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Abstract— The significant bottlenecks in determining bac-
terial species are much more time-consuming and the biology
specialist’s long-term experience requirements. Specifically,
it takes more than half a day to cultivate a bacterium, and
then a skilled microbiologist and a costly specialized machine
are utilized to analyze the genes and classify the bacterium
according to its nucleotide sequence. To overcome these issues
as well as get higher recognition accuracy, we proposed
applying convolutional neural networks (CNNs) architectures
to automatically classify bacterial species based on some
key characteristics of bacterial colonies. Our experiment
confirmed that the classification of three bacterial colonies
could be performed with the highest accuracy (97.19%) using
a training set of 5000 augmented images derived from the
40 original photos taken in the Hanoi Medical University
laboratory in Vietnam.

I. INTRODUCTION
Rapid identifying bacterial species is a common and

critical task in various fields, including medical [1],
biochemistry [2], the food industry [3], and agriculture
[4]. Traditional laboratory methods for bacterial strain
identification based on biochemical or modular biology
technologies are costly and time-consuming due to the
complex sample preparation. They also frequently need a
specialist with extensive knowledge and experience in the
field. In bioimage informatics, automating the process of
bacteria identification is a promising endeavor to bring
highly effective solutions for image analysis tasks includ-
ing object detection, motion analysis, and morphometric
features. Deep learning-based image analysis algorithms
create faster, more precise, and less expensive computa-
tional approaches for classifying bacterial strains.

Deep CNNs were first employed to determine over 20
basic characteristics of bacteria, such as color [5], shape
[6], and cell composition, and then combined with a
manual classification process. Scientists have improved
CNN’s ability to perform bacteria classification tasks
with a large number of input images in recent years.
Nasip et al. [7] utilized the DIBaS dataset to pretrain
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deep CNN architectures based on the VGGNet and
AlexNet models to classify 33 different bacteria. Images
of these species with a high resolution were resized into
227× 227 (AlexNet input size) and 224× 224 (VGGNet
input size) to fit the model inputs. The given dataset had
35, 600 images in total and the classification accuracy
of VGGNet and AlexNet was announced as 98.25% and
97.53%, respectively. M. Talo’s research [8] and Sanskruti
Patel [9] also applied deep learning and a transfer learn-
ing method [10] to classify bacterial images into 33 cat-
egories. For the ResNet-50 structure in Talo’s work, the
model’s performance was evaluated using five-fold cross-
validation for 50 epochs in about 31 minutes 48 second,
repeated five times on each validation set to calculate
the overall classification performance (99.2%). For a pre-
trained VGG-16 model in the Sanskruti study, the last
block of this model was replaced by an atrous convolution
with a dilation rate of two. These models were tested on
660 images and 33 classification classes from the bacterial
colony DIBaS dataset. As a result, 99.25% and 94.85%
of the test accuracy were achieved, respectively. Mai
et al. [11] presented an efficient approach for reliably
detecting and classifying related bacterial species in high-
resolution microscopy images. The proposed method
has two key stages. Data augmentation techniques are
used to avoid overfitting and create a new dataset of
species derived from the full DIBaS dataset. Secondly, a
compact depthwise separable CNN structure for bacteria
recognition was proposed. The recommended detection
and classification method performed well on the given
dataset, with 96.28% bacterial strain classification. Khal-
ifa et al. [12] introduced a custom CNN architecture
based on the AlexNet to classify bacterial names. That
paper also utilized a data augmentation-based training
and testing strategy to overcome the challenge of training
a neural network with a limited dataset. The proposed
neural network achieved 98.22% testing accuracy with
6600 augmentation samples. Another work presented by
Satoto et al. [13], reached 98.59% (over a subset of the
DIBaS dataset, with just four classes) of classification
accuracy by using a custom CNN topology and data
augmentation techniques. Lei Huang et al. [14] estab-
lished automated applications for classifying bacterial
colonies using two Deep CNN architectures on a custom
dataset of 18 classes derived from Peking University’s
First Hospital. The total number of every bacterial type
in this dataset is 4982. The classification accuracy was
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announced to be between 73% and 90%.
This article constructed a deep learning-based system

to recognize bacteria strains in the limited dataset
collected by Hanoi Medical University (Vietnam). We
executed two concurrent steps to process raw data by
some recommended methods and evaluate the automatic
classification ability of the system. The average classifica-
tion accuracy was obtained at about 95%. The rest of this
paper is structured as follows: Section II describes the
proposed methods. Section III discusses the experimental
materials and setups. The results are provided in Section
IV, and we finally conclude this study in Section V.

