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ABSTRACT Automated classification of Electrocardiogram (ECG) for arrhythmia monitoring is the core
of cardiovascular disease diagnosis. Machine Learning (ML) is widely used for arrhythmia detection. The
cloud-based inference is the prevailing deployment model of modern ML algorithms which does not always
meet the availability and privacy requirements of ECG monitoring. Edge inference is an emerging alternative
that addresses the concerns of latency, privacy, connectivity, and availability. However, edge deployment of
ML models is challenging due to the demanding requirements of modern ML algorithms and the computation
constraints of edge devices. In this work, we propose a lightweight self-contained short-time Fourier Trans-
form (STFT) Convolutional Neural Network (CNN) model for ECG classification and arrhythmia detection
in real-time at the edge. We provide a clear interpretation of the convolutional layer as a Finite Impulse
Response (FIR) filter and exploit this interpretation to develop an STFT-based 1D convolutional (Conv1D)
layer to extract the spectrogram of the input ECG signal. The ConvID output feature maps are reshaped
into a 2D heatmap image and fed to a 2D convolutional (Conv2D) neural network (CNN) for classification.
The MIT-BIH arrhythmia database is used for model training and testing. Four model variants are trained
and tested on a cloud machine and then optimized for edge computing on a raspberry-pi device. Weight
quantization and pruning techniques are applied to optimize the developed models for edge inference. The
proposed classifier can achieve up to 99.1% classification accuracy and 95% F1-score at the edge with a
maximum model size of 90 KB, an average inference time of 9 ms, and a maximum memory usage of 12 MB.
The achieved results of the proposed classifier enable its deployment on a wide range of edge devices for
arrhythmia monitoring.

INDEX TERMS Electrocardiogram, machine learning, edge inference, convolutional neural network, inter-
pretable neural network, finite impulse response, short-time Fourier transform.

I. INTRODUCTION interrelationships causes numerous misdiagnoses and cross

Cardiovascular arrhythmias are a set of disorders character-
ized by irregular cardiac electrical activity. Arrhythmias such
as ventricular fibrillation and flutter can cause cardiac arrest,
hemodynamic collapse, and sudden death. Cardiovascular
diseases induced by long-term cardiac arrhythmias are the
leading cause of death globally, according to the WHO [1].
The intricacy of arrhythmias and their mechanical and clinical
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classifications using visual criteria. Moreover, clinical exam-
ination and diagnosis utilizing ECG data by physicians are
time-consuming, impractical, and sometimes unavailable to
remote places. Automatic arrhythmia beat categorization is
thus urgently required for dynamic ECG processing.
Electrocardiography is still the most accessible and exten-
sively used method for measuring cardiac electrical activity
due to its simplicity, non-invasiveness, and low cost. The
electrocardiogram (ECG) represents the electrical activity of
the heart and provides vital information about heart function.
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Automatic ECG analysis is critical in cardiac monitoring,
especially long-term monitoring with huge amounts of data.
Arrhythmias are often brief in duration and cannot be discov-
ered by physical examination or standard ECG due to time
constraints. Longer ECG recording periods are required to
detect arrhythmias, analyze their link to patient symptoms,
or test the success of medications.

Many approaches have been proposed for collecting long
ECG records [2]. For instance, a Holter monitor is used
to collect ECG data using a traditional tape recorder or
solid-state storage device, which is then processed and dis-
played for physician examination. The patient is instructed to
keep a symptom diary and to record the time on the Holter
clock when symptoms occur. Another option is to monitor
patients via telemetry in the hospital, but this has serious
drawbacks, including low patient acceptance. Mobile cardiac
outpatient telemetry (MCOT) systems that allow for multiple
days of ECG monitoring have been created. On the other
hand, episodic monitors can capture ECGs during symp-
toms allowing patients to record ECGs, save them, and then
fax them to doctors. Automatically-activated monitors which
start recording when detecting an irregular heart rhythm have
been advanced to replace the manually-activated monitors
in which patients had to activate the device fast to acquire
ECG recordings while experiencing symptoms Finally, many
individuals with recurrent loss of consciousness or severe
symptoms can have a device implanted beneath the skin that
records information for later recovery. Modern pacemakers
and implantable defibrillators can also collect information
regarding arrhythmias for later retrieval. The pacemaker’s
signals can be recorded and analyzed later to confirm or diag-
nose an arrhythmia.

Unfortunately, all the aforementioned approaches for ECG
monitoring neither provide an instantaneous diagnosis of the
ECG root cause nor suggest immediate medical interven-
tion. The alternative is continuous monitoring of the ECG
activity in real-time and deploying automatic ECG classi-
fiers for early detection and identification of sudden heart
arrhythmias. Nowadays, such an approach can be efficiently
deployed depending on recent advancements in the auto-
matic Artificial Intelligence (AI) ECG classification meth-
ods, cloud services, and wearable technology. A single-lead
ECG chest belt can be used to measure the ECG signal and
send it wirelessly via the internet to a cloud service run-
ning an ECG arrhythmia detection model for long-term ECG
rhythm monitoring and arrhythmia detection. The main con-
cerns with this approach are the privacy of the patient, latency
of the internet connection, connectivity of the ECG sensor,
and availability of the cloud service.

In this work, we propose ECG classification and arrhyth-
mia detection at the edge to address the previous concerns.
Instead of relying on a cloud service for arrhythmia detection,
a microcontroller-based edge device is used for acquiring
the ECG signal, detecting heart arrhythmia in real-time, and
alarming the patient to immediately take measures. However,
edge deployment of Al models is a challenging task due to
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the demanding requirements of modern Al algorithms and the
computation constraints of edge devices. Moreover, the criti-
calness of arrhythmia detection for the patient’s life neces-
sitates increasing the automatic detection accuracy which
introduces an extra challenge.

To address the above challenges, some guidelines have
been applied to the proposed classifier. The internationally-
accepted MIT-BIH arrhythmia database is used for training
and testing the ECG classifier. A single lead will be employed
to capture the ECG signal to facilitate its usage by the patient.
Due to its recent advancements, a deep neural network (DNN)
model is used for ECG classification. The time-domain sam-
pled ECG signal will be fed directly to the DNN model with-
out further preprocessing or feature engineering. The real-
time performance of the proposed model was planned in
advance to fit the resource constraints of edge inference. The
DNN model is optimized for edge deployment by applying
state-of-the-art weight quantization and pruning techniques.
Finally, the model is extensively tested on the edge device to
verify its functional correctness.

A convolutional neural network (CNN) composed of a
cascaded stack of 1D and 2D convolutional (ConvlD and
Conv2D) layers and dense layers is developed. We provide
a clear interpretation of the 1D convolutional layer (Conv1D)
as a Finite Impulse Response (FIR) and exploit this interpreta-
tion to develop a short-time Fourier Transform (STFT) layer
to extract the spectrogram of the input ECG signal. To the
best of our knowledge, this is the first work to provide a clear
interpretation of the Conv1D layer as a frequency-selective
FIR filter. The Conv1D layer kernels are designed as a bank
of adjacent FIR band-pass filters (BPFs) acting as an STFT
computation engine. The Conv1D feature maps produced by
the FIR filter bank are then reshaped into a 2D heatmap image
to be fed to a Conv2D CNN classifier. The advantage of
such an approach compared to using a pre-processing STFT
computation stage commonly used in the literature is that our
approach produces a lightweight self-contained CNN model
amenable to edge optimization.

Four model variants are developed, tuned, trained, and
tested on a cloud server. The testing results show that the
proposed models achieve comparable classification results
including accuracy, recall, precision, and Fl-scores com-
pared to the state-of-the-art ECG classifiers. The devel-
oped models are then optimized using post-quantization and
training-aware quantization methods for edge deployment.
Finally, the optimized models are tested and benchmarked
on a raspberry-pi device. The proposed models achieve sig-
nificant classification results using minimum computation
resources fitting the computational constraints of the edge
device.

The main contributions of this work include:

« Advancing a novel CNN topology for time series data

tailored and optimized for edge inference.

« Providing clear interpretation of the Conv1D layer as a

finite impulse response (FIR) frequency-selective filter
and visualizing the Conv1D layer feature maps.
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o Testing the ECG classifier on an edge device and report-
ing its performance and benchmarking results and com-
paring our work to recent state-of-the-art ECG classifi-
cation methods and showing its competence.

The remaining of this paper is organized as follows: In
Section I, a brief background of the automatic heart moni-
toring and classification literature and their related work are
presented. A brief introduction to the MIT-BIH arrhythmia
database and how it is employed in this work is presented
in Section III. CNNs and their interpretation as FIR filters
are discussed in Section IV. Methods and tools used in this
work are advanced in section V. Model testing results on
the cloud and edge machines and a comparison between the
proposed model and state-of-the-art ECG classification mod-
els in addition to visualization of the Conv1D activation and
feature maps are presented in Section VI. Conclusions and
future work are portrayed in Section VII.

