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Abstract—The attention mechanism of the Transformer
has the advantage of extracting feature correlation in the
long-sequence data and visualizing the model. As time-
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series data, the spatial and temporal dependencies of the
EEG signals between the time points and the different
channels contain important information for accurate clas-
sification. So far, Transformer-based approaches have not
been widely explored in motor-imagery EEG classification
and visualization, especially lacking general models based
on cross-individual validation. Taking advantage of the
Transformer model and the spatial-temporal characteris-
tics of the EEG signals, we designed Transformer-based
models for classifications of motor imagery EEG based
on the PhysioNet dataset. With 3s EEG data, our models
obtained the best classificationaccuracy of 83.31%, 74.44%,
and 64.22% on two-, three-, and four-class motor-imagery
tasks in cross-individual validation, which outperformed
other state-of-the-art models by 0.88%, 2.11%, and 1.06%.
The inclusion of the positional embedding modules in the
Transformer could improve the EEG classification perfor-
mance. Furthermore, the visualization results of attention
weights provided insights into the working mechanism
of the Transformer-based networks during motor imagery
tasks. The topography of the attention weights revealed a
pattern of event-related desynchronization (ERD) which was
consistent with the results from the spectral analysis of Mu
and beta rhythm over the sensorimotor areas. Together, our
deep learning methods not only provide novel and powerful
tools for classifying and understanding EEG data but also
have broad applications for brain-computer interface (BCl)
systems.

Index Terms— Motor imagery (MI), EEG classification,
transformer, attention mechanism, CNN, visualization,
brain—computer interface (BCI).

|. INTRODUCTION

LECTROENCEPHALOGRAM (EEG) reflects the activ-

ities from different neuron populations in the central
nervous system (CNS). EEG has been widely used in neural
engineering, neuroscience, and brain-computer interface (BCI)
systems [1]-[3]. The Motor Imagery (MI) paradigm is com-
monly used in the electroencephalogram brain-computer inter-
face (EEG-BCI) system [4]-[6], which requires subjects to
imagine the movement of different parts of the body, rather
than the actual movement. Therefore, the accurate classifica-
tion of EEG signals from different MI tasks is important for
the BCI system [5]. External devices can take advantage of
the accurate classification to perform multiple tasks through
the BCI system. Accurate classification is helpful for the reha-
bilitation and functional recovery of patients. However, EEG
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signals have low spatial resolution, high temporal resolution,
low signal-to-noise ratio, and large individual differences [2].
These characteristics pose a great challenge to the signal
processing and accurate classification of motor imagery EEG
in BCI systems.

Traditional machine learning methods for motor-imagery
electroencephalogram  (MI-EEG) classification  usually
included feature extraction and feature classification [6]. For
example, Filter bank common spatial pattern (FBCSP) [7],
Fast Fourier Transform (FFT) [8], and Wavelet Transform [8],
[9], etc. for feature extraction, supervised learning methods of
support vector machine (SVM) [10] and linear discriminant
analysis (LDA) [11] for feature classification, or unsupervised
learning method of K nearest neighbor (KNN) for feature
classification [6], [12]. However, the useful information
of EEG may be lost during feature extraction. With the
abilities of automatic feature extraction and rich feature
representation, the deep learning model can directly receive
the preprocessed EEG data and establish an end-to-end model
without feature extraction [2], [5]. Deep learning structures
[2] of EEG classification have been applied in medical and
neuroscience fields, mainly including convolution neural
network (CNN) [5], [13], deep belief network (DBN) [14],
recurrent neural network (RNN) [15], [16] and Hybrid CNN
[17]. In the CNN model, the spatial kernel and the temporal
kernel were respectively used to extract EEG information
from different channels simultaneously and from the same
channel at different times [5], [13]. Some studies chose Long
short-term memory (LSTM) and a modified RNN to capture
temporal information in EEG signals [15], [18], [19]. Some
fusion models used CNN to extract spatial features, and then
input these features into the RNN model to learn temporal
information [20], [21]. Others have studied the combination
of CNN and Multi-layer perceptron or Auto-encoder for
EEG classification [22]. For the motor imagery EEG,
CNN networks are widely used, while it has limitations in
perceiving global dependence [2], [13]-[15], [23], [24].

