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ABSTRACT With the automation of industrial production, appearance defect detection based on machine
vision plays an important role in product quality control. The scarcity of defect samples and real-time
requirement are the main challenges in this field. Many existing studies are based on semantic segmentation
network, but they cannot provide a classification confidence score for each image and only report the
segmentation tasks metrics, which ignore that the positive or negative decisions are the key of defect detec-
tion. Therefore, this paper proposes a four-stage appearance defect detection model: contrast enhancement,
segmentation, correction, and decision, which can achieve high detection accuracy with a severe shortage of
positive samples. Since the proposed model simplifies U-Net to segment those candidate defect regions, and
constructs a lightweight decision network based on the candidate regions and segmented mask, the proposed
method not only achieves fast inference speed, but also obtain good performance with fewer defect samples.
Experiments are implemented on three public datasets: magnetic tile dataset, Kolektor surface defect dataset
and DAGM2007 dataset. The influence of each module on the detection accuracy is analyzed. Experimental
results show that the proposed model achieves excellent performance comparing with other state-of-art
methods.

INDEX TERMS Appearance defect detection, convolutional neural network, semantic segmentation, small
defect samples.

I. INTRODUCTION
Appearance defects (such as cracks, spots, holes and wear)
adversely affect the products performance, service life and
users experience, so appearance defect detection is a vital link
of quality control in industrial production.

Since manual inspection has some apparent disadvan-
tages: inefficient, susceptible to the subjective judgment of
inspectors, and increases labor costs, scholars proposed two
main methods for appearance defect detection: the machine
vision-based methods and the deep learning-based methods.

For a classic defect detection system based on machine
vision, it usually consists of two parts: image collection
and image processing. In 1983, Suresh et al. [1] designed
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a steel plate surface defect detection system, this is one
of the earliest machine vision system applied in industrial
production. They used CCD (Charge Coupled Device) cam-
eras to collect images under three light sources, then Robert
gradient operator [2] was used for edge enhancement, and the
thresholding results were sent to a statistics-based classifier.
This system can achieve real-time detection automatically,
but the detection results are easily interfered by illumina-
tion and lack robustness, so it is not widely used in facto-
ries. Wang et al. [3] applied PCA (Principal Components
Analysis) in submerged arc weld X-ray image defect detec-
tion and classified the collected features, although the infer-
ence time is short, the recognition accuracy is only 84.65%.
Liu and Zheng [4] used Fourier transform to detect fabric
defects, they transformed the image to the frequency domain
for filtering, and then reconstructed the image by inverse

83740 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4277-574X
https://orcid.org/0000-0003-3835-1079


X. Xie et al.: Four-Stage Product Appearance Defect Detection Method With Small Samples

Fourier transform. However, in the frequency domain, back-
ground and defect features are easily mixed, resulting in the
defects being filtered. In addition, there are algorithms that
use SVM (Support Vector Machine) [5], template matching
andKNN (K-Nearest Neighbor) classifier [6] to detect defect.
These machine vision-basedmethods realized the automation
and intelligence of defect detection, but they lack generality
and require a lot of modification or redesign when deploying
them to new scenes.

