366

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Performance Tuning via Lean Measurements for
Acceleration of Network Functions Virtualization

Qiang Wu, Member, IEEE, Xiangping Bryce Zhai™, Member, IEEE, Xi Liu, Chun-Ming Wu™',
Fangliang Lou, and Hongke Zhang™, Fellow, IEEE

Abstract— Network Functions Virtualization (NFV) replaces
the specialized hardware with the software-based forwarding
to promise the flexibility, scalability and automation benefits.
With an increasing range of applications, NFV must ultimately
forward packets at rates that are comparable to the native and
specialized hardware-based approaches. However, the transition
packet forwarding from specialized hardware to software-based
has turned out to be more challenging than expected. Thus, NFV
acceleration is desperately needed to play a crucial role in the
development of NFV. It is an interesting issue how to address
the persistent performance tuning in a way that provides far
greater flexibility to meet the demands of power. The existing
developments are very inefficient, since that the uncontrollable
and unanticipated performance regressions frequently occur.
Besides, the environments for full system simulations are tra-
ditionally expensive and time consuming to evaluate the system
performance. In this paper, we propose the methodology named
as “NFV Acceleration via Lean Measurements (NALM)” to tune
the performance for the NFV acceleration. NALM provides a
holistic measurement approach through combining individual
measures to quickly identify the bottlenecks, which can help
developers with a better understanding of the design tradeoffs.
Moreover, the environments for large scale performance simula-
tion are replaced by a debugger. Thus, the waste is eliminated
in terms of time consumption and infrastructure costs of the
full system simulation. The systematic analysis of the multi-cores
speedup ratio highlights the potential optimization space and
rules. We further propose the improvement recommendations
on efficient practices. The experiments evaluate the specific
effects, and the relationship between the metrics and forwarding
performance.

Index Terms—Packet forwarding, NFV acceleration, perfor-
mance tuning, lean measurements, parallel computing.

Manuscript received 22 December 2021; revised 24 May 2022;
accepted 11 July 2022; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor D. Han. Date of publication 29 July 2022; date of
current version 16 February 2023. This work was supported in part by
the Industry-University-Research Cooperation Fund Project of ZTE under
Grant 2022ZTE02-07, in part by the National Natural Science Foundation
of China under Grant 61701231, and in part by the Foundation of Key
Laboratory of Safety-Critical Software (Nanjing University of Aeronautics
and Astronautics), Ministry of Industry and Information Technology, under
Grant NJ2020022. (Corresponding author: Xiangping Bryce Zhai.)

Qiang Wu and Xiangping Bryce Zhai are with the College of Computer
Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, Jiangsu 210016, China, and also with the Collaborative Innovation
Center of Novel Software Technology and Industrialization, Nanjing, Jiangsu
210023, China (e-mail: wu.qiang@nuaa.edu.cn; blueicezhaixp@nuaa.edu.cn).

Xi Liu is with the College of Communications Engineering, Army Engi-
neering University of PLA, Nanjing 210012, China.

Chun-Ming Wu is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China.

Fangliang Lou is with the State Key Laboratory of Mobile Networks and
Mobile Multimedia Technology, ZTE Corporation, Nanjing 210012, China.

Hongke Zhang is with the School of Electronic and Information Engineer-
ing, Beijing Jiaotong University, Beijing 100091, China.

Digital Object Identifier 10.1109/TNET.2022.3193686

TABLE 1
COMPARISON OF FORWARDING TECHNOLOGIES

Forwarding Software-based Specialized Programmable
technology hardware hardware
Efficiency medium high high

Cost low medium high
Openness high low medium
Standardization high low medium
Version cycle daily builds, DevOps >3 quarters >3 quarters

I. INTRODUCTION

N GENERAL, the three techniques shown in Table I

are used to achieve the high-speed packet forwarding of
telecom services. Traditionally, the specialized hardware-based
approaches require purpose-built chips that are limited in flex-
ibility, and incur high costs. Programmable hardware focuses
on the processing of march-action type during the packet
forwarding [1]. Although it is incapable of handling the
entire forwarding process and can only address the partial
performance of this process, the programmability and gained
flexibility are enhanced in communication networks. The dif-
ficulty in programming, configuration, and firmware upgrades
limits their application compared to the instruction-based
architectures such as CPUs and GPUs. The software-based
forwarding runs on the commercial off-the-shelf (COTS)
in NFV. NFV integrating cloud and virtualization technolo-
gies replace the specialized hardware with software network
functions implemented in COTS, to promise the flexibility,
scalability and automation benefits [2]. The software-based
packet forwarding has become a popular paradigm with an
increasing range of applications [3].

However, the transitioning packet forwarding from special-
ized hardware to COTS has turned out to be more challenging
than expected. It inevitably incurs the forwarding performance
penalties due to the constraints in both forwarding software
and COTS. Moreover, the uncontrollable and unanticipated
performance regressions frequently occur [4]. NFV must ulti-
mately forward packets at rates that are comparable to the
native and specialized hardware-based approaches. Thus, there
is a strong need for the NFV acceleration [5] to play a
crucial role in the development of NFV. Specifically, the major
bottlenecks of the software-based forwarding in NFV include:

- The introduction of the virtualization layer increases the

overhead in both queue scheduling and packet copy,
which leads a decrease of the forwarding performance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8906-813X
https://orcid.org/0000-0001-8939-199X
https://orcid.org/0000-0001-7958-9687

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV 367

- The low switching efficiency of the virtual switch
(vSwitch) has become a bottleneck.

- Resource fragmentation due to the virtualization neg-
atively affects the forwarding performance. A random
I/0 is generated among the criss-cross packet flows each
other because of the complexity of packet forwarding,
which will negatively affect the forwarding performance.
Meanwhile, the shared resources are competed among
the virtual machines (VMs), which can easily lead to the
global fragmented 1/Os. These fragmented I/Os and the
original random I/Os in the process of forwarding over-
lap each other and are amplified. Then, the forwarding
performance eventually degrades.

In addition to the drawback of technology itself such as
inefficient performance and relevant high delay, the change
in the development model of NFV acceleration is easily
overlooked. The wide application of DevOps development
model [6] has made the launched software version of NFV
more frequent. DevOps aims to help extending the princi-
ples of lean development to production, based on the core
lean concepts. Its characteristics, such as componentization,
Continuous Integration (CI), Continuous Delivery (CD), and
gray-scale release can make NFV an inexhaustible source of
innovation [7]. With frequently launched software versions, the
persistent performance tuning becomes a daily development
link. To improve the forwarding capability of COTS servers,
a frequent and large-scale optimization work is required at
the level of virtualization technology and forwarding soft-
ware. Thus, a systematic study on the issue of persistent
performance tuning of software-based forwarding has to be
introduced while providing far greater flexibility than the
existing purpose-built hardware [8].

