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Label Cleaning Multiple Instance Learning:
Refining Coarse Annotations on Single

Whole-Slide Images
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Abstract— Annotating cancerous regions in whole-slide
images (WSIs) of pathology samples plays a critical role
in clinical diagnosis, biomedical research, and machine
learning algorithms development. However, generating
exhaustive and accurate annotations is labor-intensive,
challenging, and costly. Drawing only coarse and approx-
imate annotations is a much easier task, less costly, and it
alleviates pathologists’ workload. In this paper, we study
the problem of refining these approximate annotations
in digital pathology to obtain more accurate ones. Some
previous works have explored obtaining machine learning
models from these inaccurate annotations, but few of them
tackle the refinement problem where the mislabeled regions
should be explicitly identified and corrected, and all of them
require a – often very large – number of training sam-
ples. We present a method, named Label Cleaning Multiple
Instance Learning (LC-MIL), to refine coarse annotations
on a single WSI without the need for external training
data. Patches cropped from a WSI with inaccurate labels
are processed jointly within a multiple instance learning
framework, mitigating their impact on the predictive model
and refining the segmentation. Our experiments on a het-
erogeneous WSI set with breast cancer lymph node metas-
tasis, liver cancer, and colorectal cancer samples show that
LC-MIL significantly refines the coarse annotations, out-
performing state-of-the-art alternatives, even while learning
from a single slide. Moreover, we demonstrate how real
annotations drawn by pathologists can be efficiently refined
and improved by the proposed approach. All these results
demonstrate that LC-MIL is a promising, lightweight tool to
provide fine-grained annotations from coarsely annotated
pathology sets.

Index Terms— Whole-slide image segmentation, multiple
instance learning, coarse annotations, label cleaning.
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I. INTRODUCTION

PATHOLOGY plays a critical role in modern medicine,
and particularly in cancer care. Pathology examination

and diagnosis on glass slides are the gold standard for can-
cer diagnosis and staging. In recent years, with advances
in digital scanning technology, glass slides can be digitized
and stored in digital form into whole-slide images (WSIs).
These WSIs contain complete tissue sections and high-level
morphological details, and are changing the workflow for
pathologists [1], [2].

Diagnosis by pathologists on a WSI typically include the
description of cancer (i.e., presence, type, and grade of cancer),
the estimation of tumor size, and observation of tumor margin
(whether tumor cells appear at the edge of the tissue), which
is important for planning therapy and estimating prognosis.
Further information, such as the detailed localization of can-
cer, is usually not included in the routine pathology report.
However, this local information on cancer is of great interest in
biomedical and pharmaceutical research. The tumor microen-
vironment – the stromal tissue and blood vessels surrounding
the tumor cell clusters – governs the tumor growth, response
to treatment, and patient prognosis [3], [4]. The quantita-
tive analysis of the tissue microenvironment, via downstream
analysis of spatial statistics and other metrics, requires a clear
and accurate definition of the boundaries of the tumor, as in
recent works [5], [6], [7].

On the other hand, the local detection and segmenta-
tion of histopathology images is a significant and rapidly
growing field in computational pathology. Early approaches
mainly focused on extracting the morphological and texture
features using image processing algorithms [8], including
thresholding [9], fuzzy c-means clustering [10], watershed
algorithm [11], active contours [12], among others. With the
advent of artificial intelligence and deep learning, a number of
deep neural network models have achieved encouraging results
in biomedical image segmentation [13], [14].

Whole-slide image segmentation, on the other hand, faces
a unique challenge, since neural network models cannot
be directly applied to the whole Gigapixel resolution WSI.
A patch-based analysis (i.e., training and deploying a model
on numerous small patches that are cropped from the WSI)
is commonly used as an alternative, and supervised deep
learning has been remarkably successful when deployed
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Fig. 1. Example of the refining coarse annotation of breast cancer
metastasis made by pathologists on a WSI of lymph node section, without
requiring any external training data.

this way [15]. However, high quantity (and quality) of
fine-grained annotations are needed, including patch-level or
pixel-level information. The latter is very costly to obtain,
since detailed manual annotation on Gigapixel WSIs is
extremely labor-intensive and time-consuming, and suffers
from inter- and intra-observer variability [16], [17], [18]. For
these reasons, state-of-art WSI sets with detailed annotations
provided by expert pathologists are very limited. The lack of
large datasets with detailed and trustworthy labels is one of
the biggest challenges in the development and deployment of
classical supervised deep learning models in digital pathology
applications.

Given the cost and difficulty of obtaining exhaustive and
accurate annotations, a number of approaches attempt to
address the segmentation problem in imperfect label set-
tings [19]. Weakly-supervised learning aims to automatically
infer patch-level (local) information using only slide-level
(global) labels, but it typically requires thousands of WSIs
as training samples [20], [21], [22]. Semi-supervised learning,
on the other hand, trains models on partially annotated WSI
and makes predictions for the remaining unlabeled regions, yet
the partial annotations must also be conducted by experts [23].
In this paper, we re-think the WSI annotation process from
a more clinically applicable scenario: Drawing coarse anno-
tations on WSIs (e.g., rough boundaries for the cancerous
regions), is much easier than detailed annotations. Such coarse
annotations need only similar effort and time as the slide-level
labeling, and can even be conducted by non-experts. Learning
from those coarse annotations, and then refining them with
computational methods, might be an efficient way to enrich
the labeled pathology data with minimal effort. The resulting
refined annotation can provide a more accurate “draft” for
further detailed annotations by pathologists, thus alleviating
their workload.

Our solution to the coarse annotation refinement problem is
based on a multiple instance learning (MIL) framework that
intrinsically incorporates the fact that the input annotations
are imperfect, models this imperfection as patch-level label
noise, and finally outputs a refined version of annotations
by identifying the mislabeled patches and correcting them,

Fig. 2. Illustration of the “noisy” label problem in coarse annotations of
WSI.

as Fig. 1 illustrates. Our methodology, named Label Cleaning
Multiple Instance Learning (LC-MIL), is validated in a hetero-
geneous set of 120 WSIs from three cancer types, including
breast cancer metastasis in lymph nodes, liver cancer, and
colorectal cancer, in both simulated and real experiments
that demonstrate how the workload of pathologists can be
alleviated. Importantly, and in order to make our method
applicable to scenarios where just a few cases (slides) are
available, our method can be trained and deployed on a single
WSI, without the need for large training sets. Our approach
significantly refines the original coarse annotations even while
learning from a single WSI, and substantially outperforms
state-of-the-art alternatives. To the best of our knowledge, this
is the first time that multiple instance learning is employed to
clean label noise, and ours is the first approach that allows for
refining coarse annotations on single WSIs.