With the improvement of computer performance, schol-
ars also propose many methods based on deep learning.
Defect detection methods based on convolutional neural net-
works can be classified into supervised learning and unsuper-
vised learning. Supervised learning is using labeled images
for training [20]–[23], when the label information is not
precise or incomplete, it is also called weakly supervised
learning [24]–[26]. These methods can achieve high accu-
racy when the number of samples is sufficient. The main
methods of unsupervised learning is to use auto encoder or
GAN [27]–[29] to learn features from defect-free samples,
then input a defect image and convert it into a defect-free
image, finally make difference between the input and out-
put to achieve defect detection. These unsupervised learning
methods perform well on regular texture images, such as
fabric, but can not handle the images in complex scenes.
Park and Kwon [7] designed a simple CNN (Convolutional
Neural Network) to classify the dirt, wear and other defects
on the components, they used 3,000 images to train the
network, and achieved 98% accuracy rate. Cha et al. [8]
achieved crack detection based on the sliding window
method. They designed two sliding window paths and input
the image blocks into the CNN respectively. Finally, the
defect image blocks were combined and restored. However,
this method can only achieve rough crack location, and it
takes a long time to scan the image twice. Chen et al. [9]
applied CNN to defect detection of rail vehicle fasteners.
They first used cascaded SSD [10] and YOLO [11] network
to locate fasteners, and finally used classifier to classify
the defect types. This system can achieve a high detection
rate with good adaptation and robustness in complex envi-
ronments. However, training the three networks requires a
large number of samples and manual annotations, which
also increases inference time. Tabernik and Šela [12] pro-
posed a method based on image segmentation to detect metal
surface defects, this method achieved 99% average preci-
sion with only a few defect samples, but its network is not
designed as a multi-scale architecture, which causes some
small area defects to be lost. Tao et al. [31] used two cascaded
auto encoders to segment defects, and then used a compact
CNN to achieve defect classification. However, in the case
of small samples, too deep network will result in overfit-
ting and increase the calculation time. In short, these meth-
ods based on deep learning have better robustness and can
achieve higher accuracy, but they still do not solve the prob-
lems of large requirements of defect samples and real-time
requirement.

As mentioned above, there are still challenges for the
defect detection system:

1) The system based on deep learning requires a large
number of defect samples, which is difficult to satisfy
in many product lines. Some defects (such as scratch,
white point, back point) are difficult to collect since
there don’t occur frequently. However, to maintain the
performance of the system, enough samples (usually
needs more than one hundred samples) are required
when training the deep learning network.

2) In order to achieve high detection accuracy, the archi-
tecture of deep learning network is usually deep and
complex, which limits the requirement of real-time
detection. Simplify the network will greatly degrades
the performance of the system. Therefore, how to bal-
ance the performance and the processing time is still a
problem.

Themotivation of this paper is to develop a defect detection
system based on deep learning, which can solve the above
difficulties. To do this, we propose a lightweight four-stage
appearance defect detection model, as shown in FIGURE 1.

1) Preprocessing approach is applied to enhance the con-
trast of the input images. In order to make the defect
features easier to be extracted by segmentation net-
work, histogram stretch is first employed to enhance
the contrast of the defect.

2) A mini U-Net [18] is constructed to predict the mask.
In order to simplify the architecture and maintain
its performance, dilated convolution is employed to
expand the receptive field so that the number of the
U-Net layers is reduced, while keeping the perfor-
mance of the network.

3) The prediction mask is corrected and the candidate
defect region is extracted. A rule based approach is uti-
lized to eliminate the interference of mis-segmentation.
As a result, fewer candidate defect regions are sent
to the next decision network, which not only speeds
up the processing, but also reduce the false alarm rate
of the system.

4) The prediction mask of the mini U-Net and candidate
defect region (generated by the third stage) are fed into
the decision network to further verify the prediction
results of segmentation network. The prediction mask
contains the prior knowledge of the segmentation net-
work, which provides a shortcut for the decision net-
work, thus reduce the parameters, and makes it easier
to train with small samples.

As described, the four stages are cascaded and interrelated.
The first stage enhances the contrast of the defect region,
which improves the performance of the segmentation net-
work. The second stage is critical for the whole system. Since
it generates the candidate defect regions, it is the guarantee
of the detection accuracy of the system. Due to the usage of
mini U-Net, the system can segment defect regions with fast
speed. The third stage provides samples for decision-making
and reduces irrelevant interference, resulting in a low false
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FIGURE 1. Overview of the proposed model. In the first stage, the contrast of the input image is enhanced and the data distribution is stretched to
the same range. In the second stage, the proposed Mini U-Net is used to predict the mask. In the third stage, some irrelevant interference in the
prediction mask is removed and candidate defect regions are output. In the fourth stage, the decision network combines the candidate region and
prediction mask to output defect probability.

alarm and fast decision. Finally, the fourth stage gives the
final judgment to make the detection results accurate and
credible.