II. LITERATURE REVIEW
A typical ECG waveform consists of a P wave, QRS com-
plex wave, and T wave as shown in Figure 1, which reflect
electrical activities of depolarization and repolarization pro-
cesses of the atria and ventricle [3]. Each heartbeat contains
a series of deflections away from the baseline on the ECG
that reflect the time evolution of the heart’s electrical activity.
P-wave is a small defection caused by atrial depolarization;
Q, R, and S waves are known as the QRS-complex, which
is the largest-amplitude portion of the ECG, caused by ven-
tral depolarization; T-wave is caused by ventral polarization.
Up to 12 separate leads can be used to measure ECG includ-
ing three bipolar limb leads, three unipolar limb leads, and six
unipolar chest leads. Figure 1 depicts ECG measured by the
modified limb lead II (MLII) and chest lead V1. Each lead
illustrates the electrical activity of the heart from a particular
angle across the body. The normal heart rhythm is called sinus
rhythm in which the triggering impulses propagate through-
out the four chambers of the heart in a coordinated manner.
The abnormal heart rhythms are called arrhythmias, which
occur due to changes in the normal sequence of electrical
impulses of the heart. The ECG can be used to spot and
identify several types of arrhythmias. Figure 1 depicts the
ECG of a normal sinus rhythm and ventricular arrhythmia.

The main stages of automatic heartbeat monitoring using
the ECG are: data acquisition, preprocessing, feature engi-
neering, and ECG signal classification [4]. The MLII is the
most commonly used lead for ECG data acquisition and
arrhythmia detection as it highlights various segments within
the heartbeat including the P, QRS, and T waves [3]. The
ECG preprocessing stage includes filtering unwanted signal
components such as baseline wandering and power line inter-
ference, signal denoising, segmentation, and QRS complex
detection. Myriad ECG processing techniques have been pro-
posed in the literature with a wide range of complexity and
performance [4], [5].

Feature engineering is the stage in which important
features of the ECG are extracted and prepared for the
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classification stage. A feature is any information collected
from data that can be used to categorize it. The features can be
retrieved directly from the ECG signal morphology or from
the heart rhythm in various forms. The most common feature
used in the literature is the RR interval which is correlated
with the variations in the ECG curve morphology and can be
calculated from the cardiac rhythm. The RR interval is the
time between the R peak of one heartbeat and the R peak of
another heartbeat. Alterations in the RR interval are linked
with changes in the ECG waveform shape caused by arrhyth-
mias. Other morphological features such as intervals between
the fiducial points of the heartbeat including P wave duration;
QRS complex interval; and PP, ST, TP segment intervals are
also used.

Time domain, frequency domain, time-frequency domain,
and statistical techniques are commonly used to capture
the significant features of the heartbeats [4]. Statistical
approaches are often employed to extract relevant features
from heartbeats in the temporal domain [6]. The classical
Fourier transform (FT) is also used to obtain the ECG fre-
quency spectral features however it can only capture global
frequency information decoupled from their occurrence time.
The ambiguity of FT is overcome by STFT in which the FT
is repeatedly computed for a fixed-length moving temporal
window to provide local time-frequency information or spec-
trogram of the signal however a trade-off arises between time-
frequency resolution. The shortcoming of STFT is overcome
by Wavelet transform (WT) in which dilated versions of a
mother wavelet are shifted and correlated with the ECG signal
to extract a high-resolution time-frequency 2D image called
scalogram of the signal. Both continuous WT (CWT) and
discrete WT (DWT) have been extensively used for ECG
preprocessing and feature extraction [7]. The approaches that
provided the highest accuracy in the literature used features
from the time/frequency domain and the RR interval.

For a 1D input ECG signal, the sample points of the heart-
beat signal can be used directly as features in 1D CNNs which
are known for their capability of automatic feature extraction.
The time-frequency spectrograms and scalograms of ECG
segments obtained using STFT and CWT, respectively, can
also be used as input images to 2D CNNs for feature extrac-
tion and classification. 2D CNNs are more prevalent with
well-established models due to their wide usage for image
applications. The advantage of this approach is eliminating
the need for cardiology experts and relying on the automatic
power of CNN for extracting ECG features that maximize the
classification accuracy.

The final and most important stage in ECG monitoring is
the classification stage. Generally, machine and deep learn-
ing methods have been extensively investigated for this task
[8], [9]. The most commonly used methods are support vec-
tor machines (SVMs) and deep neural networks (DNNGs).
SVMs models with various feature types have been exten-
sively used for ECG classification [3], [5], [6], [10] yet such
models suffer from the computational complexity of the SVM
algorithm. On the other hand, many recent works proposed
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FIGURE 1. Sample of an ECG signal from the MIT-BIH database with a normal sinus rhythm and ventricular arrhythmia & The

ECG wave segments.

various topologies of 1D and 2D CNNs in conjunction with
different feature spaces for ECG classification [3], [5], [11],
[11], [12], [13].

Alqudah et al. [14] presented a comparative study between
different ECG time-frequency representations including
Log-Scale STFT, Mel-Scale DWT, Bi-spectrum, and
Third-order Cumulant and various CNN architectures includ-
ing AOCT-NET, Mobile-Net, Squeeze-Net, and Shuffle-Net.
Models are trained and tested using a subset of the MIT-BIH
arrhythmia database representing six different heartbeat
classes. The best overall performance among all used CNN
architectures was MobileNet with an overall accuracy of
93.8%, while the best spectrum representation among all used
was the bispectrum with an overall accuracy of 93.7%. It has
been shown that the spectrum representations of ECG beats
have significantly improved the classification results.

Cao et al. [15] proposed a transfer learning 2D CNN
model for ECG classification using the STFT representa-
tion of the heartbeat. The MIT-BIH database is used for
model training and testing and the ResNet-18 image classi-
fication model is fine-tuned to classify the ECG STFT spec-
trograms. Huang ef al. [16] advanced a 2D CNN for ECG
classification using the STFT spectrograms of the heartbeat
signals. Models are trained and tested using a subset of
the MIT-BIH arrhythmia database representing five differ-
ent heartbeat classes. The classification results show that the
proposed 2D-CNN model can reach an average accuracy of
99.00%. Ullah et al. [17] proposed a 8-class 2D CNN ECG
classifier using the STFT spectrogram representation of the
heartbeat signals. The proposed model consisting of four con-
volutional layers and four pooling layers is evaluated on the
MIT-BIH arrhythmia dataset and it achieved 99.11% classifi-
cation accuracy. Wu et al. [13] developed a CNN model to
classify ECG heartbeats using various time-frequency dis-
tributions including STFT, CWT, and pseudo-Wigner-Ville
distribution (PWVD). Models are trained and tested using
a subset of the MIT-BIH arrhythmia database representing
12 rhythm classes. The method using STFT and a CNN
achieved the best classification performance.
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The common theme between these works is using the STFT
spectrogram accompanied by 2D CNN models to enhance the
ECG classification results. In all related STFT-based ECG
classifiers, the STFT computation is carried out as a pre-
processing step using a separate computational block which
adds a computation overhead to the classifier model. The
main feature of our proposed model is implementing the
STFT extraction procedure as a part of the CNN model
itself exploiting the FIR interpretation of the Conv1D layer.
Such an approach results in a self-contained classifier model
with reduced computational requirements that fits edge
inference.

Many recent works other than the STFT-based CNNs have
been also proposed for ECG classification and arrhythmia
detection. Cui et al. [10] proposed an ECG feature extraction
method based on DWT and ConvlD with Principle Com-
ponent Analysis (PCA) to reduce the number of features.
An SVM classifier is trained on an upsampled subset of the
MIT-BIH dataset to address dataset imbalance.

Li et al. [18] presented an ECG classifier based on Incre-
mental Broad Learning (IBL) and biased dropout. Incre-
mental learning is a machine learning paradigm where
the learning process takes place whenever new examples
emerge and adjusts what has been learned according to
the new examples. Baseline wander filtering and DWT are
used for ECG signal denoising, and morphological and
rhythm features such as RR intervals are extracted from the
denoised ECG segments. An IBL DNN is used for ECG
classification.

Liu et al. [19] proposed several models for ECG classifi-
cation based on Wavelet Scattering Transform and PCA for
feature extraction and a variety of NN and probabilistic NN
(PNN) and k-nearest neighbor (KNN) classifiers for ECG
classification. WST builds translation invariant, stable, and
informative signal representations WST is implemented with
a CNN with preassigned weights that iterates over traditional
WT, nonlinear modulus, and averaging operators. In PNN,
the class probability of a new input data is estimated and
the Bayesian rule is then employed to allocate the class with
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the highest posterior probability to new input data. KNN
is a non-parametric supervised classification algorithm that
classifies test data by measuring its Euclidean distance in the
feature space to all labeled training samples and returns the
nearest K labels and assigns the most frequent label to the test
data.

