) require the prior
knowledge of L and that, in these cases, the use of
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some methods, such as the generalized Akaike in-
formation criterion [15] or the minimum description
length [16], is commonly proposed for the estimation
of this parameter; however, the computational effort
they require is not negligible.

The three-step procedure described above, despite its
advantages, suffers from the following two shortcomings.

1) Inaccuracies in the estimation of each tone accom-
plished in its first step result in an imperfect cancel-
lation of the tone itself and, thus, in error accumu-
lation; the intensity of this phenomenon increases
with iterations, affecting the estimation accuracy of
the weakest tones.

2) The estimate of each tone is potentially biased, be-
cause of the presence of other tones [7]. Biases are
influenced by the relative phase, frequency, and am-
plitude of the superimposed tones and are expected to
be more relevant in the first estimated frequencies,
since these suffer from stronger interference from
other tones. For this reason, the overall accuracy
of this procedure depends on that of the employed
single-tone estimator and can be improved by adopt-
ing specific methods for mitigating the estimation
bias. As far as the first issue is concerned, it is impor-
tant to point out that the optimal (i.e., ML) estimation
of a single tone in AWGN is a computationally hard
task. This is mainly due to the fact that the ML metric
is a highly nonlinear function that does not lend itself
to easy maximization (see, e.g., [17]). In practice,
the most accurate ML-based single-tone estimators
available in the technical literature achieve an ap-
proximate maximization of this metric through a
two-step procedure; the first step consists in a coarse
search of tone frequency, whereas the second one
in a fine estimation generating an estimate of the
so-called frequency residual (i.e., of the difference
between the real frequency and its coarse estimate).
Coarse estimation is always based on the maxi-
mization of the periodogram of the observed signal,
whereas fine estimation can be accomplished in an
open-loop fashion or through an iterative procedure.
On the one hand, all the open-loop estimators exploit
spectral interpolation to infer the frequency resid-
ual from the analysis of the fast Fourier transform
(FFT) coefficients at the maxima of the associated
periodogram and at frequencies adjacent to it [8],
[18], [19], [20], [21], [22], [23], [24], [25], [26],
[27]. Unfortunately, unlike iterative estimators, the
accuracy they achieve is frequency dependent and
gets smaller when the signal frequency approaches
the center of one of the FFT bins. On the other hand,
the iterative estimation techniques available in the
technical literature are based on various methods,
namely:

a) standard numerical methods for locating the
global maximum of a function (e.g., the secant
method [28] or the Newton’s method [29]);

b) an iterative method for binary search, known
as the dichotomous search of the periodogram
peak [30], [31];

c) interpolation methods amenable to iterative
implementation [32], [33], [34], [35], [36],
[37];

d) the combination of the above-mentioned di-
chotomous search with various interpolation
techniques [38];

e) the computation of the first derivative of the
spectrum [39].

The use of some of these algorithms in multiple-tone
estimators based on the above-mentioned serial cancel-
lation approach has been investigated in [8], [14], [15],
[40], [41], [42], [43], and [44]. On the one hand, the
periodogram-based (coarse) estimation method has been
employed in the CLEAN algorithm [45], [46], [47], in the
more CLEAN [14], and in the RELAX algorithm [15]. Note
that, since a fine estimation step is missing in all these
algorithms, achieving high accuracy requires the use of zero
padding and of a large FFT order. On the other hand, the
exploitation of more refined single-tone estimators has been
investigated in [8], [40], [41], [42], and [44]. In particular,
the use of open-loop interpolation methods exploiting three
or five adjacent spectral coefficients (including the one
associated with the coarse frequency estimate) has been
studied in [8] and [44], whereas that of the iterative methods
developed in [32] and [48] has been analyzed in [40], [41],
and [42], respectively.

As far as the second technical issue (i.e., estimation
bias) is concerned, it is worth mentioning that the most
straightforward methods for bias mitigation rely on the
use of 1) zero padding for enhancing periodogram spectral
resolution and 2) window functions [7], [17], [49], [50],
[51], [52]; the price to be paid for these choices is an increase
in the overall computational cost and in the variance of
computed estimates, respectively. More refined methods
are represented by interpolators with intrinsic leakage re-
jection [8] and nonlinear optimization methods. The last
class of methods includes the expectation–maximization
(EM) algorithm [53], the space-alternating generalized EM
algorithm [3], [54], the Newton’s method [29], [55], and
different optimization algorithms that employ cyclic can-
cellation procedures [14], [15], [42]. In the last case, tone
re-estimation is accomplished after removing the interfer-
ence of both the stronger and weaker tones as the iterations
of the serial cancellation procedure evolve [14], [15] or after
detecting and estimating the parameters of all tones [42]; the
most refined version of the first method is described in [15],
where tone re-estimation is iterated after the estimation of
each new tone, to generate excellent initial estimates for
the next step (i.e., for the estimation of the next tone).
Tone re-estimation reduces error accumulation and leads
to convergence to the ML solution in the absence of noise if
the frequency spacing of the detected tones is large enough;
however, this result is achieved at the price of an increase
of the computational cost and latency [14].
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This article aims at providing various new results
about the estimation of multiple superimposed tones and
their exploitation in colocated multiple-input multiple-
output (MIMO) frequency-modulated continuous wave
(FMCW) radar systems operating at millimeter waves
(mmWaves) [56], [57]. Its contribution is threefold and can
be summarized as follows:

1) An ML-based estimator of a single complex tone
is developed. This estimator is based on the peri-
odogram method for coarse frequency estimation
and on a new iterative algorithm for the estimation of
the frequency residual and the complex amplitude.
The last algorithm requires, unlike all the other re-
lated estimation methods available in the technical
literature, the evaluation of multiple spectral coeffi-
cients. Moreover, its derivation is based on:

a) a new approximate expression of the ML
metric;

b) the exploitation of the alternating minimiza-
tion (AM) technique for the maximization of
this metric (see, e.g., [58], Par. IV-A]).

2) Two recursive algorithms for the estimation of
the parameters of multiple superimposed tones
are derived. These algorithms combine the above-
mentioned single-tone estimator with a serial can-
cellation approach.

3) The accuracy of our single and multiple estimators
is assessed by extensive computer simulations and
compared with that achieved by all the other related
algorithms available in the technical literature; both
synthetically generated data and the measurements
acquired through a commercial MIMO FMCW radar
are processed.

Our numerical results lead to the following conclusions.

1) Our single-tone estimator performs similarly as other
known estimators.

2) Our multiple-tone estimators outperform all the
other related estimators in terms of the probability of
convergence and achieve similar or better accuracy in
the presence of arbitrary frequency residuals. More-
over, our multiple-tone estimators are able to reliably
operate in the presence of multiple closely spaced
tones, when all the other related estimators fail. For
this reason, if employed in FMCW radar systems,
they allow us to achieve a good spatial resolution in
the presence of a dense distribution of point targets.

The rest of this article is organized as follows. In Sec-
tion II, the employed signal model is defined. Section III is
devoted to the derivation of our single- and multiple-tone
estimation algorithms, to the assessment of their computa-
tional complexity, and to the analysis of their similarities
and differences with related estimators available in the
technical literature. In Section IV, the performance of our
estimation algorithms is assessed and compared with that
achieved by other estimators. Finally, Section V concludes
this article.

Notations: �{x} and �{x} denote the real and imaginary
parts of the complex variable x, respectively.

II. SIGNAL MODELS

In this article, we focus on the problem of estimating all
the parameters of the complex sequence1

xn =
L−1∑
l=0

Al exp
(

j2πnFl
) + wn (1)

with n = 0, 1,..., N − 1; here, Al and Fl ∈ [0, 1) denote the
complex amplitude and thenormalized frequency, respec-
tively, of the lth complex tone appearing in the right-hand
side (RHS) of (1). The last equation can also be rewritten
as

xn =
L−1∑
l=0

al exp
(

j(2πnFl + ψl )
) + wn (2)

where al � |Al |, ψl � ∠(Al ), wn is the nth sample of an
AWGN sequence (whose elements have zero mean and
variance 2σ 2), N is the overall number of samples, and∠(x)
denote the phase of the complex quantity x.

The signal model (1) appears in a number of problems
concerning biomedical applications, wireless communica-
tions, and radar systems. Our interest in the considered
estimation problem has been motivated by its relevance in
the last field and, in particular, in colocated MIMO FMCW
radar systems operating at mmWave [1], [59].

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMA-
TION OF A SINGLE TONE AND OF MULTIPLE
TONES

In this section, we first derive a new method for esti-
mating the parameters of a complex tone. Then, we show
how this method can be exploited to detect multiple su-
perimposed tones and estimate their parameters through a
deterministic procedure based on successive cancellations.
Finally, we analyze the computational complexity of the de-
veloped estimation methods and compare them with related
techniques available in the technical literature.