The remainder of the paper is structured as follows.
In Section 2, we introduce the related works. Our proposed
model is introduced in detail in Section 3. In section 4, the
experimental results of this model are presented and com-
pared with other methods. Finally, we make a summary and
prospect in Section 5.

II. RELATED WORK
LeNet [14] is one of the earliest convolutional neural net-
works for image recognition. It extracted features through
convolution, parameter sharing, pooling and other operations,
and used full-connection layer for classification, which laid a
foundation for other visual tasks.

In the field of image segmentation, inspired by FCN (Fully
Convolutional Networks) [15], Shelhamer et al. designed
an end-to-end model U-Net. It is composed of a group of
symmetrical encoder and decoder, as shown in FIGURE 2
The encoder implements extracting the semantic features
of the input image, and decoder performs reconstructs the
high-level semantic features back to the original resolu-
tion. This pyramid structure with skip connection enables
it to capture multi-scale semantic information, and it has
achieved good performance in medical image segmentation.
Yu and Koltun [16] proposed to use a series of cascaded
dilated convolution for image segmentation. Dilated convolu-
tion can expand the receptive field without increasing param-
eters (see in FIGURE 3), and it can obtain more dense feature

FIGURE 2. U-Net architecture. The encoder extracts the deep abstract
features of the image through convolution and pooling, and then the
decoder restores these abstract features to the original image size
through linear interpolation or transposed convolution and outputs the
prediction mask. Feature fusion is performed at each feature map scale,
it is achieved by concatenating the encoder feature map to the decoder
feature map on the channel dimension.

information compared with downsampling. In the case of
limited computing resources and real-time requirements, the
induction of dilated convolution is a good choice.

In order to improve the performance of CNN with
increasing only a few parameters, Hu et al. [17] proposed
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FIGURE 3. Dilated convolution. Because of the information redundancy of
adjacent pixels, the dilated convolution can capture the long-term
contextual semantic information without adding additional parameters.
Dilation rate represents the sampling interval, when it is 1, which is
regular convolution. Rate = 2 means that 1 (R-1) pixel between adjacent
pixels do not involve the convolution operation.

a channel attention mechanism: SE Net, which squeezes
redundant channels and excites important channels of the
feature maps, SE Net-based model won the ImageNet
Challenge [18] in 2017.

In order to solve the problem of excessive parameters
and computation of convolutional neural network, Sifre [19]
proposed the depthwise separable convolution, that is, each
channel of the feature maps is convoluted separately, then a
1×1 convolution kernel is used to adjust the number of output
channels.

III. PROPOSED SYSTEM
A. PREPROCESSING MODULE
Considering that the samples are collected under different
illumination and the gray level distribution is in a small range,
in order to enhance the contrast of the defects, histogram
stretch is adopted to extend the gray level to the whole
grayscale arrange. The steps of preprocessing module are
show in Algorithm 1.

As shown in FIGURE 4, the grayscale of the input image is
extended. As a result, the contrast of the defects are enhanced,
as show in FIGURE 5.

B. SEGMENTATION NETWORK
Because of the complexity of medical images and high
requirements for segmentation accuracy, the original U-Net
was designed as a five layers encoder-decoder architecture.
However, Zhou et al. [30] noted that increasing the number
of layers of U-Net does not always improve the segmenta-
tion performance, but resulted in a significant increase in
parameters. In fact, the semantic information of industrial
images is relatively simple, under the deep encoder-decoder
architecture, each layer may not produce sufficient feature
differentiation, and multiple feature reuse would cause the
redundancy of parameters. In addition, a few pixel-level
errors in the segmentation network are acceptable because
our system has next correction module and decision network.