Mousavi and Afghah [20] proposed an ECG classification
method based on the CNN and Bidirectional Long-Shirt Term
Memory (BiLSTM) sequence to sequence auto-encoder.
A ConvlD CNN extracts a set of features from the given
ECG heartbeats, then, a BILSTM encoder maps the features
to a sequence capturing data temporal patterns, and finally,
the decoder takes the sequence representations and produces
the classification probabilities The Synthetic Minority Over-
sampling Technique (SMOTE) upsampling algorithm is used
to address the class imbalance. The model is tested for
both intra- and inter-patient schemes and the reported scores
are among the best scores reported for the ECG classifica-
tion works. Generally, Recurrent-Neural Networks (RNN5s)
and LSTM, specifically, suffer from increased computational
loads and computation time limiting their applicability to
edge inference.

Raj and Ray [6] proposed a personalized arrhythmia mon-
itoring platform for real-time detection of ECG arrhythmias.
Discrete Orthogonal Stockwell Transform (DOST) is used
for time-frequency feature extraction and the Artificial Bee
Colony (ABC) optimized twin least-square support vector
machine (LST-SVM) algorithm is used for signal classifi-
cation. Two median filters and a 12-tap FIR LPF are used
for baseline wandering removal and high-pass noise and
power-line interference filtering. DOST is computed for a
1D time-series signal by applying Fast FT (FFT), multi-
plicative windowing, and inverse FFT (IFFT) to yield a set
of coefficients representing the time-frequency morpholog-
ical features of the signal. The ABC-LSTSVM is an SVM
algorithm with reduced complexity to fit embedded device
constraints.

Acharya et al. [21] presented a CNN for ECG classifica-
tion. DWT is used for noise removal and a 9-layer Conv1D
CNN is employed for signal classification. A custom upsam-
pling method is proposed for addressing the class imbalance.
The accuracy, precision, and recall results are acceptable but
not the best compared to other models presented in the litera-
ture. Nevertheless, the proposed model is a good fit for edge
deployment due to the minimum preprocessing steps applied
except the DWT noise removal step.

The main purpose of this work is to develop a highly
accurate ECG classification and arrhythmia detection model
at the edge. The main challenge is meeting the accuracy
requirements of the ECG classification problem using a
resource-constrained edge microcontroller or embedded sys-
tem device. A common feature of related ECG classifiers is
using computationally intensive feature extraction stages and
DNN models which are not optimized for edge computing.
Related ECG classification works do not address minimizing
the computation requirements of the developed models which
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is essential for edge deployment of Al models. None of the
related work presented real-time performance analysis of the
developed models or an interpretation of the underlying DNN
model. Other parameters such as the model size, number
of parameters, memory usage, and training time are neither
optimized nor presented in the literature, as well. In this
work, we aim to address the above challenges and provide
a lightweight interpretable ML model for ECG classification
and arrhythmia detection ready for edge deployment.

1Il. DATASET AND FEATURE SELECTION

The internationally recognized standard ECG databases
include the MIT-BIH database, the AHA (American Heart
Association) database, the European Community CSE
database, and the European ST-T database. The MIT-BIH
arrhythmia database is the most commonly utilized and
highly acknowledged database in the academic world [3].
The MIT-BIH Arrhythmia Database contains 48 half-
hour excerpts of two-channel ambulatory ECG recordings,
obtained from 47 subjects collected between 1975 and
1979 [22], [23]. Twenty-three recordings were chosen at ran-
dom from a set of 4000 24-hour ambulatory ECG record-
ings collected from a mixed population of inpatients (about
60%) and outpatients (about 40%); the remaining 25 record-
ings were selected from the same set to include less com-
mon but clinically significant arrhythmias that would not
be well-represented in a small random sample. The record-
ings were digitized at 360 samples per second per chan-
nel with 11-bit resolution over a 10 mV range. Two or
more cardiologists independently annotated each record; dis-
agreements were resolved to obtain the computer-readable
reference annotations for each beat (approximately 110,000
annotations in all) included with the database. A total of
15 annotations are assigned to the R-peaks of the ECG beats.

According to the standard developed by the Association for
the Advancement of Medical Instrumentation (AAMI) [24],
17 recommended arrhythmia categories are classified into
5 essential groups or superclasses. Following the AAMI-
recommended practice, four-paced recordings are not used.
The AAMI standard emphasizes the problem of distinguish-
ing ventricular ectopic beats (VEBs) from non-ventricular
ectopic beats, and hence normal and arrhythmic beats are
remapped to the five AAMI heartbeat classes. We fol-
lowed the AAMI standard which is commonly used in the
literature [3] aiming to standardize the evaluation process
considering a clinical point of view and AAMI recommen-
dations and to ensure a fair comparison with the results in
the related literature. Annotations in the MIT-BIH dataset
are mapped to five different beat categories acting as
dataset labels following the AAMI standard as shown in
Table 1.

Each ECG record of the MIT-BIH Arrhythmia Database
includes two leads originating from different electrodes.
The most common leads in the database are MLII and V1.
To maintain the consistency of leads, only MLII lead read-
ings are used in this research. Records 102 and 104 have

94473



IEEE Access

M. M. Farag: Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection

TABLE 1. Mapping of MIT-BIH arrhythmia types and Advancement of Medical Instrumentation (AAMI) classes.

AAMI Classes Normal Beat (N) Supraventricular Ventricular Ectopic Fusion Beat (F) Unknown Beat (Q)
Ectopic Beat (S) Beat (V)
Normal beat (NOR)—N Atrial premature beat Ventricular escape beat Fusion of ventricular Unclassifiable beat
(AP)—A (VE)—E and normal beat U)—Q
(fVN)—F
72970 2536 106 799 15
MIT-BIH Arrhythmia  Right bundle branch  Premature or ectopic  Premature  ventricular Fusion of paced and nor-
Types block beat (RBBB)—R supraventricular beat contraction (PVC)—V mal beat (fPN)—f
(SP—S
7259 2 7081 260
Number of beats per Left bundle branch block Nodal (junctional) pre- Paced beat (P)—/
class beat (LBBB)—L mature beat (NP)—J
8075 81 3620
Atrial escape beat  Aberrated atrial prema-
(AE)—e ture beat (aAP)—a
16 150
Nodal (junctional) escape
beat (NE)—j
229
Total Number of beats 88549 2769 7187 799 3895

been excluded from the dataset because they do not con-
tain the MLII lead readings. The number of beats pro-
vided in Table 1 does not include records 102 and 104.
Figure 1 shows a sample of an ECG signal from the MIT-BIH
record 106 with normal and premature ventricular contraction
beats.

To prepare the dataset for machine learning, the ECG sig-
nals are downsampled to 128 samples/sec to reduce the DNN
computation load. The ECG signals from various records are
segmented on a beat-by-beat basis. The heartbeats are seg-
mented by filtering out non-beat annotations from the dataset
and extracting 0.5-second segments (64 samples) centered at
the annotated R-peak. Segmented beats with less than 0.5 s
intervals are padded to make all heartbeats of the same length,
which is required for the DNN model. No filtering or prepro-
cessing stages have been applied that assume any knowledge
about the signal shape or spectrum. It has been shown that
the use of normalized RR-intervals significantly improves the
classification results [25]. The preceding and subsequent RR
peak intervals have been also extracted and normalized to the
sampling frequency to be used as input features to the DNN
models. The recommended beat extraction method is simple
and can be directly applied at the edge device using a simple
peak detector.

The MIT-BIH dataset signals were extracted from Holter
recordings and filtered to limit analog-to-digital converter
(ADC) saturation and for anti-aliasing, using a band-pass
filter from 0.1 to 100 Hz [23]. In this work, we will be
sufficing with this filter for noise removal during model
training and testing, i.e. we will use the MIT-BIH heartbeat
signals from the training and testing datasets without further
pre-processing. For model deployment on the edge device,
a pre-processing baseline wandering and noise removal stage
will be implemented using a low-computational cost FIR fil-
ter [25] or moved to the ECG analog front-end to reduce the
computation load at the edge device. Some related works use
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DWT for noise removal [3]. However, such approaches incur
additional computation overhead to the classification model
limiting their usage on resource-constrained edge devices.

The total number of segmented annotated beats is
103200 due to excluding records 102 and 104. Three proto-
cols are proposed in the literature for dividing the MIT-BIH
dataset into training and test sets: intra-patient, inter-patient,
and random division schemes [3]. In the intra-patient divi-
sion scheme, the heartbeats from the same patient are used
for training and testing which makes the evaluation process
biased. In the inter-patient division scheme proposed in [26],
the training and test datasets are divided by the record num-
bers such that heartbeats within each set come from different
individuals eliminating the evaluation process bias. In this
work, the random division scheme is used to ensure keeping
the dataset distribution statistics in both the training and test-
ing sets while eliminating the evaluation bias. The MIT-BIH
database is randomly shuffled, stratified, and split into train-
ing and test datasets with a splitting ratio of 25%. The training
dataset is further split into training and validation datasets
with a splitting ratio of 25%. The total numbers of anno-
tated heartbeat examples in the training, validation, and test
datasets are 58050, 19350, and 25800, respectively.