Artificial attention in deep learning is proposed based on
the attention mechanism in the brain, which helps to improve
the flexibility and performance of the deep learning model.
There are two commonly used self-attention mechanisms,
namely the RNN-based attention mechanism, which calculates
attention weights based on the hidden layer of the RNN,
and the multi-head attention mechanism, which calculates
the correlation between each pair of time points [25]. The
RNN-based attention mechanism has been used for the EEG
classification tasks [26]. The transformer uses multi-head
attention instead of a recurrent layer or convolutional layer to
extract information, such as BERT [27] and GPT-2 [28]. These
methods improve the performance of multiple tasks in natural
language processing (NLP) [25]. Recently, Transformer-based
models have been developed for object detection [29], image
classification [30], and protein engineering [31], suggesting
their wide applicability. Time series such as EEG signals
have long-range dependencies, which can be characterized
by estimating the Long-Range Temporal Correlation (LRTC)
[32], [33]. LRTC has been indeed observed in the EEG
and becomes stronger during voluntary movement and motor

imagery [32], [33]. The spatial linear and nonlinear dependen-
cies have been observed in time-series EEG signals [34], [35],
showing inter-channel correlation [36], [37]. Therefore, spatial
and temporal dependencies inherent in the EEG signals can
be extracted for the classification tasks. Learning long-range
dependencies is a key challenge in many sequence transduction
tasks [25]. Transformer is the first sequence transduction
model relying entirely on an attention mechanism to draw
long-range dependencies without using complex recurrent or
convolutional neural networks [25]. The transformer also has
better interpretability than the above-mentioned deep learning
models [38].

EEG-based Transformer models have been used for emotion
recognition, classification of imagined speech, and sleep stage
classification [39]-[43]. A few studies attempted to adopt
Transformer models for motor imagery EEG. Tao ef al. [44]
employed a gated Transformer on the same PhysioNet dataset
as used by this paper but they only conducted one multi-class
classification. Song et al. [24] performed spatial filtering first
on a different EEG motor imagery dataset and then subjected
the data to a Transformer decoder. This study only had
9 subjects and used subject-specific models (within-individual
training). Kostas et al. [45] used the same EEG dataset, while
the model consisted of two stages: the first stage downsampled
raw data using a stack of short-receptive field 1D convolutions,
and the second stage used a transformer encoder to map
data representations to some new sequence that embodies
the target task. This study collapsed the spatial and temporal
information in the Transformer. Another drawback of these
studies is that they use within-subject training by combined
EEG datasets and this approach has limited adaptability and
robustness for different individuals [46]. These studies mainly
rely on combined EEGs from multiple trials and they need
frequency-domain features or require preprocessing of the
EEG data. In this study, we propose an end-to-end Transformer
framework that is capable of processing raw EEG data while
retaining the spatiotemporal characteristics that are important
for model visualization.

To address the above issues, we proposed a new deep
learning structure for EEG classification based on the Trans-
former module, and analyzed the model behaviors for MI-EEG
classification. The main contributions are as follows:

First, we designed a novel Transformer model for study-
ing the brain-like neural mechanisms. Five categories of
Transformer-based models, including spatial- Transformer
(s-Trans), temporal-Transformer (t-Trans), spatial-CNN -+
Transformer (s-CTrans), temporal-CNN + Transformer
(t-CTrans), and fusion-CNN + Transformer (f-CTrans), and
systematically tested these models on the Physionet EEG
Motor Movement/Imagery Dataset [47]. With 3s data, our
models obtained the best accuracy of 83.31%, 74.44%, and
64.22% in two-, three-, and four-class classification tasks,
respectively, which outperformed other state-of-the-art (SOTA)
models.

Next, we explored three categories of Positional Embed-
ding (PE) modules [25], relative positional encoding, channel
correlation positional encoding, and learned positional encod-
ing. Compared with the baseline model without positional
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encoding, the accuracy of embedded positional coding was
improved by 0.36% to 2.63%, which proved that positional
embedding methods could improve the EEG classification
ability.

Last, the weights of the multi-head attention module in
the s-Trans model were visualized. The visualizations were
plotted based on the EEG electrode locations. We found that
the weights of the Transformer module corresponding to the
sensorimotor areas [48]-[50] showed a pattern of event-related
desynchronization (ERD). These data were consistent with the
Mu and beta band rhythmic ERD [51], [52]. The visualiza-
tion results demonstrated that Transformer-based methods can
contribute to the understanding of network behavior for the
classification tasks based on the EEG data.

[I. MATERIALS AND METHODS
A. Dataset and Preprocessing

We used the PhysioNet EEG Motor Movement/Imagery
Dataset [47] containing 109 subjects with more than 1500 tri-
als. The dataset was recorded using the BCI2000 system from
64 electrodes sampled at 160 Hz. Each subject performed
14 runs consisted of 2 baseline runs, 6 motor movement runs
and 6 motor imagery runs. In this study, we focused on the
motor imagery classification and selected the following runs:

« A baseline run for rest-state of opening eyes (O),

o Three task runs for motor imagery of left fist (L) against

right fist (R),
o Three task runs for motor imagery of both fists against
both feet (F).