Algorithm 1 Preprocessing Module
Input: Grayscale image I (x, y); Probability thresholds:
TMax and TMin.
Output: Preprocessed image I ′(x, y)

1. Calculate the gray histogram of I (x, y) and normalize it
to [0, 1], denote as H [i], where i ∈ [0, 255];
2. Initialize the cumulative sums of probabilities: S1 =
0, S2 = 0;
3. while ((S1 < TMin) or (S2 < TMax)) do

for j = 0to255do
if (S1 < TMin) then

S1← S1 + H [j]
min_index ← j

if (S2 < TMax) then
S2← S2 + H [255− j]

max_index ← 255− j
end for

end while
4. I ′(x, y)← 255 ∗ I (x,y)−min_index

max_index

5. I ′(x, y)←
{
0,&I ′(x, y) < 0
255, I ′(x, y) > 255

6. return I ′(x, y)

Therefore, we propose a mini U-Net for segmentation, see
in FIGURE 6.

The mini U-Net follows the design idea of U-Net, it con-
sists of a group symmetrical encoder and decoder. Since we
reduced the network layers, this leaded to the limited size of
the receptive field, so we replaced the two convolution layers
with dilated convolution. In addition, fewer downsampling
layers can make small area defects less likely to be lost.
For example, holes and dust defects account for a small
proportion in the image, while cracks or fray defects account
for a large proportion, proposed network can capture large
area defects as completely as possible without losing small
area defects.

We employ attention mechanism in skip connection.
SE Net [17] is a channel attention mechanism, which can
suppress the characteristic response of unrelated region and
excite important channels with only a few parameters to
achieve better segmentation performance. Its architecture is
shown in FIGURE 7.

It is worth noting that Sigmoid activation function is added
after the last convolution layer, which can make the segmen-
tation results distribute in (0, 1).

We use cross entropy loss function to train the segmenta-
tion network:

Lseg = −
1
n

n∑
i=1

(w1 ∗ yilnxi + w2 ∗ (1− yi)ln(1− xi)) (1)

where, n is the total number of pixels in a mini-batch, yi is the
pixel of the label mask, and xi is the pixel of the prediction
mask.w1 andw2 are the weights of positive samples (defects)
and negative samples (background) respectively, because
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FIGURE 4. Grayscale histogram.

FIGURE 5. Original(left) and preprocessed images(right).

most areas in the image are background while defect areas
account for a small proportion, we set w1 and w2 to 0.8 and
0.2 respectively.

C. CORRECTION AND ROI EXTRACTING MODULE
Affected by noises, dirt and illumination, there are some
misclassified pixels in the prediction mask. The pur-
pose of this module is to correct the prediction mask
to ensure that candidate defect regions can be correctly
extracted. This module includes four steps: (1) Binarization;
(2) Morphological operation; (3) Filtering out small area
regions. (4) Extracting ROI (Regions of Interest).

IV. BINARIZATION
The purpose of binarization is to filter out some pixels with
low defect probability, which are the darker pixels in the

mask (see in FIGURE 8). Given a threshold T , the calculation
formula of binarization is:

Maskbinary(x, y) =

{
0, Mask(x, y) < T
255, Mask(x, y) ≥ T

(2)

V. MORPHOLOGICAL OPERATION
We implement close operationwith a 7×7 kernel for the result
of previous step. Sometimes the cracks in the image are not
continuous, whichwill lead to the increase of candidate defect
regions, so we use close operation to connect near pixels,
as shown in FIGURE 9.

VI. FILTERING OUT SMALL AREA REGIONS
In some scenarios, small defects such as hair, dirt and dust
layers on the product surface are acceptable. Label masks
do not mark the above conditions, but they have similar
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FIGURE 6. Mini U-Net architecture. On the basis of U-Net, the network depth is reduced, and the dilation convolution and SE Net are employed
to improve segmentation performance.

FIGURE 7. SE Net. A channel attention mechanism in which important channel features are excited and irrelevant channel
features are suppressed.

FIGURE 8. Binaryzation. The pixels in the prediction mask are set to 0 or 255 to achieve filter interference and
highlight the foreground.

characteristics to defects, so the segmentation network pro-
duces uncertain output, which is reflected in the segmentation
response is not strong enough and is intermittent, as shown

in FIGURE 10, the soil causes mis-segmentation. By the
filtering of binarization module, their area is much smaller
than the real defects, filtering these small area regions can
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FIGURE 9. Morphological operation. Due to the discontinuity of the crack, the close operation is used to connect near
pixels to reduce the generation of candidate defect regions.