IV. CONVOLUTIONAL NEURAL NETWORKS (CNNs) AND
FINITE IMPULSE RESPONSE (FIR) FILTERS

CNN is a deep learning model for processing data with a
grid pattern, such as photographs, that is inspired by the
architecture of the human visual cortex and designed to learn
spatial hierarchies of characteristics automatically and adap-
tively, from low- to high-level patterns. CNN is a mathemat-
ical construct made up of three types of layers (or building
blocks): convolutional, pooling, and fully connected layers.
The first two layers, convolution, and pooling extract features
while the third, a fully connected layer, uses the extracted
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features for classification. Deep CNN features multiple cas-
caded stacks of Convolutional and Pooling layers to increase
their expressiveness power. A 1D convolutional (Conv1D)
layer slides several kernels across a time-series sequence or
signal, producing a 1D feature map per kernel. The sliding
shift amount is determined by the strides parameter which
specifies the stride length of convolution. Each kernel will
learn to detect a single very short sequential pattern (no longer
than the kernel size). The inactivated Conv1D layer output is
expressed as follows [27]:

Ni—i
Ye=bp+witex T =+ Y Wit T )

i=1

where yi is the layer output, bf is the bias of the k" neuron at
layer [, xl.l_l is the output of the i neuron at layer / — 1, wfk_ !
is the kernel weight from the i neuron at layer [ — 1 to the
k™ neuron at layer I, N;_ is the size of the Conv1D kernel at
layer [ — 1, ® is the 1D correlation operator [27].

In signal processing, a finite impulse response (FIR) filter
is a filter whose impulse response is of finite duration [28].
For a causal FIR filter of order N, each value of the output
sequence is a weighted sum of the most recent input values
as shown in Figure 2. The FIR output is defined as:

N
ylnl = hinl x x[n] =Y x[i] hln — i] (@)
i=0

where x[n] is the input signal, y[n] is the output signal, N is
the filter order; an N'-order filter has N -+ 1 terms on the
right-hand side, 4; is the value of the impulse response at the
i instant for 0 < i < N of an N"-order FIR filter, and x
is the 1D convolution operator [27]. If the filter is a direct
form FIR filter then A[n] is the filter coefficients or taps. This
computation is also known as discrete convolution.

Correlation is equivalent to convolution with the
time-reversed impulse response of the Conv1D kernel where
h[n] = w[—n] [29]. Comparing the discrete convolution
computed by the FIR filter and the ConvlD kernel oper-
ation illustrates that the discrete convolution is equivalent
to the inactivated Conv1lD kernel convolution between the
layer weights and the time-reversed version of the kernel
weights for the bias term b = 0. The time delay or shift-
ing operation of the FIR filter is equivalent to sliding the
Conv1D kernel across the input signal. A Conv1D kernel with
a single stride computes the discrete convolution between the
1D input signal and the Conv1D kernel in parallel. In other
words, the ConvlD kernel acts as an FIR filter applied to
the 1D input signal. Accordingly, the Conv1D filter kernel
is equivalent to the impulse response of the FIR filter where
the kernel weights are the filter coefficients or taps of the
direct form realization of the FIR filter. Note that a ConvlD
kernel of Ny length has an order of N = Ny — 1 as an FIR
filter.

The convolution theorem states that under suitable condi-
tions the Fourier transform of a convolution of two functions
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FIGURE 2. Direct form discrete-time FIR filter of order N. The top part of
the block diagram is an N-stage delay line with N + 1 taps. Each unit
delay is a z—1 operator in Z-transform notation & An example of the FIR
filter impulse response h[n] and power spectrum |H(f)|2 for N = 32.

(or signals) is the point-wise product of their Fourier trans-
forms [28]. The filter output for an input sequence x[n] is
described in the frequency domain by the convolution theo-
rem as follows:

Fx xh) = F(x)- F(h),

L —— N, e’ \-—\/—’

Y(w) X(w) Hw)
and  y[n] = x[n] * hin] = F'{X(0) - Hw)} (3)

where operators F and F~! denote the discrete-time Fourier
transform (DTFT) and its inverse, respectively. The complex-
valued, multiplicative function H(w) is the filter’s fre-
quency response. Figure 2 illustrates an example of the filter
impulse response A[n] and power spectrum |H (f)|? of an FIR
Low-pass Filter (LPF) for N = 32.

Consequently, the Conv1D kernel operation is equivalent
to applying an FIR frequency-selective filter to the input sig-
nal. Furthermore, since the Conv1D kernel works as a sliding
window along the time axis, the filter output is a function of
time as well. Therefore, the ConvlD kernel output, which
is also known as the feature map, is a time-domain signal
that indicates the existence of specific frequency components
in the signal at specific time instants. The ConvlD kernel
weights can be pre-designed and assigned as non-trainable
parameters to apply specific FIR filtering operations but they
also can be trained to learn significant features of the signals
as usually done in CNNs. Nonetheless, a trainable Conv1D
kernel is still interpreted as an FIR filter with learned parame-
ters since the kernel operation is invariant. The Conv1D layer
comprises multiple kernel filters which output Ny feature
maps each of Ny length where Ny is the number of ConvlD
filters and Nj is the number of samples of the input signal. The
Conv1D feature maps collectively can be grouped and treated
as a 2D heatmap that exhibits the time-frequency features of
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FIGURE 3. Self-contained STFT CNN architecture and the impulse and frequency responses of the FIR filter bank.

the signal. The produced 2D heatmap can be classified using
a Conv2D CNN as shown in Figure 3.

The Conv1D kernels can be designed to perform any kind
of convolution-based functions or FIR filtering techniques
including frequency-selective and matched filters by con-
trolling the kernel length Ny and assigning appropriate fil-
ter coefficients to the kernel weights. Figure 3 shows the
Convl1D layer kernel weights and frequency response of a
bank of FIR BPFs (Ng 8) with equal bandwidths and
equally-spaced adjacent center frequencies. The 2D heatmap
image resolution is Ny x Ny. The proposed Conv1D layer
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can be designed to imitate the operation of STFT, CWT,
or other time-frequency transforms by assigning pre-designed
filter weights to the ConvlD FIR kernels. STFT computes
the signal spectrogram by repeatedly evaluating FT of the
signal over a short period of time and displaying the spec-
trum versus time. The CWT applies a set of filters derived
from dilated versions of the mother wavelet to the signal
to compute the signal scalogram. Moreover, the proposed
Conv1D layer can be designed as an LPF, HPF, or BPF for
ECG noise removal without the need for extra preprocessing
stages.
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The motivation for inventing this approach is to enhance
the performance of the ECG CNN classifier by design-
ing a self-contained STFT-based 2D CNN without applying
preprocessing computationally-intensive algorithms such as
STFT or WT to meet the edge device computational con-
straints. This approach can be applied for multi-lead ECG
classification as well by dealing with the signal of each lead
as a separate input channel and using multi-channel Conv2D
CNN for classification. Another reason for devising such an
approach is that existing DNN design tools do not support
the quantization of custom preprocessing functions such as
STFT or WT for edge computing. The proposed FIR-based
STFT ConvlD layer can be readily quantized using the
existing tools. Furthermore, the proposed approach provides
a clear interpretation of the ConvlD CNN operation as a
frequency-selective filter bank which is a novel contribution.

V. METHODS AND TOOLS

The MIT-BIH dataset is highly imbalanced as shown in
Table 1 with a majority class to minority class ratio of
25.8 and the ratio of the normal ECG beats to the total number
of beats is 86%. Addressing class imbalance with traditional
machine learning techniques has been studied extensively
over the last two decades. Methods for handling class imbal-
ance are grouped into data-level techniques, algorithm-level
methods, and hybrid approaches [30]. Data-level methods for
addressing class imbalance include over-sampling and under-
sampling while algorithm-level methods is handling class
imbalance by adjusting the learning or decision process in a
way that increases the importance of the minority class. In this
work, the class imbalance problem is addressed at the algo-
rithm level by incorporating the class-weight parameter in the
model training process to assign higher weights for minority
classes during loss function optimization which is equivalent
to oversampling the minority class. The Adam optimizer with
adaptive learning rate scheduling initiated at 0.01 is used for
model training.

Keras with the Tensorflow backend is used to train and
test the CNN classifiers. Keras is an open-source software
library that provides a Python interface for the TensorFlow
library. TensorFlow is an open-source framework for machine
learning created by Google with a comprehensive, flexible
ecosystem of tools, libraries, and community resources that
help developers easily build and deploy ML-powered appli-
cations. The development flow and tools used in this work are
presented next.

