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A Machine Learning Perspective on fNIRS
Signal Quality Control Approaches

Andrea Bizzego , Michelle Neoh , Giulio Gabrieli , and Gianluca Esposito

Abstract— Despite a rise in the use of functional Near
Infra-Red Spectroscopy (fNIRS) to study neural systems,
fNIRS signal processing is not standardized and is highly
affected by empirical and manual procedures. At the begin-
ning of any signal processing procedure, Signal Quality
Control (SQC) is critical to prevent errors and unreliable
results. In fNIRS analysis, SQC currently relies on applying
empirical thresholds to handcrafted Signal Quality Indica-
tors (SQIs). In this study, we use a dataset of fNIRS signals
(N = 1,340) recorded from 67 subjects, and manually label
the signal quality of a subset of segments (N = 548) to
investigate the pitfalls of current practices while exploring
the opportunities provided by Deep Learning approaches.
We show that SQIs statistically discriminate signals with
bad quality, but the identification by means of empirical
thresholds lacks sensitivity. Alternatively to manual thresh-
olding, conventional machine learning models based on
the SQIs have been proven more accurate, with end-to-
end approaches, based on Convolutional Neural Networks,
capable of further improving the performance. The pro-
posed approach, based on machine learning, represents a
more objective SQC for fNIRS and moves towards the use
of fully automated and standardized procedures.

Index Terms— Deep learning, functional near infrared
spectroscopy, machine learning, signal quality control.

I. INTRODUCTION

THE adoption of functional Near-InfraRed Spectro-
scopy (fNIRS) has seen rapid growth in neuroimaging

studies in recent years [1], particularly in fields such as infant
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neuroimaging [2] and cognitive neuroscience [3]. fNIRS is a
non-invasive neuroimaging technique which detects the activ-
ity of cortical brain regions through the use of near-infrared
light. Specifically, fNIRS measures the relative changes in the
concentrations of oxygenated and deoxygenated hemoglobin,
indicative of cerebral activation and deactivation, relying on
the different light absorption [3].

Notwithstanding the broad adoption of fNIRS, there is
no general consensus on the best fNIRS signal processing
approaches [4], [5], with the use of different combinations
of processing steps reported leading to different study out-
comes [6].

One key pre-processing step in fNIRS data analysis is the
Signal Quality Control (SQC) of the raw signals to remove low
quality signals from the downstream analysis [1], [7]. Since
a reference ground-truth for the quality of fNIRS signals is
not available, the baseline is derived from human assessments
performed by visual inspection of the signals. However, visual
inspection makes the SQC dependent on researcher exper-
tise and subjective judgments about what is expected to be
observed in a “good” quality signal. Current approaches tend
to avoid the use of visual inspection as the only SQC method,
although it is often used to validate the results of the fNIRS
signal processing pipelines (e.g. as in [8] and [9]). Finally,
visual inspection is expected to have a key role for the creation
of reference datasets, where the quality label is derived from
human assessments [10].

SQC currently relies on the computation of Signal Quality
Indicators (SQIs), based on a number of algorithms that aim
at quantifying morphological characteristics of the fNIRS
signal. The decision about which signals to remove from the
downstream analysis is based on empirical fixed thresholds
applied to the SQIs. Several SQIs have been proposed, for
instance Scalp Coupling (SC) and Scalp Coupling Power
(SCP) [11], Coefficient of Variation (CV) and the Coefficient
of Variation of the Wavelengths (CVW) [12], Signal Quality
Index [13], association with cardiac signals [14] and others.

Alternatively to thresholding, Machine Learning (ML) algo-
rithms have been adopted on a wide range of physiological
signals to classify signal quality [15]. Li and colleagues, for
example, developed an automatic quality assessment method
for pulsatile signals [16] and for ECG signals [17], while
Gabrieli and colleagues [18] considered different ML classi-
fiers to identify the quality of pupillometry signals. Regarding
fNIRS signals, Sappia and colleagues suggested the Signal
Quality Index [13], and then developed a ML algorithm based
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on the Signal Quality Index [19] which achieved promising
results. However, the Signal Quality Index was developed and
tested on a very limited sample size (N=123 for the devel-
opment, N=40 for the evaluation) and data were collected
within an environment in which potential conflict of interest
was present.