FIGURE 10. Filtering out small area regions. (a)Input images;
(b)prediction mask; (c) Binary image; (d) Filtering out small area regions.

accelerate the decision-making speed and reduces false
alarm. Users can define the area threshold according to the
practical application scenarios (considering that in some spe-
cial cases the defect area below a certain threshold is also
acceptable). In the experiments, we counted the defect area
of all masks in the training set and the threshold is set to 80%
of the minimum.

FIGURE 11. Rectangle box extension. (a)Input image; (b) prediction mask;
(c) ROI (without box extension); (d) ROI (with box extension).

VII. EXTRACTING REGIONS OF INTEREST
We extract the candidate defect regions by calculating the
minimum enclosing rectangle and then enlarge its size. This
step ensures that rich semantic information of the candidate
regions is captured. In some cases, due to the pixel-level
errors of the segmentation network, the extracted ROI may be
incomplete or dominated by black pixels (see in FIGURE 11),
which is not conducive to the decision network learning
features.

A. DECISION NETWORK
As described in the previous section, segmentation network
may respond to non-product quality phenomena, and the
candidate defect regions output by the correction module are
difficult to distinguish true positive or false positive for the
segmentation network. For some defect-free images, there are
some interferences (for example, for detecting crack defects,
the image possibly includes dirt, fingerprints, etc.), they are
similar to defects. As show FIGURE 12, due to uneven
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FIGURE 12. Mis-segmentation. (a) defect-free images; (b) prediction
masks.

lighting, the corner region of the image produces similar
defects representation.

Therefore, we design a decision network to determine the
true defects and remove those false alarms. The network has
two inputs: the prediction mask and ROI (candidate defect
regions). In the experiments, the input regions are all resized
to 100 × 100 pixels. Due to the fact that the mask contains
pixel-wise segmentation information of the defect region,
and the ROI includes the defect region and its background
(giving global information of the defect), the two inputs of
the network provide rich information for the next decision.

The network is a compact encoder-decoder architecture,
as shown in FIGURE 13. The encoder extracts features by
increasing dimension, then the decoder reduces the dimen-
sion and projects it to a probability map. In order to accelerate
the inference speed, most convolution operations are depth-
wise separable convolution (DSC). When the feature map is
downsampled to 12× 12, every probability value’s receptive
field is a 38×38 patch in the input images. Sigmoid activation
function is used to output the defect probability of each patch.
Finally, global average pooling is used to output the final
defect probability. We do not use the full connection layer to
classify the candidate regions, because it forms a scalar output
from the images, which may cause the classification results
dominated by mask (the network only focuses on whether
there is segmentation information in the mask). Since not
every mask patch can provide segmentation information, the
proposed decision network combines mask information and
ROI features to output a probability map, ensuring output a
high confidence score.

We use mean-squared error loss function to train the deci-
sion network:

Ldec =
1
n

n∑
i=1

(yi − xi)2 (3)

where, n is the number of samples in a mini-batch, yi is
One-Hot encoding label (0 is defect-free sample, 1 is defect
sample), xi is the defect probability predicted by the decision
network.

VIII. EXPERIMENTS
Our experiments are based on three public datasets: Magnetic
Tile Defect dataset [32], Kolektor Surface Defect Detec-
tion dataset [12] and DAGM2007 dataset [33]. All of our
experiments were based on a computer powered by Intel
Xeon Gold 5220 and NVIDIA Tesla T4, the operating sys-
tem is Ubuntu 18.04. We used python3.7 coding language
and PyTorch1.7 deep learning framework to implement our
experiments.

For each dataset, we only used a few dozen defect images
for training, and the simplest data augmentation method was
used: random horizontal and vertical flip. If there are more
than one defect in the image, the correction module will
output multiple candidate regions, and every candidate region
is fed to the decision network for classification respectively.