The issue of how to efficiently understand the performance
and behavior of these large scale systems is further compli-
cated by the new features after the network virtualization [9],
such as the flexibility and sharing on-demand [10]. There
are two main challenges that plague forwarding software
performance tuning methodologies. First, the environments
of full system simulation for system performance evaluation
are traditionally expensive and time-consuming in a large
scale forwarding systems with frequent changes. The flex-
ibility is an advantage of NFV, and means the frequent
changes in functionality of the user plane at the same
time. It increases the adjustment frequency of a test envi-
ronment and reduces the development efficiency, since an
expensive test equipment has to turns around among devel-
opers [11]. As shown in Table I, the performance testing
for software-based forwarding is performed almost daily in
DevOps mode. Second, the existing approaches make devel-
opment inefficient since the uncontrollable and unanticipated
performance regressions frequently occur along with the diver-
sity of application scenarios and technical measures [12].
Theoretical analysis is needed to guide the tuning direction
and optimization space so that it is more efficient at deter-
mining which implementation can meet current requirements
better.

In this paper, we propose the metrics of forwarding perfor-
mance during the development process, that can be used as the
target indicators for the improvement in lean measurements.

TABLE 11
SYMBOL DESCRIPTION IN EQUATIONS

Symbol Description
Toriginal Original execution time.
Tenhanced Execution time after enhanced performance.
per f(r) Sequential performance of the resources with r BCEs.
w Original workload.
w* Packet forwarding workload constrained by a memory space.
wq Packet dispatch and output workload.
wp Policy control and service processing workload.
We Packet access work (interthread communication).
ga(pps,m) Workload function of packet dispatch and output.
gi(a) Workload function that reflects the parallel processing.
a Number of processing thread levels.
gy (pps) ‘Workload function of the packets processing when oo = 1.

BCE resources when o = 1.
Workload function that reflects the packets processing with
« during pps packet traffic.

Tp
ge(pps, a)

Te BCE resources when a during pps packet traffic.
Su(n) Function of system speedup ratio.
It Variation factor of the total computational scale.
fa Proportional variation factor of nonparallel parts.
fs Fixed overhead factor.
fi New cumulative overhead factor for parallel computing.
Freq(cpu) CPU frequency function.
CUR CPU utilization rate.
pps Packets per second.
CPP Cycles per packet.
IPC Instructions per cycle.
el PC Effective instruction per cycle.
IPP Instructions per packet.

A quick feedback mechanism is established to help developers
with a better understanding of the design tradeoffs. Then,
we discuss a unified performance benchmark in the case
of multiple versions with different feature sets. The main
contributions are summarized as follows:

- We propose the novel NALM methodology combined
with lean thinking for the software forwarding systems,
to form a target-oriented system around the goal of
efficient and sustainable performance tuning.

- We eliminate the waste in terms of time consumption and
infrastructure costs of the full system simulation.

- We analyze the theoretical multi-cores speedup of NFV
acceleration to guide the tuning. Moreover, we propose
the new approaches, and recommend the improvements
on efficient practices.

The rest of paper is organized as follows. Section II pro-
poses NALM methodology and analyzes the guiding role of
lean measurements. In addition, the equation of the speedup
ratio for multi-cores optimization indicates the direction of
performance tuning. Then, several recommended improve-
ments are illustrated in Section III. Afterwards, we quan-
titatively evaluate the specific effects of the recommended
improvements based on the analyzed data in Section IV. The
final Section V provides our conclusions. The symbols used
in equations are shown in Table II. More detail related works
can be found in Appendix.

II. NFV ACCELERATION VIA LEAN MEASUREMENTS

A. Correlations Between Lean Thinking and NFV
Acceleration

Lean software development provides a management philos-
ophy and enables us to select design solutions, methods, and

368

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Improve performance optimization efficiency

=

11
Calculate accurately performance optimization goals

Meet the integration requirements of DevOps pipeline .

Vision:
e Reach the maximum throughput of the system.
Meet the integration requirements of DevOps pipeline.

Metrics need to choose target
indicators set for improvement

Measure

Analyze

Service objective .

Pain points:

The performance verification mechanism has a long period and

difficult to provide quick feedback.

. The verification test environment is expensive and difficult to
achieve one set per developer.

. Lack of consistent measurement benchmarks for diverse feature sets,

and no the goal of efficient and sustainable performance tuning.

scenario

Decision-making

. Organizational context: development team, integration test team, and
CI/CD steps in DevOps pipeline

Demand Traction ¢ ?Technical Support

Lean Software
Development Model

Performance tuning technology research:
quick feedback, timely correction

Fig. 1.

design tools based on fitness for purpose, the main princi-
ples include eliminating waste, overall optimization and fast
delivery. Its implementation has remarkably improved the effi-
ciency of development and the quality of products [13], [14].
In some practices, the lean principles are applied to the
operationalization of NFV for identification of lean wastes
and optimizing them [15]. Even though lean principles are
very promising for software development, the introduction
of lean development in the domain of forwarding perfor-
mance tuning is very difficult to achieve because it requires
the combined analysis of different measures and technical
research [16]. As shown in Figure 1, the research com-
bined with lean thinking presents the gap between the ease
of implementation and efficient implementation about per-
formance tuning technology. Lean thinking puts forward
the requirements for the improvement of the test environ-
ment and metric, which can more fully reflect the value
of NALM. Specifically in the field of packet forwarding
performance tuning, the guiding roles of lean measurements
include:

- Guide the establishment of reasonable forwarding
performance metrics during development. According
to the principle of lean measurements, the measure-
ment indicators need to select those target indicators
for improvement. The traditional metric is mainly the
forwarding throughput, which reflects the performance
level and is also one of the final deliverables. Large-scale
softwares are usually developed in parallel by dozens
or hundreds of developers. A measurement indicator in
generalities cannot indicate the direction of improvement,
and is difficult to efficiently find the cause of performance
regressions. In addition to final delivery metrics, the
intermediate process metrics in detail are still needed.
They can be measured quickly, and directly reflect which
version or function integration has led to new perfor-
mance regressions. Especially, each developer can easily
obtain it during debugging.

- Guide the establishment of a unified performance
benchmark, in the case of multiple versions with

Indicator system

”.

. Decision-maker : developer
Decision-stage: product development stage

. Indicator evaluation dimension: feature complexity, development
efficiency, etc.
. Indicator attributes: measurable, comparable, service, time etc.

e Technology candidate set that bring a better understanding of design tradeoffs
e The set of potential limitation bottlenecks of the forwarding performance

The guiding roles of lean measurements in forwarding performance tuning.

different feature sets. For large-scale R&D processes,
an important meaning of measurement is to unify ideas
and methods, so that different development nodes can
communicate on a consistent benchmark and reduce the
possibility of misunderstanding. Traditional measurement
indicators only reflect the macroscopic situation of for-
warding performance, and do not contain the complexity
of the feature set. Compared with dedicated chips, the
feature set of forwarding software changes frequently.
The difference in feature set and implementation will
cause great performance fluctuations. It is impossible
to enumerate all the possibilities and try one by one
because of a cost constraints. Therefore, it is difficult to
determine the ceiling of forwarding performance tuning.
More detailed measurement indicators are needed to
objectively reflect the forwarding performance under a
certain feature complexity, and to measure whether the
optimization effects are within a reasonable range for a
variety of approaches. A unified measurement benchmark
needs to be established to reflect the optimize efficiency
at the different stages to a certain extent.