A. Estimation of a Single Tone

Let us focus on the problem of estimating the parameters
(namely, the frequency and complex amplitude) of a single
tone contained in the complex sequence {xn; n = 0, 1,...,
N − 1}, whose nth sample is expressed by (1) with L = 1,
i.e., as

xn = A exp
(

j2πnF
) + wn (3)

where A and F are the complex amplitude and the nor-
malized frequency, respectively, of the tone itself. It is
well known that the ML estimates FML and AML of the

1Estimation methods have also been developed for the real counterpart of
this model. Our main results can be found in [59].
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parameters F and A, respectively, represent the solution of
the least-squares problem (see, e.g., [28], (22)])

(FML,AML) � arg min
F̃ ,Ã

ε(F̃ , Ã) (4)

where F̃ and Ã represent trial values of F and A, respectively

ε(F̃ , Ã) � 1

N

N−1∑
n=0

εn(F̃ , Ã). (5)

is the mean square error (MSE) evaluated over the whole
observation interval

εn(F̃ , Ã) �
∣∣xn − sn(F̃ , Ã)

∣∣2
(6)

is the square error between the noisy sample xn (3) and
its useful component sn(F̃ , Ã) � Ã exp( j2πnF̃ ) evaluated
under the assumption that F = F̃ and A = Ã. Substituting
the RHS of the last expression into that of (6) yields

εn(F̃ , Ã) = |xn|2 + |Ã|2 − 2�{
xn Ã∗ exp(− j2πnF̃ )

}
. (7)

Then, substituting the RHS of (7) into that of (5) yields

ε(F̃ , Ã) = εx + |Ã|2 − 2�{
Ã∗X̄ (F̃ )

}
(8)

where εx �
∑N−1

n=0 |xn|2/N and

X̄ (F̃ ) � 1

N

N−1∑
n=0

xn exp
(− j2πnF̃

)
(9)

is, up to the scale factor 1/N , the Fourier transform of the
sequence {xn}.

Based on (8), it is not difficult to show that the optimiza-
tion problem expressed by (4) does not admit a closed-form
solution because of the nonlinear dependence of the func-
tion ε(F̃ , Ã) on its variable F̃ . However, an approximate
solution to this problem can be derived by:

1) exploiting an iterative method, known as AM (see,
e.g., [58]). This allows us to transform the 2-D opti-
mization problem expressed by (4) into a couple of
interconnected 1-D problems, one involving the vari-
able F̃ only (conditioned on the knowledge of Ã), the
other one involving the variable Ã only (conditioned
on the knowledge of F̃ );

2) expressing the dependence of the function ε(F̃ , Ã)
on the variable F̃ through the couple (Fc , δ̃) such
that

F̃ = Fc + δ̃ FDFT (10)

where Fc is a given coarse estimate of F , δ̃ is a real
variable called residual and belonging to the interval
[−0.5, 0.5],

FDFT = 1/N0 (11)

is the normalized fundamental frequency associated
with the N0th-order discrete Fourier transform (DFT)

X0 = [
X0,0,X0,1, . . .,X0,N0−1

]T
(12)

of the zero-padded version

x0,ZP = [
xT

0 0T
(M−1)N

]T
(13)

of the vector

x0 �
[
x0, x1, . . ., xN−1

]T
(14)

collecting all the elements of the sequence {xn}, M is
a positive integer (dubbed oversampling factor), 0D

is a D-dimensional (column) null vector, and N0 �
M ·N .

3) expressing the dependence of the function ε(F̃ , Ã)
(8) on the variable δ̃ through its powers {δ̃l ; 0 ≤
l ≤ 3}; this result is achieved by approximating the
complex exponential exp(− j2πnδ̃ FDFT) appearing
in the expression of ε(F̃ , Ã) with its Taylor expansion
truncated to a proper order (see below).

Let us show now how these principles can be put into
practice. First of all, the exploitation of the above-mentioned
AM approach requires solving the following two subprob-
lems: P1) minimizing the cost function ε(F̃ , Ã) (8) with
respect to Ã, given F̃ = F̂ ; and P2) minimizing the same
function with respect to F̃ , given Ã = Â. Subproblem P1 can
be easily solved thanks to the polynomial dependence of the
cost function ε(F̂ , Ã) on the variable Ã. In fact, the function
ε(F̂ , Ã) (8) is minimized with respect to Ã selecting2

Ã = Â = X̄ (F̂ ) (15)

where X̄ (F̂ ) can be computed exactly through its expression
(9) or, in an approximate fashion, through a computationally
efficient procedure based on the fact that the vector

X̄s � M X0 (16)

collects N0 uniformly spaced samples of the function X̄ (F ).
For this reason, an approximate evaluation of the quantity
X̄ (F̂ ) at a normalized frequency F̂ different from any mul-
tiple of FDFT (11) can be accomplished by interpolating the
elements of the vector X̄s (16); the last vector, in turn, can
be easily computed after evaluating the N0th FFT of x0,ZP

(13), i.e., the vector X0 (12).
Let us take into consideration now subproblem P2.

This subproblem, unlike the previous one, does not admit
a closed-form solution. For this reason, an approximate
solution is developed below. Such a solution is based on
representing the normalized frequency F in the same form
as F̃ [see (10)], i.e., as F = Fc + δ FDFT and on a method
for estimating the real residual δ, i.e., for accomplishing
the fine estimation of F . This method is derived as follows.
Representing the trial normalized frequency F̃ according to
(10) allows us to rewrite the expression (7) (with Ã = Â) as

εn(F̃ , Â) = |xn|2 + |Â|2 − 2�{
xnÃ∗ exp(− j(θ̂n + n�̃))

}
(17)

where �̃ � 2πδ̃ FDFT and θ̂n � 2πn Fc. If the normalized
frequency FDFT (11) is small enough (i.e., if the FFT order
N0 is large enough), the complex exponential exp(− jn�̃)

2This is a well-known result (see, e.g., [28], Sec. IV]).

VIESTI ET AL.: RECURSIVE ALGORITHMS FOR THE ESTIMATION OF MULTIPLE SUPERIMPOSED UNDAMPED TONES 1837



appearing in the RHS of the last equation can be approx-
imated as exp(− jn�̃) � 1 − jn�̃− n2�̃2/2 + jn3�̃3/6.
Then, substitute the RHS of this approximation into that
of (17), and then, the resulting expression in the RHS of
(5) produces, after some manipulation, the approximate
expression

εCSFE(�̃, Â) � εx + |Â|2 − 2�{Â∗X̄0,ρ}+
− 2�̃�{Â∗X̄1,ρ} + �̃2�{Â∗X̄2,ρ}+
+ �̃3�{Â∗X̄3,ρ}/3 (18)

for the function ε(F̃ , Â) (5); here

ρ � Fc/FDFT (19)

X̄k,ρ � 1

N0

N−1∑
n=0

xk,n exp

(
− j

2πnρ

N0

)
(20)

for any k and ρ, k = 1, 2, 3 and xk,n � nk · xn, with n = 0,
1,..., N − 1. It is important to point out that:

a) if ρ is an integer, the quantity X̄k,ρ (20) represents
the ρth element of the vector

Xk = [
Xk,0,Xk,1, . . .,Xk,N0−1

]T
(21)

generated by the N0th-order DFT of the zero-
padded version xk,ZP = [xT

k 0T
(M−1)N ]T of the vector

xk � [xk,0, xk,1, . . ., xk,N−1]T ;
b) if ρ is not an integer, the quantity X̄k,ρ can be evalu-

ated exactly on the basis of (20) or, in an approximate
fashion, by interpolating I adjacent elements of the
N0-dimensional vectors Xk (21), where I denotes the
selected interpolation order;

c) the use of zero padding in the evaluation of the
quantity X̄k,ρ improves the interpolation accuracy;

d) the evaluation of the vectors {Xk; k = 1, 2, 3} re-
quires three additional FFTs.

Since the function εCSFE(�̃, Â) (18) is a polynomial of
degree 3 in the variable �̃, an estimate �̂ of � can be
obtained by computing the derivative of this function with
respect to �̃, setting it to zero and solving the resulting
quadratic equation

a(ρ ) �̃2 + b(ρ ) �̃+ c(ρ ) = 0 (22)

in the variable �̃; here

a(ρ ) � �{
Â∗X̄3,ρ

}
/2 (23)

b(ρ ) � �{Â∗X̄2,ρ} (24)

and

c(ρ ) � −�{Â∗X̄1,ρ}. (25)

Note that only one of the two solutions of (22), namely

�̂ = −b(ρ ) +
√

(b(ρ ))2 − 4a(ρ ) c(ρ )

2a(ρ )
(26)

has to be employed. A simpler estimate of � is obtained
neglecting the contribution of the first term in the left-hand

side of (22), i.e., setting a(ρ ) = 0. This leads to a first-degree
equation, whose solution is

�̂ = −c(ρ )/b(ρ ). (27)

Given an estimate �̂ of �, the fine estimate

F̂ = Fc + �̂/(2π ) (28)

of F can be evaluated on the basis of (10).
The results derived above allow us to derive an estima-

tion algorithm, called complex single-frequency estimator
(CSFE), for iteratively estimating the normalized frequency
F and the complex amplitude A. This algorithm is initialized
by:

1) evaluating:
a) the vector X0 (12);
b) the initial coarse estimate F̂ (0)

c of F as

F̂ (0)
c = α̂ FDFT (29)

where the integer α̂ is computed by means
of the well-known periodogram method (e.g.,
see [28], Sec. IV] or [32], Sec. I]), i.e., as

α̂ = arg max
α̃∈{0,1,...,N0−1}

∣∣X̄0,α̃

∣∣ (30)

c) the quantity [see (19)]

ρ̂ (0) � F̂ (0)
c /FDFT = α̂ (31)

d) the initial estimate Â(0) of A on the basis of
(15) with F̂ = F̂ (0)

c ;
e) the spectral coefficients X̄1,α̂ , X̄2,α̂ and X̄3,α̂ on

the basis of (20);
f) the coefficients {a(α̂), b(α̂), c(α̂)} ({b(α̂),

c(α̂)} according to (23)–(25) and the first
estimate �̂(0) of � on the basis of (26) [or
(27)];

g) the first fine estimate F̂ (0) of F on the basis of
(28), i.e., as

F̂ (0) = F̂ (0)
c + �̂(0)/(2π ) (32)

2) setting its iteration index i to 1.