Besides conventional ML approaches, deep learning meth-
ods, based on the use of Artificial Neural Networks (ANN)
are nowadays being applied in a growing number of fields,
typically improving the results achieved with conventional
ML approaches [20], [21]. The adoption of ANNs in appli-
cations based on medical data is rapidly growing, with a
wide range of applications [22], [23], [24], [25], [26]. Con-
volutional Neural Networks (CNNs) are a family of ANNs
that rely on the use of a number of subsequent non-linear
filtering units (layers). CNNs enable the creation of end-to-
end models, since the raw data (e.g.: images or signals) are
directly used as input, with no need of computing hand-
crafted features: the hierarchical structure of the CNNs allows
obtaining high-level features [27], thus transforming input
data into a multi-dimensional representation useful to solve
the classification task [28]. This is a key difference from
conventional ML methods, which are based on relational data,
where the features are manually defined by the user, based on
a priori information.

Regarding the application of deep learning approaches to
fNIRS signals, only one study addressed the classification of
the signal quality [10], while other examples addressed task
and gesture recognition for Brain-Computer-Interaction appli-
cations [29], [30]. The study of Gabrieli and colleagues [10]
aimed at using a CNN based to classify the quality of 510 short
fNIRS portions. Notably, the quality labels were collected by
means of a web interface that experts used to rate the corpus
of fNIRS signals. Their study was the first to demonstrate the
use of CNNs for the classification of fNIRS signal quality, and
used the Matthew Correlation Coefficient (MCC) to measure
the classification performance. The proposed CNN achieved
a performance of MCC=0.18 on the subset of data used for
training and MCC=0.25 on the subset used for testing.

While ML approaches have shown promising results for
addressing the SQC for fNIRS data, they have not been
thoroughly researched and the literature on this topic is still
sparse.

In this study, we conducted a detailed investigation of
several aspects involved in the SQC of fNIRS data. First,
we analyzed the role of human subjective evaluations, measur-
ing the consensus of four different raters. Second, we tested the
appropriateness of 5 of the most used hand-crafted SQI: first
statistically, then by evaluating the performance of SQC based
on SQI thresholds. Third, we explored the potential of using
conventional machine learning and deep learning approaches
for SQC; in particular, we assessed the performance of two
conventional ML models trained on hand-crafted SQIs and of a
CNN trained on raw signals. Finally, fourth, we applied model
inspection techniques to explore the possibility of extracting
knowledge from trained models, aiming at providing practical
guidelines for the implementation of the SQC and optimization
of the data acquisition settings.

II. MATERIALS AND METHODS

A. Dataset

Data were collected during an experiment aimed at assess-
ing the differential brain response in males and females to
dialogues with sexist comments. The experiment was approved
by the ethics committee of Nanyang Technological University
Psychology Program (PSY-IRB-2020-007).

Eight experimental vignettes of hypothetical situations were
constructed, each one lasting 50 seconds. The vignettes pre-
sented four scenarios in which a protagonist received sexist
comments from four different partners, with two types of
comments for each scenario (praise and criticism). The experi-
ment involved 67 participants (38 females). Participants had to
read all eight experimental vignettes; after reading, they were
presented with a set of questions to measure their emotional
responses towards each vignette.

During the experiment, fNIRS signals were collected to
measure the activation of the dorsolateral prefrontal cor-
tex. Signals were collected using a NIRS device (NIRSport,
NIRx Medical Technologies LLC, Glen Head, NY, USA)
equipped with a cap which mounted 8 light emitting diodes
(760-850nm) and 7 photo-diodes detectors, composing a setup
with 20 multi-distant channels (sampling rate: 7.81 Hz). Data
were recorded using the NIRStar Software 15.0. In this study,
we focused on the raw data collected by the photo-diodes for
each channel, each composed of two signals, one for each
wavelength. Signals were resampled at 10 Hz by cubic spline
interpolation.