- Eliminate the waste in terms of time consumption
and infrastructure costs of the full system simulation.
Based on the lean principles, we found that the time
consumption and infrastructure costs of the performance
simulation heavily waste in the R&D process. If the
performance of a NFV network element is designed to
be 100G, a test instrument with 100G line-speed have
to be used to build a simulation environment that meets
the functional requirements. A test instrument of this
magnitude is usually very expensive, and function setting
is time-consuming and labor-intensive [11]. Therefore,
a high-performance simulation environment is usually
shared by dozens of people, which is difficult to meet
the efficiency requirements of large-scale team during
parallel development. It is necessary to introduce a
debugger to replace them based on the ideas of quick
feedback and timely correction in lean measurements,
so that each developer/tester can have one. Moreover, the

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV 369

Database module
(User flow
classification,

routing query, etc.)

Service control
(Billing, performance
statistics, etc.)

Control
Plane

CEREE
L i % L -
l}{s“ L Flowl |y _ ~[Flow1 \;'\
ane 5.8 g &
. Z S || Flow2 g Flow 2 3
] ! = -
- % 8 =
tinqueue || = 2 || Flown 5 Flow n g >\
< ~ :
Device
User plarje processing core output
\ 2 REEE

User plane processing core

—— - : —
m User plane processing core

User-plane software architecture based on a multi-cores processor.

Fig. 2.

measured indicators have real-time attributes, which can
be conveniently observed during function debugging.

B. User-Plane Software Architecture Model

Figure 2 shows an abstract user-plane software architec-
ture based on a multi-cores processor. It is a representative
software-based packet forwarding system for large-scale dense
model networks, and is also a typical parallel computing
architecture. Dealing with large-scale network-intensive packet
traffic, the general choice is to scale out nodes horizontally,
and the user-plane processing core can be stacked up to extend
forwarding capabilities. The data packets are dispatched to the
user-plane processing core and the control-plane processing
core through hardware. Under the centralized control of the
control plane, various service enablers (e.g., DPI (deep packet
inspection), billing, etc.) are arranged for the services. The
policy decisions at the control plane can be injected into the
user plane via the northbound interface. The northbound inter-
face defines the unified operation interface of the forwarding
abstraction layer, such as the forwarding table management,
queue resources, and statistics reporting.

To address large-scale dense model networks, NFV appli-
cations require high throughput, consistent low latency, and
high I/O rate processing capabilities to provide the required
service level agreements [17]. It is necessary to guarantee
that the average interval of packet forwarding processing is
less than the average interval of packet arrival for high-speed
software packet forwarding. The smaller the average interval
between the arrival of small packets, the shorter the processing
time. Refer to the technical manual of the corresponding
CPU type, the average arrival interval of packets can be
obtained in Tables III by simple calculations, a packet have
to be processed within 16.8ns whereas the time required for
a general 2GHz CPU to access DDR memory is 70ns, which
imposes a very high requirement on software-based packet
forwarding performance. A controlled systematic approach to
performance tuning is required.

C. Theoretical Analysis for Multi-Cores Speedup Ratio

User-plane software can be theoretically abstracted into
applications of high-throughput computing based on a multi-
cores processor. Previous researches based on Amdahl’s law
focused on the characteristics of the multi-cores system as a

TABLE III
GENERAL 2Ghz CPU MAIN PARAMETERS

Type Size Access Access AAccess
M scope latency (cyc) time (ns)

Instruction cache 32k dedicated 5/7 2.5
L1 cache 32k dedicated 5/7 2.5

L2 cache 256 k dedicated 12 6

L3 cache 20 M shared 40 20
Non-local L3 cache 20 M shared 88 44
Local DDR 128 G shared 140 70
Non-local DDR 128 G shared 250 125

research topic [18]. Multi-cores scalability was analyzed under
fixed-time and memory-bound conditions from the data access
perspective. The user-plane system is a dedicated system
that is more complex and closer to instantiation than the
idealized multi-cores architectures. As shown in Figure 2,
it usually consists of multiple boards including multi-cores
chips, hardware dispatch network cards, and memory hierar-
chy. The packet forwarding service has its own characteristics.
We focus on packet forwarding service processing and propose
a performance model of the user plane, which complements
the existing studies.

The packet forwarding service usually does not involve
complex data processing. According to Tables III, it can be
concluded that the processing bottleneck mainly results in
the data access. Therefore, we refer to the memory-bounded
speedup model in [19] and analyze the speedup ratio of
user-plane software within the whole architecture design of
a computing system. Let us define the speedup radio as:

Enhanced per formance

Tori na
Speedup = ginal (D

Original performance Tephanced

Following the simple hardware model for multi-cores chips
in [18], a multi-cores system as the research object can contain
at most n base core equivalents (BCEs), where each individual
BCE implements the baseline core. Software architectures
can expend the resources of r BCEs to create a powerful
core with greater sequential performance per f(r), where the
performance of a single BCE is set to be 1. The model
allows perf(r) to be an arbitrary function that depends on
the actual hardware technique and implementation. Assume
the original workload is w. Thus, the original execution time
is T(n“iginal = w/perf(l) = w.

For the data access scalability analysis of a packet forward-
ing service, the task can be divided into three parts: 1) packet
dispatch and output work wg, 2) policy control and service
processing work w,,, as well as 3) packet access work (inter
thread communication) w.. Then, w* = wq + we + w,, is
regarded as the packet forwarding workload under a memory
space constraint.

Each working node of the user plane can be viewed as a
processor-memory pair. In this way, the number of processors
and the memory capacity will be expanded simultaneously.
The pps (packets per second), which means the transmission
rate in units of network packets, is generally used to evaluate
the network forwarding capability. Let wqg = gq(pps, m) be
the function that reflects the variable factor of packet dispatch
and output workload as the memory capacity increases m

370

times during the pps packet traffic, and The corresponding
BCE resources are 7.

For large-scale and multilevel packet forwarding services,
a pipeline design is necessary. To ensure that the intermediate
calculation results can be shared by the related processing
threads, more memory queues must be added among process-
ing thread levels and the packets are cached. Let g;(«) be the
function that reflects the parallel processing workload increase
factor, where the number of processing thread levels is .
Most of previous studies based on Amdahl’s law are special
cases with o = 1 [19]. g¢(pps) is the function that reflects
the packets processing workload. Thus, the policy control and
service processing workload is w, = g5 (pps)+ g;(«), and the
corresponding BCE resources are 7,. Let w. = g.(pps,) be
the function that reflects the packet access workload increase
factor where the number of processing thread levels is « during
pps packet traffic, and the corresponding BCE resources
are r.. When the number of cores is scaled by m times,
we define the speedup under the memory-bounded model
as:

ft X w
Speedu =
p Pmb Wa + we + w,
_ Jit X w
~ _ga(pps,m) + g (Pps)+gi() + _ge(pps,a)
mxperf(rq) mXxperf(rp) mxperf(re)

)

where rq + 1, + 7. < n and f; is a variation factor of the
total computational scale. The total computational scale is
related to a variety of factors, such as software architecture,
service types, hardware and software infrastructure platforms,
and the number of tasks. Routers and firewalls are two different
typical forwarding devices. The firewall involves table lookup
processing of quintuples for packets, and its service types
are more complicated. In the processing of software-based
forwarding, it can be considered that the service of firewall
forwarding has a higher total computational scale.

Implication 1. The performance tuning issue of software-
based packet forwarding involves the whole architecture
design of a user-plane system, such as the functional distrib-
ution of software and hardware, the service process flow, and
the used algorithms.

