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ABSTRACT Automated classification of Electrocardiogram (ECG) for arrhythmia monitoring is the core
of cardiovascular disease diagnosis. Machine Learning (ML) is widely used for arrhythmia detection. The
cloud-based inference is the prevailing deployment model of modern ML algorithms which does not always
meet the availability and privacy requirements of ECGmonitoring. Edge inference is an emerging alternative
that addresses the concerns of latency, privacy, connectivity, and availability. However, edge deployment of
MLmodels is challenging due to the demanding requirements of modernML algorithms and the computation
constraints of edge devices. In this work, we propose a lightweight self-contained short-time Fourier Trans-
form (STFT) Convolutional Neural Network (CNN) model for ECG classification and arrhythmia detection
in real-time at the edge. We provide a clear interpretation of the convolutional layer as a Finite Impulse
Response (FIR) filter and exploit this interpretation to develop an STFT-based 1D convolutional (Conv1D)
layer to extract the spectrogram of the input ECG signal. The Conv1D output feature maps are reshaped
into a 2D heatmap image and fed to a 2D convolutional (Conv2D) neural network (CNN) for classification.
The MIT-BIH arrhythmia database is used for model training and testing. Four model variants are trained
and tested on a cloud machine and then optimized for edge computing on a raspberry-pi device. Weight
quantization and pruning techniques are applied to optimize the developed models for edge inference. The
proposed classifier can achieve up to 99.1% classification accuracy and 95% F1-score at the edge with a
maximummodel size of 90 KB, an average inference time of 9 ms, and a maximummemory usage of 12MB.
The achieved results of the proposed classifier enable its deployment on a wide range of edge devices for
arrhythmia monitoring.
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INDEX TERMS Electrocardiogram, machine learning, edge inference, convolutional neural network, inter-
pretable neural network, finite impulse response, short-time Fourier transform.

I. INTRODUCTION22

Cardiovascular arrhythmias are a set of disorders character-23

ized by irregular cardiac electrical activity. Arrhythmias such24

as ventricular fibrillation and flutter can cause cardiac arrest,25

hemodynamic collapse, and sudden death. Cardiovascular26

diseases induced by long-term cardiac arrhythmias are the27

leading cause of death globally, according to the WHO [1].28

The intricacy of arrhythmias and theirmechanical and clinical29

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeswari Sundararajan .

interrelationships causes numerous misdiagnoses and cross 30

classifications using visual criteria. Moreover, clinical exam- 31

ination and diagnosis utilizing ECG data by physicians are 32

time-consuming, impractical, and sometimes unavailable to 33

remote places. Automatic arrhythmia beat categorization is 34

thus urgently required for dynamic ECG processing. 35

Electrocardiography is still the most accessible and exten- 36

sively used method for measuring cardiac electrical activity 37

due to its simplicity, non-invasiveness, and low cost. The 38

electrocardiogram (ECG) represents the electrical activity of 39

the heart and provides vital information about heart function. 40
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Automatic ECG analysis is critical in cardiac monitoring,41

especially long-term monitoring with huge amounts of data.42

Arrhythmias are often brief in duration and cannot be discov-43

ered by physical examination or standard ECG due to time44

constraints. Longer ECG recording periods are required to45

detect arrhythmias, analyze their link to patient symptoms,46

or test the success of medications.47

Many approaches have been proposed for collecting long48

ECG records [2]. For instance, a Holter monitor is used49

to collect ECG data using a traditional tape recorder or50

solid-state storage device, which is then processed and dis-51

played for physician examination. The patient is instructed to52

keep a symptom diary and to record the time on the Holter53

clock when symptoms occur. Another option is to monitor54

patients via telemetry in the hospital, but this has serious55

drawbacks, including low patient acceptance. Mobile cardiac56

outpatient telemetry (MCOT) systems that allow for multiple57

days of ECG monitoring have been created. On the other58

hand, episodic monitors can capture ECGs during symp-59

toms allowing patients to record ECGs, save them, and then60

fax them to doctors. Automatically-activated monitors which61

start recording when detecting an irregular heart rhythm have62

been advanced to replace the manually-activated monitors63

in which patients had to activate the device fast to acquire64

ECG recordings while experiencing symptoms Finally, many65

individuals with recurrent loss of consciousness or severe66

symptoms can have a device implanted beneath the skin that67

records information for later recovery. Modern pacemakers68

and implantable defibrillators can also collect information69

regarding arrhythmias for later retrieval. The pacemaker’s70

signals can be recorded and analyzed later to confirm or diag-71

nose an arrhythmia.72

Unfortunately, all the aforementioned approaches for ECG73

monitoring neither provide an instantaneous diagnosis of the74

ECG root cause nor suggest immediate medical interven-75

tion. The alternative is continuous monitoring of the ECG76

activity in real-time and deploying automatic ECG classi-77

fiers for early detection and identification of sudden heart78

arrhythmias. Nowadays, such an approach can be efficiently79

deployed depending on recent advancements in the auto-80

matic Artificial Intelligence (AI) ECG classification meth-81

ods, cloud services, and wearable technology. A single-lead82

ECG chest belt can be used to measure the ECG signal and83

send it wirelessly via the internet to a cloud service run-84

ning an ECG arrhythmia detection model for long-term ECG85

rhythm monitoring and arrhythmia detection. The main con-86

cerns with this approach are the privacy of the patient, latency87

of the internet connection, connectivity of the ECG sensor,88

and availability of the cloud service.89

In this work, we propose ECG classification and arrhyth-90

mia detection at the edge to address the previous concerns.91

Instead of relying on a cloud service for arrhythmia detection,92

a microcontroller-based edge device is used for acquiring93

the ECG signal, detecting heart arrhythmia in real-time, and94

alarming the patient to immediately take measures. However,95

edge deployment of AI models is a challenging task due to96

the demanding requirements of modern AI algorithms and the 97

computation constraints of edge devices. Moreover, the criti- 98

calness of arrhythmia detection for the patient’s life neces- 99

sitates increasing the automatic detection accuracy which 100

introduces an extra challenge. 101

To address the above challenges, some guidelines have 102

been applied to the proposed classifier. The internationally- 103

accepted MIT-BIH arrhythmia database is used for training 104

and testing the ECG classifier. A single lead will be employed 105

to capture the ECG signal to facilitate its usage by the patient. 106

Due to its recent advancements, a deep neural network (DNN) 107

model is used for ECG classification. The time-domain sam- 108

pled ECG signal will be fed directly to the DNN model with- 109

out further preprocessing or feature engineering. The real- 110

time performance of the proposed model was planned in 111

advance to fit the resource constraints of edge inference. The 112

DNN model is optimized for edge deployment by applying 113

state-of-the-art weight quantization and pruning techniques. 114

Finally, the model is extensively tested on the edge device to 115

verify its functional correctness. 116

A convolutional neural network (CNN) composed of a 117

cascaded stack of 1D and 2D convolutional (Conv1D and 118

Conv2D) layers and dense layers is developed. We provide 119

a clear interpretation of the 1D convolutional layer (Conv1D) 120

as a Finite Impulse Response (FIR) and exploit this interpreta- 121

tion to develop a short-time Fourier Transform (STFT) layer 122

to extract the spectrogram of the input ECG signal. To the 123

best of our knowledge, this is the first work to provide a clear 124

interpretation of the Conv1D layer as a frequency-selective 125

FIR filter. The Conv1D layer kernels are designed as a bank 126

of adjacent FIR band-pass filters (BPFs) acting as an STFT 127

computation engine. The Conv1D feature maps produced by 128

the FIR filter bank are then reshaped into a 2D heatmap image 129

to be fed to a Conv2D CNN classifier. The advantage of 130

such an approach compared to using a pre-processing STFT 131

computation stage commonly used in the literature is that our 132

approach produces a lightweight self-contained CNN model 133

amenable to edge optimization. 134

Four model variants are developed, tuned, trained, and 135

tested on a cloud server. The testing results show that the 136

proposed models achieve comparable classification results 137

including accuracy, recall, precision, and F1-scores com- 138

pared to the state-of-the-art ECG classifiers. The devel- 139

oped models are then optimized using post-quantization and 140

training-aware quantization methods for edge deployment. 141

Finally, the optimized models are tested and benchmarked 142

on a raspberry-pi device. The proposed models achieve sig- 143

nificant classification results using minimum computation 144

resources fitting the computational constraints of the edge 145

device. 146

The main contributions of this work include: 147

• Advancing a novel CNN topology for time series data 148

tailored and optimized for edge inference. 149

• Providing clear interpretation of the Conv1D layer as a 150

finite impulse response (FIR) frequency-selective filter 151

and visualizing the Conv1D layer feature maps. 152
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• Testing the ECG classifier on an edge device and report-153