1) Keras Tuner (a framework for optimizing hyperparam-
eter search) is used to optimize the model hyperparameter
search process. Hyperparameters include all non-trainable
parameters of the model and their tuning is very challeng-
ing and time-consuming. In this work, the hyperparameter
search space includes the number of convolutional layers,
kernel size of each layer, number of filters in each layer,
activation function selection from Relu, Tanh, and Sigmoid,
and Boolean parameters to include or not regularization lay-
ers such as Dropout and BatchNormalization layers. Keras
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Tuner comes with the Bayesian Optimization, Hyperband,
and Random Search algorithms. The three algorithms have
been investigated and the Hyperband algorithm is found to
give better results for the given dataset. Bayesian-optimized
models tend to overfit the training set resulting in a signifi-
cant variance. The hyperband algorithm is a combination of
random search with adaptive resource allocation and early
stopping that accelerate the hyperparameter search process.

Hyperparameter search is approached as an optimization
problem with the objective of minimization/maximization of
a specific quantity. Usually, maximizing the validation accu-
racy is the main objective of classification algorithms. How-
ever, due to the class imbalance nature of the training dataset,
maximizing the model accuracy does not tend to give the best
results in terms of detecting irregular heart activities due to
the dominance of the normal class in the dataset. For example,
if a classifier is set to predict all beats as normal it would
achieve 86% accuracy with all normal beats being correctly
classified and all other beats being misclassified. The valida-
tion Area Under the Curve of the Receiver-Operating Char-
acteristics (ROC-AUCQC), the validation recall score, and the
validation F1-score have been inspected as the optimization
objectives. In our experiments, the F1-score with macro aver-
aging tends to give the best results in terms of maximizing the
classification accuracy of the minority classes. Unfortunately,
the hyperparameters found by Keras Tuner cannot be used
directly to develop the edge models because Keras Tuner does
not consider optimizing the model complexity while search-
ing for the best parameters. The Keras Tuner parameters are
used as a guideline while developing the classifier models to
be exported to the edge device.

2) Manual tuning of the proposed models is conducted to
maximize the model Fl-score while minimizing the model
complexity. In this step, the model hyper parameters includ-
ing the number of layers, the used regularization layers, the
loss function, the loss optimizer, the dataset class imbalance
mitigation method, and the search objective are drawn from
the Keras Tuner step. The number of filters and kernel size of
Conv1D and Conv2D layers is manually tuned to apply the
filtering operations described in Section IV and reduce the
model complexity. We designed Nr adjacent FIR Filter bank
of BPFs each of order N = N; — 1 with equal bandwidths
and equally-spaced center frequencies between 0 and 64 Hz
using the Hamming window method [28]. Figure 3 shows
the frequency response of the FIR filters for Nr = 8 and
N = 16. A ConvlD input layer is instantiated with Ng
filters each of Nk size in which the FIR filter coefficients are
assigned to the layer kernel weights.

Two CNN models have been developed: a fully Conv1D
model and a mixed ConvlD-Conv2D model in which the
input layer of both models is the FIR Conv1D layer as shown
in Figure 4. The fully Conv1D model is mainly developed to
compare its performance to the proposed ConvlD-Conv2D
model. For each model two approaches are adopted for train-
ing the models by switching the Boolean trainable parameter
of the Conv1D layer from False to True and initializing the

94477



lEEEACC@SS M. M. Farag: Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection

Signal_Layer

Layer type OutputShape Param #
InputLayer [(None,64,1)] 0
ConviD (None,64,8) 136
BatchNorma (None,64,8) 32 7x64x1
Activation (None,64,8) 0
Concatenate (None,64,9) 0 Conv1D Block 1
MaxPooling1D (None,32,9) 0
kernel (16x1x8)
ConvlD (None,32,16) 1168
BatchNor (None,32,16) 64
Activation (None,32,16) 0
- ?7x64x1
MaxPooling1D (None,16,16) 0
Inputlayer [(None,2,1)] 0 BatchNormalization
ConviD (None, 16,16) 2064
Dense (None,2,32) 64 za'"":;m
BatchNor {None, 16,16) 4 et
moving_mean (8)
Dense Mone2,16) | 528 moving.variance (6>
Activation (None,16,16) 0
Dense (None,2,8) 136
MaxPooling1D (None,8,16) 0 Activation
Flatten (None,16) 0 ReLU
Flatten (None,128) 0
Concatenate (None,144) 0
Dense (None,5) 725 Concatenate
Full Model 4,981

MaxPooling1D
Period_Layer | [ __ __
N

Conv1D Block 2
kernel (8x9x16)
bias (16)

BatchNormalization

Dense gamma (16) |

kernel (1x32) beta (16) |
bias (32) moving_mean (16)

moving_variance {16)
RelU

Activation

Dense

kernel (32x16)
bias (16)

RelLU

Dense

kernel (16x8) Conv1D Block 3
bias (8) kernel (8x16x16)
bias (16)

RelU

Flatten Flatten

Concatenate

Dense

kernel (144x5)
bias (5)

Softmax

OuputLayer

(a) Conv1D_T model architecture

FIGURE 4. CNN model architectures.

Conv1D layer weights with the FIR filter coefficients in both
approaches. The proposed models are trained and tested on
the MIT-BIH dataset and the average and per-class model
metrics including accuracy, recall score, ROC-AUC score,
and F1-score are measured and reported.

3) Models with the best Fl-scores are then optimized
for edge computation using the TensorFlow and TensorFlow
lite (Tflite) optimization tools [31], [32] and the Google
Qkeras package [33]. Quantization refers to techniques for
performing computations and storing tensors at lower bit
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Signal_Layer

Layer Type OutputShape Param #
InputLayer [(None,64,1)] 0
ConvlD (None,64,8) 136
oD BatchNor (None,64,8) 32
Activation (None,64,8) 0
bias (8) Reshape (None,64,8,1) 0
Conv2D (None,64,8,32) 544
el BatchNor (None,64,8,32) 128
Activation (None,64,8,32) 0
:::“‘(:>“> MaxPooling2D | (None,32,4,32) 0
moving_mean (8) Conv2D (None,32,4,16) 8208
moving_variance (8) BatchNor (None,32,4,16) 64
Activation (None,32,4,16) 0
MaxPooling2D (None,16,2,16) 0
Activation Conv2D (None,16,2,16) | 4112
InputLayer [(None,2,1)] 0
BatchNor (None,16,2,16) 64
Dense (None,2,32) 64
Reshape Activation (None, 16,2,16) 0
N Dense (None,2,16) 528
/ ConvaD MaxPooling2D (None,8,1,16) 0
” Dense (None,2,8) 136
Flatten (None,128) 0
| (b2 Flatten {None, 16) 0
Concatenate (None,144) 0
” BatchNormalization Dense (None,5) 725
Full Model 14,741
| | gamma (32)

” moving_mean (32)

moving_variance (32) raieELleyEr

Activation Dense

kernel (1x32)
bias (32)

|
|
|
|
beta (32) I
|
|
|
|

RelU

N ]

(T — N Dense

| B
kernel (4x4x32x16) bias (16)

| bias <16 | RelU

— —— — — — -

Dense

” Conv2D - Block 3 )

H kernel (4x4x16x16) H
bias (16) ﬂ

R

Concatenate

kernel (16x8)
bias (8)

RelU

Flatten

Dense

kernel (144x5)
bias (5)

NeliinEN
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(b) Conv1D_Conv2D_T model architecture

widths than floating-point precision. A quantized model exe-
cutes some or all of the operations on tensors with integers
or smaller float precision rather than the 32-bit single-
precision floating-point. Quantization allows for a more com-
pact model representation, smaller memory footprint, faster
inference, and less-demanding computation requirements yet
it comes at the expense of accuracy loss. Both quantization-
aware training (QAT) [34], [35] and post-training quantiza-
tion (PTQ) [36] techniques have been investigated to develop
Tflite models ready for edge deployment. While the former
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results in less reduction of the model accuracy, the latter does
not need model training which can be much faster and easier
to use. In QAT, weights and activations are fake quantized
during both the forward and backward passes of training
while in PTQ weights and activations of an already-trained
model are quantized to a lower precision. QAT can be per-
formed using either the TensorFlow optimization toolkit or
the Qkeras library which provides more versatile quantization
options including the quantizable layers and the quantization
precision.

The quantized models are then subjected to weight pruning
to remove superfluous values from weight tensors. Weight
pruning reduces the number of parameters and operations in
a calculation by deleting connections, and hence parameters,
between DNN layers. The DNN parameters are set to zero
to eliminate superfluous connections between neural network
layers. Weight pruning is done during the training phase to
allow the DNN to adapt to changes. The weight pruning API
is developed on top of Keras simplifying its use with Keras
models. Weight pruning can be performed simultaneously
with QAT using either the TensorFlow optimization toolkit
or the Qkeras library.

