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Abstract—Hyperspectral (HS) pansharpening aims at fusing
a low-resolution HS image with a high-resolution panchromatic
(PAN) image to obtain a HS image with both higher spec-
tral and spatial resolutions. However, existing HS pansharpening
algorithms are mainly based on multispectral pansharpening
approaches, which cannot perfectly restore much spectral infor-
mation in the continuous spectral bands and much broader spec-
tral range, leading to spectral distortion and spatial blur. In this
paper, we develop a new hyperspectral pansharpening network
architecture (called Hyper-DSNet) to fully preserve latent spatial
details and spectral fidelity via a deep-shallow fusion structure with
multi-detail extractor and spectral attention. First, to solve the
problem of spatial ambiguity, five types of high-pass filter templates
are used to fully extract the spatial details of the PAN image,
constructing a so-called multi-detail extractor. Then, a multi-scale
convolution module and a deep-shallow fusion structure, which
reduces parameters by decreasing the number of output channels as
the network goes deeper, is utilized sequentially. In final, a spectral
attention module is conducted to preserve the spectrum for a wealth
of spectral information of HS images. Visual and quantitative
experiments on three commonly used simulated datasets and one
full-resolution dataset demonstrate the effectiveness and robust-
ness of the proposed Hyper-DSNet against the recent state-of-the-
art hyperspectral pansharpening techniques. Ablation studies and
discussions further verify our contributions, e.g., better spectral
preservation and spatial detail recovery.

Index Terms—Convolutional neural network (CNN), deep-
shallow architecture, hyperspectral (HS) pansharpening, multi-
detail extractor (MDE), spectral attention (SA).
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I. INTRODUCTION

HYPERSPECTRAL (HS) images have hundreds of narrow
continuous bands in the same scene simultaneously [3],

which contain rich spectral information, making HS images
widely applied in many fields such as military surveillance [4],
environmental monitoring [5], mineral exploration [6], [7],
agriculture [8], [9], and change detection in commercial prod-
ucts [10]. However, due to the physical limitations of sensors,
expanding the spectral range also brings a reduction in spatial
resolution. When compared to panchromatic (PAN) images, HS
images typically have a lower spatial resolution, which may
be insufficient in some practical applications where both high
spatial and spectral resolutions are desired [11]. Therefore, HS
pansharpening, aiming to merge the HS and PAN images to
generate a fused HS image with both higher spectral and spatial
resolution, is of great significance from many perspectives, also
receiving great attention from the remote sensing and image
processing communities [12].

In the recent decade, a number of data fusion techniques have
been developed to improve the spatial resolution of HS imagery.
They can be roughly classified into five categories: component
substitution (CS), multiresolution analysis (MRA), Bayesian,
matrix factorization, and deep learning (DL) based approaches.

The CS approach, which relies on the substitution of a
component of the HS images by the PAN image, contains
algorithms such as principal component analysis (PCA) [13],
[14], [15], intensity-hue-saturation [16], [17], [18], [19], Gram–
Schmidt (GS) spectral sharpening [20], [21], and guided filtering
(GF) [22]. They perform well in terms of spatiality and par-
ticularly resist coregistration problems but may cause spectral
distortion. The MRA approach first takes spatial features from
the PAN images and then injects them into the HS images
in a multiresolution way, including wavelet transform based
method [23], [24], [25], Laplacian pyramid based method [26],
smoothing filter based intensity modulation (SFIM) [27], mod-
ulation transfer function (MTF) generalized Laplacian pyra-
mid (MTF-GLP) method [28], and MTF-GLP with high-pass
modulation (MTF-GLP-HPM) [29]. Such methods could well
preserve spectral information but mainly suffer from spatial
distortions. Besides, there are also some hybrid methods that use
both CS and multiscale decomposition, such as GFPCA [30].

The Bayesian approach depends on the usage of the posterior
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distribution of the required high-resolution HS (HRHS) image
for the given low-resolution HS (LRHS) and PAN images [12].
Wherein, Gaussian prior (Bayesian sparse) [31], Bayesian naive
Gaussian prior (Bayesian naive) [32], and Bayesian HySure [33]
are typical Bayesian approaches. Moreover, the matrix factor-
ization based method is to utilize an optimization tool to fac-
torize the related matrices after first modeling the observed data
with a signal subspace representation, including a representative
method called the coupled nonnegative matrix factorization
(CNMF) [34]. Besides, there are other typical variational meth-
ods that also belong to VO-based methods [35], [36], [37], [38],
[39], [40], [41]. The Bayesian and matrix factorization based
methods are often constrained by the insufficient representation
ability, and serious quality degradation may occur if the prior
assumptions do not fit the situation. Furthermore, the majority
of available fusion model optimization strategies are solved
iteratively, which is time-consuming and inefficient.

