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ABSTRACT Graph Neural Networks (GNNs) have been studied extensively and have performed well
in solving complex machine learning tasks in recent years. Many GNN-based approaches focused on
representing homogeneous graphs with only a single type of nodes and links. However, many real-world
networks are heterogeneous, involving various types of nodes and links. Existing GNN-based approaches
for representing heterogeneous graphs only focused on node features and meta-paths, which often causes
difficulties in reflecting link features to learn the graph representations. To overcome this limitation, we pro-
pose a Link-feature Enhanced Heterogeneous graph Attention Network (LEHAN) that focuses on the node
and link features to represent heterogeneous graphs. LEHAN consists of the node attention block and the link
attention block, where each block aggregates node features and link features by attention mechanism with
meta-paths information. The extensive experimental evaluations show that LEHAN outperforms the state-
of-the-art graph embedding algorithms in node classification and clustering on real-world heterogeneous
graphs.

INDEX TERMS Graph neural networks, graph attention networks, heterogeneous graph embedding.

I. INTRODUCTION
In a heterogeneous graph, where various types of nodes are
connected by links, how can we effectively represent the
nodes?Which features can be considered to learn informative
node representations?

Graphs are a ubiquitous data structure for describing
structural and attribute information. One of the critical
challenges of exploiting machine learning algorithms for
graph data is to embed or encode graph elements (usu-
ally nodes) as low-dimensional vectors that summarize the
graph structure. Machine learning problems can be solved
efficiently by representing a graph in a low-dimensional
space. In the past decade, various graph embedding mod-
els have been proposed using matrix factorization [1], [2],

The associate editor coordinating the review of this manuscript and

approving it for publication was Yin Zhang .

divergenceminimization [3], autoencoders [4], randomwalks
[5], [6], etc.

Advances in deep learning have led to the emergence of
Graph Neural Networks (GNNs), which have become dom-
inant and fast-growing techniques for learning with graph
data [7]–[9]. Although existing GNN-based models lead to
high performance in solving various downstream machine
learning problems, most focus on homogeneous graphs.

Heterogeneous graphs are helpful for modeling complex
systems in which different types of nodes interact with each
other. A common framework for learning heterogeneous
graphs is defining and using meta-paths that are composite
relations between different types of nodes. Each meta-path
captures the higher-order proximity among nodes, and the
meta-path-based models are widely adopted in heteroge-
neous graph embedding models [10]–[12]. Recently, GNN-
based heterogeneous graph embedding models have been
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proposed by adopting a message-passing approach to model
higher-order proximities using meta-paths [13]–[15].

However, GNN-based heterogeneous graph embedding
models have a limitation in that they only focus on meta-path
information indicated as the node features and node-type
sequences. For a given graph, we can take or compute a link
feature defined for each pair of nodes. The link features have
been proven to be useful in some graph machine learning
tasks, including link prediction [16]. However, most link
features tend to be ignored in representation learning, while
the link features indicate important information about the
relationships between various types of nodes.

In this paper, we present a new model named
Link-feature Enhanced Heterogeneous graph Attention Net-
work (LEHAN), whose architecture contains the node and
link attention blocks. These two attention blocks enable us
to aggregate the node and link features to learn an effective
representation of each node in a heterogeneous graph. Exper-
iments on real-world heterogeneous graphs show that our
proposed model achieves more accurate performance than
existing heterogeneous graph embedding algorithms.

The contributions of this paper are summarized as follows:

• We propose LEHAN that learns the node representations
using both the node and link features.

• We design the link attention block of LEHAN that effec-
tively aggregate the information of links.

• We empirically show that LEHAN achieves higher per-
formance than the state-of-the-art models.

II. RELATED WORKS
A. GRAPH NEURAL NETWORKS
Recent research to adopt convolution operations to graphs
is drawing much attention and achieved outstanding per-
formance in graph representation learning. Convolutional
Graph Neural Network (ConvGNN) is divided into two parts:
spectral-based GNNs and spatial-based GNNs [7].