The rest of the paper is organized as follows. In Section II
we provide an overview of related work. In Section III,
we present the proposed methodology, LC-MIL, as well as
other state-of-art baseline methods, in detail. We then pro-
ceed to our single-slide annotation refinement experiments
in Section IV. After that, we provide the implementation
details in Section V, and discuss the sensitivity to parameters
in Section V-A. Lastly, we discuss and summarize both the
implication and limitations of our approach in Section VI and
Section VII.

II. RELATED WORK

In this section, we discuss related work from the areas that
are mostly related to our contribution: label noise handling
and multiple instance learning in medical imaging.

Before we describe the specific techniques and studies,
we first give a brief formulation of the problem to direct
the reader to the appropriate context. The coarse annotations
are considered as a “noisy” label problem. More specifically,
a WSI consists of a number of small patches, each of which
can be assigned a label based on the annotations: patches
within the annotated cancerous regions are assigned positive
labels, and otherwise negative labels are assigned. However,
not all of the labels are correct, given that the annotations are
inaccurate. Comparing the coarse annotations with the ground
truth, we will find some false positives (yellow) and false
negatives (blue), as Fig. 2 illustrates. Naturally, the model
has no access to the ground truth, and aims at learning from,
and modifying, the coarse annotations to retrieve the correct
segmentation. This is the so-called “annotation refinement”
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problem, interpreted as identifying mislabeled samples and
correcting their labels via machine learning approaches. This is
a very challenging problem: the machine learning algorithm
must be able to learn from inaccurate information and over
considerable heterogeneity of tissue morphology and appear-
ance, and do so without an external collection of training
data.

A. Label Noise Handling

We place ourselves in a machine learning scenario, where
we are given a collection of training data – pairs of samples
and their corresponding labels, but part of the training samples
have their labels corrupted. The learning process, predicting
a rule that assigns a label to a given sample, then becomes
significantly more challenging. Label noise handling is an
extensively researched problem in machine learning. A large
family of approaches focus on enhancing the robustness of a
machine system against label noise by designing sophisticated
model architectures [24], [25], [26], choosing loss functions
that are tolerant to label noise [27], [28], [29], and conducting
“label smoothing” [30], [31], [32]. This category of approaches
typically does not evaluate the label accuracy or confidence of
the training set, but tries to alleviate the impact of the corrupted
labels on the performance of the model in a held-out test set.

Some other approaches attempt to evaluate the label accu-
racy based on predicted probabilities [33], [34], [35] or
loss values [36], [37], under the intuition that samples with
less confident predictions or unusually high loss values are
more likely to be mislabeled. However, probability and loss
cannot reveal the prediction confidence correctly in many
poorly-calibrated models [38]. An auxiliary set with clean
labels –if available– is popular in label noise detection,
which is either used as a reference to identify potentially
mislabeled samples [39], [40], or re-weigh the training sam-
ples to mitigate the impact of mislabeled samples on the
system [41], [42], [43].

K-nearest neighbors (k-NN) based analysis [44], on the
other hand, can be used for “editing” corrupted labels without
an auxiliary clean set. The basic idea is to discard samples
that are not consistent with their k nearest neighbors. In a
recent work, k-NN has been deployed within deep learning
frameworks, as the deep k-NN (DkNN) approach of [45],
which searches for neighbors in the feature space of a deep
learning model. This method outperformed the state of the art
for label noise correction, and we will revisit it in further detail
as we describe our baseline in Section III-C.

B. Multiple Instance Learning

Unlike supervised learning settings, where each training
sample comes with an associated label, in multiple instance
learning (MIL), one only has labels associated with groups
of samples, Xi = {xk}ni

k=1, termed bags, but not with the
individual samples xi , called instances. Although individual
labels yi exist for the instances xi , they are unknown dur-
ing training. However, the bag-level label Yi is a function
of the instance-level labels yi . This function was simply

a max pooling operator when MIL was first proposed by
Dietterich et al. [46], denoted as Y = max

i
{yi }.

Over the years, various alternative MIL formulations were
developed. Ilse et al. [47] provide a generalization of MIL
predictors as a composition of individual functions:

PY=1 = g(σ ( f (X))). (1)

Here, f :Rd → H is a transformation function mapping indi-
vidual instances to a feature space or label space; σ :(H)k → H

is a permutation invariant pooling function that aggregates the
k transformed instances within a bag; and g:H → Y finally
maps the aggregated instances to the corresponding bag label
space.

When MIL is applied to medical imaging analysis, one
typically considers an entire WSI as a bag, and regards patches
cropped from the corresponding slide as instances. The bag
label depends on the presence (positive) or absence (negative)
of disease in the entire slide. While often successful in bag
label prediction, these approaches require very large datasets
with thousands of slides [20], [21], [22]. Moreover, the disease
localization, or instance-level predictions, usually suffers from
the lack of supervision and underperforms the fully supervised
counterparts [48], [49]. Moreover, local detection is usually
considered as an additional – sometimes optional – task instead
of the primary goal in MIL studies. Even if a heatmap or
a saliency map is generated to highlight the diagnostically
significant regions, the localization performance is not always
quantitatively validated [20], [21], [50].

Some works integrate other forms of weak annotations into
the MIL framework to boost the local detection performance.
CDWS-MIL, proposed by [51], introduced the percentage
of the cancerous region within each image as an additional
constraint to improve disease localization compared with using
image-level labels only. CAMEL, proposed by [52], first splits
the WSI into latticed patches, and considers each patch as
a bag. A MIL model is then used to generate a pixel-wise
heatmap for each patch. Those weak annotations, although
easier to obtain than pixel-wise annotations, still need substan-
tial effort and domain expertise. Our proposed method, on the
other hand, is able to manage very coarse annotations, which
are much easier to obtain, even without domain expertise.