Then, an iterative procedure is started. The ith iteration
is fed by the estimates F̂ (i−1) and Â(i−1) of F and A, re-
spectively, and produces the new estimates F̂ (i) and Â(i) of
the same quantities (with i = 1, 2,..., NCSFE, where NCSFE is
the overall number of iterations); the procedure employed
for the evaluation of F̂ (i) and Â(i) consists of the two steps
described below (the pth step is denoted CSFE-Sp).

CSFE-S1: The new estimate �̂(i) of � is computed
through (26) [or (27)]; in the evaluation of the coefficients
{a(ρ ), b(ρ ), c(ρ )} ({b(ρ ), c(ρ )}) appearing in the RHS of
these equations, Â = Â(i−1) and

ρ = ρ̂ (i−1) � F̂ (i−1)/FDFT (33)

are assumed. Then

F̂ (i) = F̂ (i−1) + �̂(i)/(2π ) (34)

is evaluated.
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CSFE-S2: The new estimate Â(i) of Â is evaluated
through (15); F̂ = F̂ (i) is assumed in this case. Moreover,
the index i is incremented by one before starting the next
iteration.

At the end of the last (i.e., of the NCSFEth) iteration, the
fine estimates F̂ = F̂ (NCSFE ) and Â = Â(NCSFE ) of F and A,
respectively, become available.

The CSFE is summarized in Algorithm 1. It is important
to note the following points.

1) The approximate metric εCSFE(�̃, Â) (18) on which
the CSFE is based is new, since it has not been
derived in previous work on single-frequency esti-
mation. Note also that none of the known single-
frequency estimators relies on the computation of the
spectral coefficients {Xk,ρ; k = 1, 2, 3} employed by
the CSFE for the evaluation of the residual δ.

2) The estimate δ̂(i) of δ computed by the CSFE in its ith
iteration is expected to become smaller as i increases,
since F̂ (i) should progressively approach F if our
algorithm converges.

3) The estimate �̂(i) evaluated according to (27) is ex-
pected to be less accurate than that computed on the
basis of (26). However, our numerical results have
evidenced that both the solutions achieve similar
accuracy. Despite this, (26) is adopted in Algorithm
1 for generality.

4) The CSFE can be employed even if the single tone
appearing in the RHS of (3) is replaced by the super-
position of L distinct tones [see (1)]. In this case, the
strongest (i.e., the dominant) tone is usually detected
through the periodogram method [see (30)], and the
parameters of this tone are estimated in the presence
of both Gaussian noise and the interference due to the
remaining tones. Therefore, the estimation accuracy
of the CSFE is affected by both the amplitudes and
the frequencies of the other (L − 1) tones.

5) If the CSFE algorithm converges, the trend of the
sequence {�̂(i); i = 1, 2, . . .} is expected to be mono-
tonically decreasing; based on this observation, a
simple stopping criterion can be formulated. In fact,
the execution of the CSFE can be stopped if, at the
end of the ith iteration, the conditions i) |�̂(i)| < ε�
and/or ii) |�̂(i) − �̂(i−1)| < ε�,i are satisfied; here,
ε� and ε�,i represent proper thresholds.

6) The estimates generated by the CSFE algorithm
are unbiased, provided that the overall number of
iterations it accomplishes is large enough; a proof of
this statement is provided in [59], App. D].

B. Estimation of Multiple Tones

Let us analyze now in detail how the techniques derived
in the previous paragraph can be exploited to estimate
the multiple tones that form the useful component of the
complex sequence {xn}, when its nth sample is expressed by
(1) with L > 1. The recursive method we develop to achieve
this target is based on the following basic principles.

1) Tones are sequentially detected and estimated.
2) The detection of a new tone and the estimation of its

parameters are based on the procedure developed for
the CSFE in the previous paragraph; in addition, a
cancellation algorithm is incorporated in this method
to remove the contribution of previously detected
tones from all the spectral information [namely, the
spectrum X̄ (F ) (9), the vector X0 (12), and the
coefficients {X̄k,ρ} (20)] that is processed to detect
and estimate the new tone.

3) After detecting a new tone and estimating its pa-
rameters, a re-estimation technique is executed to
improve the accuracy of both this tone and the pre-
viously estimated tones; the proposed technique is
inspired by the related methods described in [8], [14],
and [15].

4) A proper criterion is adopted to stop recursions.
This allows us to estimate the (unknown) number
of targets, which is the value of the parameter L.

The recursive method relying on these principles is
called complex single-frequency estimation and cancella-
tion (CSFEC). The CSFEC algorithm is initialized by:

1) executing the CSFE, fed by the complex sequence
{xn}, to generate, through NCSFE iterations, the initial
estimates F̂0[0] and Â0[0] of the normalized fre-
quency and the complex amplitude, respectively, of
the first detected tone;
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2) setting the recursion index r to 1.

Then, a recursive procedure is started. The rth recursion
is fed by the vectors

F̂[r − 1] = [
F̂0[r − 1], F̂1[r − 1], . . ., F̂r−1[r − 1]

]T
(35)

and

Â[r − 1] = [
Â0[r − 1], Â1[r − 1], . . ., Âr−1[r − 1]

]T

(36)
collecting the frequencies and the associated complex am-
plitudes characterizing the r tones detected and estimated
in the previous (r − 1) recursions and generates the new
vectors

F̂[r] = [
F̂0[r], F̂1[r], . . ., F̂r[r]

]T
(37)

and

Â[r] = [
Â0[r], Â1[r], . . ., Âr[r]

]T
(38)

after:

a) estimating the frequency F̂r[r] and the associated
complex amplitude Âr[r] of a new (i.e., of the r-th)
tone (if any);

b) refining the estimates of the r tones available at the
beginning of the considered recursion. The proce-
dure employed for accomplishing all this consists
of the three steps described below (the pth step is
denoted CSFEC-Sp).

CSFEC-S1 (CSFE initialization with cancellation): In
this step, the following quantities are evaluated (see the
initialization part of Algorithm 1).

1) The residual spectrum

X0[r] = [
X0,0[r],X0,1[r], . . .,X0,N0−1[r]

]T

� X0 − C0

(
Â[r − 1], F̂[r − 1], r

)
(39)

where X0 is the N0th-order DFT of the zero-padded
version x0,ZP of the vector x0 collecting all the ele-
ments of the sequence {xn} [see (13) and (14)] and
the N0-dimensional vector

C0

(
Â[r − 1], F̂[r − 1], r

)

�
r−1∑
l=0

C̄0

(
Âl [r − 1], F̂l [r − 1]

)
(40)

represents the contribution given by all the estimated
tones to X0 (in particular, C̄0(Âl [r − 1], F̂l [r − 1]) is
the contribution provided by the lth tone to the vector
X0 (the expression of this vector can be found in the
Appendixes). If the overall energy E0[r] � |X0[r]|2
satisfies the inequalityE0[r] < TCSFEC, whereTCSFEC

is a proper threshold, the algorithm stops and the
estimate L̂ = r of L is generated.

2) The integer [see (30)]

α̂[r] = arg max
α̃∈{0,1,...,N0−1}

∣∣X0,α̃[r]
∣∣ (41)

that represents the index of the element of X0[r] (39)
having the largest absolute value.

3) The preliminary estimate [see (15)]

Ār[r]= X̄ (F̂c,r[r])−X̄lk,0
(
Â[r−1], F̂[r−1], F̂c,r[r]

)
(42)

of the complex amplitude of the new tone; here,
F̂c,r[r] = α̂[r] FDFT and

X̄lk,0
(
Â[r − 1], F̂[r − 1], F̂c,r[r]

)

�
r−1∑
l=0

X̄0

(
Âl [r − 1], F̂l [r − 1], F̂c,r[r]

)
(43)

represent the coarse estimate of the frequency of the
new tone [see (29)], and the contribution given to
X̄ (F ) by all the estimated tones (i.e., the leakage) at
the frequency F = F̂c,r[r] (in particular, X̄0(Âl [r −
1], F̂l [r − 1], F̂c,r[r]) is the leakage due to the lth
tone; the expression of the function X̄lk,k (Â, F̂ , F̄ ) is
provided in the Appendixes).

4) The spectral coefficient

X̄k,ρ[r][r] = X̄k,ρ[r]−X̂lk,k
(
Â[r−1], F̂[r−1], F̂c,r[r]

)
(44)

for k = 1, 2 and 3; here, we have that [see (31)]
ρ[r] = F̂c,r[r]/FDFT = α̂[r] and

X̂lk,k
(
Â[r − 1], F̂[r − 1], F̂c,r[r]

)

�
r−1∑
l=0

X̄lk,k
(
Âl [r − 1], F̂l [r − 1], F̂c,r[r]

)
(45)

is the contribution given to X̄k,ρ[r][r] by all the esti-
mated tones (i.e., the leakage) at the frequency F̂c,r[r]
(in particular, X̄lk,k (Âl [r − 1], F̂l [r − 1], F̂c,r[r]) rep-
resents the leakage due to the lth estimated tone).