Spectral-based GNNs, including ChebNet [17] and
GCN [18], perform convolution operations in the Fourier
domain of a graph. Spatial-based GNNs, including Graph-
SAGE [19] and Graph Attention Network (GAT) [20], per-
form convolution operations in the graph domain directly. All
of the GNN-basedmodels mentioned above are achieved high
performance in various tasks (e.g., node classification, node
clustering, and link prediction). However, because they are
designed to handle homogeneous graphs, they cannot fully
represent the particular structures and semantic information
in heterogeneous graphs.

B. HETEROGENEOUS GRAPH EMBEDDING
Heterogeneous graph embedding [21] is performed to repre-
sent graph elements in heterogeneous graphs as vectors in a
low-dimensional space. Recent studies have proposed various
heterogeneous graph embedding models. These models are
divided into two parts: traditional graph embedding models
and GNN-based models.

FIGURE 1. An example of a heterogeneous graph.

One of the most popular heterogeneous graph embed-
ding models is Metapath2vec [12]. It analyzes random
walks derived by meta-paths and adopts paths of nodes
that passed random walks as input data of the skip-gram
model for modeling different semantic data of relevant nodes.
GNN-based models include HAN [14] and MAGNN [15].
HAN learns the representation of the target node by count-
ing the meta-path-based neighbor nodes provided, and to
train the weights of meta-path-based neighbor nodes, HAN
adopts GAT. In this process, the intermediate nodes on the
meta-path are ignored. MAGNN extends HAN, by con-
sidering both meta-path-based neighbor nodes and inter-
mediate nodes included in the meta-path. MAGNN also
adopts GAT.

All of the models mentioned above are achieved high
performance in various tasks. However, they have difficulties
reflecting the link features to a vector representation since
they only focus on the node features and meta-paths.

Capturing the semantic relations between different types
of nodes is effective in the representation learning pro-
cess. Several studies have utilized heterogeneous graphs
in recommendation systems to capture different semantic
information. KCGN [22] proposes a relation-aware graph
neural network to capture the multi-typed collaborative rela-
tions. ACKRec [23] constructs a heterogeneous graph to
capture the different semantic information among differ-
ent types of nodes. They achieved high performance by
conducting heterogeneous graphs in recommendation sys-
tems. However, several real-world heterogeneous graphs are
very sparse (e.g., tree-like networks [24] or long-circle-like
networks [25]), so many existing recommendation models
for heterogeneous graphs suffer from sparsity. To address
this issue, we can adopt graph convolutional networks to
leverage not only content information but also context
information.

In this paper, considering these issues, we propose a graph
attention network model that contains two attention blocks
(i.e., node attention block and link attention block) to capture
both content information (i.e., node features) and context
information (i.e., link features) for effective representation
learning in heterogeneous graphs.
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FIGURE 2. An overview of the proposed LEHAN model.

III. PRELIMINARIES
Our goal is to learn the effective representations of a given
heterogeneous graph. In this section, we review basic con-
cepts on heterogeneous graphs which are adopted in our
proposed algorithm.
Definition 1 (Heterogeneous Graph): A heterogeneous

graph is defined as a graph G = (V ,E), where V is a set
of nodes and E is a set of links. A heterogeneous graph is
associated with a node type mapping function 8 : V → A
and a link type mapping function 9 : E → R. A and R
denote predefined sets of node types and link types, with
|A| + |R| > 2.
Definition 2 (Meta-Path): A meta-path P is defined as

a path A1
l1
−→ A2

l2
−→ · · ·

li
−→ Ai+1 (abbreviated as

A1,A2, · · · ,Ai+1) which describes a composite relation l =
l1 ◦ l2 ◦ · · · ◦ li between nodes A1 and Ai+1, where ◦ denotes
the composition operator on relations.
Definition 3 (Meta-Path-Based Neighbors): Given a node

i and a meta-path 8 in a heterogeneous graph, the meta-
path-based neighbors N8

i of node i is defined as the set of
nodes which connected by meta-path 8. If meta-path 8 is
symmetric, N8

i includes node i itself.
Figure 1 explains an example of a heterogeneous graph.