II. THE PROPOSED METHODS
In this section, we describe the methods that have

been utilized in our study. These are assembling of the
fundamental data processing knowledge and proposed
architecture. All these subsections are showed below:

A. Bacteria ROI segmentation and Preprocessing
Regions of interest (ROI) usually refers to the mean-

ingful and essential areas of the images. The use of
ROI [15] can avoid the processing of irrelevant image
points and accelerate the processing. The extraction of
regions of interest from images is an important and
unsolved topic in the image processing area, especially in
the biomedical image processing area. In this paper, we
applied to extract ROI to get more beneficial information
in the original bacteria images.

B. Data Augmentation
The major challenge in developing a robust Computer-

Aided Diagnosis (CAD) system is the unbalanced and
limited data size. Data augmentation is a technique
employed in deep learning to increase the size of the
dataset to overcome the issue of limited data size.

From 40 original images, first, we clipped 426 images
for bacteria Escherichia.coli, 334 images for bacteria
Staphylococcus.aureus, and 307 images for bacteria
Klebsiella.pneumoniae by applying the ROI method.
After that, 320 E. coli images, 230 images of Coccus
bacteria, and 200 images of Kleb bacteria were utilized
for data augmentation. We deployed some computer
vision functions such as flip, rotate, zoom, and added salt
& pepper noise to increase the quantity of the images
(Fig. 1). As a result, the number of augmentation images
increased to 6, 000 in total.

C. Model Architecture
Our bacteria classification system is depicted in Fig.

2 from the Input images block (Dataset) to the Bacteria
Names Classification One (Results), with the 2nd and
3rd stages making significant contributions. In the ROI
process and data augmentation step, the raw images
are cropped with the beneficial regions, resized to fit
each model, augmented with the number of samples for
training, and labeled with random weights. Then the
new datasets are divided into a training set and a test

set with a suitable ratio. Following the data processing
step, the input images with a size of 224× 224× 3 and
227×227×3 are fed to Deep Learning Architectures for
training, and the model outputs a weight file and the
probability of bacteria name (%).

In order to create and evaluate a efficient system for
classifying bacterial colonies, we used several fine-tuned
neural networks trained on Imagenet. We investigated to
perform VGG16, ResNet50, MobileNet v1, DS-CNN [11]
and DeepBacteria [12] for recogizing 03 bacteria strains
in our dataset.

Table I also defines DS-CNN design based on some
specifications including Layers, Filter Shape, Parameters
and Multiply-Accumulate (MACs). The total of this
architecture’s parameters and MACs are 3.23M and
40.1M, respectively.

TABLE I
The DS-CNN architecture specification with input image

224× 224× 3

Layer Type Filter Shape Parameters MACs

Conv1
Conv/stride 2 3 x 3 x 3 x 64 1792 21676032
Batch Norm - 256 0
Max Pooling Pool 2 x 2 0 0

DS-Conv2
DW-Conv 3 x 3 x 1 x 64 4736 1806336
PW-Conv 1 x 1 x 64 x 64 12845056

Max Pooling Pool 2 x 2 0 0

DS-Conv3
DW-Conv 3 x 3 x 1 x 64 4736 451584
PW-Conv 1 x 1 x 64 x 64 3211264

Max Pooling Pool 2 x 2 0 0
FC4 Fully Connected 1024 3211529 132096

Classifier Softmax 3 3075 0
Total 3226115 40.1M

Fig. 1. Data augmentation methods to increase the number of
bacteria images from the original dataset.
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Fig. 2. Suggested stages of bacteria type classification, starting from the original images to bacteria strains recognition.