III. METHODS

In this section, we first formulate the problem at hand and
then proceed to describe our proposed approach, label cleaning
multiple instance learning (LC-MIL). Finally, we describe
other state-of-art methods that we use for comparison, includ-
ing DkNN and Rank Pruning.

A. Problem Formulation

We consider a single WSI with some coarse annotations for
regions of interest (e.g., cancerous regions) as a dataset with
noisy labels. The WSI is latticed to generate N square patches,
denoted as S = {(xi , yi )}N

i=1. Each patch xi ∈ R
d is assigned

a label yi ∈ {0, 1} based on the coarse annotations provided.
To be more specific, a patch is assigned a positive label if
it falls within the positively annotated area (e.g., cancerous
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Fig. 3. WSI patching and patch-level noisy labels assignment.

region), and negative otherwise, as Fig. 3 illustrates. In a prac-
tical setting, there may be some patches at the intersections of
two classes of regions. For those patches, the assigned labels
are decided by the location of their centers.

Importantly, we do not assume that all patches in the
positively annotated area are actually positive: since the coarse
annotations cannot delineate the disease regions precisely,
there must be patches having an incorrect label assigned to
them. Similarly, not all patches in the negative annotated
area are true negatives, implying that there might be “missed
positive regions”. The problem of refining this coarse (and
inaccurate) annotation can then be interpreted as detecting the
mislabeled patches.

B. Label Cleaning MIL (LC-MIL)

Our proposed methodology, Label Cleaning Multiple
Instance Learning (LC-MIL), tackles the noisy label problem
from a MIL framework. Broadly speaking, our approach
consists of a multiple instance learning model that is trained
to classify bags of patches from a single WSI image with
noisy labels. Once this model is trained, it is then employed to
re-classify all patches in the image by constructing singleton
bags. The corresponding predictions are used to correct the
original noisy labels, and in doing so, refine the inaccurate
segmentation. Our approach is general with respect to the
specifics of the multiple instance model, and different specific
methods are possible. In this work, we focus on an implemen-
tation of based on a deep attention mechanism [47], as well
as an alternative based on neural network pooling [53]. Fig. 4
depicts an overview of our LC-MIL algorithm (in its attention-
based implementation), and we now expand on the details of
each component.

1) MIL Dataset Construction: As briefly mentioned above,
in order to give our approach maximal flexibility in terms of
the availability of training data, we situate ourselves in the
case of having a single WSI, which represents all the data
available to the algorithm – we will comment on extensions
to cases with access to larger datasets later.

From a single WSI, we construct our noisy dataset of image
patches S = {(xi , yi )}N

i=1, comprising positive and negative
cases: (1) SP := {(xi , yi ) ∈ S:yi = 1}, which consists of all of
the patches with a positive label; (2) SN := {(xi , yi ) ∈ S:yi =
0}, which consists of all of the patches with a negative label.
In our context, where labels are determined by only coarse
and inaccurate annotations, there are likely false positives
in SP and false negatives in SN. However, we assume that

Fig. 4. Overview of the LC-MIL framework. (a) MIL dataset construc-
tion: patches in WSI are split into two subsets SP and SN based on the
original coarse annotations. (b) An attention based MIL model is trained
on bags Xi = {xi j }nij=�. (c) At inference, each patch is considered as a
singleton bag and receives risk score to generate a predicted heatmap.

the majority of the labels in both subsets are correct. With
this assumption, we construct a positive bag X j by selecting
(uniformly at random) n j instances from SP , and construct
a negative bag analogously with instances from SN . We are
able to create virtually as many bags as desired from one single
WSI, since the sampling is conducted with replacement The
constructed MIL dataset with M bags can be defined as:

SMIL = {(X j = {xi j }n j
i=1,Y j )}M

j=1, (2)

where xi j is the i th instance in X j , and Y j refers to the bag-
level label, given by

Y j =
{

1, if X j ⊂ SP

0, if X j ⊂ SN .
(3)

The number of bags M , and the number of instances within a
bag n j are adjustable parameters, which we gave the detailed
setting and discussed the sensitivity of different choices in
Section V-A.

2) MIL Predictor: We built a deep MIL model to predict the
bag-level score Pj , under the composite function framework
as described in Section II-B and Eq. (1). Our approach is
general in that it admits different forms for the functions g, σ ,
and f , leading to different MIL methods. We focus first on
a predictor similar to the one proposed in [47], composed of
the three functions below:
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1) A feature extractor, parameterized by a deep neural
network fψ , is used to map the instance xi j to a low-
dimensional embedding, denoted as:

hi j = fψ(xi j ). (4)

2) An attention-based MIL pooling operator σ , which
gives each instance a weight wi j and aggregates the
low-dimensional embeddings of all instances using a
weighted average to generate a representation for the
whole bag [47]. Importantly, these weights are learnable
functions of the features, too. A softmax function is used
to re-scale the weights so that they all lie in the range
[0,1], and sum up to 1. More specifically, we have that:

z j = σ({hi j }n j
i=1) =

n j∑
j=1

wi j hi j , (5)

with weights given by

wi j = exp{W tanh (V hi j )}∑n j
k=1 exp{W tanh (V hik)}

. (6)

Here, both W and V are learnable parameters.
3) A linear classifier g predicts the bag label based on the

computed representation, zi . The predicted score, Pi ,
is finally obtained by the appropriate logistic function,
defined as:

Pj = g(z j ) = 1

1 + e−〈g,z j 〉 , (7)

where g is a learnable vector.
Alternatively, and for the purpose of understanding the

implications of the choice in the MIL predictor, we also
consider a second implementation of LC-MIL by using another
MIL model called mi-Net [53], whose formulation can be
formally expressed as the follows. Given a bag of instances,
X j = {xi j }n j

i=1, the bag-level likelihood Pj is given by:

Pj = 1

n j

n j∑
i=1

f (xi j ), (8)

where f (xi j ) is an instance-level classifier parameterized by a
deep neural network. To differentiate these two instantiations
of our approach, we name them as LC-MIL-atten and LC-MIL-
miNet, respectively.