Based on the above categories, data were arranged as three
subsets: two-class of L/R, three-class of L/R/O, and four-class
of L/R/OJF, respectively [5], [13]. For each subject, 21 trials
were selected per class. Each trial lasted 8 seconds, with the
first 2s for rest, the following 4s for motor imagery, and the last
2s for rest. 3s (480 samples) and 6s (960 samples) segments of
EEG data were used to train and test our models. We used both
3s and 6s data for the classification. 3s data included the first
3s data from the motor imagery period, and 6s data included
the entire motor imagery period as well as one second before
and one second after the motor imagery period. We applied
the Z-score normalization to preprocess the EEG data, and
added the random noise to prevent over-fitting, as shown in
the following formula:

X* = XT” +aN (1

X was the raw EEG data and X* was the EEG data after
preprocessing. x4 was the mean value of data and J was
the standard deviation. N represented the random noise and
o controlled the percent of random noise. The function of
“np.random.randn” in Python was used to generate the random
noise N with standard normal distribution. As the same with
Wang et al. [5], the percent of random noise a was set to 0.01.

B. Model Architecture

1) Architecture Framework: Fig. 1 showed the overall
framework of our Transformer-based approaches for EEG
classification.

The framework demonstrates an end-to-end classification
of the raw EEG data. The network consisted of Transformer
modules as well as operations of Positional Embedding.
We also designed methods that combined the CNN module
and the Transformer module. CNN was included because
of its good properties for feature representation [5]. In the
implementation, we built a total of five Transformer-based
models in which two models only relied on the Transformer
without including the CNN and three models used network
architecture of combined CNN and Transformer. After the
CNN and the Transformer modules, we included a fully-
connected layer.

2) Transformer Module: We adopted the network architecture
of Transformer [25], which has achieved excellent perfor-
mance in the translation quality of natural language processing
(NLP). Like most competitive neural sequence transduction
models, the Transformer module followed the encoder-decoder
structure using stacked self-attention and point-wise, fully
connected layers. The model multiplied the input vector with
three different weight matrices to obtain the queries vector
(Q), keys vector (K) and values vector (V). The “Scaled Dot-
Product Attention” was shown in Fig. 2a, which computed the
dot products of the queries with all keys, divided each by +/dy,
and applied a softmax function to obtain the weights on the
values, as shown in formula (2):

. QKT
Attention(Q, K, V) = softmax —d A" 2)
Kk

Multi-head attention consisted of several “Scaled Dot-
Product Attention” layers, allowing the model to jointly focus
on information from different representation subspaces at dif-
ferent locations [25]. The “Multi-Head Attention” was shown
in Fig. 2b and formula (3):

MultiHead (Q, K, V) = Concat (heady, ..., heady) woO
Wherehead; = Attention (Q, K, V) 3)

In this study, we employed h = 8 parallel attention layers
(so-called 8 attention heads), and solely embedded the encoder
part of Transformer into the EEG classification. As shown in
Fig. 2¢, the Transformer module had two submodules. The
first submodule included a multi-head attention layer followed
by a normalization layer. The second submodule included a
position-wise fully connected feed-forward layer followed by
a normalization layer. The residual connection was employed
around each of the two submodules.

3) Positional Embedding (PE) Module: In the field of NLP,
the predecessors embedded the position coding in the Trans-
former model to increase the location information [25]. For
the EEG data, we explored three categories of Positional
Embedding (PE) modules, the relative positional encoding,
the channel correlation positional encoding, and the learned
positional encoding. The relative positional embedding method
used the sine and cosine function to represent the relative
position coding (formula (4) and (5), respectively). If we
considered the channel position as pos, and the time points
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Fig. 1. lllustration of the proposed transformer-based deep learning framework for MI-EEG classification.

() (b)

(c)

( Scaled Dot-Product \

Attention

Dot Product

SoftMax

1

/ Multi-Head Attention \

Transformer module

Multi-Head
Attention

Scaling

Dot Product

Attention

Scaled Dot-Product

Add & Norm

|

=

[ Feed Forward ]

\ o] x| Lv] )

[ Linear [ Linear [ Linear

rod
o

1]]/

Fig. 2. The detailed structure of transformer module: (a) Scaled dot-product attention, (b) Multi-head attention, (c) Transformer module.

as i, positional encoding was described as follows,

] pos
PE(pos,Zi) = sin — 4)

/!