A. TRAINING SEGMENTATION NETWORK
In the experiments of these three datasets, the segmentation
network used Adam [34] optimizer (β1 = 0.5, β2 = 0.999)
to train 100 epochs, batch size is 2, and initial learning rate
is 0.001. The following learning rate decay strategy is used:

lr = base_lr ∗ (1−
current_epoch
max_epoch+ 1

)0.9 (4)

Due to the imbalance between the number of defect images
and defect-free images in these datasets, we followed the
alternate training strategy of [12], that is, in each epoch, all
defect images were traversed once, while the same number of
defect-free images were randomly selected for training.

B. TRAINING DECISION NETWORK
Training decision network needs to freeze the weights of
segmentation network. However, for most defect-free images,
the defect region cannot be extracted. In order to make the
decision network learn the background features, the ROI is
replaced by a randomly cropped 100× 100 region in the pre-
processed image. The decision network uses Adam optimizer
(β1 = 0.5, β2 = 0.999) to train 50 epochs, with a learning
rate of 0.001, and also adopts the strategy of alternate training
between defect images and defect-free images.

C. TESTING
When testing the model, the decision threshold is set to 0.5.
In addition, in order to speed up the inference time, if no
defect region can be extracted, the decision network will be
skipped and directly be classified as defect-free samples.
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FIGURE 13. Decision network. The prediction mask and ROI are jointly input into the network, and a patch-based decision-making method is used to
output the final defect probability.

We also performed ablation experiments on Kolektor Sur-
face Defect Detection dataset and Magnetic Tile Defect
dataset to explore the contribution of preprocessing module,
correction modeule and decision network respectively.

When the decision network is not enabled, we used a
logistic regression model to replace it:

y = Sigmoid(WXT + b) (5)

where, X is a two-dimensional tensor, which consists of the
global max pooling value and average pooling value of the
prediction mask.

Since the function of correction module is to output can-
didate defect regions, and the logistic regression model only
requires the prediction mask as input. Therefore, when the
correction module is enabled separately, only the mask post-
processing steps of the correction module is enabled and the
postprocessed masks are input into the logistic regression
model.

TPR (True Positive Rate) and TNR (True Negative Rate)
were used to evaluate the classification performance on pos-
itive and negative samples respectively:

TPR =
TP

TP+ FN
(6)

TNR =
TN

TN + FP
(7)

where, TP and TN represent the number of correctly classi-
fied as positive and negative samples respectively. In contrast,
FP and FN are the number of misclassified as positive and
negative samples.

D. INTRODUCTION TO THE DATASETS
Magnetic tile defect dataset is a real world dataset collected
under different illumination by the Institute of Automation,
Chinese Academy of Sciences. We used blowhole (115 sam-
ples), crack (57 samples) and free (1,042 samples) images

(see in FIGURE 14) for experiments. We evaluated the model
with three-fold cross validation. In each experimental group,
we ensured that there were 30 blowhole and 30 crack images
for training fold, and the rest defect images were used for
testing fold. For the defect-free samples, they were evenly
divided into three folds and keep one fold for testing in each
experimental group. Since most defects are represented as
darker regions and only accounts for a small portion in this
dataset. So, the threshold parameter TMin in the preprocessing
module is set to a small value 0.002, and TMax is set to a
higher value 0.01 to expand the gray level of brighter regions,
so that foreground and background can make a difference.
Because the segmentation network outputs strong results for
true defect regions, the binarization threshold is set to 150,
which generates best experimental results. All images and
their masks were resized to 256× 256.
Kolektor surface defect dataset (KolektorSDD) con-

tains 50 electrical commutators surface images (see in
FIGURE 15). Each commutator was collected 7 to 8 non-
overlapping surface images, and at least one was defective.
This resulted in 399 images in this dataset, of which 52 were
defective. We still used three-fold cross validation. In each
experimental group, we ensured the training fold had 30 com-
mutators’ images, the remaining 20 were for the testing fold.
Parameters in the experiment were: TMin = 0.0001, TMax =
0.01 and T = 150. All images and their masks were resized
to 704 × 256.
DAGM2007 is a surface defect image dataset with 10 tex-