5) The coefficients a(α̂[r]), b(α̂[r]), and c(α̂[r]), the
residual �̂(0)[r], and the normalized frequency

F̂ (0)
r = F̂c,r[r] + �̂(0)[r]/(2π ) (46)

on the basis of (23)–(25), (26) [or (27)], (29), and
(32). Note that F̂ (0)

r represents the initial fine estimate
of the normalized frequency of the new tone.

The evaluation of the frequency F̂ (0)
r (46) concludes

the initialization of the modified CSFE executed for the
detection and the estimation of the new tone.

CSFEC-S2 (CSFE refinement with cancellation): After
carrying out the first step, NCSFE iterations3 are executed
to refine the estimate of the parameters of the new tone.
The processing accomplished in this step follows closely
that described in the refinement part of Algorithm 1. For
this reason, in each iteration, a new estimate of the complex
amplitude and of the residual of frequency of the rth tone
are computed. This requires reusing (42)–(44) in order to
remove the leakage in the spectrum X̄ (F ) and in the coeffi-
cients X̄k,ρ (see steps c and d, respectively, of Algorithm 1).

3The potential dependence of the parameter NCSFE on the recursion index
r is ignored here for simplicity.
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At the end of the last iteration, the frequency F̂CSFE,r[r] and
the associated complex amplitude ÂCSFE,r[r] of the new tone
are available; these represent F̂r[r] and Âr[r], respectively,
if the following re-estimation step is not accomplished.

CSFEC-S3 (re-estimation): This step is fed by
the (r + 1) normalized frequencies {F̂0[r − 1], F̂1[r − 1],
. . ., F̂r−1[r − 1], F̂CSFE,r[r]} and the associated complex am-
plitudes {Â0[r − 1], Â1[r − 1],..., Âr−1[r − 1], ÂCSFE,r[r]}.
It consists in repeating the previous step for each of the
detected tones, starting from the first tone and ending with
the (r + 1)th one. This means that, when re-estimating the
lth tone, the leakage due to the tones whose index belongs
to set {0, 1, . . . , l − 1, l + 1, . . ., r} has to be removed by
exploiting equations similar to (42), (44), and (45), with
l = 0, 1,..., r. This allows us to progressively refine the
amplitude and the frequency of each tone, so generating the
final frequencies {F̂0[r], F̂1[r],..., F̂r[r]} and their complex
amplitudes {Â0[r], Â1[r],..., Âr[r]}. Note that, in principle,
the re-estimation can be accomplished multiple (say, NRES)
times.

Our simulation results have evidenced that, unluckily,
the estimates generated by the CSFEC algorithm are biased
if the values selected for the parameters NCSFE and NRES

are not large enough.4 In principle, this bias can be arbitrar-
ily reduced by increasing the values of these parameters.
However, we found out that a computationally efficient
alternative to this approach is represented by running an ad-
ditional (i.e., a fourth) step once that the CSFEC algorithm
has been executed. In this final step, the estimation algo-
rithm developed by Ye and Aboutanios [40], [41] is carried
out after initializing it with the estimates {F̂0[L̂], F̂1[L̂],...,
F̂L̂−1[L̂]} and their complex amplitudes {Â0[L̂], Â1[L̂],...,
ÂL̂−1[L̂]} generated by the CSFEC. The hybrid technique
resulting from interconnecting the CSFEC algorithm with
the above-mentioned algorithm is dubbed hybrid CSFEC
(HCSFEC). Finally, the following points are worth noting.

1) The oversampling factor M adopted in the computa-
tion of the vectors {X(l )

k } and the stopping criterion
employed by the CSFE need to be carefully adjusted
in order to achieve a good accuracy in the estimation
of the parameters of each new tone.

2) The poor estimation of the normalized frequency
Fl and/or of the complex amplitude Al may lead
to significant error accumulation if CSFEC-S3 is
removed; readers should also keep in mind that a
fundamental role in accurate cancellation is played
by the accuracy of the estimated frequency residual.

3) The threshold TCSFEC needs to be properly adjusted
in order to ensure that the probability that L̂ is equal
to L is close to unity. On the one hand, a large value
ofTCSFEC may lead to miss weaker tones; on the other
hand, a small value of this parameter may lead to the
identification of nonexistent tones.

4In our simulation results, the values NCSFE = 15 and NRES = 5 have been
selected. However, such parameters can take on different values depending
on the SNR; for instance, NRES can be increased if the SNR is poor.

C. Comparison With Other Estimation Methods

The CSFEC technique developed in Sections III-A and
III-B is conceptually related to the multiple-tone estimators
developed by Gough [14], Li and Stoica [15], Macleod [8],
Ye and Aboutanios [40], [41], Serbes and Qaraqe [42],
Serbes [43], and Djukanović and Popović-Bugarin [44]
(these algorithms are denoted CLEAN, RELAX, Alg-M,
Alg-YA, CFH, Alg-S, and Alg-DP, respectively, in the
following). In fact, all these algorithms are recursive and
rely on a serial cancellation procedure, since, within each
recursion, they detect a single tone, estimate its parame-
ters, and subtract its contribution from the residual signal
emerging from the previous iteration. Despite their similar
structures, they exhibit various differences that concern the
three specific issues listed below.

1) Single-frequency estimator: The main difference is
represented by the method they employ in the esti-
mation of a single tone. On the one hand, the CLEAN
and RELAX algorithms rely on the coarse estimate
generated by the periodogram method for each de-
tected tone and, eventually, exploit zero padding to
improve spectral resolution. On the other hand, the
Alg-M, the Alg-DP, the Alg-YA, the Alg-S, and the
CFH algorithm compute the frequency residual by
means of open-loop interpolation or iterative meth-
ods; the last methods refine the estimate of the fre-
quency residual through multiple iterations. All the
single-tone estimators employed in these algorithms
differ from the one used in CSFEC and HCSFEC.

2) Use of a re-estimation procedure: In the CLEAN
and RELAX algorithms and in Alg-M, once a new
tone has been estimated, all the previously computed
tones are re-estimated by subtracting the contribu-
tion of all the other tones; tone cancellation is ac-
complished in the time domain in the CLEAN and
RELAX algorithms, whereas it is carried out in the
frequency domain in the Alg-M. The last approach
is also adopted in our estimation algorithms. Finally,
the CFH algorithm, the Alg-S, the Alg-YA, and the
Alg-DP accomplish re-estimation after computing a
coarse estimate of all the parameters of the detected
tones. However, the Alg-DP and the CFH algorithm
execute this task only once, whereas the Alg-S and
the Alg-YA repeat it a given number of times.

3) Use of oversampling: In the technical literature,
the use of oversampling has been proposed for the
CLEAN, the RELAX, the Alg-S, and the CSFEC
and HCSFEC algorithms only.

D. Computational Complexity

The complexity of the estimation algorithm developed
in Section III-A has been carefully assessed in terms of
the number of floating point operations to be executed in
the detection of L targets. The general criteria adopted
in estimating the overall computational cost of the CSFE
algorithm are summarized in [59], App. C], where a detailed
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TABLE I
Order of the Computational Complexity of Various Estimation Algorithms

analysis of the contributions due to the different tasks ac-
complished by each of them is also provided. Our analysis
leads to the conclusion that this cost is approximately of
order O(MCSFE), with

MCSFE = N0 log2 N0 + KCSFE NCSFE I2. (47)

Here, NCSFE represents the overall number of iterations
accomplished by the CSFE and KCSFE = 1/2. Our com-
puter simulations have evidenced that, in the scenarios we
considered, a small value of I is required if the so-called
barycentric interpolation is employed (see [60]). For this
reason, the contribution of the second term appearing in the
RHS of (47) can be neglected, so that the order of the overall
computational cost is well approximated by the first term,
i.e., from the term that originates from FFT processing.
Moreover, based on the last result, it is not difficult to
show that the computational cost of the CSFEC algorithm
is approximately of order O(MCSFEC), with

MCSFEC = N0 log2(N0) + KCSFE L NCSFE I2 (48)

if no re-estimation is accomplished (see CSFEC-S3 in the
description of the CSFEC algorithm), and the algorithm
stops after detecting the last tone. Note that the first term
appearing in the RHS of (48) accounts for the initialization
[and, in particular, for the computation of the vectors X0

(12) and {Xk} (21)], whereas the second term accounts for
the fact that, in the CSFEC algorithm, the CSFE is executed
L times. It is also worth pointing out that the computational
costs due to the evaluation of the estimated tones detected
after the first one and to their frequency-domain cancellation
do not play an important role in this case. However, if
re-estimation is accomplished, the parameter L appearing
in the RHS of (48) is replaced by L2, since this task involves
all the estimated tones. Despite this, the increase in the
overall computational cost of the CSFEC with respect to
the CSFE is limited since, as evidenced by our simulation
results, the use of re-estimation allows these algorithms to
achieve convergence with a smaller value of the parameter
NCSFE.

Finally, it is important to compare the computational
cost of the CSFEC algorithm with that of the CLEAN,
RELAX, Alg-M, Alg-YA, CFH, Alg-S, and Alg-DP tech-
niques considered in the previous paragraph. Their order
of complexity is listed in Table I (where KM represents the
computational cost of single-tone estimation), from which
the following considerations can be easily inferred.