III. MATERIAL AND EXPERIMENTS SET UP
A. Datasets Description

The bacterial images from Hanoi Medical University
(Vietnam) are sRGB images with a pixel size of 3000×
3000, taken by a Sony ILCE-6000. These images show a
petri dish with several bacterial colonies in it. The break-
down of these images was 14 for the Escherichia.coli
bacteria images, 15 for the Staphylococcus.aureus bac-
teria images, and 11 images of Klebsiella.pneumoniae.
Several augmented bacteria samples in our dataset are
shown in Figure 3.

Fig. 3. Augmented samples of bacteria derived from the original
dataset.

B. Experimental Setup
1) Computational Resources: The models were

trained and tested under the computational specification
of Google Colab with the powerful Tesla K80 GPU (12-
16 GB RAM). The Python programming language based
on Tensorflow framework [16] and Keras libraries [17] are
utilized.

2) Parameters Selection: The datasets after prepro-
cessing have a total of 6000 bacteria images; after that,
5000 samples and 1000 images are allocated for the

training and validation sets, respectively. The process
of updating weights is called the ”training process.” This
training process is done by a method called backprop-
agation. The Categorical Cross Entropy is employed to
calculate and generate the error as a loss function. The
SGD optimizer [18] is used for updating the weights with
the learning rate (0.0001) and with a batch size of 64. The
most significant hyper-parameter to tune is the learning
rate. The high learning rate can lead to the convergence
problem of the training algorithm. Oppositely, a minimal
learning rate may get the algorithm stuck in a local
minimum with lousy generalization. Also, for the last
stage, we apply a dropout technique [19] after the Fully
Connected (FC) layer by 25%. The networks were trained
for 100 epochs.

IV. RESULTS AND DISCUSSION
Our experiments were deployed with some scenarios

where five CNN models are used to train with the num-
ber of epochs of 100. Table II presented the parameters,

TABLE II
CNN architectures specifications when training our bacterial

dataset

Model Layers Parameters
(M)

MACs
(G)

Accuracy
(%)

ResNet50 50 25.63 3.52 97.19
Tuned VGG - 16 16 14.78 15.34 96.88

MobileNet 28 4.28 0.57 94.17
DS-CNN [11] 5 3.22 0.04 94.66

DeepBacteria [12] 6 5.6 0.71 95.16

MACs utilization, as well as the validation accuracy of
various popular CNN models when trained on our custom
dataset. It is evident that we could apply the lightweight
CNN architectures to classify bacteria strains with high
performance. Although each of five deep learning models
utilized the number of parameters less than 26M, such
as 25.63M (ResNet-50) and 14.78M (Turned VGG16),
that classification performance could be obtained over
96%. In particular, the DS-CNN design was the least
complicated (5 layers and 3.22M parameters) and could
achieve an accuracy that was quite good compared to
some other state-of-the-art models.

The testing results of 600 images for three strains of
bacteria: E. coli, Staphylococcus, and Klebsiella using
VGG-16 are described in Table III. The system could
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TABLE III
Test Results of the Tuned VGG-16 model

E.coli Staphylococcus Klebsiella
No. Test Images 200 200 200

Incorrect 14 3 2
Sensitivity (%) 93.0 98.5 99.0

operate well to classify two bacteria, Staphylococcus and
Klebsiella (about 99%); the performance was lower in
terms of E. coli bacteria. Fig 4 shows the best validation
accuracy of the VGG-16 network on the custom dataset
derived from the limited dataset of Vietnam when
training the model with 100 epochs.

Fig. 4. Validation accuracy using SGD optimizer in Tuned VGG-
16 model.

An exciting and substantial data-related contribution:
our recommendation of data augmentation and image
processing methods led all mentioned architectures to
obtain a tremendous potential improvement. This tech-
nique could help some designs achieve high performances
as good as those networks that used transfer learning or
support better scores for networks with low capacity in
the medical field.

V. CONCLUSION

This paper investigated and discussed several popular
CNN architectures for bacteria classification. The results
of these proposed methods showed how to classify three
types of bacteria, including Escherichia coli, Klebsiella
pneumonia, and Staphylococcus aureus, with a classifica-
tion accuracy of over 92% and three of five models using
low resources. This work also supplied robust evidence
that lightweight CNN networks can approach roughly
state-of-the-art outcomes and thus be highly effective
at solving this problem in the real world, especially in
embedded implementations or mobile applications for
automatic bacterial recognition.
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