The IMDb heterogeneous graph represents an online database
data related to movies and television programs. There are
three node types, a movie, an actor, and a director. In this
example, a meta-path can be defined in various ways depend-
ing on the relationships between various types of nodes.
For instance, an ‘‘movie-director-movie’’ meta-path indi-
cates different movies directed by a specific director, and an
‘‘movie-actor-movie’’ meta-path indicates different movies
acted by a specific actor.

IV. MODEL DESCRIPTION
In this section, we explain our new GNN-based model for
heterogeneous graph embedding, whichwe call LEHAN.Our

proposed model LEHAN consists of node attention block
(Sect. IV-B), link attention block (Sect. IV-C), and merge
phase (Sect. IV-D). The overall procedure is summarized in
Figure 2.
First, we extract meta-path-based subgraphs from an orig-

inal heterogeneous graph. Each subgraph is used as the
input of two blocks that consist of our proposed model
LEHAN. The node attention block aggregates features of
meta-path-based neighbors, and the link attention block
aggregates the features of links in a meta-path sequence.
Then, both blocks aggregate the representations derived
from each meta-path-based subgraph. Finally, LEHAN com-
bines the representations from node and link attention
blocks. This structure makes LEHAN reflects the repre-
sentations of not only node features but also rich infor-
mation from relations between nodes in heterogeneous
graphs.

A. LINEAR TRANSFORMATION
For a heterogeneous graph, because of the heterogeneity of
nodes, different types of nodes have different features, which
are located in different feature spaces. Thus, it is important
to project different types of node features into the same
feature space before adopting a heterogeneous graph embed-
ding model. Therefore, as shown in Equation 1, the linear
transformationwas conducted to project the feature vectors of
different types of nodes to the same feature space. i is a node
whose type is 8. hi is a node i’s feature vector, and M8 is a
projection matrix to project different types of node’s feature
vectors into the same feature space. h′i is a projected feature
vector of node i.

h′i = M8 · hi (1)

By using the linear transformation, we can process differ-
ent types of node features in our proposed model LEHAN
without trouble.
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Algorithm 1 Node Attention Block (Sect. IV-B)
Input: Heterogeneous graph G = (V ,E);
node features {hi,∀i ∈ V};
meta-paths 8 = {81,82, · · · ,8M };
number of attention heads K ;

Output: Node attention block embedding Z ;
1: for 8m ∈ 8 do
2: h′i← M8m · hi {hi,∀i ∈ V };
3: for k = 1 . . .K do
4: for i ∈ V do
5: /* Node features attention (Sect. IV-B1) */
6: for j ∈ N8m

i do
7: e8m

ij ← Attnode(h′i, h
′
j,8m);

8: α8ij ← softmax(e8m
ij );

9: end for
10: z8m

i ← σ (
∑

j∈N8mi
α
8m
ij · h

′
j);

11: end for
12: z8m

i ← ‖
K
k=1 σ (

∑
j∈N8mi

α
8m
ij · h

′
j);

13: end for
14: /* Structural semantic attention (Sec. IV-B2) */
15: d8m =

1
|V |

∑
i∈V p

T
· tanh(A · z8m + bias);

16: g8m = softmax(d8m ) =
exp(d8m )∑

8k∈8
exp(d8k )

;

17: Z ←
∑

g8m · z
8m ;

18: end for
19: return Z ;

B. NODE ATTENTION BLOCK
Algorithm 1 shows the procedure of the node attention block.
The node attention block is exploited to capture the node
information from heterogeneous graphs [14]. The node atten-
tion block aggregates information from meta-paths. In this
subsection, we explain how to aggregate information from
each meta-paths.