The optimized models are then converted to Tflite models
for deployment on the edge device. Tflite is a package of
tools that enables on-device inference of machine learning
models. This package is composed of a runtime engine for
ML model inference computation on edge devices and a set
of tools for transforming and quantizing TensorFlow models
post-training for usage on mobile and embedded devices.
Tflite offers several PTQ options to choose from that fit the
requirement of various computation platforms. In dynamic
range and floatl6 quantization, weights are statically quan-
tized from 32-bit floating-point to 8-bit integers (int8) and
16-bit floats (Float16), respectively. In full-integer quantiza-
tion, both weights and activations of the model are statically
quantized to int8. Edge inference using Tflite addresses five
main concerns: latency (no round-trip to a server), privacy
(no personal data is sent out of the device), connectivity (no
internet connectivity is required), size (reduced model and
binary size), and battery consumption (efficient inference and
a lack of network connections).

4) The optimized Tflite models are finally exported to
the edge device for testing and benchmarking. A raspberry-
pi 3 model B+ with Cortex-ARMv8 64-bit SoC and 1GB
DDR2 SDRAM running the Ubuntu 18.04 OS and hosting
a Python 3.6 interpreter and Tflite runtime engine is used for
this purpose. The ARM Cortex processor architecture inher-
ently supports 32-bit integer and floating-point operations.
The model metrics including accuracy, recall score, ROC-
AUC score, and F1-score are measured for all Tflite models
as well as the model performance metrics including the model
size, memory usage, average inference time, and throughput.

VI. RESULTS AND DISCUSSION
Two CNN models are proposed: The first model comprises a
stack of (Conv1D, BatchNormalization, Relu Activation, and
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MaxPooling) layers with the ECG signal fed to the input layer
and another stack of dense layers fed with the normalized
post- and pre- RR intervals. Outputs from both stacks are
then flattened, concatenated, and fed to a dense layer with
softmax activation to output the five ECG class probabilities
as shown by Figure 4(a). The second model comprises a
Conv1D input layer with Tanh activation for time-frequency
feature extraction followed by a stack of (Conv2D, BatchNor-
malization, Relu Activation, and MaxPooling) layers with the
ECG signal fed to the input layer and another stack of dense
layers fed with the post- and pre-RR intervals. Outputs from
both stacks are then fed to a dense layer with softmax acti-
vation to output the five ECG class probabilities as shown by
Figure 4(b).

The best parameters of the ConvlD FIR input layer are
found to be Nr = 8 and Ny = 16. This layer is fixed
in both ConvlD and ConvID_2D models and the param-
eters of the remaining layers are manually tuned to maxi-
mize the F1-score and minimize the number of model param-
eters. Two variants of each model are trained in which
the ConvlD Trainable parameter is switched from False
in the ConvlD_2D_T FIR and ConvlD_T_FIR models to
True in the ConvlD_2D_T and ConvlD_T models. The
training process was conducted on a cloud machine featur-
ing 8 CPU cores, 30 GB of RAM, and an NVIDIA QUADRO
RTX 5000 GPU and hosted by the Paperspace Gradient cloud
platform [37]. Experiments are repeated 10 times for each
model and the average results are reported.

A. MODEL TESTING ON THE CLOUD

Table 2 shows the training and testing results of the pro-
posed models on the cloud machine. The model number of
parameters, size, training time, and GPU memory usage dur-
ing training are illustrated. The training and testing accu-
racy of the developed models is depicted. The ROC-AUC,
recall, precision, and F1- weighted and macro average scores
are presented for the test set only. In macro average scores,
class weights are not considered for calculating the average
from individual class scores, unlike the weighted average
which gives higher scores due to considering class weights.
The model is tested using the cloud machine CPU and GPU
and the average inference time and throughput are calcu-
lated. Throughput is calculated by dividing the number of test
examples by the whole test dataset inference time.

The number of parameters is the same for both trainable
and non-trainable Conv1D models yet the average inference
time is greater in models with non-trainable parameters which
can be attributed to that training the ConvlD layer results
in sparse weight tensors which accelerates inference time.
Comparing the training and test accuracy shows that the vari-
ance of all models does not exceed 1% indicating that the
models do not overfit the training dataset and well generalize
to the test dataset. Models with the trainable parameter of
the Conv1D layer set to True outperform their counterparts
which indicates that the initial FIR kernel weights have been
updated during the backpropagation path of model training
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TABLE 2. Classification and performance results of the proposed models for the training and test datasets on the cloud.

ConviD_2D_T_FIR  ConvID_2D_T  ConviD_T_FIR ConvlD_T
Number of parameters 14741 14741 4981 4981
Training time (seconds) 190.92 178.63 218.64 262.64
Training GPU memory usage (MB) 223.75 308.5 100.75 100.5
Training Accuracy 99.66% 99.71% 99.41% 99.43%
Test Accuracy 98.77% 99.08% 98.65% 98.78%
ROC-AUC score 99.54% 99.74% 99.31% 99.52%
Average Recall Score - Weighted (Macro) 98.77% (91.34%)  99.08% (94.92%)  98.65% (93.02%)  98.78% (94.59% )
Average Precision Score — Weighted (Macro) 98.75 % (93.33%) 99.09% (93.78%) 98.68% (91.38%) 98.82% (91.93%)
Average Fl-score weighted — Weighted (Macro) 98.76% (92.31%)  99.09% (94.34%)  98.66% (92.18%)  98.79% (93.21%)
CPU Inference time (msec) 0.25 0.16 0.09 0.08
CPU Throughput (inference/second) 4081.61 6214.42 11228.73 12954.85
GPU Inference time (usec) 94.80 62.10 86.29 68.55
GPU Throughput (inference/second) 10548.90 16104.25 11588.40 14588.05
Model Size (KB) 292.38 298.51 160.10 165.45
TABLE 3. Per-class precision, recall, and F1-score metrics (%) of the proposed models for the test dataset only.
Model N S \% F Q Average
PREC SEN F1  PREC SEN F1  PREC SEN F1  PREC SEN F1  PREC SEN F1  PREC SEN Fl1
ConviD_2D_T_FIR 9926 99.52 9939 89.76 86.13 87.91 9759 96.88 97.24 80.65 75.00 77.72 9938 99.18 99.28 9875 98.77 98.76
ConvlD_2D_T 99.62 99.52 99.57 90.52 9249 9149 97.88 97.50 97.69 81.82 8550 83.62 99.08 99.59 9933 99.09 99.08 99.09
ConvlD_T_FIR 99.47 9920 99.34 8480 90.32 87.47 96.56 96.88 96.72 77.18 79.50 7833 98.87 99.18 99.03 98.68 98.65 98.66
ConviD_T 99.59 9923 99.41 8535 92.63 8884 96.66 9672 96.69 79.07 85.00 81.93 9898 9938 99.18 98.82 98.78 98.79
Support 22137 692 1797 200 974 25800
to achieve better classification results. The ConvlD_2D_T
model achieves the highest test Fl-score of 94.34% (the Confusion matrix, with normalization
F1-score of the average cardiologist is 78% [38]) and accu- " .
racy of 99.08%. The ConvlD_T_FIR model has the smallest
inference time and model size. Although the ConvlD_2D_T .
model accuracy is greater than the Conv1D_T model accu- _ -0.6
. . [ i
racy by only 0.3%, its Fl-score is greater by 1.23% =,
which illustrates the advantage of using Conv2D CNN for é
oo . . . -0.4
classification problems. In our experimentation, a trade- .
off is made between the model classification performance
and the model complexity and real-time inference per- o s
formance. Some models achieved better accuracy scores
but were excluded due to the significant increase in the S ° 2 « o
Predicted label ~0.0

model size which would disallow their usage on edge
devices.

Not only the average scores are used to select the best mod-
els but also the model complexity and the per-class detailed
metric results have been employed. Figure 5 shows the nor-
malized confusion matrix of the ConvlD_2D T model.

In classification problems, model accuracy is defined as the
percentage of true predictions to the total number of dataset
examples. In terms of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), accuracy is
defined as ACC = (TP + TN)/(TP + TN + FP + FN).
Class metrics including precision, recall, and F1-score are
also measured. Precision is defined as the percentage of TP
to the sum of TP and FP, PREC = TP/(TP + FP), while
recall or sensitivity is defined as the percentage of TP to the
sum of TP and FN, SEN = TP/(TP + FN). For arrhythmia
detection, recall is more important than precision because it
characterizes the classifier’s ability to minimize FN in con-
trast to precision which measures the classifier’s ability to
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FIGURE 5. Normalized Confusion Matrix of the ConviD_2D_T model.
Numbers inside blocks are the number of samples classified in each class
normalized by the total number of samples in the class.

minimize FP. F1-score is the harmonic mean of both precision
and sensitivity, F1 = 2 x PREC x SEN/(PREC + SEN) =
2TP/(2TP + FP + FN).