1) The CLEAN and RELAX algorithms are character-
ized by the same order, expressed by the complexity
of a zero-padded FFT multiplied by L2; the last factor

is due to the fact that tone re-estimation is employed
in both the algorithms.

2) The Alg-M is characterized by the lowest compu-
tational cost; in fact, since it performs the cancella-
tion of the detected tones directly in the frequency
domain, tone estimation does not require the com-
putation of additional FFTs. Moreover, since tone
re-estimation is employed, the cost for the estimation
of a single tone (i.e., the parameter KM appearing in
Table I) is multiplied by L2.

3) The order of complexity of the Alg-YA, the Alg-
S, the Alg-DP, and the CFH algorithm depends on
the fact that one FFT is computed for the estimation
of each tone; moreover, an additional term equal to
L Q N is included in the order of the Alg-YA and the
Alg-S, since these estimate all the tones Q times.

4) The order of the cost of the CSFEC algorithm is
similar to that of the Alg-M; however, in this case,
three (or four) FFTs are computed in the initializa-
tion phase and the cost for the estimation of each
tone is multiplied by NCSFE, since tone refinement is
performed within each recursion.

IV. NUMERICAL RESULTS

In this section, the accuracy and robustness of the pro-
posed algorithms is assessed on the basis of both syntheti-
cally generated data and experimental data acquired through
an FMCW colocated MIMO radar.

A. Numerical Results Based on Synthetically Generated
Measurements

In this section, we compare, in terms of accuracy, con-
vergence rate, and failure probability, our single-frequency
estimator (CSFE) with the A&M [32], the QSE and HAQSE
algorithms [48], and the CSFEC and HCSFEC algorithms
with the CFH algorithm [42], the Alg-YA [40], [41], the
Alg-S [43], and the Alg-DP [44]. As far as the A&M algo-
rithm is concerned, two versions of it are considered; such
versions are denoted A&M#1 and A&M#2 in the following
and correspond to Alg-1 and Alg-2, respectively, described
in [32].

Five different scenarios have been considered in our
computer simulations. In all of them, N = 512 and fs = N
Hz have been selected for the overall number of samples of
the sequence {xn} and the sampling frequency, respectively;
moreover, for any L, the phases of the L overlapped tones
have been randomly selected over the interval [0, 2π ], each
independently of all the other ones. The specific features of
the simulated scenarios can be summarized as follows.
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Scenario #1 (S1): This is characterized by L = 1, i.e.,
by a single tone, having amplitude equal
to 1 and whose normalized frequency
is uniformly distributed over the interval
[8/N, 28/N].

Scenario #2 (S2): This is characterized by L = 2, i.e.,
by a couple of tones, both having ampli-
tude equal to 1. Moreover, the normalized
frequency F0 of the first tone is uniformly
distributed over the interval [8/N, 28/N],
whereas that of the second one is F1 =
F0 + 1.1/N .

Scenario #3 (S3): This is characterized by L = 2, i.e.,
by a couple of tones, both having am-
plitude equal to 1. Moreover, the nor-
malized frequency F0 of the first tone
is uniformly distributed over the interval
[8/N, 28/N], whereas that of the second
one is F1 = F0 +�Fd ; here, �Fd � (1 +
0.05 d )/N represents the normalized fre-
quency spacing between the two tones and
is controlled through the nonnegative pa-
rameter d (d = 0, 1,..., 10 is assumed in
the following).

Scenario #4 (S4): This is characterized by L ∈ {2, 3, ...,
10}, i.e., by a varying number of tones. For
any L, the amplitude and the frequency of
the kth tone are given by

ak � 10−k�a/10 (49)

and Fk � F0 + 1.8 k/N , respectively, with
k = 0, 1,..., L − 1; here, �a = 2.5/3 and
F0 is uniformly distributed over the interval
[8/N, 28/N].

Scenario #5 (S5): This is characterized by L = 10
tones, whose amplitudes follow the law
expressed by (49). Moreover, the normal-
ized frequency of the kth tone is Fk,m �
F0 + k�Fm, with F0 = 8.3/N and k = 0,
1,..., 9; here,�Fm = (1.5 + 0.2 m)/N rep-
resents the normalized frequency spacing
between adjacent tones and is controlled
through the nonnegative parameter m (m =
0, 1,..., 5 is assumed in the following).

It is important to note the following points.

1) The interest in S1 has been uniquely motivated by
the need of comparing the performance of the CSFE
with that achieved by the other single-frequency
estimators.

2) The study of S2 and S3 has allowed us to assess how
the considered multiple-tone estimators perform in
the presence of two close tones whose spacing is
fixed and variable, respectively, whereas that of S4
how their performance changes when L increases.

3) The fifth scenario refers to the case in which the
observed signal contains many closely spaced tones

having different strengths, so that multiple-tone es-
timators may fail detecting all of them and/or the
quality of the estimates of their parameters may be
quite poor.

4) In S1–S3, the normalized frequency F0 of the first
tone has been randomly generated to average out
the influence of the frequency residual on estimation
accuracy.

In our computer simulations, the following performance
indices have been assessed for each of the analyzed algo-
rithms:

1) the probability of failure (Pf ), i.e., the probability
that the considered algorithm does not converge. In
our simulation, a failure event is detected whenever
the absolute value of the normalized frequency error
characterizing the final frequency estimate exceeds
the threshold �εF � 1/(2N0), i.e. it is greater than
half the size of the frequency bin characterizing FFT
processing;

2) the root-mean-square error (RMSE) for the estimate
of the normalized frequency (denoted RMSE f ). Note
that, whenever frequency estimation is efficient, am-
plitude and phase estimation are also efficient; for
this reason, the RMSE of amplitude and phase is not
provided.

It is important to stress that limited attention to the first
parameter has been paid in the technical literature and that
its value depends on the intensity of both the additive noise
and the interference experienced by each newly detected
tone (and due to uncanceled tones). Our interest in it can
be motivated as follows. Each of the considered frequency
estimation algorithms is highly nonlinear; for this reason,
its behavior is characterized by a threshold, whose value
depends on the specific scenario in which it is employed. In
practice, if a frequency estimation algorithm operates above
its threshold, failures are very rare events; consequently, the
assessed RMSEs are negligibly influenced by them, i.e.,
they account for the intensity of the errors observed after
the convergence of the algorithm itself. On the contrary,
if the algorithm operates below its threshold, a portion of
its estimation errors (but not all of them) refers to situa-
tions in which it has not converged; when this happens,
large frequency estimation errors (i.e., outliers) may be
observed. In the last case, RMSEs are not so meaningful
since they account for two heterogeneous contributions.
It is also worth mentioning that a failure event does not
necessarily occurs in the case of a wrong selection of the
frequency bin in the coarse estimation stage [see (30)]; in
fact, in some cases, frequency estimation algorithms do not
exhibit failures (i.e., frequency outliers) even if the output
of their coarse estimation step is wrong. The significance
of these considerations and our interest in the probability of
failure can be fully appreciated by analyzing the simulation
results shown in Fig. 1(a) and (b) that refer to the A&M#1
algorithm operating in S1. In particular, the dependence of
RMSE f and Pf on the SNR for this algorithm is illustrated
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Fig. 1. Some numerical results referring to the A&M#1 algorithm (first
scenario). (a) RMSE performance versus SNR; the CRLB is also shown

for comparison. (b) Normalized frequency error versus run number.

in Fig. 1(a) (where the Cramer–Rao lower bound (CRLB)
is also shown for comparison), whereas a sample of the
absolute value of the normalized frequency errors observed
over 20 000 consecutive runs at an SNR = −10 dB is
represented in Fig. 1(b); in this case, the overall number of
iterations NA&amp;M = 2 has been adopted for the considered
algorithm and 107 simulation runs have been executed to
generate the numerical results appearing in the first figure.
As can be easily inferred from Fig. 1(a), the A&M#1
algorithm attains the CRLB above its threshold, which, in
S1, is found at an SNR ∼= −8 dB and corresponds to a Pf

approximately equal to 10−6; below this SNR (that, in the
case of a single tone, uniquely identifies the threshold of the
algorithm), the estimated RMSE f is significantly influenced
by the presence of outliers, some of which are clearly
visible in Fig. 1(b). Other numerical results, not included in
this article for space limitations, have also evidenced that
the SNR threshold characterizing each algorithm can be
identified in correspondence to a Pf approximately equal to
10−6 for any value of N . This is equivalent to identifying the
SNR threshold, above which the probability of having an
outlier is very small. Our simulations have also evidenced
that, if all the failure events are ignored in the evaluation of
the RMSEs, the (negligible) gap between the RMSE f of the
A&M#1 and the CRLB does not change if the SNR drops

Fig. 2. RMSE performance achieved in frequency estimation versus
SNR (first scenario). The Alg-DP and the CSFE, HAQSE, QSE,

A&M#1, and A&M#2 algorithms are considered. The CRLB is also
shown for comparison.

below its threshold. Based on these considerations, we have
decided to:

1) assess the probability of failure in all the considered
scenarios;

2) ignore the failure events in the evaluation of all the
RMSEs.

On the one hand, the first choice has allowed us to assess,
in all the mentioned scenarios, if each of the considered
estimation algorithms is operating above its threshold or
below it; in doing so, we have assumed that the thresh-
old is conventionally identified by Pf = 10−6, i.e., by one
failure over 106 runs on the average. On the other hand,
the second choice has been made to verify if its accuracy
is close to the CRLB when its failures are ignored. In the
following, various simulation results are illustrated for the
five scenarios described above; in all the cases, each value
of the considered performance indices has been evaluated
by executing 106 runs.