In total, the dataset included 1,340 channels signals
(20 channels x 67 subjects). In order to proceed to the
manual labeling of the signal quality, we restricted our sam-
ple to 548 segments relative to the vignette presentation
(50 s length), which were randomly selected. A hierarchical
random selection was performed, first by randomly selecting
the condition, then the scenario, and finally the channel. The
selected subset included data from 64 different subjects; the
number of segments included for each subject was between
3 and 15 (Median=8, Mean=8.6, SD=2.8); the number of
segments included for each channel was between 18 and 41
(Median=27, Mean=27.4, SD=5.2).

Similar to what was done in [10], 4 trained experts manually
rated the quality of each segment, based on images of the
fNIRS signals. Images had a size of 1500 × 1000 pixels, and
a temporal resolution 23.6 pixels/s (see a scaled example of an
image in Figure 1). The raters were asked to label the quality
of each segment as Good (i.e.: the signal can be used) or Bad
(i.e.: the signal should be discarded). The ratings of the 4 raters
were aggregated by majority vote, to obtain the final label of
each portion. In the case of ties, the segment was considered
as having a Bad signal quality.

The dataset with 548 labeled portions was then randomly
split into two separate partitions, to test the generalizability
of each SQC approach: 75% (N = 411) of the portions
were assigned to the Train partition, the remaining 25%
(N = 137) was assigned to the Test partition. The proportion
of signals of Good class was 66.2% on Train and 62.0% on
Test.
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Fig. 1. Example of a 50 seconds length portion of fNIRS data, with the
signals associated with the two wavelengths (760nm and 850nm), which
was used to manually rate the quality of the signal.

B. Signal Quality Indicators

Among the most used SQIs for fNIRS signals, 4 were
selected and used in this study: Scalp Coupling (SC) and Scalp
Coupling Power (SCP) [31], Coefficient of Variation (CV) and
the Coefficient of Variation of the Wavelengths (CVW) [12].
For each SQI, the literature also defines thresholds that are
typically applied in automated pipelines to categorize the
quality of signals. Typically, good quality signals are expected
to have: SC > 0.7, SC P > 0.1, CV < 7.5, and CV W < 5.

Additionally, we also computed the Cardiac Power (CP),
which, similarly to the SC, aims at quantifying the presence
of the cardiac components. Starting from the filtered fNIRS
signals (bandpass filter: [0.83 - 2.5] Hz), we estimated the
cardiac frequency ( fc) as the frequency with highest power in
the range 0.83-2.5 Hz. Then we computed the CP as the ratio
between the power in the fc − 0.2 - fc + 0.2 Hz band and the
fc − 0.5 - fc + 0.5 Hz band. Signals of the Good class were
expected to have: C P ≥ 0.5.

C. Machine Learning

Two conventional Machine Learning approaches have been
adopted to classify the quality of the fNIRS signals: in the
first, we tested two standard models based on the five SQIs:
a Support Vector Machine with linear kernel (SVM) and
a Random Forest (RF); in the second, we used an end-to-
end Convolutional Neural Network (CNN) which was directly
applied to the raw signals.

To train the standard models, we first optimized the model
parameters: the regularization parameter C (C: 0.00001,
0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000) and the
number of trees n (n: 1, 5, 10, 50, 100, 250), for the SVM
and RF respectively. To prevent overfitting, the following para-
meters of the RF model were also calibrated: the maximum
depth of the trees was set to 3 and the minimum number of
samples for leaf nodes was set to 10.

The optimization was based on a traditional 10 × 5-fold
Cross Validation scheme [32]. The Train partition was ran-
domly split into 5 folds: all folds except one were used to
train the model which was then evaluated on the left-out fold.

Fig. 2. Diagram of the convolutional neural network, composed of a
sequence of convolutional blocks, followed by fully connected blocks.

The procedure was iterated on the 5 folds, then repeated
10 times, shuffling the data before each repetition.

The performance of the model for each value of the model
parameter was estimated by bootstrapping the distribution of
the Matthew Correlation Coefficient (MCC) scores on the
left-out fold at each iteration. The MCC was computed as
follows:

MCC = (TB TG − FB FG)√
(TB + FB)(FG + TG)(TB + FG)(FB + TG)

(1)

where TB and TG are the number of segments correctly
assigned to the Bad and Good signal quality class respectively,
and FB and FG are the number of segments wrongly assigned
to the Bad and Good signal quality class respectively.

The value of the model parameter with the higher MCC was
selected as the optimal value. The final model was trained on
the whole Train partition, using the optimal value of the model
parameter.