Table 3 shows the per-class accuracy, precision, recall,
and F1- scores achieved by the proposed models on the test
dataset. The proposed Conv1D_2D_T model can classify the
Supraventricular Ectopic and Ventricular Ectopic arrhyth-
mias with 92.49% and 97.5% recall, respectively. In the pro-
posed model, FN result from misclassifying Supraventricular
Ectopic beats as normal beats or misclassifying Ventricular
Ectopic beats as either normal or fusion beats while FP result
from misclassifying fusion beats as Ventricular Ectopic beats
as shown by the confusion matrix of Figure 5. FP and FN
in the trained models are a direct result of the dataset class
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imbalance where the normal beats represent the majority
class and the fusion beats represent the minority class. For-
tunately, the rate of FP and FN do not exceed 7% and 3%,
respectively.

B. MODEL OPTIMIZATION AND TESTING AT THE EDGE
The four selected models are quantized using PTQ and QAT
tools. A total of six quantization methods are applied for
each model. The applied PTQ methods are float32, float16,
dynamic range, full-integer, and int8. The difference between
full-integer and int8 quantization is that in the latter both the
model and operations input tensors are quantized to int8 while
in the former only model operations are quantized to int8.
QAT is applied using the Qkeras library which supports quan-
tization of most Keras layers and also supports simultaneous
pruning and QAT of TensorFlow models. Unfortunately, the
TensorFlow optimization QAT toolkit does not support quan-
tization of the Conv1D layer yet. The models quantized and
pruned using Qkeras are denoted as pgs models and are con-
verted to Tflite float32 models after quantization as int8 and
pruning 50% of the superfluous weights. Unfortunately, the
Tflite library does not support direct quantization of Qkeras
models as int8 models without reapplying QAT optimizations
which leads to a significant loss of the pgs model performance
and is thus excluded.

The developed Tflite models are exported to the
raspberry-pi edge device for testing and benchmarking. Two
methods are used for testing the Tflite inference engine on
the edge device: first, a custom python script is developed
for predicting the full test dataset using the developed Tflite
models and computes the model accuracy scores and perfor-
mance metrics; second, the C++ Tflite benchmark tool devel-
oped by Google is used to test the performance of the Tflite
models on a randomly generated input tensors. It calculates
statistics for the model inference time at steady-state and the
overall memory usage. The accuracy metrics measured using
the python script are accuracy, F1-, recall, precision, and
ROC-AUC scores; and the performance metrics measured
are: the average inference time, throughput as the number of
ECG instances inferred per second, overall memory usage,
and model size. The average inference time is calculated by
measuring the whole test dataset inference time and dividing
it by the number of instances in the dataset while the through-
put is calculated as the inverse of the average inference
time.

Figure 6 depicts the testing and benchmarking results
of the exported Tflite models on the raspberry-pi edge
device. As shown by 6(a), Tflite models suffer loss of accu-
racy metrics compared to the Tensorflow base models. The
Conv1D_2D_T Tflite models still achieve the best accuracy
scores of above 99% accuracy and 94% F1-score. However,
the dynamic range ConvlD_2D_T and ConvlD_2D_T_FIR
tflte models suffer from a significant loss of accuracy and
fail to achieve more than 40% score which can be attributed
to changing the dynamic range of model parameters from
the ConvlD to Conv2D layers. The int8§ QAT and PTQ
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Conv1D_2D_T and QAT Conv1D_2D_T_FIR Tflite models
lose around 1% of accuracy and %4 of F1-score. On the other
hand, the ConvID_T model losses around 1.5% of accuracy
and 6% of Fl-score which gives another advantage to the
ConvlD_2D_T model. The same conclusions also apply to
the recall and ROC-AUC scores.

At the performance level, the ConvlD_T_FIR and
Conv1D_T models provide the best results as shown by Fig-
ure 6(b). The int§ ConvlD_T model achieves an average
inference time of 1.43 ms as executed by the Python script
and 0.23 ms as executed by the tflit benchmark tool. The
Conv1D_2D_T model achieves a Python and C++ average
inference time of 9.2 ms and 7.5 ms, respectively, yet it can
be still deployed on the edge device to classify ECG sig-
nals in real-time because this inference time is much smaller
than the inter-segment RR intervals. The int8 Tflite models
have the lowest model size and memory usage. The smallest
Tflite model is the ConvlD_T_FIR model of 24.41 KB size
and the largest Tflite model is the Conv1D_2D_T model of
89.88 KB size. The overall inference memory usage ranges
from 7.01 to 12.59 MB using the Python script and 2.33 to
5.38 MB using the C++4 Tflite benchmark tool. The differ-
ence between the Python script and C++ Tflite benchmark
results is attributed to the Python interpreter overhead. The
achieved model sizes and memory usages enable running the
Tflite models on a wide range of edge devices with very tight
constraints.

C. VISUALIZATION OF THE ConviD FIR LAYER
ACTIVATIONS AND HEATMAP

Since 2013, a wide range of techniques has been devel-
oped for visualizing and interpreting 2D CNN activations,
filters, and heatmaps [39, Ch. 5]. In Figure 3, the ConvlD
filters are visualized in both the time and frequency domains
for the Trainable parameter switched from False to True.
Herein, we aim to visualize the ConvlD CNN activations
and heatmaps. To visualize the FIR ConvlD layer output,
the ConvlD_T_FIR model outputs from the ConvlD and
activation layers are plotted for random samples of True
and False predictions for the five classes in the dataset. The
ConvlD_T_FIR model used for visualization has Np = 16,
N; = 64, and N, = 32 which is different than the selected
best model to enhance the resolution of visualized images.
To extract the feature maps, a Keras model is created that
takes ECG signals and RR intervals as input tensors and
outputs the activations of the Conv1D and the Tanh activation
layers tensors [39, Ch. 5]. The ECG signal samples are visual-
ized in the time and frequency domains by plotting the signal
amplitude versus time, plotting the signal spectrum obtained
using Fast Fourier Transform (FFT), and plotting the signal
STFT spectrogram as shown in Figure 7.

The last two rows of each figure illustrate the Conv1D and
Tanh activation layer heatmaps displayed as 2D mesh plots in
which the horizontal axis is the time axis and the vertical axis
is the number of the feature map representing the frequency
axis for the designed non-trained FIR Conv 1D adjacent BPFs.
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FIGURE 6. Testing and benchmarking results of the Tflite models on the Raspberry-pi edge device.

Comparing the STFT and the Conv1D heatmap plots demon-
strates that the developed FIR ConvlD layer successfully
mimics the STFT algorithm in extracting the time-frequency
spectrogram of the ECG signal. The difference between
the STFT and the FIR images is that STFT extracts the
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spectrogram using the Fourier transform algorithm to find the
frequency spectrum of the signal while the FIR filter depends
on convolution with the FIR BPF filter bank to indicate the
existence of specific frequency components at specific time
instances. In other words, the STFT spectrogram shows the

VOLUME 10, 2022



IEEE Access

M. M. Farag: Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection

Supraventricular Ectopic Ventricular Ectopic

o € Normal (N) Beat (S) B Beat (V) Fusion Beat (F) Unknown Beat(Q)
£8 . 2
£ gos ! 5
2 ¢ 00 0 o 0
o E -2
0 F
00 02 04 0.0 02 04 00 02 04 0.0 02 04 00 02 04
£ E 0.1 1M
:3 : /\\k‘/ 0.2 L\\ 0.2 L‘ 0.5 h
c O
2 fo0 0.0 0 0.0 0.0
. 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50
Es
& g 50 50 50 50 - 50 ._ig
% 5
S g - 0.5
& 5‘; 0 0 —am o= 0 - - 0 ¥ 0 am l
5§ 00 02 04 00 02 04 00 02 04 00 02 04 00 02 04
> E
28 1 10 10 10 10 .
O c i Ik 3 NG T B
38 g 4 L% 5 Ak 5 5 LN }UQ; .
é % B i, ot B N - —— e N - — l_ -2
. o 00 02 04 00 02 04 00 02 04 00 02 04 00 02 04
m O TR = = ey — ] . i
5E 13 U T | 13 T ..q.. o TN 0 WU ERET 0 RN M-os
u 1y it i e s ] h 51 -
100 mulomk ) LRy RNEET - SR - Te
g5 A - ‘ + el A - - = atirell~e N
€3 o0 02 04 00 02 04 00 02 04 00 02 04 00 02 04
prediction=0 prediction=1 prediction=2 prediction=3 prediction=4
(a) Visualization of hit samples
Supraventricular Ectopic Ventricular Ectopic
o B Normal (N) Beat (S) Beat (V) Fusion Beat (F) Unknown Beat(Q)
5w
- g > V\/«A\ /\[,\/ \//V\/\\,/ \__\/\__‘/ : _‘A
& a
5 go00 0
0 E
u £
-S o
ry-
= [a]
58
™
£
E s B-15
2 g 10
©
c 8 0.5
28 -
L8 00 02 04 00 02 04 00 02 04 00 02 04
> E 15 15 15 15 e S
3% [ T | [
a2 10 10 10 10
% ’ ! " EHYIR ; I
s 2 N N A — -2
3
© 3 00 02 04 00 02 04 00 02 04 00 02 04
L oa
9 T 15 s e L T r— 15 mmer e ey )5 p—
@ E e 1A ALK \ - i
1 2 10 5‘ -'?‘ 10 fEttudil 10 %ﬁ .'! 10 | % '
52 s Bl T W T o .
5 5 [ S —— e L B = i
= B
83 00 02 04 00 02 04 00 02 04 00 02 04
prediction=1 prediction=2 prediction=1 prediction=0 prediction=2