Over recent years, DL-based methods, particularly convo-
lutional neural network (CNN) based DL techniques, have
achieved significant advances in image processing fields, e.g.,
image resolution reconstruction [42], [43], [44], [45], [46], [47],
[48], [49], image classification [50], [51], [52], image denois-
ing [53], image fusion [49], [54], [55], [56], [57], [58], [59],
etc. Therefore, many methods [1], [2], [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69], [70], [71], [72], [73] based on
DL have also been applied to solve the pansharpening problem.
Dong et al. [42] originally introduce a shallow three-layer CNN
(SRCNN) to learn the mapping between LR and HR patches for
single image super-resolution. Based on the effective residual
learning technique, Ledig et al. [43] employ a residual network
to build a deeper network for image SR. Especially, CNNs
have shown promising results not only in single image super-
resolution but also in multispectral (MS) pansharpening. More
recently, more researchers have made attempts to employ CNN
in HS pansharpening. Masi et al. [60] develop a three-layer CNN
architecture for pansharpening, utilizing preinterpolated LR MS
images stacked with PAN images as input. This is the first work
utilizing CNN for MS pansharpening, inspired by the SRCNN.
Besides, Yang et al. [61] propose a deep network (PanNet) for
the pansharpening problem whose main contribution is adding
up-sampled MS images to the network output to propagate the
spectral information and training parameters in the high-pass
filtering domain rather than the image domain. He et al. [1] intro-
duce spectrally predictive structure (HyperPNN) to strengthen
the spectral prediction capability of the CNN for the task of HS
pansharpening. Moreover, HS pansharpening is also handled
as a restricted minimization problem with extra priors learned
by the CNN by Xie et al. [62]. Furthermore, He et al. [2] de-
velop new spectral-fidelity CNN architecture (HSpeNet) for HS
pansharpening to keep the fidelity of the pansharpened image,
focusing on the decomposability of HS details and meanwhile
introducing a spectral-fidelity loss. Recently, some works have
achieved good results by directly using no-reference loss without
downsampling to simulate training data. Xiong et al. [74] first
designed a loss function that does not need the reference fused
image. Based on this, Li et al. [75] combined CNN with trans-
former block to design a CNN+ pyramid transformer network
with no-reference loss.

However, in some of these approaches, the particularity of
remote sensing images, especially HS images, is ignored due to
all features extracted from input images being treated identically,
further restricting the ability to employ relevant information
selectively. Besides, for the characteristics of a wider spectral
range of the HS image than the MS one, most networks are
not designed for the special spectral preservation, which fails to
consider the importance and sensitivity of spectral information
and leads to spectral distortion easily. Besides, for PAN images,
pioneer works often feed them directly into the network together
with HS images or use a fixed high-frequency template for
preprocessing, which will inevitably lose some spatial infor-
mation. Moreover, when it comes to a deep network structure,
researchers often only pay attention to the results after multilayer
convolution and ignore the importance of the shallow feature. In
addition, the features extracted from the deep and shallow layers
in the network are different, and the shallow features usually
contain more texture details.

To tackle the problems mentioned above, we propose a so-
called Hyper-DSNet, containing a deep-shallow fusion (DSF)
structure with multidetail extractor (MDE) and spectral attention
(SA), for the task of HS pansharpening. To summarize, the main
contributions of the work include four aspects listed as follows.

1) For the challenging of spectral preservation in the HS
pansharpening, we appropriately and specially used an SA
module generating different channel weights to distinc-
tively preserve the HS image’s rich and sensitive spectral
information. It delivers the impact of reducing spectral
distortion and improving the network’s spectral fidelity.

2) We give an MDE module that contains several distinct
high-pass filtering templates for extracting different spa-
tial details from the PAN image and injecting them into the
network alongside the PAN image. Abundant and diverse
high-frequency information with other characteristics pro-
motes better use of the spatial information of the PAN
image.

3) After passing a multiscale convolution, extracted features
will go into a specifically designed DSF module, not only
connecting the deep and shallow features but also reducing
network parameters, for better spatial information recov-
ery.

Experimental results on three benchmark HS datasets demon-
strate the superiority of the proposed Hyper-DSNet over recent
state-of-the-art (SOTA) HS pansharpening techniques, as shown
in Fig. 1. What is more, the best evaluation results at full
resolution prove the robustness of our method.

II. RELATED WORKS

In this section, a brief review of several DL-based methods
for HS pansharpening, some works related to the proposed
architecture and our motivation will be presented.

A. CNN-Based HS Pansharpening Framework

Recently, CNNs have been widely used in the field of image
processing and computer vision. They are mainly proposed for
processing regular matrices by continuous sliding window (ker-
nel) convolution. In the training process, each parameter of the
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Fig. 1. First row: schematic diagram of hyperspectral pansharpening on an
example from Washington DC dataset. Second row: visual results of three
compared methods, i.e., HyperPNN (CC/SAM/ERGAS = 0.946/4.42/4.96),
HSpeNet1 (0.955/4.43/4.27) and Hyper-DSNet (0.965/4.07/3.75). Third row:
the corresponding error maps yielded by the compared methods.

convolution kernel is continuously updated and optimized via
forward and backpropagation to minimize the loss function. The
main mathematical formulation for CNN can be summarized as
follows:

Ol = f (Wl ∗Ol−1 + bl) (1)

where ∗ is the convolutional operation, Ol represents the output
feature map on the l th layer, Wl and bl stand for the network
parameters and biases on this layer, respectively, and f (·) means
an activation function.