The architecture of the CNN here employed is inspired by
the architecture introduced by Bizzego and colleagues [33].
The original architecture, trained on the dataset of fNIRS
signals (from the Train partition), achieved an MCC
of.648 and.622 on the Train and Test partitions respectively.
We conducted additional experiments to evaluate alternative
network architectures. In particular, we tested different solu-
tions, which differed in the number of convolutional blocks
(from 2 to 4), output channels (from 16 to 256) and kernel
sizes (from 3 to 21). Results of the architecture optimization
procedure are reported in Supplementary Material (Table S1).
The architecture which achieved the best results was the one
composed of two sequential components: (i) a Convolutional
Branch, and (ii) a Fully Connected Head (see Figure 2).

The Convolutional Branch consists of two convolutional
blocks, each one composed of a 1-dimensional convolutional
layer with the kernel size set to 21, a 1-dimensional batch
normalization layer [34], a Rectified Linear Unit (ReLU)
activation layer [35], and, finally, a 1-dimensional pooling
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layer based on maximum, with the kernel size set to 2. The
two blocks use a different number of channels; the first block
has 2 input channels (the signals of the two wavelengths) and
64 output channels, the second block has 64 input channels
and 128 output channels. The final layer of the Convolutional
Branch is an adaptive averaging pooling layer, used to compute
the average of the convolution operations at 10-time points.

The Fully Connected Head consists of three linear layers,
each one preceded by a dropout layer (dropout probability
set to 0.05), and followed by an activation layer. The first
linear layer has 1280 input nodes and 1000 output nodes, and
is followed by a ReLU activation layer; similarly, the second
linear layer has 1000 input and output nodes and is followed by
a ReLU activation layer. The final linear layer has 1000 input
nodes and 2 output nodes, followed by a SoftMax activation
layer, used to compute the class probability.

The input of the network is a 20 seconds length portion
of a fNIRS signal. During training, the 20 seconds portion is
randomly selected within the 50 seconds corresponding to the
vignette presentation; during the evaluation, the 20 seconds
portion correspond to the central part of the vignette presen-
tation. The random selection of the portion during training is
used to perform a data augmentation: each time the signal is
used for training, a different portion is selected. This procedure
adds a certain amount of stochastic variability to the input of
the network, thus reducing the risk of overfitting.

The training was performed with back-propagation to min-
imize the Weighted Cross-Entropy between the true and pre-
dicted class [36]. Since the Bad and Good classes had a
different sample size, weights were set to 0.66 for the Good
class and to 0.34 for the Bad class.

The network was trained for 200 epochs on signals from the
Train partition, with random batches of size 64, an Adadelta
optimizer [37] and an initial learning rate of 0.01. In each
epoch, signals in the Train partition were randomly shuffled
and grouped into batches of 64 signals. Each batch was
processed by the network to output the predicted class proba-
bility, which was then compared with the true class. Prediction
error was computed using the Weighted Cross-Entropy. The
error is then back-propagated to and weights of the networks
are optimized using the Adadelta algorithm.

D. Analysis Plan

The study was divided into four separate analyses, one for
each separate aim.

Analysis 1: Role of Human Subjective Evaluations on the
Signal Quality: Since a ground truth about signal quality of
fNIRS is missing, the reference is based on human subjective
evaluations. All subsequent efforts to define efficient SQI and
their thresholds, or to develop automated approaches rely on
the capability of humans to provide a reliable assessment.

We quantified this capability in terms of consensus between
the four raters, and in terms of performance of each rater.
The consensus was quantified based on the two-way random
effects model average Intraclass Correlation (ICC) [38]. The
performance of each rater was quantified by computing the

MCC score between the ratings of the rater and those from
the other raters (aggregated by majority vote).

Analysis 2: Validity of Hand-Crafted SQI: We then focused on
assessing the appropriateness of the 5 SQI. First, a two-tailed
Mann-Whitney test was performed for each SQI, to assess if
there are statistical differences between Good and Bad signals.
We expected all SQI to show a significant result (α < 0.05).