The performance of six single-tone estimators, namely,
the Alg-DP, the CSFE, and the A&M#1, A&M#2, QSE, and
HAQSE algorithms, has been assessed in S1. The following
parameters have been selected for them: 1) the overall
number of iterations NCSFE = 25 and interpolation order5

I = 7 for the CSFE; 2) the overall number of iterations
NA&amp;M = 2 for the two A&M algorithms; 3) NQSE = 3
for the QSE algorithm; 4) NHAQSE = 2 for the HAQSE
algorithm; and 5) frequency displacement fd = 1/(10N )
for the Alg-DP. In addition, the parameter q of the QSE and
HAQSE algorithms has been evaluated on the basis of [48],
(39)], and the oversampling factor M = 1 has been selected
for all the considered algorithms. Some numerical results
referring to S1 are illustrated in Fig. 2 (in this figure and in
all the following ones, numerical results are represented by
markers, whereas lines are drawn to ease reading; moreover,

5In all our simulations, the barycentric interpolation described in [60] has
been always employed. Moreover, the value of NCSFE has been selected
based on the simulation results obtained in a worst-case scenario (i.e.,
characterized by a normalized frequency residual δ = 0.5).
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Fig. 3. Probability of failure versus SNR (second scenario). The Alg-S,
the Alg-YA, the Alg-DP, and the CSFEC, HCSFEC, and CFH algorithms

are considered.

the abbreviation “Th.” is employed for the threshold, whose
position is always indicated by a black arrow). More specif-
ically, the dependence of RMSE f on the SNR is represented
in Fig. 2 for all the considered algorithms. In this figure, the
dependence of the probability of failure on the SNR (which
is approximately the same for all the considered algorithms)
is also shown (the SNR range [−15, 20] dB is consid-
ered). From these results, it is easily inferred that: 1) all
the considered algorithms exhibit a similar dependence of
RMSE f on

SNR � 1/σ 2 (50)

and their accuracy approaches the CRLB [61] for SNR∈
[−8, 20] dB; 2) they are characterized by a similar proba-
bility of failure and, therefore, by a similar SNR threshold;
and 3) they attain the CRLB even below their threshold
if failure events are ignored. Our simulation results have
also evidenced that the CSFE is characterized by a lower
convergence rate than the other algorithms. As far as the
last point is concerned, it is worth mentioning that: 1)
the A&M#1, A&M#2, QSE, and HAQSE algorithms usu-
ally require two to four iterations to achieve convergence,
whereas the overall number of iterations required by the
CSFE is three to four times larger; 2) the Alg-DP, A&M#1,
A&M#2, QSE, and HAQSE algorithms are characterized
by similar computation times (CTs), whereas the CSFE is
about ten times slower. For this reason, the adoption of
the CSFE in single-tone estimation is not recommended.
Further numerical results, not shown here for space limita-
tions and referring to an SNR = 10 dB, have shown that the
RMSE f of all the considered estimators exhibit a similar
dependence on N , when this parameter ranges from 16 to
2048; moreover, in all the cases, their accuracy approaches
the CRLB.

Some numerical results referring to S2 are illustrated
in Figs. 3 and 4. More specifically, the dependence of
Pf on the SNR is illustrated in Fig. 3, whereas the

Fig. 4. RMSE performance achieved in frequency estimation versus
SNR (second scenario). The Alg-YA and the CSFEC and HCSFEC

algorithms are considered. The CRLB is also shown for comparison.

dependence of RMSE f on the SNR6 is represented in
Fig. 4, for all the considered algorithms; once again, the
SNR range [−15, 20] dB is considered. The accuracy
of six multiple-tone estimators, namely, the Alg-YA, the
Alg-S, the Alg-DP, and the CSFEC, HCSFEC, and CFH
algorithms, has been assessed in this case; moreover, the
following parameters have been selected for these algo-
rithms in S2 and in the remaining three scenarios: 1) overall
number of iterations NCSFE = 15, number of re-estimations
NRES = 5, and interpolation order I = 7 for the CSFEC;7

2) NCSFE = 5, NRES = 1, I = 7, and number of Alg-YA
iterations NYA = 5 for the HCSFEC algorithm; 3) the same
parameters as the HAQSE and Alg-DP in S1 for the CFH
algorithm and the Alg-DP, respectively; and 4) an overall
number of iterations Q = 2 for the Alg-YA. Moreover, the
number of re-estimations carried out by the Alg-S has been
evaluated on the basis of [43], (33)]. Our results show that:
1) the CSFEC and HCSFEC techniques are more robust than
all the other estimators, since they achieve a substantially
lower probability of failure for an SNR > −10 dB; 2) the
thresholds of the CSFEC and HCSFEC algorithms are about
−3 dB and are substantially lower than that of Alg-YA,
which is found at about 3 dB; 3) the CFH, the Alg-S,
and the Alg-DP exhibit a Pf > 10−2 for all the values of
SNR (therefore, their RMSE performance is ignored in
the following); 4) the Alg-YA is always outperformed by
the CSFEC and HCSFEC algorithms; 5) the trend in the
accuracy of the CSFEC and HCSFEC algorithms diverges
from that of the CRLB for an SNR > −6 dB because of the
small bias introduced by the serial cancellation procedure
on which they are based; 6) the CSFEC algorithm is slightly
outperformed by the HCSFEC algorithm for an SNR > −6
dB; and 7) the trend in the accuracy of the Alg-YA below its
threshold diverges from that of the CRLB for all the SNR
values, whereas that of the CSFEC and HCSFEC algorithms

6Since the amplitudes of both the tones are equal to 1, the SNR is still
computed on the basis of (50).
7The values of the parameters NCSFE and NRES have been selected based
on our simulation results obtained for a tone spacing equal to 1.1/N .
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Fig. 5. Probability of failure versus normalized tone spacing (third
scenario). The Alg-S, the Alg-YA, the Alg-DP, and the CSFEC,

HCSFEC, and CFH algorithms are considered.

Fig. 6. RMSE performance achieved in frequency estimation versus
tone separation (third scenario). The Alg-YA, and the CSFEC, HCSFEC,

and CFH algorithms are considered. The CRLB is also shown for
comparison.

is only 1 dB far from the corresponding CRLB. The ability
of the CSFEC algorithm, the HCSFEC algorithm, and the
Alg-YA to estimate correctly both tones is due to their use
of a leakage cancellation step. It is also worth mention-
ing that the CFH algorithm, the Alg-YA, and the Alg-DP
require similar CTs, whereas the HCSFEC algorithm and
the Alg-S (the CSFEC algorithm) are about two (16) times
slower. Additional computer simulations have been run at
an SNR = 10 dB in order to assess the dependence of both
RMSE f and Pf on N for all the considered estimators. Our
numerical results, not shown here for space limitations and
referring to N = 2b (with b = 4, 5, . . ., 11), have evidenced
that: 1) the CFH algorithm, the Alg-S, and the Alg-DP
always exhibit a Pf > 10−2; 2) the CSFEC and HCSFEC
algorithms (the Alg-YA) are characterized by a Pf < 10−6

for N > 32 (N > 64); and 3) the CSFEC and HCSFEC
algorithms are always more accurate than the Alg-YA. Let
us focus now on S3. In this scenario, all the performance
indices have been evaluated for different values of the
normalized tone spacing (�F · N ). Some numerical results
referring to this scenario are illustrated in Figs. 5 and 6.
More specifically, the dependence of Pf on the tone spacing

Fig. 7. Probability of failure versus overall number of tones (fourth
scenario). The Alg-S, the Alg-YA, the Alg-DP, and the CSFEC,

HCSFEC, and CFH algorithms are considered.

is illustrated in Fig. 5, whereas the dependence of RMSE f

on the tone spacing is represented in Fig. 6, for all the con-
sidered algorithms; an SNR = 10 dB is assumed. From our
results, it can be inferred that: 1) the CSFEC and HCSFEC
algorithms are substantially more robust than all the other
estimators, since no failure event has been detected for the
considered tone spacings over all the simulation runs; 2)
the CFH algorithm exhibits a Pf < 10−6 for a tone spacing
greater than 1.2, whereas the Alg-YA exhibits a Pf > 10−6

for values of tone spacing between 1.2 and 1.4; 3) the Alg-S
and the Alg-DP are characterized by a Pf > 10−6 for any
value of tone spacing (for this reason, they are ignored in
the following); 5) the Alg-YA and the CFH algorithm are
outperformed by the CSFEC and HCSFEC algorithms, for
all the considered tone spacings; 6) the CSFEC algorithm
is slightly outperformed by the HCSFEC algorithm; and 7)
the CSFEC and HCSFEC algorithms attain the CRLB for a
tone spacing equal to 1.5.