Implication 2. From the perspective of the entire system,
there is no innate limitation to performance scalability. It can
be obtained at the cost of an increase in problem size on top
of the original work, but the need for technical improvements
is mainly to meet the power-performance constraints.

Implication 3. Performance tuning is closely related to the
service model. The system design must reasonably allocate
the corresponding BCE resources on the basis of predicting
the wy, w. and w, workload ratios according to the service
model. The memory performance is often an inherent and
critical obstacle, since the fixed data-access time is still a
technical issue in today’s technology, and memory queues
must be added among processing thread levels for packet
caching.

To more clearly show the relevant factors that affect the
system acceleration ratio, we abstract the system speedup ratio

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Su(n) from another more macro perspective as:

. ftxn
- 1—}—(71—1)><fa—l—n><fs—|—n><z:?:lfi7

where f, is a proportional variation factor of nonparallel parts
in the theoretical ideal model according to Amdahl’s law.
For example, a packet needs to be sent to the corresponding
port according to the querying result of the routing table.
The routing table querying and the packet forwarding have
a sequential order, regarded as a serial processing process.
fs is a fixed overhead factor, which represents the proportion
of fixed serial execution time that is newly introduced by
parallel computing, and the fixed overhead does not change as
the user-plane processing core increases. For example, the sys-
tem overhead introduced by the system runtime environment
and supporting platform is closely related to the factor fs.
In the NFV scenario, the virtualization layer hypervisor will
introduce a new fixed system overhead, thereby increasing the
factor fs. f; is a new cumulative overhead factor introduced
by parallel computing, which increases with the increase
in the number of user-plane processing cores n. For each
specific user-plane processing core, f; is not always the same.
In the run-to-completion (RTC) model, there is basically the
same cumulative overhead factor f;, because each user-plane
processing core has the same service type. In the pipeline
mode, the user-plane processing cores perform computations
simultaneously without any competition, i.e., the different
stages of the packet forwarding process are parallelized. The
service type at each user-plane processing core is not neces-
sarily the same, so its cumulative overhead factor f; is not
always the same.

It can be seen from (3) that simply increasing the user-plane
processing core does not always achieve the effect of forward-
ing performance improvement. In the process of programming
even in a multi-cores environment, the interaction process-
ing load between the cores will become a bottleneck when
the cluster processing cores reach a certain amount. Simply
increasing the number of processors will not linearly increase
the performance of the program. Instead, the overall perfor-
mance will become increasingly poor. Therefore, it is equally
important to improve the performance of the software-based
packet forwarding performance itself. The increase in the
number of processing cores will increase the equipment costs
and technical risks indirectly. It is transformed into a compre-
hensive systemic issue that requires optimization in multiple
dimensions. To achieve better forwarding performance, the
optimization space that can be used include:

Su(n) == (n, fe, fas fs: fi)s fa € (high,low). (4)

A reduction in the factor of total computational scale f;
obtains a better speedup ratio. The changes in the functions
distribution of software and hardware and the differences in
software algorithms and service process flows can all lead
to the changes in the factor of total computational scale f;.
A reduction in the nonparallel parts corresponding to the
factors f,, fs, and f; gives a better speedup ratio. Therefore,
eliminating serialization caused by similar lock competition
becomes an issue that programmers need to solve. The number

Su(n)

3)

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV 371

of user-plane processing cores n has nothing to do with factors
fo and f,, and has a definite correlation relationship with f;.
The two relationships need to be carefully balanced according
to the service goals. Within a certain range, the forwarding
performance can be quickly expanded through core expansion
without refined tuning. When the maximum forwarding perfor-
mance of the entire system is pursued, it is necessary to adjust
fi to the minimum value so that most user-plane processing
cores participate in the forwarding processing to improve the
overall performance. Due to the influence of the cumulative
overhead factor f;, there is a theoretical upper limit to increase
the forwarding performance of the system by increasing the
number of user-plane processing cores. A good speedup ratio
always presents the following goal status:

Su(n) == (n, fi, fa, fs, fi) == (n,low, low, low, low). (5)

(5) shows the performance tuning direction of
software-based packet forwarding performance. The equation
can also be used to calculate the execution time after program
optimization and to assess whether the software architecture
meets the performance requirements.

D. Process Models and Measurements

We aim to enable sustainable performance tuning leading
to a lean software process. To improve the performance in
terms of the key indicator level, it is necessary to determine
the reasons for the high processing power consumption, which
is important for initiating the right tuning. The instruction
flow indicator is the basis for performance optimization. Thus,
we calculate the performance metrics of software-based packet
forwarding performance as:

s — Freq(cpu) x CUR _ Freq(cpu) x CUR x el PC

CcPP IPP ’
(6)

where Freq(cpu) is the CPU frequency, and CUR is the
CPU utilization rate. Effective CPU utilization for the program
must be calculated to set the affinity of a process/thread
with a CPU core, and does not include the part of the idle
task for the thread loops. The pps is the number of data
packets per second that can be processed before dropping data,
and is always measured using the smallest packet size. The
CPP is the average number of instruction cycles for each
packet, which can be converted to pps by using the CPU
frequency. The IPC is the average number of instructions
executed for each clock cycle. The e/ PC' refers to the part
of IPC for effective processing flow, and does not include
the instructions for idle processing. The I PP is the average
number of instructions executed for each packet. The goal
of creating leaner forwarding performance tuning is to obtain
better pps. Moreover, the following deduction is given:

Observation. The relationship between pps and CUR
appears close to linear when the e/ PC' and /PP can be con-
sidered invariable during low C'U R. Because a larger packet
throughput leads to more concurrent processing which affects
the eI PC' and I PP indicators. In addition, the relationship
between pps and CUR appears nonlinear when el PC' and
IPP change during high CUR.

The built-in hardware performance monitoring unit of main-
stream CPUs provides a lot of hardware event counters. The
execution of CPU instructions can be monitored in detail.
The above-mentioned measurement indicators can be collected
conveniently with the help of these tools. It is necessary
to collect these measurement indicators in a planned way,
and establish correlations with service features, operating
platforms, and resource distribution to perform the statistical
analysis. Which can grasp the process nature is conducive
to improvement, thereby establishing possible causality, and
analyzing the key factors that affect the performance changes.

In the case of NALM, the performance metrics must be
continuously monitored in the software continuous integration
process for the rapid detection of limitation bottlenecks to
judge the effectiveness of the tuning direction in time. Func-
tions and instructions that run most of the time and call high
frequency processes need to be specially focused on. There-
after, continuous improvements to avoid problems caused by
the cumulative cross-effects of limitation bottlenecks and aid
in obtaining leaner software performance are performed.

III. IMPROVEMENT RECOMMENDATIONS
ON EFFICIENT PRACTICES

Telco and NFV application workloads tend to be any
combination of latency sensitive, jitter sensitive, or demanding
high packet rate throughput or aggregate bandwidth. The exact
benefits and effects of each of optimization technique choices
will be highly dependent upon the specific applications and
workloads, and therefore need to be continuously tuned for
best performance. In this section, we summarize our findings
and recommend best practices to tune the different layers of
an application’s environment for Telco and NFV workloads.