10000 d

pos

PE (pos,2i+1) = cos — 5 (5)

//

10000 /d

d represented the dimension of the vector. At each position
of the electrode vector, the PE at the even and odd time points
were described by the sine and cosine functions, respectively,
and i was the index of the node in the electrode vector divided
by 2. We conducted the inner product of the relative position
coding of the position posl and pos2, and found that as the
distance increased, the correlation between the two positions
became smaller.

In the channel correlation positional embedding method, the
Cz electrode was selected as the central electrode, and the
cosine distance between other electrodes and the central elec-
trode was calculated. Pgenral represented the three-dimensional
coordinate of the central electrode Cz, and Px was the K,
position for the three-dimensional coordinate. As shown in
the formula 6, the cosine distance from all electrodes to the
central electrode Cz could be calculated. The sine and cosine

operations were carried out by using the distance of simy
instead of pos in the formula 4 and formula 5, and the resulting
matrix was the position coding matrix of channel correlation
positional encoding.

_ Pcentral 'Pk
IPcentrat Il | P |l

In the learned positional embedding method, we embedded a
trainable matrix of the same size to the inputs, and initialized
the embedding matrix randomly. During training the model,
the parameters of the position coding matrix were updated
constantly by learning.

4) Spatial and Temporal Transformer Model: Transformer
model considered the correlations between the data points in
the sequence data. In order to consider correlations in both
temporal and spatial dimensions in the EEG data, we arranged
the input data for the Transformer modules in both spatial-wise
and temporal-wise way. In the spatial-wise way (s-Trans,
Fig. 3a), EEG data along the time axis from each channel were
regarded as features, and the Transformer module calculated
the correlations between different channels. In the temporal-
wise way (t-Trans, Fig. 3b), EEG data along the channel axis
at the same time point were regarded as features, and the model
calculated the correlations between different time points.

(6)

simk
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Fig. 3. The detailed architecture of EEG classification models based on Transformer. (a) spatial-transformer (s-Trans) model, (b) temporal-

Transformer (t-Trans) model, (c) spatial-CNN + Transformer (s-CTrans) model, (d) temporal-CNN + Transformer (t-CTrans) model, (e) fusion-CNN +

Transformer (f-CTrans) model.

As shown in Fig. 3(a-b), the spatial-wise or temporal-wise
EEG data were embedded with the position coding and then
fed into the Transformer modules. The features obtained by
Transformer modules were fed into the fully connected layers
for EEG classification. We explored the influence of the
number of Transformer modules on the classification results.
The number of Transformer modules was tested from 1 to 6.
When the number of 3 was chosen, the classification achieved
the best results. We therefore included three Transformer
modules in our models.

5) Transformer-Based Model Combining With Convolutional
Neural Network (CNN + Transformer Model): Convolutional
Neural Network (CNN) has been used for generalized feature
learning and dimension reduction for the EEG data [5],
we designed a fusion model which combined the CNN and
the Transformer module. CNN implementation also took the
spatial and temporal representation into consideration. The
CNN performed the feature extraction and these features were
fed into the multi-head attention layer of the Transformer.

In the spatial implementation of the CNN + Transformer
model (s-CTrans, Fig. 3c), the CNN module included two
convolutional layers and one average pooling layer. In the first
convolutional layer, we used 64 kernels with the size of 1 x 16
(channel x time points) to extract EEG temporal information,
and adopted the SAME padding. The average pooling layer
had the pooling size of 1 x 32. The second convolutional
layer used 64 kernels with the size of 1 x 15, and adopted
the VALID padding.

In the temporal implementation of the CNN + Transformer
model (t-Ctrans, Fig 3d), the CNN module included one
convolutional layer and one average pooling layer. The con-
volutional layer used 64 kernels with the size of 64 x 1(chan-
nel x time points) to extract EEG spatial information, and
adopted the SAME padding. The average pooling layer had
the pooling size of 1 x 8. After the average pooling layer,
we transposed the features.

For both s-CTrans and t-CTrans models, features obtained
by the CNN module were embedded with the position cod-
ing, and then passed through the Transformer modules and
then through fully connected layers for EEG classification,
as shown in Fig. 3c-d.

The fusion CNN + Transformer model (f-CTrans) dealt
with the spatial and temporal information in parallel (Fig. 3e).
After the CNN and the Transformer processing, the two
outputs from the two streams were combined. The combined
features were fed into the fully connected layers for EEG
classification.