Consider the case of HS pansharpening, CNN-based frame-
work accepts the observed HS image and the PAN image as
input and finally outputs an HRHS image. The PAN image with
the size L×W is denoted as P0 ∈ RL×W×1, while the LRHS
image with l × w pixels and B spectral bands is indicated as
H0 ∈ Rl×w×B . The expected HRHS output is H ∈ RL×W×B

and the fused output of the CNN-based framework can be written
as Ĥ with the same dimension, i.e.,

Ĥ = M(P,H0; θ) (2)

where M(·; θ) means the mapping from input to output with all
parameters θ to be optimized. In final, the network parameters
of CNN-based HS pansharpening can be generally updated by
minimizing the following �2 loss function

L(θ) = ‖Ĥ−H‖22

= ‖M(P,H0; θ)−H‖22 (3)

where ‖ · ‖2 refers to the �2 norm. Once M(·; θ) is learned, and
the new observed PAN and HS images P0 and H0 are input into
the mapping again, the predicted HRHS image can be obtained.

Compared with the general MS pansharpening problem, HS
pansharpening is faced with greater challenges. One is that the
spectrum range of HS image [191 bands from 400 to 2400 nm
of Hyperspectral Digital Imagery Collection Experiment (HY-
DICE) sensor] is wider than the range of MS image (eight bands
from 400 to 1040 nm of WorldView-3 sensor), causing a larger
spectral gap between the HS image and the PAN image; the
other is that more details in continuous bands with high spectral
resolution need to be reconstructed at the same time. These
challenges make HS pansharpening more prone to problems
such as spectral distortion and have higher requirements on
the accuracy of the algorithm and the ability to predict and
reconstruct the spectrum.

In view of the characteristics of HS images, many correspond-
ing solutions have been proposed. For instance, HyperPNN [1]
adds spectrally predictive layers to strengthen the spectral pre-
diction ability of the network and composes a spectral prediction
subnetwork and a spatial–spectral inference subnetwork. Both
HSpeNet1 and HSpeNet2 [2] assume the decomposability of HS
details and accordingly synthesize those details progressively.
Specifically, HSpeNet1 reconstructs HS details from bottom
level to top level, and HSpeNet2 synthesizes those details in a
manner of band groupwise reconstruction. Besides, FusionNet
[76] focuses attention on traditional CS and MRA frameworks
and directly extracts details by differencing the single PAN
image with each MS band.

B. Image Differential Operator

For the MS pansharpening task, Yang et al. [61] propose a
deep network (called PanNet) that uses up-sampled MS images
to the network and training parameters in the high-pass filtering
domain rather than the image domain. However, they only use
one predefined high-pass template, which may cause the loss
of some detailed information. Based on this idea, we expect to
use more different high-pass templates to extract more types of
high-frequency details for a better fusion process. In this section,
some high-pass image differential operators that we will use are
first introduced.

The first one is the simplest first-order difference operator.
For 2-D images, it contains differences in two directions, i.e.,
x-axis and y-axis, which can be represented by the following
kernels: [−1

+1

]
,
[−1 +1

]
. (4)

Also, we can use the following 2-D kernels to describe the
difference between the two diagonal directions, i.e., Roberts
operator

[−1 0
0 +1

]
,

[
0 −1
+1 0

]
. (5)
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However, this kind of operator is not very convenient in prac-
tice because there is no center pixel; thus, we intend to use the
operator of 3× 3 such as the Prewitt operator. When calculating
the gradient of the center position, unlike the previous 2× 2,
which uses the positive and negative deviations of only one pair
of pixels, 3× 3 expands outward into three pairs to make it more
sensitive to specific directions⎡

⎣−1 −1 −1
0 0 0
+1 +1 +1

⎤
⎦ ,

⎡
⎣−1 0 +1
−1 0 +1
−1 0 +1

⎤
⎦ . (6)

On this basis, the Sobel operator performs a certain weighting
to make the nearest pair of pixels have a higher weight, which
is beneficial to reduce the influence of noise; see the following
operators: ⎡

⎣−1 −2 −1
0 0 0
+1 +2 +1

⎤
⎦ ,

⎡
⎣−1 0 +1
−2 0 +2
−1 0 +1

⎤
⎦ . (7)

In addition, the Laplacian operator is a second-order dif-
ferential operator that often appears in image enhancement.
Compared with the first-order operator, the second-order dif-
ferential has a stronger edge positioning ability and a better
sharpening effect. The Laplacian operator is defined as the result
of performing the gradient operation ∇ on the function g first,
and then the divergence operation ∇ · ∇; see as follows:

Δg = ∇2g = ∇ · ∇g (8)

where g is a second-order differential function and Δ is the
Laplacian operator.

C. Motivations

As mentioned before, the HS pansharpening method must
deal with two key issues, i.e., the substantial spectral coverage
disparity between the HS and PAN images, as well as the
necessity to recover features in numerous continuous narrow
bands simultaneously. Although the methodologies discussed
above presented numerous empirical approaches to realize these
challenges, some constraints have yet to be addressed.

1) The PAN image is an important basis for restoring spatial
details, but it is usually directly used as the input of the
network. Therefore, the high-frequency information in
PAN images cannot be fully utilized. It motivates us to
give multiple high-pass filters for constructing a so-called
MDE module for better detail extraction.

2) Second, few methods take into account the particularity
of the more continuous spectra HS bands, which makes
the spectrum information critical and sensitive. Spectrum
preservation operations should be specially designed, mo-
tivating us to utilize SA for spectral preservation.