(b) Visualization of miss samples

FIGURE 7. Visualizing samples of True and False predictions of the ConviD_2D_T_FIR models in the time and frequency domains and
the Conv1D layer heatmaps and Tanh activations. The heatmap size =Ns x Ny = 64 x 16.

signal frequency spectrum obtained using FT versus time as
a 2D plot while the Conv1lD heatmap depicts the BPF filter
outputs in the time domain grouped in ascending order of
the BPF center frequencies. Instantiating the Tanh activation
layer on the top of the Conv1D layer is one of the Keras Tuner
step insights which shows to give better classification results
compared to using the Relu or Sigmoid activation functions or
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not using activation functions at all. Enabling training of the
Conv1D layer in the ConvlD_2D_T and Conv1D_T models
modifies the FIR filter weights and frequency response as
shown in Figure 3 which consequently affects the heatmap
output from the Conv1D layer. Training the Conv1D input
layer weights initialized with the FIR filter coefficients tunes
up the frequency response of the filter bank to reduce the
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TABLE 4. Comparison between the proposed ConviD_2D_T model and state-of-the-art ECG classification methods.

Work Features Approach A W s v oG

% PREC SEN Fl PREC SEN Fl PREC SEN Fl PREC SEN Fl
Proposed ECG Seg- ConviD +  99.08 99.62 99.52  99.57 90.52 9249 9149 97.88 97.5 97.69 99.09 99.08 99.09
model ment + RR Conv2D
Li et al. Morph + IBL 99 99.7 99.35  99.52 100 95.12 98.4 84.5 90.92 68 - -
[18], 2021 DWT+RR
Cui et al. ConvID+ SVM-RBF  98.35 98.8 98.76  98.78 98.25 99.03  98.64 98.31 96.83  97.56 98.312 98.34 98.36
[10], 2021 DWT+PCA

Liu et al. WST + PNN i 99.3 98.5 98.8 98.65
[19], 2020 PCA KNN

Mousavi ECG Seg- ConviD + 99.92 99.86 100 99.93
and ment+ RR  BiLSTM

Afghah Autoen-

[20], 2019 coder

Raj and DOST ABC + 96.08 98.38 98.11 98.24
Ray [6], LSTSVM

2018

Acharya ECG ConvlD 94.03 87.43 91.54 89.44
et al. [21], Segment +

2017 DWT

96.9 94.75 96.4 91.4 93.83 99.6 99.5 99.55

96.48  98.21 99.79 99.5 99.64 745125 73915 7421

6534 6135 88.3 86.93  87.61 96.08 96.08 96.08

90.59 9241 95.3 9422 9476 97.86 96.71 97.28

model loss and enhance its classification accuracy as shown
in Figure 3. The center frequencies of the FIR filters are
not ordered incrementally as in the non-trainable ConvlD
layer and, consequently, their output heatmap has been varied
from the heatmaps of Figures 7. Nevertheless, enabling the
training of the Conv1D layer proves to give better accuracy
scores compared to the non-trained FIR-Conv1D models as
illustrated in Table 2.

D. COMPARISON WITH RELATED WORK

In the following, we compare the proposed ConvlD_2D_T
model with the state-of-the-art ECG classification methods.
The comparison is limited to recent single-lead ECG clas-
sification methods applied to the MIT-BIH dataset, catego-
rized according to the AAMI standard, and trained and tested
using the random dataset division method to provide a fair
comparison. In our comparison, we will compare both the
model accuracy metrics and suitability for edge inference
which is the main objective of our work. Table 4 depicts
the weighted average scores as well as per-class precision,
recall, and F1- scores excluding the “F” and “Q” classes
to fully characterize the performance of the compared mod-
els. All models listed in this table have been introduced in
Section II. Unfortunately, model complexity and run-time
performance results are not reported in most related works,
however, they can be inferred from the preprocessing and
feature extraction stages, model topology, and other model
parameters.

The model proposed by Cui et al. [10] achieves an average
accuracy of 98.35% and per-class precision and recall scores
of more than 98%. The authors claim that the proposed model
can be used for real-time ECG monitoring but do not provide
supportive evidence. Despite achieving good accuracy scores,
the DWT preprocessing and feature extraction stages are
computationally intensive limiting the model’s suitability for
edge inference. The model proposed by Li et al. [18] achieves
an 84.50% recall score of the class “V”” which is less than
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most compared works. The proposed method uses a DWT
preprocessing stage limiting its applicability for edge infer-
ence. The best classification results of the model proposed
by Liu et al. [19] work are achieved by KNN. However, the
testing results are reported for 10-fold cross-validation exper-
iments, not on a separate hold-out test dataset which does
not demonstrate the model generalization power. Moreover,
the proposed method uses the SWT feature extraction stage
which limits its applicability for edge inference.

The model proposed by Mousavi and Afghah [20] is
tested for both intra- and inter-patient schemes and the
reported scores are superior. Surprisingly, unlike all related
works, this model achieves such results without using the
RR intervals, which are essential features for ECG classifi-
cation, raising serious concerns about the presented results.
The model has a size of 5.5 MB and it requires neither
computationally-intensive preprocessing nor feature extrac-
tion stages. Compared to our ConvlD_2D_T model with a
maximum model size of 300 KB (non-optimized) and 90 KB
for the optimized edge model, the model size is much larger
which also indicates that the model inference time and mem-
ory usage will be much greater than our model.

The method proposed by Raj and Ray [6] is prototyped
on an ARM9 embedded platform and experimentally vali-
dated on the MIT-BIH arrhythmia database for both intra-
and inter-patient dataset division schemes. The implemented
platform is recommended for utilization in hospitals to ana-
lyze the long-term ECG recordings however the model size,
memory usage, and performance results are not reported.
Moreover, the recall and precision metrics for the classes “S™
and ““V” are inferior to the model rivals including ours. The
accuracy, precision, and recall results of the model proposed
by Acharya et al. [21] are acceptable but not the best com-
pared to the model rivals including our model. Nevertheless,
the proposed model is a good fit for edge deployment due to
the minimum preprocessing steps applied excluding the DWT
noise removal step.
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Eventually, the proposed model outperforms all compared
works in terms of the model complexity and computational
cost and achieves comparable accuracy results. The achieved
results of the proposed classifier enable its deployment on
a wide range of edge devices for arrhythmia detection in
real- time. Limitations of the proposed classifier include algo-
rithmic and computational limitations. The proposed model
is based on STFT and, consequently, it suffers from the
STFT time-frequency resolution trade-off. Such a limitation
can be overcome by implementing a CWT ConvlD layer
to extract high-resolution time-frequency scalogram images.
At the computation complexity level, the proposed model is
limited in terms of the classifier input size (ECG segment
length) and the number of layers (model depth) to meet the
edge inference requirements. The proposed model is well
suited for ECG classification on a beat-by-beat basis, which is
commonly applied in the ECG monitoring and classification
literature, rather than long-term ECG segments.

VIl. CONCLUSION AND FUTURE WORK

In conclusion, we proposed a novel method for ECG classi-
fication optimized for edge deployment and can be embed-
ded in a wearable device for arrhythmia detection. We pre-
sented a clear interpretation supported by visualizations of
the Conv1D layer operation as an FIR filter and exploited this
interpretation to develop a self-contained STFT ECG classi-
fier. The real-time performance of the proposed model has
been planned in advance to fit the resource constraints of edge
computing. The proposed model is extensively evaluated and
benchmarked on a raspberry-pi edge device and the results
are reported and discussed. A trade-off is made between
the model classification performance and the model com-
plexity and real-time inference performance and the devel-
oped models exhibit a good balance between both metrics.
The proposed edge model achieves superior real-time perfor-
mance and computational complexity results and comparable
classification accuracy results. A discriminative feature of
the proposed model is that it can be readily deployed for
real-time ECG monitoring and arrhythmia detection using
resource-constrained edge devices.

As future work, we will attempt to improve the model clas-
sification performance by designing a self-contained CWT-
based CNN. We also plan to extend our work to address
the inter-patient division scheme of the MIT-BIH dataset in
which the model is trained and tested on heartbeats belong-
ing to different individuals to test the model’s capability to
generalize and capture inter-individual variations. Moreover,
we plan to test the developed model on other internationally
recognized ECG databases to investigate the model’s gener-
alization capabilities and suitability for practical deployment.
Finally, the developed model will be investigated for other
relevant time-series classification problems.
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