ing its performance and benchmarking results and com-154

paring our work to recent state-of-the-art ECG classifi-155

cation methods and showing its competence.156

The remaining of this paper is organized as follows: In157

Section II, a brief background of the automatic heart moni-158

toring and classification literature and their related work are159

presented. A brief introduction to the MIT-BIH arrhythmia160

database and how it is employed in this work is presented161

in Section III. CNNs and their interpretation as FIR filters162

are discussed in Section IV. Methods and tools used in this163

work are advanced in section V. Model testing results on164

the cloud and edge machines and a comparison between the165

proposed model and state-of-the-art ECG classification mod-166

els in addition to visualization of the Conv1D activation and167

feature maps are presented in Section VI. Conclusions and168

future work are portrayed in Section VII.169

II. LITERATURE REVIEW170

A typical ECG waveform consists of a P wave, QRS com-171

plex wave, and T wave as shown in Figure 1, which reflect172

electrical activities of depolarization and repolarization pro-173

cesses of the atria and ventricle [3]. Each heartbeat contains174

a series of deflections away from the baseline on the ECG175

that reflect the time evolution of the heart’s electrical activity.176

P-wave is a small defection caused by atrial depolarization;177

Q, R, and S waves are known as the QRS-complex, which178

is the largest-amplitude portion of the ECG, caused by ven-179

tral depolarization; T-wave is caused by ventral polarization.180

Up to 12 separate leads can be used to measure ECG includ-181

ing three bipolar limb leads, three unipolar limb leads, and six182

unipolar chest leads. Figure 1 depicts ECG measured by the183

modified limb lead II (MLII) and chest lead V1. Each lead184

illustrates the electrical activity of the heart from a particular185

angle across the body. The normal heart rhythm is called sinus186

rhythm in which the triggering impulses propagate through-187

out the four chambers of the heart in a coordinated manner.188

The abnormal heart rhythms are called arrhythmias, which189

occur due to changes in the normal sequence of electrical190

impulses of the heart. The ECG can be used to spot and191

identify several types of arrhythmias. Figure 1 depicts the192

ECG of a normal sinus rhythm and ventricular arrhythmia.193

The main stages of automatic heartbeat monitoring using194

the ECG are: data acquisition, preprocessing, feature engi-195

neering, and ECG signal classification [4]. The MLII is the196

most commonly used lead for ECG data acquisition and197

arrhythmia detection as it highlights various segments within198

the heartbeat including the P, QRS, and T waves [3]. The199

ECG preprocessing stage includes filtering unwanted signal200

components such as baseline wandering and power line inter-201

ference, signal denoising, segmentation, and QRS complex202

detection. Myriad ECG processing techniques have been pro-203

posed in the literature with a wide range of complexity and204

performance [4], [5].205

Feature engineering is the stage in which important206

features of the ECG are extracted and prepared for the207

classification stage. A feature is any information collected 208

from data that can be used to categorize it. The features can be 209

retrieved directly from the ECG signal morphology or from 210

the heart rhythm in various forms. The most common feature 211

used in the literature is the RR interval which is correlated 212

with the variations in the ECG curve morphology and can be 213

calculated from the cardiac rhythm. The RR interval is the 214

time between the R peak of one heartbeat and the R peak of 215

another heartbeat. Alterations in the RR interval are linked 216

with changes in the ECG waveform shape caused by arrhyth- 217

mias. Other morphological features such as intervals between 218

the fiducial points of the heartbeat including P wave duration; 219

QRS complex interval; and PP, ST, TP segment intervals are 220

also used. 221

Time domain, frequency domain, time-frequency domain, 222

and statistical techniques are commonly used to capture 223

the significant features of the heartbeats [4]. Statistical 224

approaches are often employed to extract relevant features 225

from heartbeats in the temporal domain [6]. The classical 226

Fourier transform (FT) is also used to obtain the ECG fre- 227

quency spectral features however it can only capture global 228

frequency information decoupled from their occurrence time. 229

The ambiguity of FT is overcome by STFT in which the FT 230

is repeatedly computed for a fixed-length moving temporal 231

window to provide local time-frequency information or spec- 232

trogram of the signal however a trade-off arises between time- 233

frequency resolution. The shortcoming of STFT is overcome 234

by Wavelet transform (WT) in which dilated versions of a 235

mother wavelet are shifted and correlatedwith the ECG signal 236

to extract a high-resolution time-frequency 2D image called 237

scalogram of the signal. Both continuous WT (CWT) and 238

discrete WT (DWT) have been extensively used for ECG 239

preprocessing and feature extraction [7]. The approaches that 240

provided the highest accuracy in the literature used features 241

from the time/frequency domain and the RR interval. 242

For a 1D input ECG signal, the sample points of the heart- 243

beat signal can be used directly as features in 1DCNNswhich 244

are known for their capability of automatic feature extraction. 245

The time-frequency spectrograms and scalograms of ECG 246

segments obtained using STFT and CWT, respectively, can 247

also be used as input images to 2D CNNs for feature extrac- 248

tion and classification. 2D CNNs are more prevalent with 249

well-established models due to their wide usage for image 250

applications. The advantage of this approach is eliminating 251

the need for cardiology experts and relying on the automatic 252

power of CNN for extracting ECG features that maximize the 253

classification accuracy. 254

The final and most important stage in ECG monitoring is 255

the classification stage. Generally, machine and deep learn- 256

ing methods have been extensively investigated for this task 257

[8], [9]. The most commonly used methods are support vec- 258

tor machines (SVMs) and deep neural networks (DNNs). 259

SVMs models with various feature types have been exten- 260

sively used for ECG classification [3], [5], [6], [10] yet such 261

models suffer from the computational complexity of the SVM 262

algorithm. On the other hand, many recent works proposed 263
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FIGURE 1. Sample of an ECG signal from the MIT-BIH database with a normal sinus rhythm and ventricular arrhythmia & The
ECG wave segments.