As already mentioned above, our simulations for S4
have allowed us to assess how the performance of the
considered algorithms is influenced by the overall number
of tones. Some results referring to this scenario are shown in
Fig. 7, which shows the dependence of Pf on L; M = 1 and
an SNR = 10 dB for the strongest tone have been assumed.
From this figure, it is easily inferred that: 1) the Alg-DP
(Alg-S) exhibits a Pf > 10−2 for L ≥ 3 (L ≥ 4); 2) the CFH
algorithm (Alg-YA) exhibits a Pf > 10−4 (Pf > 10−3) for
L ≥ 5; 3) the CSFEC and HCSFEC algorithms are substan-
tially more robust than all the other algorithms since are
characterized by a Pf < 10−6 for L ≤ 8; and 4) the HCSFEC
is slightly outperformed by the CSFEC for L = 10. Once
again, the price to be paid for a lower probability of failure is
represented by a larger computational effort. For instance, if
L = 6, the CT required by the CSFEC (HCSFEC) algorithm
is about 50 (4) times larger than that characterizing the CFH
algorithm.

Finally, let us focus on S5. In this case, the performance
index RMSE f has been evaluated for the normalized fre-
quencies of all the tones; moreover, six different values
of the tone spacing (�F · N ) have been considered. Our
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TABLE II
Signal-to-Noise Ratio Characterizing Each Tone in the Fifth Scenario and Corresponding CRLB

Evaluated for the Estimation of Its Frequency

Fig. 8. RMSE performance achieved in frequency estimation versus
tone separation (fifth scenario). The CSFEC (blue curves) and HCSFEC
(red curves) algorithms are considered. Different tones are identified by

distinct markers and numbers.

numerical results refer to the CSFEC and the HCSFEC
algorithms only since we found that these are the only
algorithms operating above their thresholds for spacings
greater than 2/N . The CFH algorithm, the Alg-S, the Alg-
YA, and the Alg-DP, instead, are characterized by a high
probability of failure (more specifically, Pf > 10−2 in all
the conditions) and, as a matter of fact, are unable to detect
all the tones and/or to accurately estimate their parameters.
The dependence of RMSE f , obtained under the assumption
that SNR = 10 dB for the strongest tone [i.e., for the tone
having the smallest frequency; see (49)], on (�F · N ) is
illustrated in Fig. 8, whereas the values of the SNR and the
CRLB referring to each of the ten tones are listed in Table II.
Our results lead easily to the following conclusions: 1) the
RMSE f characterizing the HCSFEC algorithm is lower than
that achieved by the CSFEC algorithm for each tone and
for all the values of tone spacing, since the last algorithm
suffers from a larger (even if really limited) bias; 2) weaker
tones are characterized by a larger RMSE f (but also by a
larger value of the CRLB, since their SNR is lower) for any
�F ; 3) the RMSE f characterizing each tone reaches a floor
for �F > 2/N ; and 4) the floor appearing in the frequency
estimation accuracy of each tone is very close to the CRLB
evaluated for that tone.

B. Numerical Results Based on Experimental Measure-
ments

The accuracy of the proposed CSFEC and HCSFEC al-
gorithms has also been assessed on the basis of a real dataset
acquired through a commercial MIMO radar. In particular, a

Fig. 9. Experimental setup developed for our acquisitions. The
employed radar device is mounted on a wooden bar; the targets are small

coins placed on a polystyrene plate.

measurement campaign has been accomplished in the build-
ing of our institution to acquire a dataset through a colo-
cated FMCW MIMO radar operating in the E -band. The
employed device is the TIDEP-01012 cascade mmWave
radar; it is manufactured by Texas Instrument, Inc. [62] and
classified as a long range radar. Its main parameters are:
1) chirp rate μ = 6.5 × 1013 Hz/s; 2) bandwidth B = 4.1
GHz; 3) central frequency f0 = 77 GHz; 4) sampling fre-
quency fs = 8 MHz; and 5) number of samples per chirp
N = 512. Moreover, it is endowed with a planar array made
of NT = 12 TX antennas and NR = 16 RX antennas; each of
its antennas consists of an array of four patch antennas. In
principle, 12 × 16 = 192 virtual antennas are available in
this case; however, only 86 horizontal-aligned and equally
spaced virtual antennas, forming a virtual uniform linear
array (ULA) with interantenna spacing dH = λ/4, have been
exploited in our work.8 This choice allows us to achieve the
range resolution�R = c/(2B) = 3.6 cm and the azimuthal
resolution �θ = 1.35◦.

All the measurements have been acquired in a large
empty room (whose width, depth, and height are 10, 8, and
2.5 m, respectively). The radar device has been mounted on
an horizontal wooden bar and has been lifted by a tripod at
a height of roughly 1.60 m from the ground (see Fig. 9).

In our experimental setup, a pico flexx camera manufac-
tured by PMD Technologies, Inc. [64] has been employed
as a reference sensor; this device is based on a near-infrared
vertical cavity surface emitting laser and is able to provide
a depth map or, equivalently, a 3-D point cloud of a small
region of the observed environment (its maximum depth is
equal to 4 m, whereas its field of view is 62◦ × 45◦).

8Further details about the adopted radar system and its physical and virtual
arrays can be found in [63], Par. X.B].
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TABLE III
Exact Position (Range and Azimuth) of Each of the Nine Targets Characterizing the Sixth Scenario

As far as the acquired measurements are concerned,
it is important to point out that: 1) all the target ranges
have been estimated with respect to the central virtual
channel of the ULA; 2) the exact target positions have
been acquired with respect to the center of the pico flexx
camera. Therefore, in comparing these positions with their
estimates computed on the basis of the radar measurements,
the distance�FP = 33 cm between the FMCW radar and the
camera was always kept into account; and 3) all our mea-
surements have been processed in the MATLAB environ-
ment (running on a desktop computer equipped with an i7
processor).

The numerical results illustrated in this paragraph refer
to two static scenarios. The first scenario is denoted S6 and
is characterized by the presence of an overall number of
targets ranging from 1 to 9 (so that 1 ≤ L ≤ 9). As shown
in Fig. 9, the targets, placed on a polystyrene plate, are
represented by small coins, each having a diameter equal
to 2 cm (note that such coins are grouped in three different
clusters, called C1, C2, and C3); their exact positions are
listed in Table III (the data referring to the ith target are
collected in the column identified by Ti, with i = 1, 2,..., 9).
In the second scenario (denoted S7), instead, five distinct
experiments, characterized by a different number of targets,
have been conducted. The results obtained in this scenario
have allowed us to assess how the performance of our

estimation algorithms is influenced by the overall number
of targets (i.e., by L).

In processing all the acquired measurements, the prior
knowledge of L has been always assumed and an over-
sampling factor M equal to 1 has been adopted for all
the algorithms (namely, the CSFEC, HCSFEC, and CFH
algorithms and the Alg-YA, the Alg-S, and the Alg-DP);
moreover, M = 4 has also been considered for the CSFEC
and HCSFEC algorithms. The values of all the other param-
eters characterizing the considered estimation algorithms
have been selected in the same way as the scenarios S2, S3,
S4, and S5 described in the previous paragraphs.

In analyzing the data acquired in S6 and S7, the accuracy
of the range estimates evaluated for multiple targets has
been assessed by evaluating the RMSE

ε̄R �

√√√√ 1

Nm

Nm−1∑
l=0

[
Rl − R̂l

]2
(51)

and the peak error

ε̂R � max
l

∣∣Rl − R̂l

∣∣ (52)

where Nm represents the overall number of available mea-
surements. As far as the estimation of the complex ampli-
tude characterizing the echo of a given target on a specific
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Fig. 10. Unwrapped phase of the complex gain associated with a given
target versus the index of the virtual channel of the employed ULA;

scenario S6 is considered.

virtual channel is concerned, it is important to point out
that the RCS of the targets detected in our experiment was
unknown. For this reason, our analysis of the complex gains
estimated over the 86 channels of the available virtual ULA
and associated with each target has concerned only their
(unwrapped) phase. The phases estimated by the CSFEC
algorithm over the above-mentioned ULA and associated
with the nine targets of S6 are shown in Fig. 10. Since the
distance dH between adjacent virtual channels is constant,
the estimated phases exhibit a linear dependence on the
index of the virtual channel (see [63], (10) and (11)]). More-
over, if a linear fitting is drawn for these data, it should be
expected that the slope of the resulting lines is proportional
to sin(θ ), where θ is the azimuth of the considered target
(see [63], (23)]); this is confirmed by the results shown in
Fig. 10, where the three (six) lines associated with the targets
T1–T3 (T4–T9) have a negative (positive) slope,9 as should
be expected on the basis of Table III. To assess the quality
of the estimated phases, their RMSE ε̄ψ has been evaluated
on the basis of a formula similar to (51) (in this case, Nm

represents the overall number of virtual channels for which
the estimates of the phases associated with a given target
have been computed); in doing so, the linear fitting of the
phases estimated over the whole ULA has been taken as
a reference with respect to which phase errors have been
computed.

The estimates of the target range generated by all the
considered estimation algorithms for each of the targets of
S6 are listed in Table III; in the same table, the value of the
phase RMSE ε̄ψ computed for each target is also provided.
The numerical results collected in this table have also been
processed to compute: 1) the errors ε̄R (51) and ε̂R (52); 2)
the average errors ε̄m,R and ε̂m,R (these represent the average
of ε̄R and ε̂R, respectively, over the whole virtual ULA10); 3)
the average of ε̄ψ , denoted ε̄m,ψ (this represents the average

9The phase trajectories shown in Fig. 10 refer to a small portion of the
available virtual ULA for better readability.
10In this case, the range estimate R̂l appearing in (51) and (52) is computed
for each channel of the given virtual ULA, while the true value Rl is kept
constant along this array.