C. Training Setup

1) Training Parameter Settings: Empirically, the number of
head in each multi-head attention layer was set to 8 [25]. The
dropout rate was set to 0.3. The parameter of the position-wise
fully connected feed-forward layer with a ReLU activation
was set to 512. The weight attenuation was 0.0001. All the
models used the Adam optimizer. The training epoch was set
to 50. We used three GeForce GTX 1080Ti GPUs to train our
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TABLE |
PARAMETER SETTINGS FOR OUR TRANSFORMER-BASED EEG
CLASSIFICATION MODELS

Parameters s-Trans t-Trans s-CTrans  t-CTrans f-CTrans
Learning rate 0.0007 0.0005 0.0007 0.0007 0.001
Momentum  0.9,0.999  0.9,0.95 0.9,0.95 0.9,0.95 0.9,0.95
dk 64 64 128 128 128
dv 64 64 128 128 128
 Decay 5153045 51530 10,2030 10,30 10,30
milestones
Decay rate 0.1 0.1 0.05 0.1 0.1

models, and constructed these deep learning models on the
Pytorch platform. In the spatial-Transformer model, the data
points across all time points in a given channel were used as
features. For the Positional Embedding, the dimension of d in
formula 4 and formula 5 was 480 (3s) or 960 (6s), depending
on the temporal length of inputs. In the temporal- Transformer
model, the data points across all the channels at one given time
point were used as features. The dimension of d was equal to
the number of channels. For the CNN + Transformer model,
the dimension of d was set to 64. The remaining parameters
were shown in Table I.

2) Model Training Techniques: There were two training tech-
niques for training and testing EEG classification models, the
within-individual training and cross-individual training [22].
EEG data were usually recorded in multiple sessions for one
individual. During the within-individual training, multiple-
session data was divided into the training set and test set. The
model was tested on new sessions, but training and test ses-
sions belonged to the same individual. The within-individual
training technique could give higher accuracy. During the
cross-individual training, the individuals were divided into
training individuals and test individuals. Then, the model
was tested on new individuals. The cross-individual training
technique involved information transfer between different indi-
viduals. Although cross-individual approach was challenging,
the models evaluated by this approach were more robust and
generalized [22]. Thus, we used the cross-individual training
technique for training and testing our proposed Transformer-
based models.

In this study, we adopted the 5-fold cross-validation to test
the model performance. The data samples were from all the
trials across multiple sessions. During training, the individuals
were randomly split into 5 subsets. One of the 5 subsets
was selected for testing, and the remaining 4 subsets were
used for training. We repeated this process for 5 rounds to
obtain 5 accuracies. The classification result was the average
of 5 repetitions.

3) Performance Metric: We used the classification accuracy
and the confusion matrix to evaluate the classification perfor-
mance. The accuracy was the ratio of correctly recognized test
samples to all test samples (test subjects x trials/subject). The
confusion matrix was a performance measurement technique
in the binary and multiclass classification problems, which

represented the counts from the predicted and actual values
broken down by each class.

D. Visualization

The visualizations of attention weights have been widely
used in the NLP area [53]. In the multi-head attention module,
visualization could show how the model allocated weights in
different nodes of input, which was helpful to understand the
working mechanism of the Transformer [38]. Since in our
spatial-Transformer model the length of the output features
from the attention layer equals the number of the channels,
this allowed a direct comparison of the EEG topographical
analysis to the value of the weights according to the electrode
locations on the brain. We then used the s-Trans model to
perform the visualizations for the two-class classification.

In the “Scaled Dot-Product Attention” (Fig. 2a), the input
consisted of queries (Q) and keys (K) of dimension di, and
values (V) of dimension dy. In our Transformer-based models,
we set dy = dy = 64, which was the same size as EEG
channel numbers. The attention weight matrix in this paper
was the Attention(Q, K, V) in the formula (2). We visual-
ized the high-dimensional features from the last Transformer
module in which more representative capability of the EEG
should be extracted. The size of the attention weight matrix
was 64 x 64. The diagonal of the attention weight matrix
represented the degree of activation of each electrode. Then
we mapped the diagonal of the attention weight matrix into the
head topography using MNE-Python based on the international
10-10 EEG standard. The values were then normalized to the
range of [0, 1].