various topologies of 1D and 2D CNNs in conjunction with264

different feature spaces for ECG classification [3], [5], [11],265

[11], [12], [13].266

Alqudah et al. [14] presented a comparative study between267

different ECG time-frequency representations including268

Log-Scale STFT, Mel-Scale DWT, Bi-spectrum, and269

Third-order Cumulant and various CNN architectures includ-270

ing AOCT-NET, Mobile-Net, Squeeze-Net, and Shuffle-Net.271

Models are trained and tested using a subset of the MIT-BIH272

arrhythmia database representing six different heartbeat273

classes. The best overall performance among all used CNN274

architectures was MobileNet with an overall accuracy of275

93.8%, while the best spectrum representation among all used276

was the bispectrum with an overall accuracy of 93.7%. It has277

been shown that the spectrum representations of ECG beats278

have significantly improved the classification results.279

Cao et al. [15] proposed a transfer learning 2D CNN280

model for ECG classification using the STFT representa-281

tion of the heartbeat. The MIT-BIH database is used for282

model training and testing and the ResNet-18 image classi-283

fication model is fine-tuned to classify the ECG STFT spec-284

trograms. Huang et al. [16] advanced a 2D CNN for ECG285

classification using the STFT spectrograms of the heartbeat286

signals. Models are trained and tested using a subset of287

the MIT-BIH arrhythmia database representing five differ-288

ent heartbeat classes. The classification results show that the289

proposed 2D-CNN model can reach an average accuracy of290

99.00%. Ullah et al. [17] proposed a 8-class 2D CNN ECG291

classifier using the STFT spectrogram representation of the292

heartbeat signals. The proposedmodel consisting of four con-293

volutional layers and four pooling layers is evaluated on the294

MIT-BIH arrhythmia dataset and it achieved 99.11% classifi-295

cation accuracy. Wu et al. [13] developed a CNN model to296

classify ECG heartbeats using various time-frequency dis-297

tributions including STFT, CWT, and pseudo-Wigner-Ville298

distribution (PWVD). Models are trained and tested using299

a subset of the MIT-BIH arrhythmia database representing300

12 rhythm classes. The method using STFT and a CNN301

achieved the best classification performance.302

The common theme between theseworks is using the STFT 303

spectrogram accompanied by 2DCNNmodels to enhance the 304

ECG classification results. In all related STFT-based ECG 305

classifiers, the STFT computation is carried out as a pre- 306

processing step using a separate computational block which 307

adds a computation overhead to the classifier model. The 308

main feature of our proposed model is implementing the 309

STFT extraction procedure as a part of the CNN model 310

itself exploiting the FIR interpretation of the Conv1D layer. 311

Such an approach results in a self-contained classifier model 312

with reduced computational requirements that fits edge 313

inference. 314

Many recent works other than the STFT-based CNNs have 315

been also proposed for ECG classification and arrhythmia 316

detection. Cui et al. [10] proposed an ECG feature extraction 317

method based on DWT and Conv1D with Principle Com- 318

ponent Analysis (PCA) to reduce the number of features. 319

An SVM classifier is trained on an upsampled subset of the 320

MIT-BIH dataset to address dataset imbalance. 321

Li et al. [18] presented an ECG classifier based on Incre- 322

mental Broad Learning (IBL) and biased dropout. Incre- 323

mental learning is a machine learning paradigm where 324

the learning process takes place whenever new examples 325

emerge and adjusts what has been learned according to 326

the new examples. Baseline wander filtering and DWT are 327

used for ECG signal denoising, and morphological and 328

rhythm features such as RR intervals are extracted from the 329

denoised ECG segments. An IBL DNN is used for ECG 330

classification. 331

Liu et al. [19] proposed several models for ECG classifi- 332

cation based on Wavelet Scattering Transform and PCA for 333

feature extraction and a variety of NN and probabilistic NN 334

(PNN) and k-nearest neighbor (KNN) classifiers for ECG 335

classification. WST builds translation invariant, stable, and 336

informative signal representations WST is implemented with 337

a CNN with preassigned weights that iterates over traditional 338

WT, nonlinear modulus, and averaging operators. In PNN, 339

the class probability of a new input data is estimated and 340

the Bayesian rule is then employed to allocate the class with 341

94472 VOLUME 10, 2022



M. M. Farag: Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection

the highest posterior probability to new input data. KNN342

is a non-parametric supervised classification algorithm that343

classifies test data by measuring its Euclidean distance in the344

feature space to all labeled training samples and returns the345

nearest K labels and assigns the most frequent label to the test346

data.347

Mousavi and Afghah [20] proposed an ECG classification348

method based on the CNN and Bidirectional Long-Shirt Term349

Memory (BiLSTM) sequence to sequence auto-encoder.350

A Conv1D CNN extracts a set of features from the given351

ECG heartbeats, then, a BiLSTM encoder maps the features352

to a sequence capturing data temporal patterns, and finally,353

the decoder takes the sequence representations and produces354

the classification probabilities The Synthetic Minority Over-355

sampling Technique (SMOTE) upsampling algorithm is used356

to address the class imbalance. The model is tested for357

both intra- and inter-patient schemes and the reported scores358

are among the best scores reported for the ECG classifica-359

tion works. Generally, Recurrent-Neural Networks (RNNs)360

and LSTM, specifically, suffer from increased computational361

loads and computation time limiting their applicability to362

edge inference.363

Raj and Ray [6] proposed a personalized arrhythmia mon-364

itoring platform for real-time detection of ECG arrhythmias.365

Discrete Orthogonal Stockwell Transform (DOST) is used366

for time-frequency feature extraction and the Artificial Bee367

Colony (ABC) optimized twin least-square support vector368

machine (LST-SVM) algorithm is used for signal classifi-369

cation. Two median filters and a 12-tap FIR LPF are used370

for baseline wandering removal and high-pass noise and371

power-line interference filtering. DOST is computed for a372

1D time-series signal by applying Fast FT (FFT), multi-373

plicative windowing, and inverse FFT (IFFT) to yield a set374

of coefficients representing the time-frequency morpholog-375

ical features of the signal. The ABC-LSTSVM is an SVM376

algorithm with reduced complexity to fit embedded device377

constraints.378

Acharya et al. [21] presented a CNN for ECG classifica-379

tion. DWT is used for noise removal and a 9-layer Conv1D380

CNN is employed for signal classification. A custom upsam-381

pling method is proposed for addressing the class imbalance.382

The accuracy, precision, and recall results are acceptable but383

not the best compared to other models presented in the litera-384

ture. Nevertheless, the proposed model is a good fit for edge385

deployment due to the minimum preprocessing steps applied386

except the DWT noise removal step.387

The main purpose of this work is to develop a highly388

accurate ECG classification and arrhythmia detection model389

at the edge. The main challenge is meeting the accuracy390

requirements of the ECG classification problem using a391

resource-constrained edge microcontroller or embedded sys-392

tem device. A common feature of related ECG classifiers is393

using computationally intensive feature extraction stages and394

DNN models which are not optimized for edge computing.395

Related ECG classification works do not address minimizing396

the computation requirements of the developedmodels which397

is essential for edge deployment of AI models. None of the 398

related work presented real-time performance analysis of the 399

developed models or an interpretation of the underlying DNN 400

model. Other parameters such as the model size, number 401

of parameters, memory usage, and training time are neither 402

optimized nor presented in the literature, as well. In this 403

work, we aim to address the above challenges and provide 404

a lightweight interpretable ML model for ECG classification 405

and arrhythmia detection ready for edge deployment. 406

III. DATASET AND FEATURE SELECTION 407

The internationally recognized standard ECG databases 408

include the MIT-BIH database, the AHA (American Heart 409

Association) database, the European Community CSE 410

database, and the European ST-T database. The MIT-BIH 411

arrhythmia database is the most commonly utilized and 412

highly acknowledged database in the academic world [3]. 413

The MIT-BIH Arrhythmia Database contains 48 half- 414

hour excerpts of two-channel ambulatory ECG recordings, 415

obtained from 47 subjects collected between 1975 and 416

1979 [22], [23]. Twenty-three recordings were chosen at ran- 417

dom from a set of 4000 24-hour ambulatory ECG record- 418

ings collected from a mixed population of inpatients (about 419

60%) and outpatients (about 40%); the remaining 25 record- 420

ings were selected from the same set to include less com- 421

mon but clinically significant arrhythmias that would not 422

be well-represented in a small random sample. The record- 423

ings were digitized at 360 samples per second per chan- 424

nel with 11-bit resolution over a 10 mV range. Two or 425

more cardiologists independently annotated each record; dis- 426

agreements were resolved to obtain the computer-readable 427

reference annotations for each beat (approximately 110,000 428

annotations in all) included with the database. A total of 429

15 annotations are assigned to the R-peaks of the ECG beats. 430

According to the standard developed by the Association for 431

the Advancement of Medical Instrumentation (AAMI) [24], 432

17 recommended arrhythmia categories are classified into 433

5 essential groups or superclasses. Following the AAMI- 434

recommended practice, four-paced recordings are not used. 435

The AAMI standard emphasizes the problem of distinguish- 436

ing ventricular ectopic beats (VEBs) from non-ventricular 437

ectopic beats, and hence normal and arrhythmic beats are 438

remapped to the five AAMI heartbeat classes. We fol- 439

lowed the AAMI standard which is commonly used in the 440

literature [3] aiming to standardize the evaluation process 441

considering a clinical point of view and AAMI recommen- 442

dations and to ensure a fair comparison with the results in 443

the related literature. Annotations in the MIT-BIH dataset 444

are mapped to five different beat categories acting as 445

dataset labels following the AAMI standard as shown in 446

Table 1. 447

Each ECG record of the MIT–BIH Arrhythmia Database 448

includes two leads originating from different electrodes. 449

The most common leads in the database are MLII and V1. 450

To maintain the consistency of leads, only MLII lead read- 451

ings are used in this research. Records 102 and 104 have 452
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TABLE 1. Mapping of MIT-BIH arrhythmia types and Advancement of Medical Instrumentation (AAMI) classes.