Unlike [47], who employ a cross-entropy loss, we use the
focal loss [54] to train our MIL predictors in order to promote
better calibration of the predicted probabilities. This loss is
defined as:
L = −(Y j (1 − Pj )

γ log Pj + (1 − Y j )P
γ
j log (1 − Pj )). (9)

We set the parameter γ as suggested by [54]. That is γ = 5
for P(Y j = 1) ∈ [0, 0.2), and γ = 3 for P(Y j = 1) ∈ [0.2, 1].

3) Inference: There is typically a “gap” between bag-level
and instance-level prediction in MIL approaches, where the
instance-level score is not directly predicted by the model.
Although the attention pooling operator provides a way to
locate key instances, those weights cannot be interpreted
as instance-level scores directly. Here, we propose to use
“singleton bags” as a simple solution, enabling us to exploit

the (calibrated) scores provided by the classification model: for
bags consisting of only one instance, the bag-level prediction
is equal to the instance-level prediction. In this way, during the
inference phase, we revisit the noisy dataset S = {(xi , yi )}N

i=1
using the trained MIL model. Instead of randomly choosing a
subset of instances to pack a bag, as done during training,
every single instance xi is now considered as a “single-
instance bag”. Since there is only one instance in a bag, the
attention-based pooling in the MIL framework has no impact
during inference—in other words, the attention weights are
always set to 1 for any instance—and the predicted score for
each instance can be denoted as:

p̂i = 1

1 + e−〈g, fψ2 (xi )〉 . (10)

A predicted heatmap is then generated based on these likeli-
hoods, where the value of each pixel refers to the risk score
pi ∈ [0, 1] of the corresponding patch in the WSI.

In addition to the central machine learning component of our
method, detailed above, our experiments involve other imple-
mentation details, which we detail in Section V. All software
implementations of our methods are publicly available.1

C. Comparison With Other Methods

It should be noted that, to the best of our knowledge, the
problem of learning a segmentation algorithm for WSI data
from a single slide with inaccurate annotations has never been
studied before. As a result, there are no available methods
that can be deployed in an off-the-shelf manner. Thus, to pro-
vide some methods for comparison, we adapt state-of-the-art
algorithms to our setting (where no auxiliary clean dataset is
available).

1) Deep k-Nearest Neighbors (DkNN) [45]: Deep k-nearest
neighbors detects label noise by using the assumption that
instances within the same class should cluster together in fea-
ture space. A feature extractor parameterized by a pre-trained
deep neural network is used to map instances from the input
to the feature space. Then, instances having the same labels as
their neighbors’ are “trusted”, while those having inconsistent
labels with neighbors are more likely to be mislabeled. These
potentially mislabeled instances are then relabeled via majority
voting, which is conducted using a standard k-NN classifier.

2) Rank Pruning [55]: Rank Pruning identifies label noise
using the predicted probabilities in a two-step process, where
the instances with low probabilities are pruned away for
the second round of training. To be more specific, a binary
classifier is first fit on the noisy-labeled instances in a cross-
validation manner. Each instance is then given a prelimi-
nary probability score, which is considered to reflect the
prediction confidence. Certain instances are then considered
as un-reliable, including those obtaining very high probability
scores while their original (noisy) labels were negative, and
conversely for the positive ones. After pruning such un-trusted
instances, the classifier is finally re-trained on the remaining
ones, and a new probability score for each instance is produced
by this updated classifier trained only on trusted samples.

1https://github.com/Sulam-Group/MIL-pathology
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We also list the two implementations of LC-MIL that
are used in the experiments for clarity. As we described
in Section III-B, these two implementations share all the
components of our LC-MIL framework, except the choice of
the MIL predictor.

1) LC-MIL-atten uses the attention-based MIL [47] as
the MIL predictor, which aggregates the embeddings of
instances using an attention mechanism.

2) LC-MIL-miNet uses an alternative MIL formulation
called mi-Net [53], which aggregates results of the
instance-level classifiers using a mean-pooling operator.

IV. EXPERIMENTS

In this section, we first describe our dataset and then show
two coarse annotation refinement scenarios in simulated and
real-world settings, separately.

A. Dataset

We evaluated the coarse annotation refinement performance
on three publicly available histopathology datasets. These
datasets were chosen because they include different tissues
and degrees of morphological heterogeneity, but also because
of the availability of expert annotations that will be regarded
as ground truth for the quantitative evaluation of our method.

1) CAMELYON16 [56]: contains a total of 399 hema-
toxylin and eosin (H&E) stained WSIs of lymph
node sections from breast cancer patients. Detailed
hand-drawn contours for metastases are provided by
expert pathologists.

2) PAIP2019 [57]: contains a total of 100 H&E stained
WSIs of liver cancer resection samples. The boundary
of viable tumor nests was annotated precisely by expert
pathologists. The viable tumor nests annotations are
available for 60 WSIs.

3) PAIP20202: contains a total of 118 H&E stained WSIs
of colorectal cancer resection samples. The contours of
the whole tumor area, which is defined as boundary
enclosing dispersed viable tumor cell nests, necrosis, and
peri- and intratumoral stromal tissues, are provided by
expert pathologists. The whole tumor annotations are
available for 47 WSIs.

The experimental design had the goal of validating the
segmentation refinement capability of our method on every
single slide independently, and thus slides with almost all
regions of a single class (cancer or normal) were excluded
to ensure that our model had sufficient positive and negative
samples. We set an upper bound of 90% and a lower bound
of 10% for the ratio of lesion area as the data inclusion
criteria. Slides marked with “not exhaustively annotated” were
also excluded. A total of 120 slides (CAMELYON16: 24;
PAIP2019: 54; PAIP2020: 42) were included, as shown in
Fig. 5.

2De-identified pathology images and annotations used in this research were
prepared and provided by the Seoul National University Hospital by a grant of
the Korea Health Technology R&D Project through the Korea Health Industry
Development Institute (KHIDI), funded by the Ministry of Health & Welfare,
Republic of Korea (grant number: HI18C0316).

Fig. 5. Data inclusion diagram. A total of 120 slides are included.
From these, 24 are lymph node sections from breast cancer patients
(CAMELYON16), 54 are liver cancer resection samples (PAIP2019), and
the remaining 42 are colorectal cancer resection samples (PAIP2020).