3) Third, a large number of spectral bands also brings an
increase in the number of parameters (NoPs), leading to
the difficulty of training. Additionally, low-level feature
information needs to be valued more in the image fusion
task. Therefore, a special module with reduced parameters
can be appropriately designed and embedded or replaced

in other networks, which motivates us to develop a DSF
module with the reduction of channel numbers.

Taking these considerations together, we design our Hyper-
DSNet, which will be introduced in detail in what follows.

III. PROPOSED METHODS

Based on the above analysis and motivation, we will introduce
each part of our proposed Hyper-DSNet in detail in the section,
including the detailed main architecture shown in Fig. 2 and the
corresponding loss function.

In general, our Hyper-DSNet contains three submodules, that
is, MDE module, DSF module, and SA module, which will be
described one by one in the following sections.

A. Multidetail Extractor

In the field of image super-resolution, the reconstruction
quality of high-frequency information (e.g., edges, contours,
and textures) is pretty crucial for the performance. Thus, we
expect to extract and utilize those rich high-frequency details
of the PAN image instead of training with the original image.
We believe that the artificial extraction and intervention process
will bring better efficiency and effects. Furthermore, PanNet [61]
has noticed the importance of features on the high-pass filtering
domain, but only one type of high-pass filter is integrated for
extracting one single level of detail. It inspires us to adopt
a more comprehensive detail extraction method. We believe
that the multilevel high-pass information could favor a better
performance, thus proposing the so-called MDE module.

For the MDE module, PAN image P0 ∈ RL×W×1 first goes
through five high-pass operators to extract multilevel high-
frequency information which will be then concatenated with
PAN image itself to construct the input feature. The five high-
pass operators, i.e., first-order difference operator, Robert op-
erator, Prewitt operator, Sobel operator, and Laplacian operator
have been shown in (4)–(8) in turn, and here we denote them as
αdir, αrobert, αprewitt, αsobel, αlaplacian, respectively; thus, the input
high-pass feature OP ∈ RL×W×7 is as follows:

OP = [αdir−x ∗P, αdir−y ∗P, αrobert ∗P, αprewitt ∗P,

αsobel ∗P, αlaplacian ∗P,P]. (9)

We show the results of using these five high-pass operators
on PAN image in Fig. 3. As we can see that each extracts signifi-
cantly different high-frequency information, some are smoother,
and some are more delicate, which meets our expectations.

B. Deep-Shallow Fusion Module

In this section, we mainly present the structure of detail
extraction which could be divided into two parts, i.e., multiscale
convolution module and DSF module whose goal is to extract
effective and crucial spatial–spectral information. Before this,
the HS image will be first up-sampled to the same size as PAN by
a polynomial kernel [77]. The output of the MDE module and the
up-sampled HS image (LRHSU ∈ RL×W×B) are concatenated
along the spectral dimension as the input of the structure of detail
extraction.
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Fig. 2. Overall architecture of the proposed deep-shallow fusion network (Hyper-DSNet). Under each cube block, the height-width size and the channel number
(H × W, C) is shown.

Fig. 3. Multitemplate operator results in MDE module. Dir-xy_PAN,
Robert_PAN, Prewitt_PAN, Sobel_PAN, and Laplacian_PAN, respectively, re-
fer to the image obtained after applying the corresponding operator on the PAN
image.

The multiscale convolution module, first introduced in MS-
DCNN by Yuan et al. [66], is used here to extract multiscale
information. Three different sizes of convolution kernels are
followed to perform feature extraction in diverse receptive fields.
This process can be formulated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O3 = δ(W3 ∗ [OP ,LRHSU ] + b3)

O5 = δ(W5 ∗ [OP ,LRHSU ] + b5)

O7 = δ(W7 ∗ [OP ,LRHSU ] + b7)

Ob = [O3,O5,O7]

(10)

where Wi and bi, respectively, represent the kernel weights
and biases, Oi is the output of the response convolutional layer,

the subscript i (i = 3, 5, 7) means the size of the convolutional
kernel, Ob is the output of this multiscale convolution module,
and δ(·) standards for an activation function of rectified linear
unit [77]. Here, the channel number of output feature maps at
each layer is set to 16 for the aim of parameters reduction.

After the multiscale convolution module, it is followed by a
DSF module. In general, the shallow convolutions are mainly
used to focus on local region with small receptive field yielding
fine-grained features, which lacks contextual information. In
comparison, the deep layer has larger receptive fields obtaining
abstract features with semantic information. However, it may
be too abstract to utilize in the field of low-level vision task
that focuses on pixel reconstruction instead of understanding
the image content. So the shallow and deep features are both
important in our HS pansharpening task. In previous methods,
the result of deep convolution is often used directly as the final
output, which will result in only paying attention to the deep
information, may lose part of the low-level features. Here, each
shallow and deep convolution result will be concatenated to
maintain those two types of critical information in each step.