A. Push a Virtualization-Based Platform to Its Full Potential

1) Offloading Service Traffic by Smart Network Interface
Card (NIC): Network-related workloads are particularly
expensive in terms of computing resources. The workloads
for virtual switching functions alone can consume more than
90% of a server’s available CPU resources. Offloading network
tasks can return these important resources to the application
layer. In a large forwarding device, a smart NIC and a
CPU jointly schedule and cooperate to realize the processing
of the packet forwarding function. A OVS table and other
related processing functions can be mostly removed from
a CPU. A smart NIC handles the functions and offloads
the packet processing workloads from the CPU. Moreover,
a CPU plays the role of workload scheduling. Through a OVS
table, a CPU can determine which service types and how
much workloads should be performed by a smart NIC [20].
Corresponding to the aforementioned theoretical analysis for
multi-cores speedup ratio, the practice can effectively reduce
ft (a variation factor of the total computational scale), thereby
obtain better system speedup ratio Su(n). A lower I PP is pre-
sented in the performance metrics, which can be continuously
and visually monitored. The comparison results are shown in
Figure 8 of Section IV.

372
Live
mlgrallon
pNIC .
v «—> ServiceTraffic v
Fig. 3. Live migration of VMs with the SR-IOV network card.

SRIOV and OVS table synching are often used in com-
bination. OVS table synching is responsible for east-west
horizontal traffic forwarding, and can solve complex network-
ing issues. However, VM migration may become a problem.
Migrating one VM directly to another SRIOV server (even
if this server supports live migration) may fail at the start of
migration unless that the load of the host is migrated from
a SRIOV server to a non-SRIOV server. This is a necessary
function that needs to be researched before SRIOV is deployed
in a production environment. As shown in Figure 3, the VM
configures the SRIOV VF (virtual functions) interface and
Virtio interface, and then binds the two interfaces to implement
live migration among VMs. In the normal operating mode,
the VF network card is used as the main network card. When
VM live migration occurs, the VM management function will
delete the VF network card temporarily by replacing it with
the Virtio network as the main network and then perform VM
migration. When the VM live migration is completed, the VM
management function will re-add the VF network card to the
VM and bind the Virtio network card and VF network card
for the next migration. Then, the VF network card becomes
the main network card again.

2) Enhanced NUMA (Nonuniform Memory Access Archi-
tecture) Deployment: NUMA is a distributed memory access
method in which processors can simultaneously access differ-
ent memory addresses and greatly increase parallelism [21],
[22]. A large number of NUMA internode operations can
severely affect virtualized forwarding performance, called as
the NUMA trap. Now, we propose the specific deployment
method under a virtualization-based platform. As shown in
Figure 4, the CPU, the memory, and the PCI-I/O should be
bound on the same NUMA node and properly match the
capacity according to the service model to avoid inter-node
access to resources. With memory affinity, the cores and the
accessed memory are attributed to the same NUMA node to
avoid the performance penalty of cross-node access. In the
NUMA mode, the processor is divided into multiple nodes,
each of which is allocated the local memory space. The
processors in all nodes have access to all of the physical
memory of the system, but accessing the local memory in
same node takes considerably less time than accessing the
memory in other nodes. So does the other local resources
(network cards, etc.). The practice can effectively reduce the
factor f, of nonparallel parts and obtain better system speedup
ratio Su(n).

3) Compiling Chain and Runtime Environments: The per-
formance of the runtime environment is one of the most
important factors that constrain the transaction throughput in

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Node0 Nodel

Core Core Core Core

z e Core Core x —‘[Core Core > z
1E> | | E
= | Resourcesare | NUMA inter-node s
S bound to local ! operations are not g
3 node + allowed S

|
NIC > NIC

Fig. 4. Resources are bound to local node.

software-based packet forwarding performance. Compilation
optimization can provide a considerable performance boost,
but hundreds of continuously growing available design and
optimization choices make this job quite difficult [23]. The
practice can effectively reduce the fixed overhead factor f,,
thus obtain the better system speedup ratio Swu(n). A higher
el PC' is presented in the performance metrics when a more
reasonable configuration, which can be continuously and visu-
ally monitored in the tuning process of compilation optimiza-
tion. This point can be studied on a special issue, and this
paper will not discuss it.

B. Construction of a Software Architecture According to the
Service Characteristics

In general, an optimization at service architecture level
is the first choice, according to the service characteristics,
to make full use of the hardware resources and to improve
the mechanisms and processing flows. The optimization goal
is to reduce the nonparallel parts factor f, and the cumulative
overhead factor f;. If a breakthrough in this aspect can
be found, there are usually relatively large gains. To judge
whether a service architecture optimization is effective, the
intuitive and real-time feedback can be obtained by monitoring
IPP and el PC indicators.

1) Lock-Free Parallel Computing Architecture: When more
than two threads need to operate in the same data area, there
are issues of read synchronization and contention writing. For
example, when two threads receive two packets from the same
flow, they both need to update the count of the flow table.
Then, the system will encounter an issue of contention writing
at this time. The situation of the read operation is relatively
simple. If it is not locked, the read process of thread A will
be interrupted by thread B to write the updated data. At this
time, the data read by thread A are dirty as part of the data is
updated by thread B. There is also a case where a read thread
reads the data when write thread A is writing the data. In both
cases, there is an order issue for read and write.

One solution is to add locks. Read and write threads all need
to acquire locks. During a data operation, the read and write
operations by other threads need to wait for the locks. The lock
instruction itself is simple, but the lock contention impacts the
performance. Only one thread can access the critical section
when multiple threads require access, which decreases the
transaction concurrency. Lock-based programming needs to
be accessed in an orderly manner when sharing data, and
all operations changing the shared data must show atomic
semantics. Even a simple code such as + + ¢ also requires
the use of locks. Lock-based programming faces declining

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV 373

‘Working Thread

Thread Flow
Table)

Service
Processing

Service Thread Flow

Same user or same
flow D D
I ‘ Processing Table ‘%
" D
dispatch output
S ‘ Service Thread Flow \—\

I Processing Table ‘% _

Incoming Packet
I

Queue
The lock-free parallel computing architecture.

Outputing Packet

Thread Flow
‘% Queue

Table

Service
Processing

Fig. 5.

efficiency, deadlock, priority inversion and other issues. Lock-
based programming requires designers to carefully optimize
and solve these issues. An important effect of lock-free
programming is that a series of threads accessing lock-free
operations. If a thread is suspended, it will not prevent
other threads from running (non-blocking). The significance of
lock-free programming is not absolute high performance, but is
that its use can avoid deadlock/livelock, priority inversion and
other issues. Atomic operations can be considered indivisible
when operating on memory, and other threads do not interrupt
the operation. In lock-free programming, not all operations are
atomic. Indeed, only a limited set of operations are atomic,
which means that lock-free programming is a difficult task.