been excluded from the dataset because they do not con-453

tain the MLII lead readings. The number of beats pro-454

vided in Table 1 does not include records 102 and 104.455

Figure 1 shows a sample of an ECG signal from the MIT-BIH456

record 106with normal and premature ventricular contraction457

beats.458

To prepare the dataset for machine learning, the ECG sig-459

nals are downsampled to 128 samples/sec to reduce the DNN460

computation load. The ECG signals from various records are461

segmented on a beat-by-beat basis. The heartbeats are seg-462

mented by filtering out non-beat annotations from the dataset463

and extracting 0.5-second segments (64 samples) centered at464

the annotated R-peak. Segmented beats with less than 0.5 s465

intervals are padded to make all heartbeats of the same length,466

which is required for the DNN model. No filtering or prepro-467

cessing stages have been applied that assume any knowledge468

about the signal shape or spectrum. It has been shown that469

the use of normalized RR-intervals significantly improves the470

classification results [25]. The preceding and subsequent RR471

peak intervals have been also extracted and normalized to the472

sampling frequency to be used as input features to the DNN473

models. The recommended beat extraction method is simple474

and can be directly applied at the edge device using a simple475

peak detector.476

The MIT-BIH dataset signals were extracted from Holter477

recordings and filtered to limit analog-to-digital converter478

(ADC) saturation and for anti-aliasing, using a band-pass479

filter from 0.1 to 100 Hz [23]. In this work, we will be480

sufficing with this filter for noise removal during model481

training and testing, i.e. we will use the MIT-BIH heartbeat482

signals from the training and testing datasets without further483

pre-processing. For model deployment on the edge device,484

a pre-processing baseline wandering and noise removal stage485

will be implemented using a low-computational cost FIR fil-486

ter [25] or moved to the ECG analog front-end to reduce the487

computation load at the edge device. Some related works use488

DWT for noise removal [3]. However, such approaches incur 489

additional computation overhead to the classification model 490

limiting their usage on resource-constrained edge devices. 491

The total number of segmented annotated beats is 492

103200 due to excluding records 102 and 104. Three proto- 493

cols are proposed in the literature for dividing the MIT-BIH 494

dataset into training and test sets: intra-patient, inter-patient, 495

and random division schemes [3]. In the intra-patient divi- 496

sion scheme, the heartbeats from the same patient are used 497

for training and testing which makes the evaluation process 498

biased. In the inter-patient division scheme proposed in [26], 499

the training and test datasets are divided by the record num- 500

bers such that heartbeats within each set come from different 501

individuals eliminating the evaluation process bias. In this 502

work, the random division scheme is used to ensure keeping 503

the dataset distribution statistics in both the training and test- 504

ing sets while eliminating the evaluation bias. The MIT-BIH 505

database is randomly shuffled, stratified, and split into train- 506

ing and test datasets with a splitting ratio of 25%. The training 507

dataset is further split into training and validation datasets 508

with a splitting ratio of 25%. The total numbers of anno- 509

tated heartbeat examples in the training, validation, and test 510

datasets are 58050, 19350, and 25800, respectively. 511

IV. CONVOLUTIONAL NEURAL NETWORKS (CNNs) AND 512

FINITE IMPULSE RESPONSE (FIR) FILTERS 513

CNN is a deep learning model for processing data with a 514

grid pattern, such as photographs, that is inspired by the 515

architecture of the human visual cortex and designed to learn 516

spatial hierarchies of characteristics automatically and adap- 517

tively, from low- to high-level patterns. CNN is a mathemat- 518

ical construct made up of three types of layers (or building 519

blocks): convolutional, pooling, and fully connected layers. 520

The first two layers, convolution, and pooling extract features 521

while the third, a fully connected layer, uses the extracted 522
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features for classification. Deep CNN features multiple cas-523

caded stacks of Convolutional and Pooling layers to increase524

their expressiveness power. A 1D convolutional (Conv1D)525

layer slides several kernels across a time-series sequence or526

signal, producing a 1D feature map per kernel. The sliding527

shift amount is determined by the strides parameter which528

specifies the stride length of convolution. Each kernel will529

learn to detect a single very short sequential pattern (no longer530

than the kernel size). The inactivated Conv1D layer output is531

expressed as follows [27]:532

ylk = blk + w
l−1
k ~ x l−1 = blk +

Nl−1∑
i=1

wl−1ik x l−1i (1)533

where ylk is the layer output, b
k
l is the bias of the k

th neuron at534

layer l, x l−1i is the output of the ith neuron at layer l−1, wl−1ik535

is the kernel weight from the ith neuron at layer l − 1 to the536

k th neuron at layer l, Nl−1 is the size of the Conv1D kernel at537

layer l − 1, ~ is the 1D correlation operator [27].538

In signal processing, a finite impulse response (FIR) filter539

is a filter whose impulse response is of finite duration [28].540

For a causal FIR filter of order N , each value of the output541

sequence is a weighted sum of the most recent input values542

as shown in Figure 2. The FIR output is defined as:543

y[n] = h[n] ∗ x[n] =
N∑
i=0

x[i] h[n− i] (2)544

where x[n] is the input signal, y[n] is the output signal, N is545

the filter order; an N th-order filter has N + 1 terms on the546

right-hand side, hi is the value of the impulse response at the547

ith instant for 0 ≤ i ≤ N of an N th-order FIR filter, and ∗548

is the 1D convolution operator [27]. If the filter is a direct549

form FIR filter then h[n] is the filter coefficients or taps. This550

computation is also known as discrete convolution.551

Correlation is equivalent to convolution with the552

time-reversed impulse response of the Conv1D kernel where553

h[n] = w[−n] [29]. Comparing the discrete convolution554

computed by the FIR filter and the Conv1D kernel oper-555

ation illustrates that the discrete convolution is equivalent556

to the inactivated Conv1D kernel convolution between the557

layer weights and the time-reversed version of the kernel558

weights for the bias term b = 0. The time delay or shift-559

ing operation of the FIR filter is equivalent to sliding the560

Conv1D kernel across the input signal. A Conv1D kernel with561

a single stride computes the discrete convolution between the562

1D input signal and the Conv1D kernel in parallel. In other563

words, the Conv1D kernel acts as an FIR filter applied to564

the 1D input signal. Accordingly, the Conv1D filter kernel565

is equivalent to the impulse response of the FIR filter where566

the kernel weights are the filter coefficients or taps of the567

direct form realization of the FIR filter. Note that a Conv1D568

kernel of Nk length has an order of N = Nk − 1 as an FIR569

filter.570

The convolution theorem states that under suitable condi-571

tions the Fourier transform of a convolution of two functions572

FIGURE 2. Direct form discrete-time FIR filter of order N . The top part of
the block diagram is an N-stage delay line with N + 1 taps. Each unit
delay is a z−1 operator in Z-transform notation & An example of the FIR
filter impulse response h[n] and power spectrum |H(f )|2 for N = 32.