Fig. 6. Generation of synthetic coarse annotations S-I: Coarse
annotations generated by randomly (and uniformly) flipping patches’
labels; S-II: Coarse annotations generated by omitting small lesions.
ρ0 represents the fraction of mislabeled instances in true negative
instances; and ρ1 denotes the fraction of mislabeled instances in true
positive instances.

B. Synthetic Coarse Annotations

To fully evaluate the methods above, and before presenting
our results in a real scenario with expert pathologists, we first
study a synthetic setting where the experimental conditions
(amounts of label corruptions, types of inaccurate annotations)
can be easily varied and controlled. We generated coarse
annotations automatically via two custom procedures, detailed
in the subsections that follow. For each WSI, we considered
the annotations provided by expert pathologists as the ground
truth.

1) S-I: Uniformly Flipping Patches: A WSI with ground truth
annotations provides a set of patches with correct labels.
To generate simulated coarse annotations, we uniformly flip
positive samples with noise rate ρ1 (fraction of flipped positive
samples) and negative samples with noise rate ρ0 (fraction
of flipped negative samples), allowing us to evaluate the
performance of the different algorithms under a wide range
of False Positives and False Negative rates. For each WSI,
we generate simulated coarse annotations in this way, where
ρ1 and ρ0 are sampled uniformly in the interval (0, 0.5).
Fig. 6 depicts one example of these coarse annotations, and
the distribution of ρ0 and ρ1 on the whole dataset.

2) S-II: Omitting Small Lesions: To better simulate a
clinically-relevant context, we also generate noisy annotations
that are similar to those provided by human annotators (note
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Fig. 7. Examples of synthetic coarse annotations and refinement. (a-c) S-I: synthetic coarse annotations generated by uniformly flipping
patches; (d-f): S-II: synthetic coarse annotations generated by omitting small lesions. Among those examples, (a) and (d) are from CAMELYON16,
(b) and (e) are from PAIP2019, (c) and (f) are from PAIP2020. From left to right, six versions (coarse annotations (1st column, heatmap/lime lines);
predicted contours using DkNN (2nd column, yellow lines); predicted contours using Rank Pruning (3rd column, yellow lines); predicted contours
using LC-MIL-miNet (4th column, yellow lines)); predicted contours using LC-MIL-atten (5th column, yellow lines)); ground truth (6th column, red
lines)) of cancerous region contours are shown.

that real expert annotations will also be addressed shortly).
To this end, we create coarse annotations by the following
three steps: (1) Retaining only the largest cancerous region
and omitting all the others; (2) Performing the morphological
operation of dilation to the remaining (largest) cancerous
region; (3) Taking the convex hull for the dilated lesion. As a
particular case, and since almost all of the WSIs in PAIP2020
contain only one cancerous region, if there exists only one
lesion this is divided in half. We also present one example
of these coarse annotations and noise rate distribution on the
whole dataset in Fig. 6.

These two procedures described above had the purpose of
simulating both false positives as well as false negatives in the
initial inaccurate annotation. The proposed method (LC-MIL)
and all other competing methods were applied to each WSI
independently to refine the coarse annotations. Fig. 7 presents
a few examples of the refinement performance, and the reader
can find more examples in Fig. 13.

In order to quantitatively evaluate how inaccurate the coarse
annotations are from the true precise annotations, as well
as the improvement obtained after applying our refinement
method, we calculate precision (PPV), recall (TPR), and F1
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TABLE I
SUMMARY OF REFINEMENT ON SYNTHETIC COARSE ANNOTATIONS

scores for annotations before and after refinement. The results
are summarized in Table I. Note that all the metrics were
calculated per slide, and the average and standard deviation in
each subset are reported. The reader can find other evaluation
metrics, including specificity (TNR), negative predictive value
(NPV), and intersection over Union (IoU) in Table IV and
Table V. To explore how different methods perform under
different noise conditions, we sort the coarse annotations
according to their F1 scores, and then plot F1 scores of refined
annotations in Fig. 15.

a) Performance comparison: The proposed method,
LC-MIL, significantly improves disease localization of coarse
annotations and corrects incorrect labels, and in general
outperforms the competing methods based on the F1 scores.
DkNN typically achieves lower metrics than Rank Pruning
and LC-MIL, and only brings slight improvements for
the original inaccurate annotations, which illustrates the
difficulty of the learning problem under consideration. Rank
Pruning generally shows stronger improvement capacity
compared with DkNN, while still slightly under-performing
the proposed method. Moreover, LC-MIL is especially useful
in detecting missed lesions. If we focus on the values of
PPV and TPR in Table I, we will find that all the methods
can efficiently improve PPV (i.e., making tumor boundaries
more precise), but LC-MIL shows obvious advantages in
improving TPR (i.e., detecting missed lesions). On the other
hand, Rank Pruning generally performs best in improving
PPV, and generates fewer false positives.

b) Run-time comparison: All methods are implemented in
Pytorch and trained on a single NVIDIA GTX1080Ti GPU,
and all methods make predictions on the same number of
patches for each WSI. In general, LC-MIL is the fastest
method. DkNN and Rank Pruning are slower: the former
which needs to conduct a k-NN search on an extremely large
data matrix, whereas the latter necessitates repeated training
in a cross-validation manner. Note that the run-time merely
depends on the number of patches of each WSI, and is not
correlated with the amount of noise in the coarse annotations.
We randomly select 5 slides from each subset, and run each
method in exactly the same setting in order to report the per-
slide run-time comparison summarized in Table II.

TABLE II
RUN-TIME COMPARISON (MIN)

C. Real-World Experiment: Improving Pathologists’
Annotations

To evaluate the proposed method in a real-world scenario,
we collaborate with two expert (senior) pathology residents
from Johns Hopkins Medicine. Since the datasets we employ
already have ground truth annotations provided by pathol-
ogists, we explore whether our proposed formulation can
be used to improve the pathologists’ workflow by refining
approximate segmentations. In particular, pathologists were
asked to provide segmentations of the tumor regions in each of
the 120 WSIs, but to do so in a time-constrained manner, with
30 seconds per slide. We regard these as the coarse annotations
to refine.