ture class (see in FIGURE 16). The defect samples and
non-defect samples are unbalanced (In class1-6, there are
150 defective images and 1,000 non-defective images; in
class 7-10, there are 300 defective images and 2,000 non-
defective images), and only weak labels are given, that
is, the label is marked in ellipse form, it indicates the
defect area roughly. Since each class is already divided
into a training set and a testing set, we did not use K-fold
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FIGURE 14. Examples on magnetic tile dataset.

cross validation and enabled all modules. The images
size of each sub-dataset is 512 × 512, the binarization
threshold T is 150, and other parameters are shown in
the Table 3.

E. EXPERIMENTAL RESULTS AND ANALYSIS
Proposed model performance on the magnetic tile dataset is
reported in Table 1. The baseline model does not enable all
three modules, we can see that the preprocessing module can
significantly improve the TPR, but also enhance some noises
and dirt presentation, which leads to a slight drop in TNR.
In industry field, it is acceptable to increase some false alarm
rate in exchange for a lower missed alarm rate. The separate
enabling of correction module reduces the accuracy a little,
because this module is designed to output candidate defect
regions, postprocessed masks can not improve the logistic
regressionmodel performance. However, when the correction

and decision network are combined and enabled, model
achieves the highest TNR, which indicates that correction
module and decision network are correlated and can remove
many false positive samples. The contribution of decision net-
work is reflected in the improvement of TPR, because logistic
regression model only uses prediction mask to classify, which
is very susceptible to mis-segmentation. Overall, the number
of misclassified samples (FP+FN) is the least when all three
modules are enabled.

Table 2 shows model performance on KolecktorSDD.
We achieved almost 100% TPR without enabling any mod-
ules, this is because the segmentation network outputs good
results for positive samples. In most experimental groups,
enabling any of the three modules results in a slight improve-
ment in TNR compares to the baseline model. On the whole,
when all three modules are enabled, there are only a few false
positive samples and all defective samples are found by our
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FIGURE 15. Examples on kolektor surface defect dataset.

FIGURE 16. DAGM2007 dataset.

model, which meets the accuracy requirements of industrial
application.

In the DAGM2007 dataset, our model achieves 100%
classification accuracy (see in Table 3). This indicates that

detecting defects from regular texture images is a simple task
for proposed model, it performs well even in the case of
weak labels, which can significantly reduce the time of data
annotation in practical applications. In addition, the saturated
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TABLE 1. Ablation Experiment on Magnetic Tile Defect Dataset.

TABLE 2. Ablation Experiment on KolektorSDD.

sample quantity is also an important reason why proposed
model can achieve such good performance.

To explore whether proposed model solves the chal-
lenge of sample scarcity, we conducted defect sam-
ples sensitivity experiments on magnetic tile dataset and
KolecktorSDD. We used 10, 20 and 30 defect sam-
ples to train the model respectively, and kept the same
dataset division as the previous experiments to evaluate the
model.

As can be seen from Table 4, even if only 10 defect
samples are used for training, proposed model can achieve
more than 0.7 accuracy. When the number of defect samples
was increased to 30, the accuracy rate was above 0.9 in both

datasets. The experimental results show that proposed model
overcomes the challenge of sample scarcity to some extent.
We deem the following factors are the reasons why proposed
model still works with small samples:

1) The preprocessing module can improve the general-
ization of the model in small samples case. Because
preprocessingmodule keeps the information (gray vari-
ation) which contain diagnostic value, and eliminates
the problem of inconsistent illumination. This makes it
less susceptible to extreme sample interference during
training and testing. In addition, the same data distri-
bution can make the model converge faster under batch
training.

VOLUME 10, 2022 83751



X. Xie et al.: Four-Stage Product Appearance Defect Detection Method With Small Samples

TABLE 3. Performance on DAGM2007.