(or signals) is the point-wise product of their Fourier trans- 573

forms [28]. The filter output for an input sequence x[n] is 574

described in the frequency domain by the convolution theo- 575

rem as follows: 576

F(x ∗ h)︸ ︷︷ ︸
Y (ω)

= F(x)︸︷︷︸
X (ω)

·F(h)︸︷︷︸
H (ω)

, 577

and y[n] = x[n] ∗ h[n] = F−1{X (ω) · H (ω)} (3) 578

where operators F and F−1 denote the discrete-time Fourier 579

transform (DTFT) and its inverse, respectively. The complex- 580

valued, multiplicative function H (ω) is the filter’s fre- 581

quency response. Figure 2 illustrates an example of the filter 582

impulse response h[n] and power spectrum |H (f )|2 of an FIR 583

Low-pass Filter (LPF) for N = 32. 584

Consequently, the Conv1D kernel operation is equivalent 585

to applying an FIR frequency-selective filter to the input sig- 586

nal. Furthermore, since the Conv1D kernel works as a sliding 587

window along the time axis, the filter output is a function of 588

time as well. Therefore, the Conv1D kernel output, which 589

is also known as the feature map, is a time-domain signal 590

that indicates the existence of specific frequency components 591

in the signal at specific time instants. The Conv1D kernel 592

weights can be pre-designed and assigned as non-trainable 593

parameters to apply specific FIR filtering operations but they 594

also can be trained to learn significant features of the signals 595

as usually done in CNNs. Nonetheless, a trainable Conv1D 596

kernel is still interpreted as an FIR filter with learned parame- 597

ters since the kernel operation is invariant. The Conv1D layer 598

comprises multiple kernel filters which output Nf feature 599

maps each of Ns length where Nf is the number of Conv1D 600

filters andNs is the number of samples of the input signal. The 601

Conv1D feature maps collectively can be grouped and treated 602

as a 2D heatmap that exhibits the time-frequency features of 603
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FIGURE 3. Self-contained STFT CNN architecture and the impulse and frequency responses of the FIR filter bank.

the signal. The produced 2D heatmap can be classified using604

a Conv2D CNN as shown in Figure 3.605

The Conv1D kernels can be designed to perform any kind606

of convolution-based functions or FIR filtering techniques607

including frequency-selective and matched filters by con-608

trolling the kernel length Nk and assigning appropriate fil-609

ter coefficients to the kernel weights. Figure 3 shows the610

Conv1D layer kernel weights and frequency response of a611

bank of FIR BPFs (NF = 8) with equal bandwidths and612

equally-spaced adjacent center frequencies. The 2D heatmap613

image resolution is Ns × Nf . The proposed Conv1D layer614

can be designed to imitate the operation of STFT, CWT, 615

or other time-frequency transforms by assigning pre-designed 616

filter weights to the Conv1D FIR kernels. STFT computes 617

the signal spectrogram by repeatedly evaluating FT of the 618

signal over a short period of time and displaying the spec- 619

trum versus time. The CWT applies a set of filters derived 620

from dilated versions of the mother wavelet to the signal 621

to compute the signal scalogram. Moreover, the proposed 622

Conv1D layer can be designed as an LPF, HPF, or BPF for 623

ECG noise removal without the need for extra preprocessing 624

stages. 625
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The motivation for inventing this approach is to enhance626

the performance of the ECG CNN classifier by design-627

ing a self-contained STFT-based 2D CNN without applying628

preprocessing computationally-intensive algorithms such as629

STFT or WT to meet the edge device computational con-630

straints. This approach can be applied for multi-lead ECG631

classification as well by dealing with the signal of each lead632

as a separate input channel and using multi-channel Conv2D633

CNN for classification. Another reason for devising such an634

approach is that existing DNN design tools do not support635

the quantization of custom preprocessing functions such as636

STFT or WT for edge computing. The proposed FIR-based637

STFT Conv1D layer can be readily quantized using the638

existing tools. Furthermore, the proposed approach provides639

a clear interpretation of the Conv1D CNN operation as a640

frequency-selective filter bank which is a novel contribution.641

V. METHODS AND TOOLS642

The MIT-BIH dataset is highly imbalanced as shown in643

Table 1 with a majority class to minority class ratio of644

25.8 and the ratio of the normal ECG beats to the total number645

of beats is 86%. Addressing class imbalance with traditional646

machine learning techniques has been studied extensively647

over the last two decades. Methods for handling class imbal-648

ance are grouped into data-level techniques, algorithm-level649

methods, and hybrid approaches [30]. Data-level methods for650

addressing class imbalance include over-sampling and under-651

sampling while algorithm-level methods is handling class652

imbalance by adjusting the learning or decision process in a653

way that increases the importance of theminority class. In this654

work, the class imbalance problem is addressed at the algo-655

rithm level by incorporating the class-weight parameter in the656

model training process to assign higher weights for minority657

classes during loss function optimization which is equivalent658

to oversampling the minority class. The Adam optimizer with659

adaptive learning rate scheduling initiated at 0.01 is used for660

model training.661

Keras with the Tensorflow backend is used to train and662

test the CNN classifiers. Keras is an open-source software663

library that provides a Python interface for the TensorFlow664

library. TensorFlow is an open-source framework formachine665

learning created by Google with a comprehensive, flexible666

ecosystem of tools, libraries, and community resources that667

help developers easily build and deploy ML-powered appli-668

cations. The development flow and tools used in this work are669

presented next.670

1) Keras Tuner (a framework for optimizing hyperparam-671

eter search) is used to optimize the model hyperparameter672

search process. Hyperparameters include all non-trainable673

parameters of the model and their tuning is very challeng-674

ing and time-consuming. In this work, the hyperparameter675

search space includes the number of convolutional layers,676

kernel size of each layer, number of filters in each layer,677

activation function selection from Relu, Tanh, and Sigmoid,678

and Boolean parameters to include or not regularization lay-679

ers such as Dropout and BatchNormalization layers. Keras680

Tuner comes with the Bayesian Optimization, Hyperband, 681

and Random Search algorithms. The three algorithms have 682

been investigated and the Hyperband algorithm is found to 683

give better results for the given dataset. Bayesian-optimized 684

models tend to overfit the training set resulting in a signifi- 685

cant variance. The hyperband algorithm is a combination of 686

random search with adaptive resource allocation and early 687

stopping that accelerate the hyperparameter search process. 688

Hyperparameter search is approached as an optimization 689

problem with the objective of minimization/maximization of 690

a specific quantity. Usually, maximizing the validation accu- 691

racy is the main objective of classification algorithms. How- 692

ever, due to the class imbalance nature of the training dataset, 693

maximizing the model accuracy does not tend to give the best 694

results in terms of detecting irregular heart activities due to 695

the dominance of the normal class in the dataset. For example, 696

if a classifier is set to predict all beats as normal it would 697

achieve 86% accuracy with all normal beats being correctly 698

classified and all other beats being misclassified. The valida- 699

tion Area Under the Curve of the Receiver-Operating Char- 700

acteristics (ROC-AUC), the validation recall score, and the 701

validation F1-score have been inspected as the optimization 702

objectives. In our experiments, the F1-score with macro aver- 703

aging tends to give the best results in terms of maximizing the 704

classification accuracy of theminority classes. Unfortunately, 705

the hyperparameters found by Keras Tuner cannot be used 706

directly to develop the edgemodels because Keras Tuner does 707

not consider optimizing the model complexity while search- 708

ing for the best parameters. The Keras Tuner parameters are 709

used as a guideline while developing the classifier models to 710

be exported to the edge device. 711

2) Manual tuning of the proposed models is conducted to 712

maximize the model F1-score while minimizing the model 713

complexity. In this step, the model hyper parameters includ- 714

ing the number of layers, the used regularization layers, the 715

loss function, the loss optimizer, the dataset class imbalance 716

mitigation method, and the search objective are drawn from 717

the Keras Tuner step. The number of filters and kernel size of 718

Conv1D and Conv2D layers is manually tuned to apply the 719

filtering operations described in Section IV and reduce the 720

model complexity. We designed NF adjacent FIR Filter bank 721

of BPFs each of order N = Nk − 1 with equal bandwidths 722

and equally-spaced center frequencies between 0 and 64 Hz 723

using the Hamming window method [28]. Figure 3 shows 724

the frequency response of the FIR filters for NF = 8 and 725

Nk = 16. A Conv1D input layer is instantiated with NF 726

filters each of NK size in which the FIR filter coefficients are 727

assigned to the layer kernel weights. 728

Two CNN models have been developed: a fully Conv1D 729

model and a mixed Conv1D-Conv2D model in which the 730

input layer of both models is the FIR Conv1D layer as shown 731

in Figure 4. The fully Conv1D model is mainly developed to 732

compare its performance to the proposed Conv1D-Conv2D 733

model. For each model two approaches are adopted for train- 734

ing the models by switching the Boolean trainable parameter 735

of the Conv1D layer from False to True and initializing the 736
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FIGURE 4. CNN model architectures.