Additionally, we evaluated the Spearman correlation
between the SQIs. We expected a high correlation (ρ > 0.7)
for the SC, SCP and CP indicators, as they target the quan-
tification of the cardiac components in the raw fNIRS signals.
Second, we performed the SQC based on the value of the SQIs
and their thresholds, which is the most common approach to
identify signals with good and bad quality in current research
practices. In practice, for each fNIRS segment, we tested that
each SQI’s value lied within the intervals associated with good
quality, and considered the segment as having a good quality
if all five SQIs had values that were within their respective
intervals.

Analysis 3: Machine Learning Approaches: Finally we
explored the use of Machine Learning approaches as an
alternative to current SQC practices. Both the SVM model
and the CNN were trained on data from the Train partition.

To allow an objective comparison between the different
SQC methods (human raters, SQI thresholding, SVM model,
and CNN) the classification performance was always com-
puted on both the Train and Test partitions. Specifically,
we used bootstrapping to generate the overall MCC with 90%
Confidence Intervals (90%CI). In the bootstrap procedure, we
randomly selected 25% of the samples, with replacement, and
computed the MCC score on the selected subset; then repeated
the procedure 1000 times. The overall MCC with 90%CI were
computed as the 50th , 5th and 95th percentiles respectively,
of the generated distribution of MCC scores.

From the experimental point of view, data are a precious
resource, which is often collected with high costs and efforts.
Therefore, it is important that the SQC avoids rejecting data
with good quality, which would represent a waste of resources
that could instead be used for the study. On the other hand,
the SQC should avoid that bad quality data contaminate
the downstream analysis. Therefore, while the MCC gives a
general indication of how well the SQC method performs,
we also computed the Sensitivity and the Precision scores,
which give additional insights. In our study, Sensitivity is
defined as the ratio between the number of correctly classified
Good segments and the total number of Good segments,
indicating of how well each SQC method is able to avoid
wasting Good quality data. Precision is the ratio between the
number of correctly classified Good segments and the total
number of segments classified with Good quality, indicating
how well each SQC is able to avoid the contamination of the
analysis with Bad quality data.

The distributions of MCC values generated by bootstrap
from the Test partition were used to compare the performance
of each SQC approach (thresholding of SQI values, SVM
model, RF model, and DL model), using pair-wise t-tests. The
Bonferroni correction was applied to correct for the multiple
comparisons.
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Analysis 4: Model Inspection: Aiming at providing practical
guidelines for the implementation of the SQC and optimization
of the data acquisition settings, we applied two model inspec-
tion techniques to extract knowledge from the trained ML
models. For the two conventional ML models (SVM and RF),
we computed the ranking of the SQIs, to obtain information
about which SQIs are the most important for the prediction of
the signal quality. For the DL model, we performed an unsu-
pervised exploration of the output nodes of the Convolutional
Branch.

To obtain the ranking of the SQIs, we first computed the
permutation importance of the SQIs based on the trained
model and data from the Test partition. The permutation
importance of a SQI was computed as the decrease in the
MCC score after the values of such SQI have been randomly
shuffled [39]. In our implementation, the permutation impor-
tance is computed 30 times, then averaged, to determine the
ranking of the SQIs.

The unsupervised exploration of 1280 output nodes of the
Convolutional Branch was performed using the Uniform Mani-
fold Approximation and Projection (UMAP) multidimensional
projection method [40], [41]. Specifically, a two dimensional
UMAP was applied, to facilitate the visualization of the results
of the projection. We then aimed at investigating the main
differences between the low-quality signals, to identify key
diagnostic patterns that could suggest strategies to improve
the signal quality during the experimental setup. We applied a
K-means clustering on the UMAP projection, selecting the
optimal number of clusters using the elbow method based
on the sum of squared distances between each datapoint and
its closest centroid. We then qualitatively analysed the main
characteristics of each cluster in terms of signal patterns.

E. Data and Code Availability

The analyses performed in this study were implemented
in Python (v. 3.8.10). The Machine Learning pipelines were
built using the Numpy ([42], v. 1.19.4), Pandas ([43],
v. 1.1.4), scikit-learn ([44], v. 0.23.2) and pyTorch ([45],
v. 1.9.0+cu102) packages.