The visualization and the statistical analysis used the data
from one-fold test result of 5-fold cross-validation. The brain
areas corresponding to the sensorimotor cortex had been
demonstrated to exhibit ERD during motor imagery [54]-[56].
Similar to other literature, we chose 9 electrodes from the
left hemisphere of the sensorimotor area including: FC5, FC3,
FC1, C5, C3, C1, CP5, CP3, CP1, and 9 electrodes from the
right hemisphere [50], [57]-[59], including: FC2, FC4, FC6,
C2, C4, C6, CP2, CP4, CP6. We averaged the attention weights
for the above electrodes in each hemisphere and performed
a Wilcoxon signed-rank test between the left and the right
hemispheres across all the test subjects. We presented averaged
attention weights for all the test subjects using 64 electrodes
on the head topography. Because 8 heads were included in the
multi-head attention module, we obtained 8 head topographies
of attention weights per class.

I1l. RESULTS

A. Performance of Transformer-Based EEG
Classification Models

1) The Classification Accuracies: We summarized the results
for the classification accuracy from our five model imple-
mentations in Table II. Considering the application compa-
rability between models, our Transformer-based models are
compared with some recent representative baselines [5], [13],
[45], [60]-[62] using the same dataset of the PhysioNet
and similar cross-individual training method, as shown in
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TABLE Il
ACCURACY (%) COMPARISON BETWEEN OUR MODELS AND OTHER
SOTA MODELS IN THE PHYSIONET DATASET FOR CROSS-INDIVIDUAL
CLASSIFICATION

Models 3s >=4s
L/R  L/R/O L/R/O/F L/R L/R/O L/R/O/F

Our s-Trans 81.11 70.25 59.35 87.46 75.41 64.04

Our t-Trans 80.77 70.31 5821 86.10 75.24 62.15

Our s-CTrans 83.31 72.88 63.25 87.80 77.09 68.10

Our t-CTrans 82.56 72.87 63.48 87.80 78.98 68.54

Our f-CTrans 8295 74.44 64.22 87.26 78.44 67.96

CNN (2018) [5] 80.38 69.82 5858 87.98 76.61 65.73
EEGNet (2020) [13] 82.43 7233 63.16 - -- -
EEGNet Fusion (2020) [60] - - - 83.80 - -
DG-CRAM (2020) [61] 74.71 - -- -- - --
MAML-CNN (2021) [62] 80.60 - - -- - -

BENDR (2021) [45] -- - - 86.70 --

TABLE II. Brief descriptions of these baseline models were
given as follows: CNN [5] is based on a shallow CNN with two
convolutional layers. EEGNet [13] proposes a general-purpose
CNN model with a single EEGNet architecture. EEGNet
Fusion [60] is also based on CNN with a three-branch EEGNet
architecture. DG-CRAM [61] is a graph convolutional recur-
rent attention model with combined CNN and RNN. MAML-
CNN [62] proposes a CNN-based model with model-agnostic
meta-learning. BENDR [45] is a Transformer-based model
with two stages.

Using 3s data, the best accuracies from our models were
83.31%, 74.44%, and 64.22% for two-, three-, and four-class
classifications, respectively. Our results performed better than
the baseline models in all three classifications. Among these
models (>=4s) in TABLE II, except EEGNet Fusion [60] on
4s data, other models all used 6s data. Using 6s data, the
best accuracies of our models were 87.80%, 78.98%, and
68.54%. Therefore, inclusion of the EEG data with longer
period produced higher classification accuracy. When com-
pared with the baseline models, our methods were better for
the three- and four-class classifications. In case of three- and
four-class classifications, for 3s data our f-CTrans performed
best and for 6s data our t-CTrans model performed best.
Therefore, our Transformer-based classification methods had
great classification ability.

2) The Training Curves: The classification accuracy training
curves of EEG classification models in different motor imagery
tasks were plotted against the training epochs with 3s data
(Fig. 4). The classification accuracies gradually increased to
stable levels as the training epochs increased. After adding
CNN, the accuracy training curves converged faster, which was
consistent with the higher accuracy. And the training curves of
two-class classification converged better than that of three- and
four-class classifications, which was consistent with the higher
accuracy of two-class in compared with three- and four-class.

3) The Confusion Matrix Results: In the study, the confusion
matrix was used to observe the correct classification and
misclassification of each category. The number on the diagonal
of the confusion matrix represented the number of correctly
classified samples in each category, otherwise the off-diagonal
of the matrix represented the number of misclassifications.

TABLE IlI
CLASSIFICATION RESULTS OF SPATIAL-TRANSFORMER MODEL USING
DIFFERENT POSITIONAL EMBEDDING METHODS

Methods 480 (3s) 960 (6s)
L/R L/R/O L/R/O/F L/R L/R/O L/R/O/F
relative PE 81.11% 70.25% 59.35% 87.46% 75.41% 64.04%
Cha.nnel 81.49% 69.48% 59.47% 87.14% 75.26% 64.05%
correlation PE
learned PE 81.47% 70.02% 59.08% 87.07% 75.52% 64.06%
No PE 81.13% 68.25% 57.23% 86.83% 73.15% 61.43%

As shown in Fig. S1, the correct classification number of
all models was considerably larger than the misclassification
number, indicating the effectiveness of the Transformer model.