Conv1D layer weights with the FIR filter coefficients in both737

approaches. The proposed models are trained and tested on738

the MIT-BIH dataset and the average and per-class model739

metrics including accuracy, recall score, ROC-AUC score,740

and F1-score are measured and reported.741

3) Models with the best F1-scores are then optimized742

for edge computation using the TensorFlow and TensorFlow743

lite (Tflite) optimization tools [31], [32] and the Google744

Qkeras package [33]. Quantization refers to techniques for745

performing computations and storing tensors at lower bit746

widths than floating-point precision. A quantized model exe- 747

cutes some or all of the operations on tensors with integers 748

or smaller float precision rather than the 32-bit single- 749

precision floating-point. Quantization allows for a more com- 750

pact model representation, smaller memory footprint, faster 751

inference, and less-demanding computation requirements yet 752

it comes at the expense of accuracy loss. Both quantization- 753

aware training (QAT) [34], [35] and post-training quantiza- 754

tion (PTQ) [36] techniques have been investigated to develop 755

Tflite models ready for edge deployment. While the former 756
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results in less reduction of the model accuracy, the latter does757

not need model training which can be much faster and easier758

to use. In QAT, weights and activations are fake quantized759

during both the forward and backward passes of training760

while in PTQ weights and activations of an already-trained761

model are quantized to a lower precision. QAT can be per-762

formed using either the TensorFlow optimization toolkit or763

the Qkeras library which provides more versatile quantization764

options including the quantizable layers and the quantization765

precision.766

The quantized models are then subjected to weight pruning767

to remove superfluous values from weight tensors. Weight768

pruning reduces the number of parameters and operations in769

a calculation by deleting connections, and hence parameters,770

between DNN layers. The DNN parameters are set to zero771

to eliminate superfluous connections between neural network772

layers. Weight pruning is done during the training phase to773

allow the DNN to adapt to changes. The weight pruning API774

is developed on top of Keras simplifying its use with Keras775

models. Weight pruning can be performed simultaneously776

with QAT using either the TensorFlow optimization toolkit777

or the Qkeras library.778

The optimized models are then converted to Tflite models779

for deployment on the edge device. Tflite is a package of780

tools that enables on-device inference of machine learning781

models. This package is composed of a runtime engine for782

ML model inference computation on edge devices and a set783

of tools for transforming and quantizing TensorFlow models784

post-training for usage on mobile and embedded devices.785

Tflite offers several PTQ options to choose from that fit the786

requirement of various computation platforms. In dynamic787

range and float16 quantization, weights are statically quan-788

tized from 32-bit floating-point to 8-bit integers (int8) and789

16-bit floats (Float16), respectively. In full-integer quantiza-790

tion, both weights and activations of the model are statically791

quantized to int8. Edge inference using Tflite addresses five792

main concerns: latency (no round-trip to a server), privacy793

(no personal data is sent out of the device), connectivity (no794

internet connectivity is required), size (reduced model and795

binary size), and battery consumption (efficient inference and796

a lack of network connections).797

4) The optimized Tflite models are finally exported to798

the edge device for testing and benchmarking. A raspberry-799

pi 3 model B+ with Cortex-ARMv8 64-bit SoC and 1GB800

DDR2 SDRAM running the Ubuntu 18.04 OS and hosting801

a Python 3.6 interpreter and Tflite runtime engine is used for802

this purpose. The ARM Cortex processor architecture inher-803

ently supports 32-bit integer and floating-point operations.804

The model metrics including accuracy, recall score, ROC-805

AUC score, and F1-score are measured for all Tflite models806

as well as themodel performancemetrics including themodel807

size, memory usage, average inference time, and throughput.808

VI. RESULTS AND DISCUSSION809

Two CNN models are proposed: The first model comprises a810

stack of (Conv1D, BatchNormalization, Relu Activation, and811

MaxPooling) layers with the ECG signal fed to the input layer 812

and another stack of dense layers fed with the normalized 813

post- and pre- RR intervals. Outputs from both stacks are 814

then flattened, concatenated, and fed to a dense layer with 815

softmax activation to output the five ECG class probabilities 816

as shown by Figure 4(a). The second model comprises a 817

Conv1D input layer with Tanh activation for time-frequency 818

feature extraction followed by a stack of (Conv2D, BatchNor- 819

malization, Relu Activation, andMaxPooling) layers with the 820

ECG signal fed to the input layer and another stack of dense 821

layers fed with the post- and pre-RR intervals. Outputs from 822

both stacks are then fed to a dense layer with softmax acti- 823

vation to output the five ECG class probabilities as shown by 824

Figure 4(b). 825

The best parameters of the Conv1D FIR input layer are 826

found to be NF = 8 and NK = 16. This layer is fixed 827

in both Conv1D and Conv1D_2D models and the param- 828

eters of the remaining layers are manually tuned to maxi- 829

mize the F1-score and minimize the number of model param- 830

eters. Two variants of each model are trained in which 831

the Conv1D Trainable parameter is switched from False 832

in the Conv1D_2D_T_FIR and Conv1D_T_FIR models to 833

True in the Conv1D_2D_T and Conv1D_T models. The 834

training process was conducted on a cloud machine featur- 835

ing 8 CPU cores, 30 GB of RAM, and an NVIDIA QUADRO 836

RTX 5000 GPU and hosted by the Paperspace Gradient cloud 837

platform [37]. Experiments are repeated 10 times for each 838

model and the average results are reported. 839

A. MODEL TESTING ON THE CLOUD 840

Table 2 shows the training and testing results of the pro- 841

posed models on the cloud machine. The model number of 842

parameters, size, training time, and GPU memory usage dur- 843

ing training are illustrated. The training and testing accu- 844

racy of the developed models is depicted. The ROC-AUC, 845

recall, precision, and F1- weighted and macro average scores 846

are presented for the test set only. In macro average scores, 847

class weights are not considered for calculating the average 848

from individual class scores, unlike the weighted average 849

which gives higher scores due to considering class weights. 850

The model is tested using the cloud machine CPU and GPU 851

and the average inference time and throughput are calcu- 852

lated. Throughput is calculated by dividing the number of test 853

examples by the whole test dataset inference time. 854

The number of parameters is the same for both trainable 855

and non-trainable Conv1D models yet the average inference 856

time is greater inmodels with non-trainable parameters which 857

can be attributed to that training the Conv1D layer results 858

in sparse weight tensors which accelerates inference time. 859

Comparing the training and test accuracy shows that the vari- 860

ance of all models does not exceed 1% indicating that the 861

models do not overfit the training dataset and well generalize 862

to the test dataset. Models with the trainable parameter of 863

the Conv1D layer set to True outperform their counterparts 864

which indicates that the initial FIR kernel weights have been 865

updated during the backpropagation path of model training 866
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TABLE 2. Classification and performance results of the proposed models for the training and test datasets on the cloud.