The UMAP and clustering pipelines were built using the
umap-learn ([46], v. 0.5.3), scikit-learn ([44], v. 0.23.2),
and yellowbrick ([47], v. 1.4) packages. Data used for this
study and code to replicate the analysis are available at:
https://gitlab.com/abp-san-public/fnirs-qsi-ml

III. RESULTS

A. Consensus and Performance of Human Raters

The consensus between human raters was ICC = 0.774
(p < .001), which is considered acceptable, although optimal
values are typically above 0.9 [48]. The overall MCCs for the
four raters were in the range [0.629 - 0.759] on Train and
[0.672 - 0.802] on Test (see Table I).

Notably, raters appear to maximize either Sensitivity or
Precision (Figure 3). Rater1 maximized Sensitivity over Preci-
sion, achieving a Precision of 0.865 on Train and of 0.840 on
Test (90%CI: [0.80-0.92] and [0.71-0.96] respectively), and a
Sensitivity of 1.000 on both Train and Test. Similarly, Rater3

TABLE I
MATTHEW CORRELATION COEFFICIENT (MCC) SCORES FOR THE

DIFFERENT RATERS AND SIGNAL QUALITY CONTROL METHODS,
ON TRAIN AND TEST, WITH 90% CONFIDENCE INTERVALS

(90%CI) ESTIMATED BY BOOTSTRAPPING. SVM:
SUPPORT VECTOR MACHINE, RF: RANDOM

FOREST, CNN: CONVOLUTIONAL

NEURAL NETWORK

Fig. 3. Sensitivity and Precision scores for the different raters and signal
quality control methods, on train and test.

TABLE II
MEDIAN VALUES FOR BAD AND GOOD QUALITY SIGNALS FOR THE

FIVE SIGNAL QUALITY INDICATORS CONSIDERED IN THIS STUDY,
WITH RESULTS OF THE MANN-WHITNEY TEST

achieved a Precision of 0.840 on Train and of 0.800 on
Test (90%CI: [0.77-0.90] and [0.67-0.92] respectively), and
a Sensitivity of 1.000 on both Train and Test. On the oppo-
site, Rater2 maximized Precision over Sensitivity, achieving a
Precision 0.979 on Train and 1.000 on Test (90%CI on Train:
[0.93-1.00]), and a Sensitivity of 0.706 on Train and 0.750 on
Test (90%CI: [0.61-0.79] and [0.57-0.89] respectively).

B. Validation of Hand-Crafted SQI

Results from Mann-Whitney Tests (Table II) indicate that
the distribution of SQIs is significantly different for signals
with Good or Bad signal quality.

In addition, all SQIs are significantly correlated (Table III,
with the highest correlation observed between SC and SCP
(ρ = 0.80, p < .001), the second being the correlation
between SCP and CP (ρ = 0.72, p < .001).
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TABLE III
VALUES OF THE SPEARMAN CORRELATION BETWEEN THE

FIVE SIGNAL QUALITY INDICATORS CONSIDERED

IN THIS STUDY ***: p < .���

TABLE IV
CONFUSION MATRIX OF THE SQC BASED ON THRESHOLDING OF SQI.

VALUES IN BOLD INDICATE THE NUMBER OF SEGMENTS WITH

GOOD QUALITY THAT WOULD BE REJECTED

The SQC method based on SQI thresholds (Table I and
Figure 3) achieved an MCC of 0.476 on Train and 0.533 on
Test (90%CI: [0.38-0.58] and [0.38-0.70] respectively), show-
ing high Precision (Train: 0.976, 90%CI: [0.93-1.00]; Test
1.00), but low Sensitivity (Train: 0.493, 90%CI: [0.40-0.60];
Test 0.520, 90%CI: [0.33-0.69]). With this method, many
signals with good quality would not be used (Table IV).

C. Machine Learning

The performance achieved by the conventional ML models
was comparable. The SVM model (optimal C = 100) based
on the SQI achieved an MCC of 0.671 on Train and 0.717 on
Test (90%CI: [0.53-0.79] and [0.51-0.89] respectively), in line
with the performance of human raters (Table I).

The RF model (optimal number of trees = 100) based on
the SQI achieved an MCC of 0.712 on Train and 0.722 on
Test (90%CI: [0.59-0.82] and [0.52-0.89] respectively). The
results on both the Train and Test partitions are comparable
with the SVM model (Table I).