The proposed LC-MIL approach, as well as other competing
methods, were applied in order to refine these quick and coarse
annotations. Note that the refinement was still conducted on
each slide and each pathologist’s annotations independently.
Fig. 8 presents some obtained examples, and the overall refine-
ment results are summarized in Table III. The reader can also
find more evaluation metrics in Table VI and more examples in
Fig. 14. We also show the distributions of coarse annotations
drawn by pathologists in a time-constrained manner, as well
as the refinement performance in different noise conditions,
as Fig. 16 shows.

As Table III indicates, all methods improve the coarse
annotations to some extent on all three datasets. LC-MIL
achieves the best overall performance, obtaining the second-
best F1 only on PAIP2020. Interestingly, the best method for
refining coarse annotations on colorectal samples (PAIP2020)
is DkNN, which achieved the lowest F1 score in the synthetic
datasets. We believe that this is mainly caused by the het-
erogeneity and complexity of colon histology: Colon tissue
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TABLE III
SUMMARY OF REFINEMENT ON HAND-DRAWN COARSE ANNOTATIONS

Fig. 8. Examples of hand-drawn coarse annotations and refinement. Among those examples, (a) and (b) are from CAMELYON16, (c) and (d)
are from PAIP2019, (e) and (f) are from PAIP2020. From left to right, six versions (coarse annotations (1st column, lime lines); predicted contours
using DkNN (2nd column, yellow lines); predicted contours using Rank Pruning (3rd column, yellow lines); predicted contours using LC-MIL-miNet
(4th column, yellow lines)); predicted contours using LC-MIL-atten (5th column, yellow lines)); ground truth (6th column, red lines)) of cancerous
regions contours are shown.

samples typically contain loose connective tissue, smooth
muscle, and epithelial tissue, where cancer begins develop-
ing. The texture difference between benign and malignant

epithelial tissue is much more subtle than the dissimilarity
across different tissue types. The LC-MIL model seems to
be more easily misled to discriminate epithelial tissues from
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Fig. 9. Examples of tissue region identification. One example of
each subset is shown. The first rows shows thumbnails of WSIs, and the
second row shows the corresponding tissue masks.

any other regions, resulting in some non-cancerous epithelial
tissue being detected as (false) positive. On the other hand,
when pathologists annotate colorectal cancer, they make use
of both local (e.g., texture) and global (e.g., location, shape)
information, and thus rarely misclassify normal epithelial
tissues. It is worth noting that pathologists’ annotations are
sufficiently good on those samples, rarely missing lesions (i.e.
they have high TPR), and the only imperfection resides on
rough boundaries. DkNN seems to be particularly suitable for
this condition, as it might be the most conservative among
all studied methods—keeping the overall segmentation while
making only local improvements on boundaries—and explain-
ing the difference in observed performance. More broadly,
handling tissue samples with confounding morphology can
be a challenging problem, and we expand this discussion in
Section VI.

V. IMPLEMENTATION DETAILS AND

PARAMETER SENSITIVITY

In addition to the central machine learning component of
our method, detailed above in Section III, these experiments
involve other implementation details common in image analy-
sis pipelines, which we detail next.

Tissue Region Identification: For each digitized slide, our
pipeline begins with the automatic detection of tissue regions
to exclude irrelevant (e.g. blank) sections. Gigapixel WSIs
are first loaded into memory at a down-sampled resolution
(e.g., 256× downscale), which we use for the detection of
empty regions. The detection methods vary slightly for dif-
ferent data sources. For CAMELYON16, the downsampled
thumbnail is converted from RGB to the HSV color space.
Otsu’s algorithm [58] is applied to the H and S channels
independently and then two masks are combined (by taking
their intersection) to generate the final binary mask. For
PAIP2019 and PAIP2020, the tissue masks are generated by
applying the RGB thresholds (235, 210, 235) on each image,
as suggested by the respective data provider. We present some
examples of the tissue masks in Fig. 9.

WSI Patching: The size of each patch is set to 256 ×
256 (pixels). Technically, every pixel can be the center of

a unique patch, resulting in millions of patches that highly
overlap with each other. In this way, the predicted heatmaps,
or lesion maps, have the same size and resolution as the
original WSIs. However, such an approach is extremely
computationally expensive and time-consuming, turning it
prohibitive. In our experiments, we extracted patches with
no overlap in WSIs scanned at ×40 magnification (CAME-
LYON16 and PAIP2020). For slides scanned at ×20 magni-
fication (PAIP2019), cropped patches have 75% overlap with
neighboring patches. The size and overlap of cropped patches
naturally impact the resolution of the predicted heatmaps. For
CAMELYON16 and PAIP2020, the predicted heatmaps are
256× downscaled from the original WSI; for PAIP2019, the
predicted heatmaps are 128× downscaled from the original
resolution. Our overall approach is not limited to these choices,
and could be applicable to other settings too.

Neural Networks Architecture: The feature extractors used
in LC-MIL ( fψ ) are built based on the 16-layer VGGNet
architecture [59]. The last FCN layer is removed to generate
fψ . Since the training data is limited (one WSI), the VGGNet
used has been pre-trained on the ImageNet dataset [60]. When
they are further fine-tuned on the histopathology images, the
parameters in the convolutional layers are kept fixed.

Learning Hyper-Parameters The MIL model used in
LC-MIL is trained on 1,000 MIL bags, consisting of 500 pos-
itive and 500 negative bags. Adam optimizer [61] is used
with an initial learning rate of 5 × 10−5, and the learning
rate decays 50% every 100 bags. For CAMELYON16 and
PAIP2019, each MIL bag contains 10 instances; for PAIP2020,
each bag contains 3 instances. We discuss the sensitivity to the
choice of number of bags and bag size below.

Post-Processing To obtain a fair comparison between the
annotations before and after refinement, we conduct some
simple post-processing on the heatmaps generated by either
DkNN (binary map), Rank Pruning (scalar map), or LC-MIL
(scalar map). The binary heatmap predicted by DkNN is
post-processed by simple morphology operations: both small
holes (smaller than 100 pixels) and small objects (smaller than
100 pixels) are removed. The scalar heatmap predicted by
Rank Pruning and LC-MIL is first converted to a binary map
using thresholding. The threshold v0 is decided by applying
Otsu’s algorithm [58] to the predicted scores of instances
that are originally (coarsely) annotated positive, denoted as
v0 = OTSU({pi |xi ∈ Sp}). Finally, the same morphology
operations conducted for DkNN are applied to these binary
maps.