TABLE 3. Per-class precision, recall, and F1-score metrics (%) of the proposed models for the test dataset only.

to achieve better classification results. The Conv1D_2D_T867

model achieves the highest test F1-score of 94.34% (the868

F1-score of the average cardiologist is 78% [38]) and accu-869

racy of 99.08%. The Conv1D_T_FIR model has the smallest870

inference time and model size. Although the Conv1D_2D_T871

model accuracy is greater than the Conv1D_T model accu-872

racy by only 0.3%, its F1-score is greater by 1.23%873

which illustrates the advantage of using Conv2D CNN for874

classification problems. In our experimentation, a trade-875

off is made between the model classification performance876

and the model complexity and real-time inference per-877

formance. Some models achieved better accuracy scores878

but were excluded due to the significant increase in the879

model size which would disallow their usage on edge880

devices.881

Not only the average scores are used to select the best mod-882

els but also the model complexity and the per-class detailed883

metric results have been employed. Figure 5 shows the nor-884

malized confusion matrix of the Conv1D_2D_T model.885

In classification problems,model accuracy is defined as the886

percentage of true predictions to the total number of dataset887

examples. In terms of true positives (TP), true negatives (TN),888

false positives (FP), and false negatives (FN), accuracy is889

defined as ACC = (TP + TN )/(TP + TN + FP + FN ).890

Class metrics including precision, recall, and F1-score are891

also measured. Precision is defined as the percentage of TP892

to the sum of TP and FP, PREC = TP/(TP + FP), while893

recall or sensitivity is defined as the percentage of TP to the894

sum of TP and FN, SEN = TP/(TP + FN ). For arrhythmia895

detection, recall is more important than precision because it896

characterizes the classifier’s ability to minimize FN in con-897

trast to precision which measures the classifier’s ability to898

FIGURE 5. Normalized Confusion Matrix of the Conv1D_2D_T model.
Numbers inside blocks are the number of samples classified in each class
normalized by the total number of samples in the class.

minimize FP. F1-score is the harmonicmean of both precision 899

and sensitivity, F1 = 2 × PREC × SEN/(PREC + SEN) = 900

2TP/(2TP+ FP+ FN ). 901

Table 3 shows the per-class accuracy, precision, recall, 902

and F1- scores achieved by the proposed models on the test 903

dataset. The proposed Conv1D_2D_T model can classify the 904

Supraventricular Ectopic and Ventricular Ectopic arrhyth- 905

mias with 92.49% and 97.5% recall, respectively. In the pro- 906

posed model, FN result from misclassifying Supraventricular 907

Ectopic beats as normal beats or misclassifying Ventricular 908

Ectopic beats as either normal or fusion beats while FP result 909

from misclassifying fusion beats as Ventricular Ectopic beats 910

as shown by the confusion matrix of Figure 5. FP and FN 911

in the trained models are a direct result of the dataset class 912
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imbalance where the normal beats represent the majority913

class and the fusion beats represent the minority class. For-914

tunately, the rate of FP and FN do not exceed 7% and 3%,915

respectively.916

B. MODEL OPTIMIZATION AND TESTING AT THE EDGE917

The four selected models are quantized using PTQ and QAT918

tools. A total of six quantization methods are applied for919

each model. The applied PTQ methods are float32, float16,920

dynamic range, full-integer, and int8. The difference between921

full-integer and int8 quantization is that in the latter both the922

model and operations input tensors are quantized to int8while923

in the former only model operations are quantized to int8.924

QAT is applied using the Qkeras library which supports quan-925

tization of most Keras layers and also supports simultaneous926

pruning and QAT of TensorFlow models. Unfortunately, the927

TensorFlow optimization QAT toolkit does not support quan-928

tization of the Conv1D layer yet. The models quantized and929

pruned using Qkeras are denoted as pqs models and are con-930

verted to Tflite float32 models after quantization as int8 and931

pruning 50% of the superfluous weights. Unfortunately, the932

Tflite library does not support direct quantization of Qkeras933

models as int8 models without reapplying QAT optimizations934

which leads to a significant loss of the pqsmodel performance935

and is thus excluded.936

The developed Tflite models are exported to the937

raspberry-pi edge device for testing and benchmarking. Two938

methods are used for testing the Tflite inference engine on939

the edge device: first, a custom python script is developed940

for predicting the full test dataset using the developed Tflite941

models and computes the model accuracy scores and perfor-942

mance metrics; second, the C++ Tflite benchmark tool devel-943

oped by Google is used to test the performance of the Tflite944

models on a randomly generated input tensors. It calculates945

statistics for the model inference time at steady-state and the946

overall memory usage. The accuracy metrics measured using947

the python script are accuracy, F1-, recall, precision, and948

ROC-AUC scores; and the performance metrics measured949

are: the average inference time, throughput as the number of950

ECG instances inferred per second, overall memory usage,951

and model size. The average inference time is calculated by952

measuring the whole test dataset inference time and dividing953

it by the number of instances in the dataset while the through-954

put is calculated as the inverse of the average inference955

time.956

Figure 6 depicts the testing and benchmarking results957

of the exported Tflite models on the raspberry-pi edge958

device. As shown by 6(a), Tflite models suffer loss of accu-959

racy metrics compared to the Tensorflow base models. The960

Conv1D_2D_T Tflite models still achieve the best accuracy961

scores of above 99% accuracy and 94% F1-score. However,962

the dynamic range Conv1D_2D_T and Conv1D_2D_T_FIR963

tflte models suffer from a significant loss of accuracy and964

fail to achieve more than 40% score which can be attributed965

to changing the dynamic range of model parameters from966

the Conv1D to Conv2D layers. The int8 QAT and PTQ967

Conv1D_2D_T and QAT Conv1D_2D_T_FIR Tflite models 968

lose around 1% of accuracy and %4 of F1-score. On the other 969

hand, the Conv1D_T model losses around 1.5% of accuracy 970

and 6% of F1-score which gives another advantage to the 971

Conv1D_2D_T model. The same conclusions also apply to 972

the recall and ROC-AUC scores. 973

At the performance level, the Conv1D_T_FIR and 974

Conv1D_T models provide the best results as shown by Fig- 975

ure 6(b). The int8 Conv1D_T model achieves an average 976

inference time of 1.43 ms as executed by the Python script 977

and 0.23 ms as executed by the tflit benchmark tool. The 978

Conv1D_2D_T model achieves a Python and C++ average 979

inference time of 9.2 ms and 7.5 ms, respectively, yet it can 980

be still deployed on the edge device to classify ECG sig- 981

nals in real-time because this inference time is much smaller 982

than the inter-segment RR intervals. The int8 Tflite models 983

have the lowest model size and memory usage. The smallest 984

Tflite model is the Conv1D_T_FIR model of 24.41 KB size 985

and the largest Tflite model is the Conv1D_2D_T model of 986

89.88 KB size. The overall inference memory usage ranges 987

from 7.01 to 12.59 MB using the Python script and 2.33 to 988

5.38 MB using the C++ Tflite benchmark tool. The differ- 989

ence between the Python script and C++ Tflite benchmark 990

results is attributed to the Python interpreter overhead. The 991

achieved model sizes and memory usages enable running the 992

Tflite models on a wide range of edge devices with very tight 993

constraints. 994

C. VISUALIZATION OF THE Conv1D FIR LAYER 995

ACTIVATIONS AND HEATMAP 996

Since 2013, a wide range of techniques has been devel- 997

oped for visualizing and interpreting 2D CNN activations, 998

filters, and heatmaps [39, Ch. 5]. In Figure 3, the Conv1D 999

filters are visualized in both the time and frequency domains 1000

for the Trainable parameter switched from False to True. 1001

Herein, we aim to visualize the Conv1D CNN activations 1002

and heatmaps. To visualize the FIR Conv1D layer output, 1003

the Conv1D_T_FIR model outputs from the Conv1D and 1004

activation layers are plotted for random samples of True 1005

and False predictions for the five classes in the dataset. The 1006

Conv1D_T_FIR model used for visualization has NF = 16, 1007

Ns = 64, and Nk = 32 which is different than the selected 1008

best model to enhance the resolution of visualized images. 1009

To extract the feature maps, a Keras model is created that 1010

takes ECG signals and RR intervals as input tensors and 1011

outputs the activations of the Conv1D and the Tanh activation 1012

layers tensors [39, Ch. 5]. The ECG signal samples are visual- 1013

ized in the time and frequency domains by plotting the signal 1014

amplitude versus time, plotting the signal spectrum obtained 1015

using Fast Fourier Transform (FFT), and plotting the signal 1016

STFT spectrogram as shown in Figure 7. 1017

The last two rows of each figure illustrate the Conv1D and 1018

Tanh activation layer heatmaps displayed as 2Dmesh plots in 1019

which the horizontal axis is the time axis and the vertical axis 1020

is the number of the feature map representing the frequency 1021

axis for the designed non-trained FIRConv1D adjacent BPFs. 1022
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FIGURE 6. Testing and benchmarking results of the Tflite models on the Raspberry-pi edge device.