1) NODE FEATURES ATTENTION
WhenN8

i is a set which contains the meta-path-based neigh-
bors of node i for a given meta-path 8, we adopt Graph
Attention Network (GAT) to aggregate information from
N8
i to node i. In the node attention block, the importance

of each meta-path-based neighbor e8ij (j ∈ N8
i ) can be

calculated by a standard attention mechanism, as shown in
Equation 2.

e8ij = Attnode(h′i, h
′
j,8) = σ (a

T
8 · [h

′
i||h
′
j]) (2)

After calculating the importance of meta-path-based
neighbors, we normalize e8ij to get the weight of each meta-
path-based neighbors α8ij . In Equation 3, σ is activation func-
tion, || is concatenation operator, and aT8 is a node attention
vector.

α8ij = softmax(e8ij ) =
exp(σ (aT8 · [h

′
i||h
′
j]))∑

k∈N8
i
exp(σ (aT8 · [h

′
i||h
′
k ]))

(3)

Algorithm 2 Link Attention Block (Sect. IV-C)
Input: Heterogeneous graph G = (V ,E);

node features {hi,∀i ∈ V};
meta-paths 8 = {81,82, · · · ,8M };
number of attention heads K ;
meta-path-based link sequences φ = {φ1, φ2, · · · , φL};

Output: Link attention block embedding R;
1: for 8m ∈ 8 do
2: h′i← M8m · hi {hi,∀i ∈ V };
3: for k = 1 . . .K do
4: for i ∈ V do
5: /* Meta-path Encoder (Sect. IV-C1) */
6: hφi ← Encoder(φ);
7: for φl ∈ φ (∀φl ∈ 8m) do
8: /* Link features attention (Sect. IV-C2) */
9: wφli ← Attlink (h

φl
i , φl);

10: β
φl
i ← softmax(wφli );

11: end for
12: x8m

i ← σ (
∑

β
φl
i · h

φl
i );

13: end for
14: x8m

i ← ‖
K
k=1 σ (

∑
β
φl
i · h

φl
i );

15: end for
16: /* Structural semantic attention (Sect. IV-C3) */
17: D8m =

1
|V |

∑
i∈V q

T
· tanh(B · x8m + bias);

18: G8m = softmax(D8m ) =
exp(D8m )∑

8k∈8
exp(D8k )

;

19: R←
∑
G8m · x

8m ;
20: end for
21: return R;

After that, when the embedding vector of node i for the
givenmeta-path8 is z8i , it can be represented with the weight
of N8

i and projected features of N8
i .

z8i = σ (
∑
j∈N8

i

α8ij · h
′
j) (4)

The embedding vectors of node features can be grouped by
each meta-path 8m (8m ∈ 8), and the group of embedding
vectors is denoted as z8m (line 12 of Algorithm 1).

2) STRUCTURAL SEMANTIC ATTENTION
In heterogeneous graphs, different meta-paths represent dif-
ferent semantic relationships. Therefore, the importance of
different meta-paths is different in heterogeneous graphs.
In order to learn about the importance of different meta-
paths, we average the non-linear transformations of embed-
ding vectors from the node features attention phase. Then
we calculate the importance of each meta-path by adopting
a standard attention mechanism. This process can be formu-
lated as shown in the below equations.

d8m =
1
|V|

∑
i∈V

pT · tanh(A · z8m + bias) (5)
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g8m = softmax(d8m ) =
exp(d8m )∑

8k∈8
exp(d8k )

(6)

Z =
∑
8m∈8

g8m · z8m (7)

C. LINK ATTENTION BLOCK
Algorithm 2 shows the procedure of the link attention block.
The link attention block aggregates information from links
contained in a meta-path. In this subsection, we explain how
to aggregate information of links of meta-paths.