TABLE 4. Sensitivity of the model to the defect sample Quantity.

2) Proposed mini U-Net is suitable for small sample sit-
uation. Due to the pruning of the original U-Net, mini
U-Net avoids the over-fitting problem of deep neural
network in small samples. In addition, the usage of SE
Net and dilated convolution also ensures the segmenta-
tion performance.

3) Correction module can provide more samples for deci-
sion network. In the segmentation task, an image is a
sample, while the correction module may output mul-
tiple candidate regions from an image, which enriches
the samples of the decision network. Because correc-
tion module filters out some irrelevant interference, the
remaining candidate regions are difficult to distinguish
true positive and false positive for the segmentation
network. Furthermore, the decision network focuses on
the classification of these difficult samples, which also
improve the mode performance with small samples.

F. COMPARISON WITH THE STATE-OF-ART MODELS
We compared the proposed model with [12] and [31], both
of them are segmentation-based defect detection methods.
In addition, the model performance after replacing the mini
U-Net with the original U-Net is also reported. We conducted
experiments under the same dataset division and reported
per image average inference time consumption and F1-score.
Accuracy is too sensitive to the number of samples, while
F1-score is a metric that combines precision and recall, which
can fully demonstrate the model performance when positive
and negative samples are unbalanced.

F1− score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(8)

where,

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

Experimental results (see in Table 5) show that although
our inference time is not the shortest, the F1-score is much
higher than other methods. Due to Domen’s segmentation
network contains only convolution and downsampling layers,
the predication mask is only 1/8 the size of input image,
which shortens the inference time, but results in poor seg-
mentation performance for small area defects. As shown in
Table 5, Domen’s F1-score is significantly lower than ours
on magnetic tile dataset. Tao’s method uses two cascaded
autoencoders to enhance segmentation results, and they have
achieved good performance with 3000 training samples. But
it does not work in small sample situation, too many net-
work parameters degrade the performance of the model. Our
segmentation network keeps the same size as the input, and
performs feature fusion at multiscale, which greatly ensures
the segmentation performance. After replacing mini U-Net
with original U-Net, the inference time is increased and the
F1-score decreases a little except for the DAGM2007 dataset.
The experimental results once again confirm the conclusion
of [30]: deeper U-Net is not always performswell, the number
of layers should depend on the difficulty of your dataset.

On the real-time issue, the proposed model won the second
place. We deem that real-time should be based on excellent
classification performance, otherwise faster processing speed
is meaningless. Overall, the proposed model achieves the
highest detection rate with acceptable processing time. It is
a balance between classification performance and real-time
requirement.
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FIGURE 17. Comparison of segmentation results.

TABLE 5. Quantitative Evaluation.

Since our model is applied in the industrial field, the
pixel-level error of the segmentation network is acceptable,
because the mask is visualized for inspectors in practical
applications, and the classification results of the decision
network are the most important. So we do not quantitatively
evaluate the segmentation network. However, proposed mini
U-Net still achieves good segmentation results, as shown in
the FIGURE 17.

IX. CONCLUSION
In this paper, we proposed a four-stage product appearance
defect detection model: the first stage implements contrast
enhancement, following by the second stage, which is a seg-
mentation task, the third stage performs correction and ROI
extraction, and the final stage implements decision making.
We have conducted experiments on Magnetic Tile dataset,
KolektorSDD and DAGM2007 dataset. The proposed model
fully solved the challenge of DAGM2007 and achieved more
than 0.9 F1-score on Magnetic Tile dataset and Koleke-
torSDD. We also tested the sensitivity of the model to defect
sample quantity, the experimental results show that the pro-
posed model can still work in small samples. Comparing with
similar methods, our model can achieve best classification

performance with a relatively short time consuming. To sum
up, the proposed model solves the challenges mentioned
in the introduction section, and we believe this model can
provide powerful help in the quality control of industrial
production.

In the future work, we will improve the system architecture
to reduce the processing time, and make the system automat-
ically search for the optimal parameters for better robustness.
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