The application of DL models allowed a further improve-
ment. The CNN applied on the raw signals achieved an MCC
of 0.726 on Train and 0.757 on test (90%CI: [0.60 - 0.84]
and [0.53 - 0.94] respectively). The CNN achieved the better
performance among all ML approaches, corresponding to a
Precision of 0.890 (90%CI: [0.53-0.79]) on Train and 0.900
(90%CI: [0.77-1.00]) on Test, and a Sensitivity of 0.938
(90%CI: [0.88-0.97]) on Train and 0.917 (90%CI: [0.81-1.00])
on Test (Table V and Figure 3).

Performances achieved with the CNN (M=.752, SD=.121)
resulted significantly better than both the conventional ML
models: SVM (M=.716, SD=.126, t(1998)=6.37, p < .001)
and RF (M=.713, SD=.127, t(1998)=7.15, p < .001). No dif-
ference was found between the SVM and the RF approach
(t(1998)=−1.68, p = .092). In turn, the SVM model achieved
significantly better performances than the thresholding of
the value of the SQIs (M=.537, SD=.094, t(1998)=35.28,
p < .001).

TABLE V
CONFUSION MATRIX OF THE SQC BASED ON THE CONVOLUTION

NEURAL NETWORK APPLIED ON RAW SIGNALS

D. Model Inspection

The rankings of the SQIs based on the permutation impor-
tance was slightly different for the two models. For the SVM
model, the ranking was, in order: SC, CV, CP, SCP, and
CVW. For the RF model, the ranking was, in order: CV,
SC, CVW, SCP and CP. Notably, the two top features were
the same for both models: SC and CV. This would suggest
that both an indicator of the cardiac component and a global
indicator of the signal variability are required to asses the
signal quality. Future implementations of tools and algorithms
for the automated or semi-automated identification of the
signal quality should then consider these two key SQIs.

The two dimensional embedding of the 1280 nodes com-
puted with the UMAP (Figure 4A) shows a clear separation
between the two classes, with the low-quality signals more
tightly clustered. We then applied the K-means clustering
algorithm, with a target number of clusters equal to three,
which resulted in the optimal number of clusters according to
the elbow method.

The first cluster (Figure 4B) mainly includes low quality
signals that overlap with the group of good quality signals.
By observing some randomly chosen examples of signals
belonging to this cluster (Figure 5), we recognize that these
signals have in general a good quality except for the presence
of spikes or drops, probably due to movement, the presence
of which is hard to foresee during the setup of the instrumen-
tation.

The second and third cluster appear to split the group of low
quality signals, with the second group “topologically” nearer
to the good-quality cluster. The two clusters seems to differ
in terms of magnitude of the noise and distance between the
average of the two components. In addition, we note that
the cardiac component and some other signal components
might, in some cases, be recognized in signals from the second
cluster: thus suggesting that the reason of the low quality is
mainly a poor coupling between the optodes and the scalp,
or an interference from external sources of light. On the
opposite, it is hard to identify any component in signals in the
third cluster except for white noise, thus suggesting that the
setup of the optodes should be thoroughly revised. In general,
these two clusters suggest a trajectory in the UMAP associated
with a decrease of signal quality, as long as we move far from
the group of good-quality signal.

IV. DISCUSSION

The results from the analysis of consensus between human
raters and their performances highlight that the outcomes
of visual inspection of the signals are highly dependent on
subjective evaluations. The consensus between the four raters
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Fig. 4. Results of the Uniform Manifold Approximation and Projection algorithm. The marker indicates the class assigned by the Convolutional
Neural Network: circle: Good class, Cross: Bad class. A: Results for the whole dataset. The color of the datapoints indicates the true class: in red
the Bad quality signals, in green the good quality signals. B: Results of the K-means clustering of Bad quality signals, colored by cluster.

Fig. 5. Examples of signals randomly selected from each cluster. Blue: 760nm component; Green: 850nm component. Top: signals from cluster 1;
Middle: signals from cluster 2; Bottom: signals from cluster 3.