For the packet forwarding services, the traditional
multi-cores database locks have high overhead. The lock-free
parallel computing architecture shown in Figure 5 is used
to achieve more efficient forwarding processing performance.
Parallelism is provided by multiple threads processing packet
delivery at the same time. An incoming packet queue is dis-
patched to the working threads by a software dispatch module
according to the service policies. To ensure the lock-free
programming in the service processing architecture, service
policies are set so that the packets with mutex are dispatched
to the same thread. Considering an example of 5th-Generation
core network (5GC), a user session corresponding to the user
is established in a software dispatch module when a user’s
initial packet reaches an 5GC. The thread number registered
for this user is recorded in the user session and generates the
user’s forwarding flow table in the private flow table of the
thread. Subsequently, the packets from the same user will be
dispatched to the same thread by the flow table match. Each
user data area is distributed in the private flow table of each
service thread to achieve the lock-free access. The packets are
distributed precisely to the thread where the user data area
is distributed in the dispatch cores. This avoids the issues of
read synchronization and contention writing. Guaranteed from
the logical service architecture, there is no lock contention
conflict which eliminates the waiting time of lock. The design
architecture is suitable for the devices of forwarding policy
per-user (or per-flow), such as 5G UPF (User Plane Function),
vFW, SDN switch.

2) Service Processing and User Data Separation
Architecture: The lock-free parallel computing architecture is
certainly more efficient because there is no lock contention
conflict. Though it eliminates lock wait time, there are
applicability issues in some scenarios.

DD Service]i)atabase
Processing nstance
s Receive&Dispatch Thread 1 7 izl
| rea
R
1 Database
]lllllll Service > Instance
o Processing Thread2
V | Incoming Packet Queue Thread 2
Database
Instance
N Thread3
1
C | | Receive&Dispatch
fhread Service Unified
Processing database
II Thread n plane
Fig. 6. Service processing and user data separation.

The types of service that the single-user or single-flow
forwarding throughput is limited by the single core/thread
processing capability. The currently known processing core of
2.4 GHz frequency and the single thread processing capability
are in the range of 500 K - 2 Mpps, usually calculated
as 500 Kpps. 2 Mpps corresponds to a specific traffic model
and are calculated according to the packet size of 512 bytes,
which is approximately 2.5 G - 10 Gbps. Due to the limitation
of single core forwarding performance, the lock-free parallel
computing architecture is not applicable when the throughput
of a single-user or single-flow exceeds the upper limit of a
single core’s forwarding performance.

The types of service that the packets cannot be dis-
patched according to a single user or single flow classi-
fication. For example, the five-tuple sets will change when
the packets are forwarded in firewall, because the traffic
is processed through network address translation (NAT).
Although the downlink and uplink traffic belong to the same
session connection, the five-tuple index is not the same. The
dispatch cores distribute packets to each service processing
thread according to the flow table established by the five-
tuple sets. The upstream and downstream processes of the
same session connection may be distributed in different service
processing threads. When more than two service processing
threads synchronously access the same data area, there are
issues of read synchronization and contention writing. Because
it is difficult to dispatch packets according to a single-user or
single-flow policy, the lock-free parallel computing architec-
ture is not applicable.

For these types of service, the service processing and
user data separation architecture shown in Figure 6 is an
alternative solution. A unified database plane is constructed
with computation and data separation. Service processing
threads are completely homogeneous, no longer store user
data, and become pure computing modules. The user data
or flow data are managed by the dedicated database instance
processing cores. A semi globalization mechanism is used,
and each user’s data or flow data is maintained by a unique
database instance core. Service processing threads focus on the
packet forwarding processing and query a hash table to locate
the corresponding database instance thread. In the lock-free
parallel computing architecture, the packet forwarding of the
same user or the same flow is processed by the same cores.
Because of the accurate dispatch, the packets of the same
user or the same flow are delivered to the specific core in

374

PKT - P P T ——
PKT ~;§7\ Al (Bl) cc)
PKT N N p \
A2) B2 X c2)
= S) g p L)
A3) (B3) 3 =R

—=z

e A decision node that consumes more computing resources and
generates more processing delays, is responsible for the
processing procedure of the first packet in a flow.

A A processing node optimized by a consistent policy execution

path, is responsible for the processing procedure of subsequent
packets of the same flow.

Fig. 7. Consistent policy execution path for the same packet flow.

sequence, and there is no packet disorder problem. In this
architecture model, the packet forwarding of the same user
or the same flow is processed by multiple cores, and it is
necessary to sequence packets of the same user or same flow.
The packet sequence is guaranteed by a database instance
thread, and single user data are centrally processed by one
database instance thread. For example, a packet fragmentation
is integrated by the same database instance thread. Theoreti-
cally, the throughput of a single-user or single-flow can achieve
the limit of the processing capability of multiple service cores
forwarding performance accumulations. The dispatch cores
evenly distribute the packets to multiple service processing
threads with a single-core load balancing algorithm. The ratio
of the database instance threads to the service processing
threads can be flexibly configured according to the different
service models.

3) Design Service Process Flow Based on Traffic Model
Characteristics: Continuous and stable requirements in devel-
opment continue to increase service complexity, causing ser-
vice process flow to become more sophisticated and less
efficient. It is very important to keep the simplified process
flow. Once it becomes complicated, the corruption speed
and complexity of the system increase exponentially, and the
programming skills cannot compensate for it. A good design
of the service process flow is the key to performance tuning.
Service process flows are related to the specific service char-
acteristics, and the different service types lack commonalities.
For example, there is a packet flow p = {p1,p2,...,pN}
with N packets, and the n-th packet consumes the computing
resource r, leading to the processing delay d,. In general,
we aim to optimize the cost for the packet flow, i.e.:

N
(1-w) Z dp,
n=1

where w is the coefficient. Specially, our goal reduces to
optimize the computing source min) 7, when w = 1.
Besides, our goal reduces to optimize the total processing
delay min Zgzl d, when w = 0.

As shown in Figure 7, the consistent policy execution path
is a more efficient service process flow. It is necessary to
determine the forwarding path while receiving the first packet
of a flow and a consistent policy execution path for the
same packet flow. Intuitively, it can eliminate many processing
delays and conserve decision-making overhead in this situation
as r; > 1o ry and di > do dn.

N
minimize w g T +

n=1

)

~
~

~
~

~
~

~
~

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Because, the system needs to perform analysis and judgment to
determine the action while processing the first packet of a flow.
Then, the forwarding flow table is modified, corresponding to
the decision of the forwarding path. According to matching
the forwarding flow table, the subsequent packets of the same
flow directly perform the same actions of the first packet to
avoid making repeat decisions.

C. Polishing and Perfecting Details of the Software

Software-based packet forwarding is a kind of high per-
formance computing. If the coding method is not suitable or
the algorithm is not refined enough, it will often become a
bottleneck of performance. Previous research proposed some
general analysis, such as ILP (instruction-level parallelism),
TLB (translation lookaside buffer), etc. [25]. But for the
specific scenario of virtualized packet forwarding, there are
still issues of method selection and adaptability that need to
be resolved.

1) Algorithm Optimization: The algorithm optimization
mainly aim to reduce the total computational scale factor f,
thus obtain better system speedup ratio Su(n).

High-performance index: The HASH algorithm is a
frequently used technology for fast index queries in
high-performance packet forwarding. If the selection of the
HASH algorithm is not suitable or the implementation is
not precise enough, it often becomes a bottleneck for per-
formance. The traditional zipper method for HASH conflicts
is not suitable for linear speed forwarding scenarios. The
performance of the existing HASH algorithm itself is not a
bottleneck. The average collision depth of the HASH barrel
is also approximately between 2 and 3. The main problem is
that a query requires multiple memory accesses, and a large
amount of CPU time is spent on waiting for memory access.
The key issue is how to reduce the number of index queries
accessing memory for HASH conflicts.