1) META-PATH ENCODER
Meta-path encoder [15] is adopted to convert meta-path-
based link sequences to a single vector named meta-path
instance. In this paper, a meta-path instance is regarded as
a single vector of link features that are included in the meta-
path. As the meta-path encoder, we adopt a relational rotation
encoder proposed by RotatE [26], which is proposed to pro-
cess knowledge graphs. By adopting RotatE as a meta-path
encoder, we can represent relations between different links
included in the meta-path to vector. In this phase, we can also
consider the sequential structure of the meta-path.

Let 8 = A1
l1
−→ A2

l2
−→ · · ·

li
−→ Ai+1 be a meta-path. When

t0 = l1 and ti = li, the relation between two links li−1 and li
is Ri and ri is a relation vector of Ri. The relational rotation
encoder adopted as a meta-path encoder is formulated as
shown in the below equations.

o0 = h′t0 = h′l1 (8)

oi = h′ti + oi−1 � ri (9)

hφ =
on

n+ 1
(10)

In Equation 9, h′ti and ri are both complex vectors,� is the
element-wise product of vectors. In addition, in Equation 10,
hφ is a single vector that is represented by the encoding of
links features which are included in a given meta-path-based
link-sequence φ. In the link attention block, hφ is used as an
input of GAT.

2) LINK FEATURES ATTENTION
When hφ is a single vector represented by the encoding
of links features that are included in meta-path-based link
sequences φ, which include node i, we adopt GAT to aggre-
gate information from hφ . In the link attention block, the
importance of every single vector of link features wφ is
calculated by a standard attention mechanism, as shown in
Equation 11.

wφ = Attlink (h′i, hφ) = σ (b
T
φ · [h

′
i||hφ]) (11)

In Equation 11, bTφ is a link attention vector and φ =
{φ1, φ1, · · ·φM } ⊂ 8 is a set of link sequences which
include node i and φ is a subset of given meta-path8. That is,
φ is a set of link sequences which connectedwith node i. After
calculating the importance of single vector of meta-path-
based link sequence wφ , we normalize them to get the weight

of each single vector of meta-path-based link sequence βφ .

βφm = softmax(wφm ) =
exp(σ (bTφm · [h

′
i||hφm]))∑

φk∈φ
exp(σ (bTφk · [h

′
i||hφk ]))

(12)

After that, when the embedding vector for a single vector
of link features for a given meta-path 8 that includes node
i is x8i , it can be represented with βφ and hφ , as shown in
Equation 13.

x8i = σ (
∑
φk∈φ

βφk · hφk ) (13)

3) STRUCTURAL SEMANTIC ATTENTION
Similarly to Sect. IV-B2, we average the non-linear transfor-
mations of embedding vectors from link features attention
phase. Then we calculate the importance of each meta-path
by adopting an attention mechanism. This process can be
formulated as shown below equations. The embedding vector
of the link feature can be grouped given meta-path8m (8m ∈

8), and the group of embedding vector denoted as x8m .

D8m =
1
|V|

∑
i∈V

qT · tanh(B · x8m + bias) (14)

G8m = softmax(D8m ) =
exp(D8m )∑

8k∈8
exp(D8k )

(15)

R =
∑
8m∈8

G8m · x8m (16)

D. MERGE PHASE
Embedding vectors from the node attention blocks and the
link attention blocks are merged in this merge phase. Because
the node features and the link features have different impor-
tance, we average vectors which are non-linear transfor-
mations of two embedding vectors. Then, we calculate the
importance of each embedding vector by adopting an atten-
tion mechanism. This way, LEHAN can learn about the
importance of each embedding from each attention block.
In the below equations, B is a set of two attention blocks
(e.g., the node and link attention blocks), and E is a set of
embeddings from the two attention blocks.

Ub =
1
2

∑
b∈B

oT · tanh(O · Eb + bias) (17)

Ib = softmax(Ub) =
exp(Ub))∑
k∈B exp(Ub))

(18)

P =
∑
b∈B

Ib · Eb (19)

E. MODEL LEARNING
We apply semi-supervised learning to train the node rep-
resentation based on heterogeneous graphs after deriving
an embedding for a particular node using the process
described above. For semi-supervised learning, we can adopt
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cross-entropy as a loss function. Cross-entropy can be formu-
lated as shown in Equation 20.