First focus on the first layer of convolution, which could be
viewed as a weighting of the three different sizes of convolutions
in the front. Then the following several deep convolutions can
be mathematically represented as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ob1 = δ(W31 ∗Ob + b31)

Ob2 = δ(W32 ∗Ob1 + b32)

= δ(W32 ∗ δ(W31 ∗Ob + b31) + b32)

· · ·
Ob4 = δ(W34 ∗Ob3 + b34)

= δ(W34 ∗ δ(W33 ∗ δ(W32 ∗ δ(W31 ∗Ob + b31)

+b32) + b33) + b34)
(11)



7544 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

where Obi means the ith convolution’s output, and W3i and b3i

represent the weights and bias of the ith 3× 3 convolution in
this part.

As mentioned before, we concatenate each shallow and deep
convolution results in the channel dimension to keep useful key
information in each step:

Oc = [Ob,Ob1,Ob2,Ob3,Ob4] (12)

where Oc represents the output of DSF module.
Furthermore, the low-level spatial information obtained by

shallow convolution needs more attention in the pixelwise vi-
sion task. Shallow and deep convolution kernels with the same
number of features will bring a certain amount of information
redundancy. Thus, more feature maps are set to describe the
low-level information to avoid the redundancy problem. With the
deepening of the convolutional layer, the number of feature maps
decreases from high to low. More clearly, the number of channels
in the DSF module is set to [48, 32, 16, 8, 8] in order as shown
in Fig. 2, which will be further introduced in Section IV-E2.

C. Spectral Attention Module

Compared with other PAN sharpening fusion tasks, the
biggest challenge of HS pansharpening lies in the spectral infor-
mation that is rich and sensitive, which places higher demands on
the spectral fidelity of HS images. For this reason, we argue that
a dedicated module is needed to guarantee spectral information
in super-resolution.

The feature maps extracted from the previous detail extrac-
tion module attach equal importance to each feature channel,
ignoring the different degrees of spectral contribution, which
needs some attention to help call out different channels’ impor-
tance and remove the information redundancy. Among many
attention mechanisms, we give the so-called SA module that
is actually based on the channel attention mechanism proposed
in [78] for HS pansharpening, due to its competitive abilities of
cost-effective property and spectral preservation. Thus, an SA
module is constructed to characterize the relationship among
channels.

Specifically, the LRHSU image is as input of the SA module.
First, a global average pooling layer is adopted to aggregate spa-
tial information more conveniently, which will output a vector
vb ∈ R1×1×B

vb =
1

L×W

L∑
i=1

W∑
j=1

Ib(i, j) (13)

where Ib(i, j) is the value at the position (i, j) in the bth
channel of the LRHSU image, and vb means the bth value of the
output vector. Following this, the global spectral information is
squeezed into a B-length vector. To properly and fully capture
channel-specific dependencies, here, we employ a simple gating
mechanism with a sigmoid activation

s = σ (W2.δ (W1vb)) (14)

where output s ∈ RB , W1 ∈ R
C
r ×C , and W2 ∈ RC×C

r are
the weights of two fully connected convolution layers with the

kernel size of 1× 1 and σ means the sigmoid activation. In order
to reduce the amount of calculation, the number of channels
is first reduced with a ratio r and then expanded back to B
successively through two consecutive layers of convolution:

OSA = Fscale(Oc, s) = [Oc1s1,Oc2s2, . . . ,Ocbsb] . (15)

By applying this SA module, the final output is obtained by
rescaling the detailed extracted output, and skipping connection
to add the initial LRHSU as the residual part. It is believed that
the target ground truth (GT) can be seen as adding more detailed
information on the basis of LRHSU . As a result, employing the
initial LRHSU as a skip connection can preserve its original
spectral information, avoid overfitting, prevent degradation as
the network depth increases, and speed up convergence, allowing
the network to train better and more quickly to achieve the
desired effect, which is respired by He et al. [79] and proved
by other pansharpening methods [61], [77].

D. Loss Function

To depict the difference between the network output and the
GT, we adopt �1 loss function to optimize the proposed network
in the training process. The loss function can be expressed as
follows:

L(θ) = 1

N

N∑
i=1

∥∥OSA + LRHSU − GT
∥∥
1

(16)

where GT is the GT image, N represents the number of training
samples, and ‖ · ‖1 means the �1 norm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section is devoted to experimental evaluation to demon-
strate the effectiveness of the given Hyper-DSNet. The proposed
method will be compared with some recent SOTA HS pansharp-
ening approaches on benchmark datasets obtained by different
sensors.

A. Experimental Setup

This section introduces the details of experimental datasets,
including data simulation, experimental platform, and hyper-
parameter settings. To evaluate the effectiveness of our Hyper-
DSNet for remote sensing pansharpening, a series of experi-
ments are conducted on three simulated HS datasets, i.e., Wash-
ington DC, Pavia Center, and Botswana, and one full-resolution
dataset, i.e., FR1, which is described in detail as follows. The
various features of the dataset are displayed in Table I for
easier comparison. Since the number of bands in each dataset is
different, we retrain different CNNs for all different datasets.

1) Washington DC Mall (WDC) Dataset is gathered by the
HYDICE sensor, which contains a total of 210 bands (191
bands were retained after removing some unusable bands)
ranging from 0.4 to 2.4 μm visible light and near-infrared,
and the data size is 1208× 307. Feature categories in-
clude roofs, streets, gravel roads, grass, trees, water, and
shadows.
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TABLE I
INFORMATION ABOUT THE DATASETS

2) Pavia Center Dataset is acquired by the reflective optics
system imaging sensor (ROSIS) which records data in the
spectral range from 0.4 to 0.9 μm using 115 bands (102
bands are retained after processed), and the data size is
1096× 715.