Comparing the STFT and the Conv1D heatmap plots demon-1023

strates that the developed FIR Conv1D layer successfully1024

mimics the STFT algorithm in extracting the time-frequency1025

spectrogram of the ECG signal. The difference between1026

the STFT and the FIR images is that STFT extracts the1027

spectrogram using the Fourier transform algorithm to find the 1028

frequency spectrum of the signal while the FIR filter depends 1029

on convolution with the FIR BPF filter bank to indicate the 1030

existence of specific frequency components at specific time 1031

instances. In other words, the STFT spectrogram shows the 1032
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FIGURE 7. Visualizing samples of True and False predictions of the Conv1D_2D_T_FIR models in the time and frequency domains and
the Conv1D layer heatmaps and Tanh activations. The heatmap size =Ns × Nf = 64× 16.

signal frequency spectrum obtained using FT versus time as1033

a 2D plot while the Conv1D heatmap depicts the BPF filter1034

outputs in the time domain grouped in ascending order of1035

the BPF center frequencies. Instantiating the Tanh activation1036

layer on the top of the Conv1D layer is one of the Keras Tuner1037

step insights which shows to give better classification results1038

compared to using the Relu or Sigmoid activation functions or1039

not using activation functions at all. Enabling training of the 1040

Conv1D layer in the Conv1D_2D_T and Conv1D_T models 1041

modifies the FIR filter weights and frequency response as 1042

shown in Figure 3 which consequently affects the heatmap 1043

output from the Conv1D layer. Training the Conv1D input 1044

layer weights initialized with the FIR filter coefficients tunes 1045

up the frequency response of the filter bank to reduce the 1046
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TABLE 4. Comparison between the proposed Conv1D_2D_T model and state-of-the-art ECG classification methods.

model loss and enhance its classification accuracy as shown1047

in Figure 3. The center frequencies of the FIR filters are1048

not ordered incrementally as in the non-trainable Conv1D1049

layer and, consequently, their output heatmap has been varied1050

from the heatmaps of Figures 7. Nevertheless, enabling the1051

training of the Conv1D layer proves to give better accuracy1052

scores compared to the non-trained FIR-Conv1D models as1053

illustrated in Table 2.1054

D. COMPARISON WITH RELATED WORK1055

In the following, we compare the proposed Conv1D_2D_T1056

model with the state-of-the-art ECG classification methods.1057

The comparison is limited to recent single-lead ECG clas-1058

sification methods applied to the MIT-BIH dataset, catego-1059

rized according to the AAMI standard, and trained and tested1060

using the random dataset division method to provide a fair1061

comparison. In our comparison, we will compare both the1062

model accuracy metrics and suitability for edge inference1063

which is the main objective of our work. Table 4 depicts1064

the weighted average scores as well as per-class precision,1065

recall, and F1- scores excluding the ‘‘F’’ and ‘‘Q’’ classes1066

to fully characterize the performance of the compared mod-1067

els. All models listed in this table have been introduced in1068

Section II. Unfortunately, model complexity and run-time1069

performance results are not reported in most related works,1070

however, they can be inferred from the preprocessing and1071

feature extraction stages, model topology, and other model1072

parameters.1073

The model proposed by Cui et al. [10] achieves an average1074

accuracy of 98.35% and per-class precision and recall scores1075

of more than 98%. The authors claim that the proposed model1076

can be used for real-time ECG monitoring but do not provide1077

supportive evidence. Despite achieving good accuracy scores,1078

the DWT preprocessing and feature extraction stages are1079

computationally intensive limiting the model’s suitability for1080

edge inference. Themodel proposed by Li et al. [18] achieves1081

an 84.50% recall score of the class ‘‘V’’ which is less than1082

most compared works. The proposed method uses a DWT 1083

preprocessing stage limiting its applicability for edge infer- 1084

ence. The best classification results of the model proposed 1085

by Liu et al. [19] work are achieved by KNN. However, the 1086

testing results are reported for 10-fold cross-validation exper- 1087

iments, not on a separate hold-out test dataset which does 1088

not demonstrate the model generalization power. Moreover, 1089

the proposed method uses the SWT feature extraction stage 1090

which limits its applicability for edge inference. 1091

The model proposed by Mousavi and Afghah [20] is 1092

tested for both intra- and inter-patient schemes and the 1093

reported scores are superior. Surprisingly, unlike all related 1094

works, this model achieves such results without using the 1095

RR intervals, which are essential features for ECG classifi- 1096

cation, raising serious concerns about the presented results. 1097

The model has a size of 5.5 MB and it requires neither 1098

computationally-intensive preprocessing nor feature extrac- 1099

tion stages. Compared to our Conv1D_2D_T model with a 1100

maximum model size of 300 KB (non-optimized) and 90 KB 1101

for the optimized edge model, the model size is much larger 1102

which also indicates that the model inference time and mem- 1103

ory usage will be much greater than our model. 1104

The method proposed by Raj and Ray [6] is prototyped 1105

on an ARM9 embedded platform and experimentally vali- 1106

dated on the MIT-BIH arrhythmia database for both intra- 1107

and inter-patient dataset division schemes. The implemented 1108

platform is recommended for utilization in hospitals to ana- 1109

lyze the long-term ECG recordings however the model size, 1110

memory usage, and performance results are not reported. 1111

Moreover, the recall and precision metrics for the classes ‘‘S’’ 1112

and ‘‘V’’ are inferior to the model rivals including ours. The 1113

accuracy, precision, and recall results of the model proposed 1114

by Acharya et al. [21] are acceptable but not the best com- 1115

pared to the model rivals including our model. Nevertheless, 1116

the proposed model is a good fit for edge deployment due to 1117

theminimumpreprocessing steps applied excluding theDWT 1118

noise removal step. 1119
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Eventually, the proposed model outperforms all compared1120

works in terms of the model complexity and computational1121

cost and achieves comparable accuracy results. The achieved1122

results of the proposed classifier enable its deployment on1123

a wide range of edge devices for arrhythmia detection in1124

real- time. Limitations of the proposed classifier include algo-1125

rithmic and computational limitations. The proposed model1126

is based on STFT and, consequently, it suffers from the1127

STFT time-frequency resolution trade-off. Such a limitation1128

can be overcome by implementing a CWT Conv1D layer1129

to extract high-resolution time-frequency scalogram images.1130

At the computation complexity level, the proposed model is1131

limited in terms of the classifier input size (ECG segment1132

length) and the number of layers (model depth) to meet the1133

edge inference requirements. The proposed model is well1134

suited for ECG classification on a beat-by-beat basis, which is1135

commonly applied in the ECG monitoring and classification1136

literature, rather than long-term ECG segments.1137

VII. CONCLUSION AND FUTURE WORK1138

In conclusion, we proposed a novel method for ECG classi-1139

fication optimized for edge deployment and can be embed-1140

ded in a wearable device for arrhythmia detection. We pre-1141

sented a clear interpretation supported by visualizations of1142

the Conv1D layer operation as an FIR filter and exploited this1143

interpretation to develop a self-contained STFT ECG classi-1144

fier. The real-time performance of the proposed model has1145

been planned in advance to fit the resource constraints of edge1146

computing. The proposed model is extensively evaluated and1147

benchmarked on a raspberry-pi edge device and the results1148

are reported and discussed. A trade-off is made between1149

the model classification performance and the model com-1150

plexity and real-time inference performance and the devel-1151

oped models exhibit a good balance between both metrics.1152

The proposed edge model achieves superior real-time perfor-1153

mance and computational complexity results and comparable1154

classification accuracy results. A discriminative feature of1155

the proposed model is that it can be readily deployed for1156

real-time ECG monitoring and arrhythmia detection using1157

resource-constrained edge devices.1158

As future work, we will attempt to improve the model clas-1159

sification performance by designing a self-contained CWT-1160

based CNN. We also plan to extend our work to address1161

the inter-patient division scheme of the MIT-BIH dataset in1162

which the model is trained and tested on heartbeats belong-1163

ing to different individuals to test the model’s capability to1164

generalize and capture inter-individual variations. Moreover,1165

we plan to test the developed model on other internationally1166

recognized ECG databases to investigate the model’s gener-1167

alization capabilities and suitability for practical deployment.1168

Finally, the developed model will be investigated for other1169

relevant time-series classification problems.1170
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