4) The Results of Positional Embedding Methods: To under-
stand how the Positional Embedding (PE) contributed to the
classification, we compared the classification results using
the three PE methods in the s-Trans model. Compared to
the model without the PE, the three PE methods had better
classification results (Table III). For 3s and 6s data, different
PE methods had different accuracies, though the differences
were modest. It should be noted that the learned positional
embedding method required training and had more training
parameters. Therefore, inclusion of the PE methods in our
models increased the classification accuracy.

B. Visualization of Transformer-Based EEG
Classification Models

1) t-SNE Visualization: We applied the t-distributed Sto-
chastic Neighbor Embedding (t-SNE) method to visualize
the high-dimensional features in the fully-connected layer
of our s-CTrans model. In the two-class classification task
(Fig. 5a), the two clusters were well separated. In the three-
class classification task (Fig. 5b), the left fist and right fist
clusters were separated, but the cluster of opening eyes were
distributed between the other two clusters. In the four-class
classification task (Fig. 5c), a large portion of samples in the
cluster of both feet and opening eyes overlapped with the left
and right fist clusters.

2) Attention Weight Visualization: We analyzed the attention
weights from the multi-head attention layer and visualized
the weights in a way similar to the EEG topography. The
brain areas corresponding to the sensorimotor cortex have
been demonstrated to display ERD during MI tasks [54]-[56].
Similar to other ERD studies using spectral analysis of the
EEG [50], [57]-[59], we focused on the sensorimotor areas
for both hemispheres (left: FC5, FC3, FC1, C5, C3, C1, CP5,
CP3, CP1; right: FC2, FC4, FC6, C2, C4, C6, CP2, CP4, CP6;
as shown in the left subgraph of Fig. 6a). We visualized all
the attention weights for 8 heads in our Transformer model (as
shown in the Fig. S2). In the Fig. 6, we presented a typical
result of one head (head5). Interestingly, our visualization
results showed the same patterns as observed in the ERD
with one hemisphere showing reduced response compared
to the other one (Fig 6a). We performed statistical analy-
sis for the averaged attention weights between the left and
right hemispheres in the 21 subjects from the test datasets.
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Fig. 4. The accuracy training curves of EEG classification models in three motor imagery tasks. (a) The s-Trans and t-Trans models, (b) s-CTrans,
t-CTrans, and f-CTrans models.

Fig. 5. The t-SNE visualization for the high-dimensional features from the fully connected layer in the s-CTrans model: (a) the two-class classification
of motor imagery of left (L) and right (R) fist, (b) the three-class classification of motor imagery of left (L) and right (R) fist, and opening eyes (O),
(c) the four-class classification of motor imagery of left (L) and right (R) fist, opening eyes (O), and motor imagery of both feet (F).

ERD%
(a) MI-Left MI-Right 100 (b) MI-Left MI-Right
head5 head5 80 head5 head5
AN AN 12 *%k %%
60 o 0.012
40 0.006 0.006 ** P<0.01
20
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Fig. 6. Visualization of attention weights in the Transformer module. The head5 was plotted. (a) The head EEG topography based on attention
weights. (b) The statistical analysis for the averaged attention weights between the left and right hemispheres. Motor imagery of left fist (MI-Left),

motor imagery of right fist (MI-Right).

The statistical analysis results of all the 8 heads are detailed
in the Fig. S3. During the motor imagery of left fist (as
shown in the left subgraph of Fig. 6b), the average attention
weights of the right hemisphere were significantly greater
(P < 0.01, Wilcoxon signed rank test) than those of the
left hemisphere in head5. During the motor imagery of right
fist (as shown in the right subgraph of Fig. 6b), the average
attention weights of the left hemisphere were significantly
greater (P < 0.01, Wilcoxon signed rank test) than those of
the right hemisphere in head5. Consistent with the mu and
beta band analysis in previous ERD studies [56], [63], our
attention weight results also showed contralateral enhancement
of the ERD. These data suggested that our Transformer model
can disclose movement-related rhythmic patterns during motor
imagery tasks. Based on the visualization analysis for the

Transformer-based model in motor imagery tasks, we found a
brain-like neural mechanism.