3) Botswana Dataset is collected by the National Aeronau-
tics and Space Administration Earth Observing-1 (EO-1)
Hyperion satellite in Botswana from 2001 to 2004, which
has a spatial dimension of 1496× 256 and obtained data in
the spectral range from 0.4 to 2.5 μm with 10-nm intervals
using 242 bands (145 bands are remained after removing
noise bands). This dataset consists of observations from 14
identified classes representing the land cover types in sea-
sonal swamps, occasional swamps, and drier woodlands
located in the distal portion of the Delta.

4) FR1 Dataset is distributed for the PRISMA contest, for
pansharpening at the full spatial resolution, which can be
downloaded from the website.1 The images PAN and HS
of FR1 have been obtained by extracting a 12km × 12km
portion (2400× 2400 pixels for PAN and 400× 400× 69
pixels for HS) from the original 30km × 30km PRISMA
acquisition, after accurate coregistration.

According to the Wald’s protocol [80], the original HS images
from three datasets serve as the reference (REF) images, and the
LRHS images are gained by applying a Gaussian blur and then
downsampling the result by selecting one out of every four pixels
in both the horizontal and vertical directions. The simulated PAN
image is obtained by multiplying the reference HS image on the
left of the original HS images, by a suitably chosen spectral re-
sponse vector. Next, we use the down-sampled LRHS image and
the simulated PAN map to obtain the estimated super-resolution
result images through various HS super-resolution methods.
Finally, the estimated HS images will be compared with the
original HS images to obtain quantitative quality measures. The
specific simulation process refers to the MATLAB toolbox2 of
Loncan et al. [12].

For fair comparisons, all DL-based methods are retrained
in Python 3.8.5 with Pytorch 1.9.0 on a Linux system with
NVIDIA GeForce GTX 3080Ti. We set 2000 epochs for our
Hyper-DSNet training with an initial learning rate of 0.0001. We
use Adam [81] optimizer to minimize the �1 loss function (16)
and the weight_decay is set to 1× 10−7. Besides, our network
approach takes around 6 h to train.

1[Online]. Available: https://openremotesensing.net/hyperspectral-
pansharpening-challenge/

2[Online]. Available: http://openremotesensing.net

B. Compared Methods and Quantitative Metrics

For comparison, we select 11 competitive traditional fu-
sion approaches, including SFIM [27], MTF GLP [28],
MTF GLP HP [29], GS [20], GSA [21], PCA [18], GF-
PCA [30], CNMF [34], BayesNaive [32], BayesSparse [31],
and Hysure [33]. The implementation codes of these methods
can be found from the public MALTAB toolbox from Loncan
et al. [12]. In addition, four recent benchmark deep convolutional
networks for HS/MS pansharpening are used for comparisons,
including HyperPNN [1], HSpeNet1, HSpeNet2 [2], and Fusion-
Net [77]. All codes are implemented with Pytorch according to
the network and strictly refer to the reported parameters in the
corresponding papers.

Several quantitative assessments are carried out to evaluate
different HS pansharpening methods with reference images. In
this work, we consider four of the most often used metrics
to assess the quality of the results, including cross-correlation
(CC), spectral angle mapper (SAM), root mean squared error
(RMSE), erreur relative globale adimensionnelle de synthèse
(ERGAS) [12], structural similarity index (SSIM) [82], and
peak signal-to-noise ratio (PSNR) [82]. Wherein CC, SSIM, and
PSNR give the measurement of spatial distortion, characterizing
the geometric distortion by the average CC for each image
band. SAM is a spectral index defined as the angle between the
reference and fused images. As global indices, RMSE and ER-
GAS calculate the �2 norm between the estimated and reference
images, aiming to evaluate the spatial fidelity.

In addition, to evaluate the performance of all involved meth-
ods on full-resolution, the QNR, Dλ, and Ds [83], [84] indexes
are applied. The QNR has an ideal value of 1; instead, Dλ and
Ds have an ideal value of 0.

C. Experimental Results on Reduced-Resolution Datasets

This section tests the performance of all compared approaches
on the three simulated datasets in the simulated way as men-
tioned before.

1) Dataset of Washington DC Mall: WDC dataset has 191
channels and the test data consists of four 128× 128 images
clipped from the original image; the rest is used to train the
network parameters. For the training part, the original PAN and
HS images are divided into 921 small patch pairs of64× 64PAN
patches and 16× 16HS patches, respectively. For validation, we
leave 103 patch pairs from the simulated patches.

For the testing, Table II shows the average quantitative assess-
ment of different methods on the HYDICE WDC dataset. The
best performance is shown in bold and the second is underlined.
As shown in Table II, all DL-based methods show better results

https://openremotesensing.net/hyperspectral-pansharpening-challenge/
https://openremotesensing.net/hyperspectral-pansharpening-challenge/
http://openremotesensing.net
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Fig. 4. Visual comparisons of fusion results obtained by different methods on a reduced-resolution WDC dataset obtained by HYDICE (shown by bands: 20, 40,
and 60).