A. Sensitivity to Parameters

1) Using Multiple Slides: A natural extension of the proposed
method is to incorporate multiple slides for training when a
larger dataset is available. This can be implemented by slightly
modifying the LC-MIL framework described in Section III-
B. To be more specific, MIL bags can be constructed from
every single slide in exactly the same way, as described
in Eq. 2. After that, these MIL bags from different slides
can be combined to form a larger MIL dataset, denoted as
S′

MIL = {S(0MIL), . . . , S(k)MIL}, where k is the number of slides.
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Fig. 10. Prediction results using multiple slides for training.

The MIL model is then trained on this larger MIL dataset
S′

MIL. At inference stage, the trained MIL model is used to
predict tumor segmentation on held-out slides.
We empirically tested this new implementation and explored
how the number of slides affects the prediction performance.
The detailed setting is described as follows. We randomly split
the 54 WSIs in PAIP2019 into a training set (49 slides), and a
held-out validation set (5 slides). The MIL model is trained on
k slides (with coarse annotations) that are randomly selected
from the training set, and tested on the held-out validation set.
We set k = 1, 2, 4, 8 to explore different conditions. At each
k, the training-validation process is repeated 5. We plot the
F1 scores of the prediction results on the held-out validation
set in Fig. 10. As can be seen, as k increases the obtained F1
scores of the predicted annotations increase, and their variance
decreases. This experiment demonstrates how the proposed
LC-MIL framework could be adjusted in a multi-slides setting
and make predictions on held-out sets containing slides with
no annotations. Naturally, this experiment also demonstrates
that a larger training set leads to better and more stable
predictions.

2) Choice of Bag Size and Bag Numbers: As presented
in Eq. 2, there are two adjustable hyper-parameters in the
construction of MIL sets: the number of instances within a
bag (i.e. bag size), denoted as n j , and the number of bags,
denoted as M . Here we present the detailed settings for
those parameters, and discuss the sensitivity to their respective
choices. Bag size n j : The bag size is affected by the amount
of label noise as well as the complexity of the task (in terms
of the heterogeneity of the histopathology images), and both
aspects should be considered in determining an optimal bag
size. We first conduct an experiment to discuss the choice
of bag size in different noise conditions. We randomly select
4 slides, and generate three versions of coarse annotations for
each of them. To explicitly control the noise rates, those coarse
annotations are generated by uniformly flipping patches, as we

Fig. 11. Prediction results using various bag size.

described in Section IV-B.1. The noise rates for these three
versions of coarse annotations are: (1) ρ0 = ρ1 = 10%; (2)
ρ0 = ρ1 = 20%; (3) ρ0 = ρ1 = 40%. For each slide with
a specific version of coarse annotations, we applied LC-MIL-
atten to refine the annotations, and the mean F1 scores of
refined annotations are summarized in Fig.11. The presented
results suggest that a bag size around 10 can be considered
an appropriate setting in general. When noise rate is low
(e.g., ρ0 = ρ1 = 10%), a smaller bag size achieves the best
results. This is consistent with intuition—in the extreme case
where coarse annotations are exactly the ground truth (i.e.
no label noise exists), a bag size of 1 should be the best
choice. Naturally, this case reduces the MIL classifier to a
standard instance-level binary classifier. On the other hand,
we do not suggest a very large bag size (e.g., n j > 50)
in all circumstances. Although a large bag size guarantees
that the majority of instances within a MIL bag are correctly
labeled, it also brings substantial ambiguity to instance-level
prediction, and might decrease the F1 scores of patch-wise
classification.

Furthermore, we recommend using a smaller bag size for
tissues with compounded morphology, such as colorectal tis-
sues. In the colorectal slides, normal epithelial tissue shows
similar textures to cancerous tissues, while other compo-
nents (fat tissue, smooth muscle) have significantly different
textures, simply because they are different types of tissues.
When humans identify tumors in colorectal samples, both
local texture and global information are taken into account.
On the other hand, LC-MIL can purely utilize local texture
information, and tend to misclassify normal epithelial tissues
as tumor, especially when the bag size is large. Utilizing a
smaller bag size in this case leads to a more conservative
refinement system, and thus decreases false negatives.

In this work, we used n j = 10 for slides in CAMELYON16
(lymph node metastasis of breast cancer) and PAIP2019 (liver
cancer), and n j = 3 for slides in PAIP2020 (colorectal cancer)
considering its complex and heterogeneous morphology. Note
however that these parameters were not optimized per case.
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TABLE IV
SUMMARY OF REFINEMENT ON S-I: UNIFORMLY FLIP PATCHES

TABLE V
SUMMARY OF REFINEMENT ON S-II: OMIT SMALL LESIONS

Further improvements are to be expected if these parameters
are adjusted based on the label noise conditions and specific
histology in the WSI. We leave this as a future direction of
the proposed method.

a) Bag number M: The number of bags represents the
number of training samples provided to the multiple instance
learner. Consequently, a minimal number of M is expected for
the algorithm to achieve a reasonable performance. We will
now demonstrate that this number is relatively small, so that
in all cases the models have sufficient training data. To explore
the effect of bag number M , we use a constant bag size of 10,
and gradually increase M . We used the same slides and coarse
annotations as those used in the discussion of bag size n j . The
F1 scores of refined annotations are summarized in Fig. 12,
demonstrating that 400 bags suffice to obtain reasonable
results in the single-slide refinement setting. In this work,
we set M = 1000 for every single slide in all experiments.

VI. DISCUSSION

The main hypothesis studied in this work is that coarse
annotations on whole-slide images can be refined automati-
cally even from very limited data, alleviating the workload
of expert pathologists. This problem had remained unstudied
until now due to the technical challenges that often make deep
learning models require very large training sets.