L = −
∑
v∈VL

K∑
k=1

(yv[k] · logPv[k]) (20)

Here, VL is the set of labeled nodes, and K is the number
of classes. yv is the one-hot encoded label vector of node v,
and Pv is a vector predicting the label probabilities of v.

V. EXPERIMENTAL RESULTS
In this section, we examine the performance of our pro-
posed model LEHAN. We extensively tested LEHAN on two
widely-used heterogeneous graphs from different domains.
We compared the performance of eight algorithms including
LEHAN. We show experimental results on the node cluster-
ing and classification tasks using the graph datasets.

A. DATASETS
Table 1 lists the real-world heterogeneous graphs used for our
experiments. These datasets are from [15].

TABLE 1. Real-world heterogeneous graphs for experiments.

• IMDb: The IMDb dataset includes online database data
related to movies and television programs. It consists
of 4,278 movie type nodes (M), 2,081 director type
nodes (D), and 5,257 actor type nodes (A) from original
dataset. The movie type nodes were labeled as three
classes (i.e., action, comedy, and drama) according to
movie genres. Moreover, the meta-path set consists of
six meta-paths {MDM, MAM, DMD, DMAMD, AMA,
AMDMA}.

• DBLP: The DBLP dataset includes data from a list of
research papers on computer science. It consists of 4,057
author type nodes (A), 14,328 paper type nodes (P),
7,723 term type nodes (T), and 20 venue type nodes
(V) from original dataset. The author type nodes were
labeled as four classes (i.e., database, data mining, arti-
ficial intelligence, and information retrieval) according
to authors’ research fields. Additionally, the meta-path
set consists of three meta-paths {APA, APTPA, and
APVPA}.

B. BASELINES
We compared our proposed model LEHAN with several
state-of-the-art graph embedding models. These embed-
ding models are divided into (i) unsupervised learning
models including node2vec [6], metapath2vec [12], and
HERec [27] and (ii) semi-supervised learning models includ-
ing GCN [18], GAT [20], HAN [14], and MAGNN [15].

• node2vec: node2vec is a traditional embedding model
for homogeneous graphs, which was developed based on
the generalization of DeepWalk. To apply this model to
heterogeneous graphs, various types of nodes in a dataset
were united and used as a single type.

• metapath2vec: metapath2vec is a traditional embed-
ding model for heterogeneous graphs, which generate
node embeddings by using meta-path guided random
walks as inputs of skip-grammodels. metapath2vec only
uses a single meta-path which is pre-defined by the user.
So we report only the best results which experimented
for all meta-paths.

• HERec: HERec is a traditional embedding model for
heterogeneous graphs based on a random walk. HERec
converts a heterogeneous graph to a homogeneous graph
based on neighbor nodes on meta-paths. Then HERec
applies the DeepWalk model to the meta-path-based
homogeneous graph to train the embedding of the target-
type nodes.

• GCN: GCN is a graph neural network model for homo-
geneous graphs. GCN performs convolution operations
on graphs in the Fourier domain. We combined and used
various types of nodes in meta-path-based subgraphs as
single node types. We report the best results from all
meta-paths.

• GAT: GAT is a graph neural networkmodel for homoge-
neous graphs. GAT performs convolution operations on
graphs in the Spatial domain by adopting an attention
mechanism. Similar to GCN, We combined and used
various types of nodes in meta-path-based subgraphs as
single node types and report the best results from all
meta-paths.

• HAN: HAN is a graph neural network model for het-
erogeneous graphs. HAN trains node embedding using
meta-path-based neighbor nodes, except for intermedi-
ate nodes, which are included in meta-paths, and gen-
erates node embedding by adopting an attention mecha-
nism.