(ICC=0.774) was acceptable - although not optimal [48], but
the individual performances showed high variability. It must be
noted that the raters involved in this study belong to the same
research group: it can be expected that all shared a knowledge
base about the quality of fNIRS data. Future research should
investigate the consensus between raters coming from different
laboratories, and research initiatives such as the many labs [49]
or large scale studies would be needed to provide a better
insight. These results also highlight the urgency of provid-
ing the research community with more reference datasets
(e.g. [50]) that could be used for both training new scholars
and researchers and evaluating and comparing new algorithms
and procedures [51]. The creation of such a dataset would
require a shared effort, as contributions from multiple centers
are needed to overcome the limitation due to the scarce
consensus between raters.

As an alternative to visual inspection, hand-crafted SQI are
still commonly used in the research practice. The advantage of

SQI over visual inspection, is that they are not influenced by
subjective evaluations. However, the results from this study
highlight that if used in combination with threshold-based
rejection approaches, they have low sensitivity toward Good
quality signal: they tend to be much too conservative, thus
increasing the costs of the data acquisition, due to the rejection
of many usable signals. In this study, we considered five SQI
and proved that all are statistically valid in discriminating
between Good and Bad quality signals. Typically, SQI-based
SQC procedures consider three or less SQI only [8], [12], [31]:
we note that the choice of SQI to consider, and respective
thresholds, might be, again, influenced by subjective prefer-
ences or empirical rules, thus representing another source of
variability in the fNIRS signal processing pipeline [5].

Although future research could focus on identifying an
optimal combination of SQIs and on the determination of
more appropriate thresholds, our study showed that the full
potential of SQI could be exploited if they are used in
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combination with machine learning approaches. The use of
a SVM or RF instead of manually-defined thresholds allowed
the improvement of the performance of the SQC; in particular,
in terms of Sensitivity, which increased from 0.493/0.520 on
Train/Test for the threshold-based method, to 0.864/0.850 on
Train/Test for the SVM. We note, however, that the limited
sample size (Ntrain = 411) and relatively shallow architecture
might have prevented us from fully exploiting the potential of
ANN approaches.

Finally, we showed that ANNs are a promising technique
to additionally improve the performance of automated SQC
procedures: the CNN achieved the best performance among all
SQC methods considered in this study (MCC=0.726/0.757 on
Train/Test). Although targeting a different dataset, this study
improves over previous results reported by Gabrieli and col-
leagues [10] which achieved a MCC=0.18/0.25 on Train/test.
The main advantages of DL methods are that, as shown in
other fields, (a) they are more effective predictive models
in general, and (b) they can be applied using an end-to-
end approach. The end-to-end approach requires no addi-
tional signal processing steps, thus simplifying the signal
processing pipeline, while removing a potential source of
variability.

An open issue with DL approaches is the explainability
and interpretability of models [52], [53]. Explainability in
the context of SQC, could be useful as a diagnostic tool
during the setting up of the experimental equipment. In our
study, we implemented two model inspection techniques that
allow some insight in the internal functioning of the mod-
els, focusing on the internal representation of the features.
However, further research is needed to extract from the model
the information to discriminate between possible causes of
Bad quality data (e.g.: physiological noise, sub-optimal scalp-
sensor coupling, technical issues), and provide practical indi-
cations.

V. CONCLUSION

This study investigated several aspects involved in the SQC
of fNIRS data, aiming at identifying the open issues and
opportunities toward the development of fully automated and
reliable SQC procedures.

We highlighted the role of subjectivity in the assessment of
the quality of the signals based on visual inspection, measuring
the consensus and performance of four different raters. Then
we evaluated the use of hand-crafted SQI for the classification
of signal quality, showing the superiority of machine learning
models (SVM) over threshold-based approaches. Finally, we
explored the potential of using DL approaches, using a CNN
that was directly applies on raw signals.

Overall, this study highlighted that the main limitation
towards automated SQC is probably the lack of consensus
between human raters. In fact, the CNN achieved a perfor-
mance that was in line with that of human raters; furthermore,
some raters showed lower 90%CI ranges than the CNN itself.
This study suggests that the computational methods already
available are appropriate to define reliable SQC procedures,
and the main obstacle towards this development seems to
be the lack of reference dataset with high consensus labels.

The efforts of the scientific community should therefore be
directed towards the creation of a common knowledge base
and shared resources, under the principle of Open Science.
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