To test our hypothesis, we developed the Label Clean-
ing Multiple Instance Learning (LC-MIL) method to refine

Fig. 12. Prediction results using various number of bags.

the coarse annotations. Our experiments on a heterogeneous
dataset with 120 WSIs across three different types of cancers
show that LC-MIL can be used to generate a significantly bet-
ter version of disease segmentation, even while learning from
a single WSI with very coarse annotations. When compared to
other baseline alternatives specifically adapted to this setting
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TABLE VI
SUMMARY OF REFINEMENT ON HAND-DRAWN ANNOTATIONS

Fig. 13. Supplementary examples of simulated coarse annotations and refinement. (a-c) S-I: synthetic coarse annotations generated by
uniformly flipping patches; (d-f): S-II: synthetic coarse annotations generated by omitting small lesions. Among those examples, (a) and (d) are
from CAMELYON16, (b) and (e) are from PAIP2019, (c) and (f) are from PAIP2020. From left to right, six versions (coarse annotations (1st column,
lime lines); predicted contours using DkNN (2nd column, yellow lines); predicted contours using Rank Pruning (3rd column, yellow lines); predicted
contours using LC-MIL-miNet (4th column, yellow lines)); predicted contours using LC-MIL-atten (5th column, yellow lines)); ground truth (6th column,
red lines)) of cancerous regions contours are shown.

(since again, this problem had not been studied before), our
proposed algorithm generally outperforms competing methods
across all cases considered.

Our methodology has implications in both engineering
and clinical domains. From a machine learning perspective,
LC-MIL demonstrates the potential of the MIL framework to
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Fig. 14. Supplementary examples of hand-drawn coarse annotations and refinement. Among those examples, (a) and (b) are from
CAMELYON16, (c) and (d) are from PAIP2019, (e) and (f) are from PAIP2020. From left to right, six versions (coarse annotations (1st column,
lime lines); predicted contours using DkNN (2nd column, yellow lines); predicted contours using Rank Pruning (3rd column, yellow lines); predicted
contours using LC-MIL-miNet (4th column, yellow lines)); predicted contours using LC-MIL-atten (5th column, yellow lines)); ground truth (6th column,
red lines)) of cancerous regions contours are shown.

be used in a label cleaning context. Our setting can be con-
sidered as a significant complement to existing label cleaning
methods, without requiring the need for an auxiliary clean set
of samples. From a clinical perspective, the proposed method-
ology could be used to alleviate pathologists’ workload in
annotation tasks. LC-MIL allows pathologists to draw coarse
annotations quickly and obtain a refined version from it. On the
other hand, our results show that the refinement produced by
LC-MIL is especially significant when the coarse annotations

are very inaccurate, which implies that the proposed methodol-
ogy could be useful for helping very inexperienced annotators.
Importantly, our approach is particularly useful for increasing
TPR, therefore detecting tumor areas that might have been
missed by an inexperienced, or distracted, annotator.

A significant advantage of the LC-MIL is its ability to work
in extreme data-scarcity scenarios, as it can be deployed on a
single WSI. We have chosen to study this setting to showcase
the flexibility of our approach. However, this also constrains
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Fig. 15. Refinement performance under different noise conditions (synthetic annotations). F1 scores of coarse annotations (red), refined
annotations by DkNN (blue), Rank Pruning (green), LC-MIL-miNet (purple), and LC-MIL-atten (organge), with slides sorted by F1 scores of their
coarse annotations. The moving average (solid lines), where window size k = 15, and the 68% confidence interval for k observations (shaded areas)
are also shown.

Fig. 16. Refinement performance under different noise conditions (hand-drawn annotations). F1 scores of coarse annotations and refined
annotations (using different methods), with slides are sorted by F1 scores of their coarse annotations. The moving average (solid lines), where
window size k = 15, and the 68% confidence interval for k observations (shaded areas) are also shown.

the minimal and maximal ratio of cancerous regions if the
refinement is conducted per slide, since a minimal amount of

both negative and positive samples within one slide are needed
for the learning algorithm. This limitation could be addressed
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by moving beyond the single WSI case and aggregating
patches from multiple slides during the learning phase, if such
data is available. Moving from this single-slide to multiple-
slides settings is a natural extension of our methodology, as we
demonstrated in Section V-A.1.

Another limitation of LC-MIL, also shared by other binary
classifiers, is that the model can be confused by irrelevant
information when the histology structure is complex and het-
erogeneous. An example of this is represented by the difficulty
in discriminating epithelial tissue from other types of tissues
(loose connective tissue, smooth muscle), instead of focusing
on learning the difference between benign and malignant
tissue. On the other hand, this may not be a challenging task
for a human (experienced) annotator. This could be addressed
by extending the current version of LC-MIL to a multi-class
setting. Moreover, pathologists usually make use of both local
texture information and global information (e.g., shape, loca-
tion) to make decisions, while our proposed approach, as well
as other patch-based methods, merely depend on the local
texture and fail to incorporate global information. Efficiently
incorporating this global context can be a challenging and
significant problem, which we also leave as future work.

An important open question remains: can detailed and
labor-intensive annotations be replaced by simple and quick
coarse annotations, with the help of our methodology? In
our real-world experiment, where expert pathologists made
quick annotations that were later refined by our LC-MIL
algorithm, about 0.85 F1 scores were obtained (from initial
values of about 0.73, an improvement of 16%), having taken
only 30 seconds for each slide. Moreover, it remains unclear
what the inter- and intra-reader variability of these annotations
are. Judging by other studies in different contexts [17], [18],
it is natural to assume that an F1 score of 1 is unrealistic
across readers, and that F1 scores in the range of 0.9-1 might
suffice. Further and larger scale studies should be designed to
thoroughly evaluate this possibility.

VII. CONCLUSION

Altogether, in this paper we developed LC-MIL, a label
cleaning method under a multiple instance learning frame-
work, to automatically refine coarse annotations on a single
WSI. The proposed methodology demonstrates the potential of
the MIL framework in a label cleaning context, and provides a
new way of deploying MIL models so that they can be trained
on even a single slide. LC-MIL holds promise to relieve the
workload of pathologists, as well as in helping inexperienced
annotators with challenging annotation tasks.

APPENDIX

See Tables IV–VI and Figures 13–16.
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