• MAGNN: MAGNN is a graph neural network model
for heterogeneous graphs. MAGNN trains node embed-
dings using meta-path neighbor nodes, including inter-
mediate nodes, which are included in meta-paths, and
generates node embedding by adopting an attention
mechanism.

Remark that node2vec, GCN, and GAT are designed for
homogeneous graphs, while the others are designed for het-
erogeneous graphs.
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TABLE 2. Experiment results (%) on the IMDb and DBLP datasets for the node classification task.

TABLE 3. Experiment results (%) on the IMDb and DBLP datasets for the node clustering task.

C. EXPERIMENT SETUP
For unsupervised models, we set the window size to 5, walk
length to 100, walks per node to 40, and the number of
negative samples to 5 for unsupervised models. In our experi-
ments, for a fair comparison, all unsupervised models use the
same hyperparameter values. For semi-supervised (or GNN-
based) models, including LEHAN, we set the dropout rate
to 0.5, and we use the Adam optimizer with a learning rate
of 0.005 and weight decay (L2 penalty) of 0.001. The perfor-
mance of eachmodel was measured ten times, and the highest
performance was selected. As in the unsupervised models,
all semi-supervised models used the same hyperparameter
values.

D. EXPERIMENT RESULTS
We conducted a set of experiments to examine the superiority
of the proposed model LEHAN. The aim of the first exper-
iment is to evaluate the performance of node classification.
The aim of the second one is to evaluate the accuracy of node
clustering.

1) NODE CLASSIFICATION
We conducted the classification of labeled nodes among
embedded nodes using Support Vector Machine (SVM) to
experiment with the node classification based on IMDb and
DBLP datasets. The performance of each model was mea-
sured ten times, and the highest performance was selected.
Table 2 presents the Macro-F1 and Micro-F1 scores mea-
sured in the node classification tasks based on SVM. The
ratio of the training data was adjusted in the range from

20% to 80%.Moreover, because the semi-supervised learning
models already learned training and validation data, only the
nodes of the test data were used as input data for SVM.
In the IMDb dataset, LEHAN achieved higher performance
by 1 ∼ 2% than MAGNN and other competitors. Moreover,
in the DBLP dataset, LEHAN showed similar or slightly
higher performance than MAGNN and other competitors.

2) NODE CLUSTERING
We conducted clustering of labeled nodes among embedded
nodes using a k-means clustering algorithm to experiment
on the node clustering based on IMDb and DBLP datasets.
The performance of each model was measured ten times, and
the highest performance was selected. Table 3 presents the
Normalized Mutual Information (NMI) [28] and Adjusted
Rand Index (ARI) [29] measured in the node clustering tasks.
In IMDb dataset, LEHAN shows the best NMI and ARI
values. In DBLP dataset, although LEHAN showed lower
performance by approximately 1% than MAGNN but also
achieved higher performance than the other competitors.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a Link-feature Enhanced Het-
erogeneous graph Attention Network (LEHAN) for hetero-
geneous graph embedding by using not only node features
but also link features. LEHAN represents various meta-paths,
structural properties, and semantic information of heteroge-
neous graphs rather than depending on a single pre-defined
meta-path.
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In order to represent information on nodes and links,
LEHAN consists of two types of blocks. In the node attention
block, we can reflect neighbors’ features to the center node
by depending on the weight of neighbors. In the link attention
block, we can reflect link features included in meta-paths to
the center node depending on the weight of the meta-paths
connected to the center node. The resulting vectors from
the two attention blocks are merged. This structure makes
LEHAN can represent node to vector by the weights of nodes
and links.

Experiments on heterogeneous graph datasets show that
LEHAN outperforms various state-of-the-art models. From
the results of empirical experiments, we realize that in the
heterogeneous graph representation learning, the link features
are as crucial as node features.

We plan to develop a theoretical analysis of the effect
of link attention in the future. Also, our proposed model
LEHAN is expected to be effectively applied to analyze smart
home networks and E-commerce platforms represented as
heterogeneous graphs and also to recommendation systems.
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