The table index array and its corresponding signature array
are added to the original data structure HASH table node. The
keyword is a 4-byte signature computed using the JHASH
algorithm [26] and stored in the signature array. The structure
is aligned to 64 bytes, i.e., within the cache line. The original
HASH algorithm queries the Level 1 HASH table node. Then,
a Level 2 JHASH is performed on keywords, while the JHASH
signature is calculated. Then, the JHASH signatures of each
element in the signature array of the Level 1 HASH nodes are
compared in turn. If the signature matches, the table resource
is accessed according to the corresponding table index, and
the full keyword matching is performed. The HASH algorithm
optimization can improve the performance due to the following
points:

- Reduced number of memory jumps. The HASH collision
chain is transformed into an array, and the JHASH
signature is compared when searching for resource
entries first (4-byte comparison efficiency is high). The
above two points ensure that the memory jump count is
controlled within 2 iterations.

- Full use of the CPU cache line is made to increase CPU
utilization.

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV 375

- The advantage of the JHASH algorithm. The JHASH
algorithm is simple and has better discreteness. The
DPDK’s experimental result shows that after 2 levels of
HASH, the collision array of the HASH barrel is enough
to store in a cache line.

There are also many algorithms used during packet forward-
ing, such as the access control list (ACL) algorithm and the
meter algorithm. According to the characteristics of the service
traffic model, the forwarding performance in real time can be
reflected with the aid of an observation indicator of pps, CPP,
el PC, and I PP in the case of NALM, which can be chosen
as a better algorithm.

2) Reasonable Planning for Memory and Caching: Memory
performance is often a key limiting factor in software-based
forwarding performance. For architects, a very important task
is to coordinate the relationships between the CPU core com-
puting speed and the Level 1, 2 and 3 caches. The optimization
goal is to reduce the nonparallel parts factor f, and the
cumulative overhead factor f;. The following methods can
more efficiently use the cache: The codes with high frequency
reside in the instruction cache; reduce the inter-core conflicts
in resource access; limit the memory range of thread access;
reduce the page switching consumption; and increase the hit
rates of TLB and caches.

IV. EXPERIMENTS AND DISCUSSIONS

NALM provides a holistic measurement approach combin-
ing individual measures to achieve a comprehensive analysis.
In this section, we evaluate NALM with the goals: 1) demon-
strate the relationships between the metrics and forwarding
performance in the system measurement method proposed
by NALM, and 2) quantitatively evaluate the specific effects
of the recommended improvements. The network forwarding
performance is traditionally tested with RFC2544 or a similar
performance test.

A. Two Typical Execution Models for SFCs

To illustrate the key role of NALM in the performance
tuning process, two simple yet representative SFC exam-
ples are implemented as simulation models using DPDK
libraries 18.11, including five network functions:

1) Network address translation (NAT), mainly completes
the mutual conversion between public IP address and private
IP address. NAT performs a 5-tuple querying to decide how
to translate the IP address header for a packet flow according
to a set of configured rules.

2) Deep packet inspection (DPI), performs in-depth inspec-
tions for application layer loads of packets. DPI filters and
controls the traffic according to a pre-defined strategy for the
fine-grained identification of services, the statistics on service
traffic proportions, and the service proportion shaping. DPI in
this experiment is mainly for content charging.

3) Layer 3 forwarder (L3FWD), performs longest matching
rule by querying a routing table to find the output interface
according to a destination IP address.

4) Access control (ACL), performs a 5-tuple querying to
decide whether to block a flow according to a set of configured
rules.

SFC A: NAT->DPI->L3FWD

Working Thread

> [5or)—>[on +—>[mr]

‘Working Thread

HW
ispatcl

= ‘Working Thread [—

INI; A
Run-To-Completion
Pipe-Line Ring Buff Ring Buff

® g Buffer ® ing Buffer
. i A
oL 0l g
Working Thread Working Thread Working Thread

Fig. 8. Two typical execution models of SFCs.

5) Basic stateful load balancing (LB) of Layer 4, establishes
a connection with one of the several destination servers based
on the 5-tuple for a packet flow. It includes frequent flow table
query, address rewriting and other processing.

The traditional packet forwarding model include two types,
i.e., RTC and Pipe-Line. They are used in the SFCs forwarding
processing in this experiment [29]. Under the Pipe-Line model,
the forwarding function of the entire SFC is split into multiple
independent stages, and the products are delivered through
queues in different stages. Through the filter, different working
threads can be allocated for different operations, and the two
speeds can be matched through the queue to achieve the best
concurrency. The delivery of packets in inter-cores will cause
performance penalty. Under RTC model, a SFC forwarding
processing contains several different logic functions, and they
will all run on a single CPU core, thereby avoiding delivering
packets inter-cores. As shown in Figure 8, the SFC A imple-
ments the sequential processing of NAT—DPI—L3FWD. As a
comparative use case, the SFC B implements the sequential
processing of ACL—LB—L3FWD. Two typical execution
models for SFC B is similar to that of SFC A. The example
SFC A shown in Figure 8 is run on 18 cores for the two typical
models, so as does SFC B.

The Intel VTune Amplifier tool [30] is used to measure the
number of CPU clock cycles when fetching instructions and
data to quantify the transmission overhead inter-core. Then,
the in-depth performance analysis is performed. Table IV
lists the number of CPU clock cycles of SFCs processing
in two typical models. These measurements can be quickly
obtained from a debugging PC at any stage of code debugging.
The long-term accumulation of similar measurement data
in processes will become an important reference for design
tradeoffs. Figure 9 presents the forwarding performance of
SFCs in two typical models. The measurements need to use
a high throughout tester, such as IXIA BPS which is one of
the few software-based traffic generators capable of generating
100Gbps traffic. It is very expensive in terms of cost. In terms
of timeliness, this performance test must be performed after
that all the functional features are developed and delivered.
Therefore, it cannot be used frequently and conveniently as
VTune. The key observations are summarized as follows:

1) The CPP measurement in Table IV always shows a
negative correlation with the forwarding performance in Fig-
ure 9. There is sufficient and detailed measurements to conduct
in-depth performance analysis in terms of the key indicator

376

TABLE IV
PROCESSING CYCLES OF SFCs IN TwWO TYPICAL MODELS

SFC A NAT DPI L3FWD | CPP
Run-To-Completion (cyc) | 210.3 | 308.5 160.6 679.4
Pipe-Line (cyc) 69.3 112.2 26.1 207.6
SFC B ACL LB L3FWD | CPP
Run-To-Completion (cyc) 10.3 15.5 6.6 32.4
Pipe-Line (cyc) 36.5 75.8 23.3 135.6
1 Il sFC A/RTC
. I SFC A/ Pipe-Line
60 - [TISFC B/RTC 1
[_1SFC B/ Pipe-Line
z
g
8 40 1
o
s -
w0
g
3
Z 0
0 , , l] H l] H
64 128 256 512
Packet Size (Byte)
Fig. 9. Forwarding performance of SFCs in RTC and Pipe-Line.

level, which can help determine the cause of performance
penalty.