TABLE IV
Range RMSE ε̄R (and Its Average ε̄m,R), Phase RMSE ε̄m,ψ , Range Peak
Error ε̂R (and Its Average ε̂m,R), and CT Evaluated for All the Considered

Estimation Algorithms; the Sixth Scenario Is Considered

of the Nm values available for ε̄ψ ); and 4) the CT. The values
of all these performance indices are summarized in Table IV
for the six considered estimation algorithms.

From the last results and those listed in Table III, the
following conclusions can be drawn.

1) Both the CSFEC and HCSFEC algorithms are able
to generate accurate estimates of the range and the
amplitude of all the given targets for both the con-
sidered values of the oversampling factor M.

2) The values of range RMSE ε̄R and peak error ε̂R char-
acterizing the CSFEC and HCSFEC algorithms are
lower than those provided by all the other algorithms.
In particular, even if the values of the range RMSE
obtained by the CFH and Alg-YA are quite close to
those of the CSFEC and HCSFEC algorithms, the
peak errors of the first two algorithms are higher
than the minimum range resolution allowed by the
employed radar device and are two times larger
than those characterizing the last two algorithms.
Moreover, the range RMSE and peak errors of the
CSFEC and HCSFEC algorithms are much lower
those of the Alg-S and the Alg-DP. This result is due
to the fact that the ranges estimated by the Alg-S and
the Alg-DP are far from their true values, as it can
be easily inferred from Table III.

3) The values of the range average errors ε̄m,R and ε̂m,R

exhibit the same trend as ε̄R and ε̂R, respectively,
but are higher than the range RMSE and range peak
error, respectively, obtained for the central channel
of our virtual ULA. Note also that the large values of
ε̂m,R and ε̂m,R found for the Alg-S and the Alg-DP are
due to the fact that these algorithms do not converge
in the considered scenario.

4) The values of the phase average RMSE ε̄m,ψ eval-
uated for the CSFEC and HCSFEC algorithms are
comparable with (much lower that) those obtained
for the CFH and the Alg-YA (the Alg-S and the
Alg-DP).
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Fig. 11. Representation of the initial amplitude spectrum of the signal
observed on the central virtual channel (blue line) and of the final

residual amplitude spectrum generated by the CSFEC algorithm (red
line). The range and the amplitude characterizing the nine targets of the
sixth scenario and estimated by the CSFEC (HCSFEC) algorithm are

indicated by black crosses (circles); M = 4 is assumed.

5) The CTs are in the order of few milliseconds for all
the algorithms; the best tradeoff between accuracy
and CT is achieved by the CSFEC and HCSFEC
algorithms with an oversampling factor equal to 1.
Note also that the fastest algorithm is represented
by the Alg-DP, but its estimation accuracy is signif-
icantly worse than that provided by the CSFEC and
HCSFEC algorithms.

It is also important to point out that the robustness
of the CSFEC and HCSFEC algorithms is related to the
accuracy of the estimation and cancellation procedure they
accomplish. This is exemplified by Fig. 11, where the
initial amplitude spectrum of the signal received on the
central virtual channel in the sixth scenario and its residual,
resulting from the cancellation of the spectral contributions
due to the nine targets, are shown. Moreover, the range
and the amplitude estimated by the CSFEC and HCSFEC
algorithms for each target are shown (M = 4 is assumed).

Let us focus on S7 now. The exact positions of the targets
characterizing our five experiments are listed in Table V. In
this case, L ranges from five to ten; note also that T l denotes
the l th target (with l = 1, 2, . . ., 10).

The values of the range RMSE ε̄R and peak error ε̂R

obtained for all the considered estimation algorithms are
listed in Tables VI and VII, respectively. The values of the
range average errors ε̄m,R and ε̂m,R evaluated by averaging
the RMSE ε̄R and the peak error ε̂R obtained for the central
channel in all our experiments and the average CT are listed
in Table VIII. From these results, the following points are
derived.

1) The ability of the CSFEC and HCSFEC algorithms
in estimating the range of multiple targets becomes
evident when the overall number of targets L in-
creases. In fact, as evidenced by the numerical results
collected in Tables VI and VII, the CSFEC and
HCSFEC algorithms achieve the lowest RMSE and

TABLE V
Exact Positions of the Targets Characterizing the Seventh Scenario;

Five Different Experiments Are Considered

TABLE VI
Range RMSE ε̄R Evaluated for All Our Experiments; the Seventh

Scenario Is Considered

TABLE VII
Range Peak Error ε̂R Evaluated for All Our Experiments; the Seventh

Scenario Is Considered

peak errors in all the experiments for both the values
of M.

2) All the considered algorithms achieve comparable
accuracies in the first experiment, i.e., when L = 5.
In the experiments characterized by L > 5, the CS-
FEC and HCSFEC algorithms achieve the lowest
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TABLE VIII
Average RMSE ε̄m,R, Peak Error ε̂m,R, and CT

Evaluated in the Seventh Scenario

peak errors for both the values of M. Moreover, the
errors significantly increase for Alg-S and Alg-DP
when L > 8 (i.e., in experiments 4 and 5).

3) The average CT achieved by the CSFEC and HCS-
FEC algorithms is comparable with those of the
other algorithms (for example, the average CT of
the CSFEC and HCSFEC algorithms for M = 1 is
equal to that of the CFH algorithm); however, the
estimation accuracy they achieve is higher.

V. CONCLUSION

In this article, an algorithm for detecting and estimating
a single tone was derived; moreover, it was shown how
it can be exploited to estimate multiple tones through a
serial cancellation procedure. The accuracy and robustness
of the devised single-tone and multiple-tone estimators
were assessed by means of extensive computer simulations
involving both synthetically generated data and the mea-
surements acquired through a commercial colocated MIMO
FMCW radar. Our results evidenced that our multiple-tone
estimators outperform all the other related estimators avail-
able in the technical literature in terms of the probability of
convergence and accuracy when they operate in the presence
of multiple closely spaced tones. For this reason, if they
are employed in FMCW radar systems, they allow us to
achieve excellent range resolution and to acquire direction
of arrival information from the phase estimates computed
on an antenna array . Future work concerns the application
of the developed algorithms to various fields.

APPENDIX A
A. SPECTRUM CANCELLATION

In this appendix, the expression of the vector C̄0(Âl [r −
1], F̂l [r − 1]) appearing in the RHS of (40) is derived. The
vector C̄0(·, ·) is evaluated to cancel the contribution of the
sequence [see (3)]

sn
(
F̄l , Āl

)
� Āl exp

(
j2πnF̄l

) = Āl w̄n
l (53)

to the vector X0 (12); here, w̄l � exp( j2π F̄l ). Since X0 is
the N0th-order DFT of the zero-padded vector x0,ZP (13)

(where the vector x0 collects the elements of the complex
sequence {xn; n = 0, 1,..., N − 1}), it can be shown that
C̄0(Âl [r − 1], F̂l [r − 1]) = Āl W̄(l )

0 , where W̄(l )
0 denote the

N0th-order DFT of the vector w̄(l )
0 � [1, w̄l , w̄2

l ,..., w̄N−1
l ,

0,..., 0]T . Then, the mth element of the vector W̄(l )
0 is given

by

W̄ (l )
0 [m] = 1

N0

N−1∑
n=0

w̄n
l exp

(
− j

2πm

N0
n

)

= 1

N0

N−1∑
n=0

(
q[m]

)n
(54)

where q̂[m] � exp( j2π (F̂ − m/N0)). Therefore, the iden-
tity

N−1∑
n=0

qn = qN − 1

q − 1
(55)

holding for any q ∈ C can be exploited for an efficient
computation of all the elements of the vector W̄(l )

0 .

APPENDIX B
LEAKAGE CANCELLATION

In this appendix, the expression of the quantity
X̄lk,k (Âl [r − 1], F̂l [r − 1], F̂c,r[r]) appearing in the RHS of
(43) and (45) is derived for the CSFEC algorithm. This
quantity is computed to cancel the contribution of the se-
quence {sn(F̄l , Āl )} (53) to X̄k,ρ[r] for k = 0, 1, 2, 3. Since
X̄k,ρ[r] is defined by (20), it can be shown that

X̄lk,k
(
Âl [r − 1], F̂l [r − 1], F̂c,r[r]

) = Āl W̄ (l )
k (F̂c,r[r])

(56)
where

W̄ (l )
k (F̂c,r[r]) = 1

N0

N−1∑
n=0

nk w̄n
l exp

(− j2πnF̂c,r[r]
)

= 1

N0

N−1∑
n=0

nk
(
q̄[r]

)n
(57)

and q̄[r] � exp( j2π (F̄l − F̂c,r[r])). Therefore, the identities
(55)

(
q − 1

)2
N−1∑
n=0

n qn = (N − 1)qN+1 − NqN + q (58)

(
q − 1

)3
N−1∑
n=0

n2qn = (N − 1)2qN+2 + N2qN − q2 − q

− (
2N2 − 2N − 1

)
qN+1 (59)

and

(
q − 1

)4
N−1∑
n=0

n3qn = q + 4q2 + q3 − N3qN

+ (
3N3 − 3N2 − 3N − 1

)
qN+1

+ (−3N3 + 6N2 − 4
)
qN+2

+ (N − 1)3qN+3 (60)
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can be exploited for an efficient computation of all the terms
appearing in the RHS of (43) and (45), with k = 0, 1, 2,
and 3.
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