V. DISCUSSION

In this work, we develop classification methods incorpo-
rating Transformer models for motor imagery EEG datasets.
Transformer has been successfully applied in the natural
language processing. By constructing input feature vectors in
both spatial and temporal ways, Transformer models have the
ability to extract dependency between different EEG channels
and different time points. Transformer models alone have good
performance, however, when combined with the CNN, the
fusion models can improve the performance. This is probably
due to that CNN is good for feature extraction. Positional
Embedding (PE) added before the Transformer processing can
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further improve the model accuracy. The overall improvement
of our Transformer-based model accuracy over the baseline
models on the PhysioNet datasets with cross-individual vali-
dation demonstrate that Transformer implementation is a good
candidate when considering deep-network methods for EEG
classification.

For the classifications of motor-imagery tasks based on
EEG data, some studies [24], [46], [64] used within-individual
method to train subject-specific models. During within-
individual validation, samples from different trials of the
same subject are split to training set and test set, and data
from different channels are usually combined to obtain more
samples. Though the within-individual method yielded higher
accuracy, the trained model cannot be generalized to different
subjects. Various ways of collapsing data also destroyed the
inherent neural representations within the EEG. In this study,
we performed the cross-individual validation on the classi-
fication of motor imagery task to train with a global model,
which can be generalized to different subjects with good adapt-
ability and robustness, essential for the applications of our
proposed methods for other EEG datasets with more general
purpose.

Previous Transformer-based methods for EEG applications
focus on the classification results and did not perform visu-
alization of the Transformer layers. Our model structure,
the ability to process single-trial raw EEG data, and the
model implementations, the positional embedding (PE) mod-
ule for EEG visualization differed significantly from exist-
ing Transformer-based models. Here we considered both the
spatial and the temporal information of the single-trial EEG
data to regain the physiological features inherent in the EEG.
In addition, we designed the PE modules to retain the weight
structures corresponding to the spatial-temporal information of
the EEG to facilitate visualization.

We provided an approach to visualize the Transformer
multi-head attention layer. Mapping the attentional matrix
into the topographical EEG representation was based on the
actual electrode position. In this work, the visualization did
not consider the inter-channel dependencies but solely relied
on the diagonal value of the attentional matrix for individual
channels. The visualization method allows direct compari-
son of the attentional weights to the surface EEG activities
over different brain areas. We found that the topography of
the attention weights over the sensorimotor areas [48]-[50]
showed a pattern of ERD, which is consistent with the previous
results using spectral methods. These data suggested that when
fully trained, the attentional network can acquire a pattern
similar to the rhythmic activity changes during the motor
imagery tasks.

In this study, we proposed five categories of Transformer-
based models so that the Transformer models can be flexibly
adapted to different EEG scenarios. Taken together, for 3s
data the f-CTrans model performed best and for 6s data the
t-CTrans model performed best. With 3s data, the f-CTrans
model performed best in three- and four-class classification
tasks, while its performance of all classification tasks outper-
formed all baseline models. Shorter input data improved the
processing efficiency for the BCI system. While the multi-class

classification with shorter data is more challenging, f-CTrans
model showed better performance, indicating its robustness.
The f-CTrans model did not perform the best in the 2-class
classification task, which is the limitation we need to fur-
ther overcome. In the future, we will further improve the
effectiveness of the fusion by optimizing the structure of the
fusion model or improving the combination method of spatial-
temporal information.

Nevertheless, one of the advantages of our Transformer-
based model is the ability to extract features from large
datasets. The performance of our model will be improved
with more EEG data included. Our Transformer models can
be further optimized in two aspects. First, temporal fea-
tures extracted from the EEG may have different time-scales.
Further work can construct multi-scale attention model and
test the model performance. Second, the visualization results
indicate that some attentional heads may not contribute to
the neural-mechanism based representation. Removal of these
heads can reduce the computation load and improve the model
robustness.

V. CONCLUSION

In the present study, we discussed the application of the
Transformer model in motor imagery EEG classification. Five
categories of Transformer-based models were designed includ-
ing spatial-Transformer model, temporal-Transformer model,
spatial-CNN + Transformer model, temporal-CNN + Trans-
former model, and fusion-CNN + Transformer model. For the
3s data, the highest accuracy of two-, three-, and four-class
classifications consistently outperformed other SOTA models.
For three- and four-class classifications, the fusion model had
the best performance. Our results showed that Transformer
models provided good performance for EEG classification
during motor imagery tasks, and can be applied in other clas-
sification tasks such as disease diagnosis and brain-computer
interface control tasks based on EEG data.
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