TABLE II
AVERAGE QUANTITATIVE ON FOUR REDUCED-RESOLUTION WDC EXAMPLES

than traditional techniques and far exceed in the SAM, RMSE,
and ERGAS metrics. Moreover, our method also surpasses the
other four DL-based methods in all indicators, which verifies
the effectiveness of our spectral preservation and the better
extraction of spatial details.

To show a visual comparison of all methods, Fig. 4 shows
the pansharpened outcomes with the pseudocolor images by
selecting three bands from all the 191 image bands. It can be
seen that our Hyper-DSNet method is closer to the GT map,
especially the edges and corners of the building in the enlarged
part. At the same time, the residual map has shown in Fig. 5.
In the magnified region that we specially present, the bright
spots in most traditional methods can be seen clearly, while that
in other DL-based methods are obviously reduced, but there are
still visible remnants. Obviously, our method has more dark blue
and less yellow, which means that our error map is closer to 0.

TABLE III
AVERAGE QUANTITATIVE ON FOUR REDUCED-RESOLUTION PAVIA EXAMPLES

In addition, to perform band-dependent quality evaluations of
the fused HS images on the WDC dataset, the CC and PSNR
curves as functions of the spectral bands for different methods
are presented in Fig. 6. Our results in dark red show better
performance overall.

2) Pavia Center Dataset: Pavia Center Dataset has 102 chan-
nels and the test data consists of two 400× 400 images clipped
from the original image; the rest is used to train the network
parameters. For the training part, the big PAN and REF images
are divided into 1512 small patches of 64× 64with overlapping.
For validation, 168 patch pairs are left from the simulated
patches.

For the testing, Table III lists the average quantitative as-
sessment of different methods on the Pavia datasets. As shown
that our Hyper-DSNet method takes first place under CC, SAM,
RMSE, and ERGAS metrics. For visual inspection, Fig. 7 shows
the HS pansharpened outcomes with the pseudocolor images by
different methods. In the enlarged green part, details such as
houses and roofs are more clearly restored in our Hyper-DSNet
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Fig. 5. Visual comparisons of the corresponding residual maps using the GT image as reference. Please note that here we select the third spectral band for better
observation.

Fig. 6. CC and PSNR curves of the Washington DC dataset as functions of
the spectral bands for different methods.

TABLE IV
AVERAGE QUANTITATIVE ON FOUR REDUCED-RESOLUTION BOTSWANA

EXAMPLES

result. Similarly, the error maps of one chosen channel are
present in Fig. 8, which also confirms the superiority of our
method.

3) Botswana Dataset: Botswana dataset has 102 channels and
the test data consists of four 128× 128 images clipped from the
original image. Similar to the previously mentioned, the original
PAN and HS images are divided into 799 small patches of 64×
64 with overlapping in the training part, while 168 patch pairs
for simulation.

For the testing, Table IV and Figs. 9 and 10, respectively,
display the results of average quantitative evaluation, visual
presentation, and residual analysis. On this different dataset
and sensor, we can still achieve the best results compared to
other methods, further confirming the reliability and popularity
of our proposed method. In Fig. 9, first judging from the overall
color perception, the traditional method has an obvious color
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Fig. 7. Visual comparisons of fusion results obtained by different methods on a reduced-resolution Pavia dataset obtained by ROSIS (shown by bands: 20, 40,
and 60).

Fig. 8. Visual comparisons of the corresponding residual maps using the GT image as reference. Please note that here we select the 98th band for better observation.

Fig. 9. Visual comparisons of fusion results obtained by different methods on a reduced-resolution Botswana dataset obtained by EO-1 (shown by bands: 10, 15,
and 70).
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Fig. 10. Visual comparisons of the corresponding residual maps using the GT image as reference. Please note that here we select the 26th band for better
observation.

difference compared to the GT image. Near the pink ripple, the
red of our method is more vivid and the color contrast is more
obvious, which is closer to GT. At the same time, we have almost
no bright spots in the error map of Fig. 10.

In order to further evaluate the spectral preservation capability
of different HS pansharpening methods, the spectral different
value curves of four random pixels in the previous three datasets
are shown in Fig. 11. Apparently, our Hyper-DSNet provides
lower spectral differences in most bands, which also shows that
our algorithm can better reconstruct the details caused by the
large spectral gap.

D. Experimental Results on Full-Resolution Datasets

We also test the performance of all compared approaches on
the full-resolution dataset FR1. The dataset FR1 has 69 channels
and the test data consists of two images (240× 240 for HS and
60× 60 for PAN) clipped from the original image, while the
rest is trained after the downsampling simulation mentioned
earlier. Similarly, we divided the training part into 734 small
patch pairs of 60× 60 PAN patches and 10× 10 HS patches,
respectively. For validation, we leave 82 patch pairs from the
simulated patches.

The quantitative results in terms of all indicators are reported
in Table V. Furthermore, through the visual experiment of
Fig. 12, the advantages and disadvantages of each strategy can
be represented more naturally. It can be seen that our proposed
Hyper-DSNet can achieve better results at the full resolution,
which also shows the effectiveness and robustness of the pro-
posed method.

E. Ablation Study

1) Multidetail Extractor Module: In this section, we illus-
trate the effectiveness of the proposed MDE module on the
WDC dataset. In our method, five types of high-pass operators
are concatenated with PAN images as the input of the network.
Here we test the effect of each high-pass operator. The specific

TABLE V
AVERAGE QUANTITATIVE ON TWO FULL-RESOLUTION FR1 IMAGES

experimental settings are shown in Table VI and the average
quantitative results are presented in Table VII correspondingly.

Hyper-DSNet represents our proposed method and the suffix
v0 means that only the PAN image is concatenated like most
common methods. From the first six suffixes a1–a6 of Table VI,
we reduced one operator in turn based on the original operators,
i.e., Dir-xy, Robert, Prewitt, Sobel, Laplacian operator, and the
PAN image, to test their effects. Furthermore, we test that only
one operator is selected at a time, while keeping the same
dimension as the original for fairness, or not using a high-pass
module at all, which are defined as suffixes b1–b6.

As can be seen from the results in Table VII, all results with
high-pass templates are much better than those without using a
high-pass operator. Hyper-DSNet-v0, the most primitive method
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Fig. 11. Difference values between the ground-truth spectrum and the HS pansharpening results of four locations. (a) Pixel located at (10, 31) in Fig. 4. (b) Pixel
located at (90, 108) in Fig. 7. (c) Pixel located at (60, 70) in Fig. 9. (d) Pixel located at (110, 60) in Fig. 9.

TABLE VI
EXPERIMENTAL SETTINGS ON MULTIDETAIL EXTRACTOR MODULE

without adding any high-pass template, has the worst ERGAS
and second-worst CC value in the result. While in all methods
that add high-pass operators, Hyper-DSNet has achieved the

best results. It is worth noting that the evaluation indicators will
also slightly decrease in the a6 group without the PAN image.
In addition, the training loss comparison of whether to use a
high-pass module is shown in Fig. 13. The proposed method
has lower loss and converges faster.

2) Deep-Shallow Fusion Module: To evaluate the advantage
of the DSF module, we replace this module with the following
forms in Fig. 14. We set only the shallow layer and only the deep
layer to prove the advantages of the DSF module. Furthermore,
we believe that in the fusion task, more attention should be
paid to shallow texture information rather than deep semantics.
Therefore, we specially set up three experiments about the same
number of feature maps, more shallow layers, and more deep
layers. We summarize the results and the corresponding module
parameters in Table VIII.

It is obvious that the effects of the last three with both deep
and shallow layers are better than the first two, which means that
the deep and shallow layers both have the information we need.
It is also noticed that the SAM and RMSE metrics deteriorate
significantly in the only shallow network. In addition, the effect
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Fig. 12. Visual comparisons of fusion results obtained by different methods on a full-resolution FR1 dataset obtained by PRISMA (shown by bands: 20, 30,
and 40).

TABLE VII
ABLATION EXPERIMENT ON MULTIDETAIL EXTRACTOR MODULE

of more shallow layers is better than more deep layers, which
also shows that the detailed information in the shallow layers
may be more important. Compared with the same number of
feature maps, setting the numbers of channels to decrease with
depth can not only reduce the parameters but also maintain a
fairly better effect.

Fig. 13. Training loss of using multidetail extractor module or not. The
MHPRNet-V0 is defined in detail in Table VI, the most primitive method without
adding any high-pass template.

3) Multiscale Convolution Module and SA Module: Finally,
we discuss the role of the multiscale convolution module and
the SA module. On the basis of the original network, we set up
two sets of experiments by removing the corresponding part. For
example, the multiscale convolution module is replaced with a
general 3× 3 convolution with the same number of feature maps.
The result is shown in Table IX which indicates the improved
effect of adding these two modules, especially the SA module.
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Fig. 14. Comparison experiment diagram on deep-shallow fusion module.

TABLE VIII
ABLATION STUDY RESULTS ON DEEP-SHALLOW FUSION MODULE MODULE

TABLE IX
OTHER EXPERIMENT RESULTS ON MULTISCALE AND SPECTRAL ATTENTION

MODULE

If discarding the SA module, the ERGAS and CC indicators
have dropped significantly. In other words, the SA module is
indispensable for spectral preservation.

F. Parameter Numbers

The NoPs of all the compared DL-based methods and corre-
sponding test time on the Pavia dataset are presented in Table X.
It can be seen that the amount of parameters of Hyper-DSNet has
not increased much than the other compared DL-based methods
but achieved the best results, which proves our method can fully
mine and utilize information.

TABLE X
NUMBER OF PARAMETERS (NOPS) AND TEST TIME OF DL-BASED METHODS

ON PAVIA DATASET

V. CONCLUSION

In this article, we propose a new framework named Hyper-
DSNet for the two challenges in HS pansharpening, i.e., spec-
tral distortion by the wider spectral range between HS and
PAN image, and spatial information loss in continuous spec-
tral bands. Specifically, our Hyper-DSNet mainly consists of
three parts, i.e., MDE module, DSF module, and SA module.
Plenty of experiments on three benchmark datasets and one
full-resolution dataset acquired by multiple sensors demonstrate
that our method has both good quantitative indicators and visual
outcomes, surpassing the previous traditional and SOTA CNN-
based techniques. We emphatically examined the importance of
the MDE module and DSF module, which can also be widely
embedded in other networks. Also, sufficient ablation studies are
given to verify the effectiveness of multiple high-pass operators
in the task of HS pansharpening.
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