2) The design of the performance forwarding scheme is
closely related to the service characteristics. The accumulation
of experience data is required to bring a better understanding
of design tradeoffs. Compared with the Pipe-Line model,
SFC B has better performance due to avoiding transferring
packets inter-core under the RTC model. Whereas, SFC A
has better performance under the Pipe-Line model rather than
RTC model. With increasingly complex behavior of SFC B,
the size of the state maintained by SFC B becomes very large.
Whereas, the L1/L2 cache resources is fixed and limited in
each core. SFC B requires more resources than the local cache
sizes. It is difficult for RTC to support a large number of
flows with high-throughput due to poor cache locality (both
i-cache and d-cache). Even for the same network functions,
there will be significant differences in performance when
accessing the local and non-local caches. Decision-making for
the optimization of forwarding performance requires reference
to meticulous measurements.

3) In this case, the CPP is used as one of consistent metric
for different feature sets. It reflects the complexity attribute
and development capability attribute of the feature set.

B. Experiments on a Large-Scale Commercial Platform

The above two experiments use simulation models to verify
the metrics proposed by NALM and its improved practice.
Now, we conduct experiments on a large-scale commercial
platform to illustrate the actual effect of the proposed tuning

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

140 . .
[5G UPF non-offloading

[5G UPF offloading with 100G SNIC
[_1FW non-offloading b
I WV offloading with 100G SNIC

-

N

o
T

N
o [+ o
o o o
T T T
L L L

Thoughout (Gbps@512Byte)
s
o

20 1

L ol olN TR]

4 8 12
Number of cores

Fig. 10. The performance comparison with 100G smart NIC between firewall
and 5GC UPF when offloading.

model from a macro perspective. A typical traffic model of
5G subscriber is set as: 1)the traffic per subscriber is 50kbps
during busy hours, 2) the bearer per attached subscriber is 1.6,
and 3) attach and detach attempt times per subscriber are all 1
during busy hours. Obviously, the number of subscribers, flow
entries and throughput will increase correspondingly. In the
test-bed setup of typical application scenarios, each compute
node runs on ZXTECS, which is a carrier-grade cloud network
platform based on OpenStack and is also a software platform,
different from the hardware in NFVI. The 5GC UPF and
firewall are selected as the VNF in the test bed because its
conditions are similar to commercial test conditions.

Offloading service traffic by smart NIC can reduce CPU
resource consumption under the same traffic and effectively
solve the high system overhead caused by I/O processing. The
ZXCLOUD R5300-G3 server, 2CPU OF Intel Xeon E5-2620
and the 100 GE smart NIC of H3PCX VUOP are used for the
system under test. Different number of working threads are
enabled to send and receive packets. Figure 10 shows the com-
parison of performance when offloading with smart network
card for two different service types: the firewall (FW) and
the SGC UPE. According to the throughput test in Figure 10,
the speedup ratio S, (n) relative to the 4-cores system can be
calculated, and the corresponding speedup ratio curve is fitted
as shown in Figure 11.

It can be seen that the bottleneck for the performance
of 5GC UPF lies in the total computational scale of the
software, and has a higher variation factor f; of the total
computational scale. The corresponding BCE resource need
to be allocated more to the processing for the SGC UPFE.
Whereas, the bottleneck for the performance of firewall lies in
the forwarding capability of the smart network card, more CPU
cores beyond 5 cores does nothing to improve throughput.
According to Implication 3, performance tuning is closely
related to the service model, and the total computational
scale is related to the service type. The system design must
reasonably allocate the corresponding BCE resource on the
basis of predicting the workload ratios according to the service
model.

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV 377

4 T T T T T

—#— 5G UPF non-offloading
—<— 5G UPF offloading with 100G SNIC
---©--- FW non-offloading
--->---FW offloading with 100G SNIC

351

w
T

N
w»
T

Speedup Ratio
S

4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

Fig. 11. Fitting curve of speedup ratio relative to the number of cores.

The central issue of how improvement actions lead
to a better state is studied in terms of multidimensional
optimization techniques in this paper. According to
Section II-B, the speedup ratio is closely related to four
types of factors. Among these theoretical tuning directions
of performance, the recommended improvements comprise:
the architecture optimization corresponding to the factor f;
of total calculation scale and the factor f, of nonparallel
parts, the algorithm optimization corresponding to the
total calculation scale factor f;, and the processing flow
optimization corresponding to the factor f; of cumulative
overhead.

A systematic benchmarking experiment is used to quantify
the comparative NFV acceleration effects reflected in the
architecture, processing flow, and algorithms. The test bed
uses NFVI ZTETECS as the cloud management platform,
and 5G UPF is deployed two R5300-G4X servers (one as
the control node and the other as the computing node). There
are two configurations available: 1) 2CPU of Intel Xeon Gold
6330N on server with E§10-CQDA2*4 NIC, and 2) 2CPU
Intel Xeon Platinum 8380 on server with E§10-CQD2*6 NIC.
The IXIA tester IxNetworks-XGS2 is used to simulate the
control plane and user plane services of 5G mobile users.
A mobile operator’s standard service test model is adopted,
as shown in Table V. The performance benchmarking verifies
the basic forwarding capability of UPF and the forwarding
capability with content billing DPI service processing respec-
tively. When the average CPU utilization of the worker thread
is 85%, the benchmarking results are shown in Figure 12.
Further, the quantitative comparisons of different dimension
optimization techniques are roughly calculated as shown in
Figure 13. The width represents the scope of application
of the optimization technology. The height represents the
contribution to the NFV acceleration ratio, and the higher is
better. It can be seen that these tuning directions have a signif-
icant improvement on performance, and the architecture and
algorithms have a more prominent impact on the NFV accel-
eration. The sNIC technology has good applicability, while
the other technologies have their own corresponding scope of
application.

TABLE V
THE STANDARD SERVICE TEST MODEL FOR 5G UPF

Indicators

600,000

50 kbps during busy hours
64 through 1518 bytes;
average 690 bytes

L7 protocol: 40,000

L3 and L4: 10,000

static: 40; dynamic: 10
HTTP: 80%, UDP: 20%

Main parameter

Number of access subscribers
Traffic per subscriber

Packet size range

Number of content billing (DPI) rules

Number of control and charging policy

Traffic ratio

Thoughout (Mpps))
S
(=]

Disable DPI
&Optimization Applied

Enable DPI
&Optimization Applied

Disable DPI
&OVS/DKDP

Enable DPI
&0OVS/DPDK

Fig. 12. Performance comparison of 5G UPF.

[Architecture [T Smart DPI [Algorithm [Processing Flow
Fig. 13.

Effect comparison of key factors for NFV acceleration.

C. The Impact of Memory Hierarchy on the Inter-Core
Transfer Overheads and Scalability

The experimental results of Figure 11 show that increasing
the user-plane processing core does not linearly increase the
forwarding performance improvement. As the number of cores
increases, the speedup ratio becomes lower and lower. The
interaction processing load inter-cores will become a bottle-
neck when the cluster processing cores reach a certain amount.
A processor usually contains multiple cores, integrated cache,
and memory [31]. The software design in the forwarding
system should ensure the performance matching between them

378

TABLE VI

IMPACT OF MEMORY HIERARCHY FOR INTER-CORE
TRANSFER OVERHEADS

Data block location Latency distribution ~ Transfer overhead (cyc)

Local-node L3-clean dp3 50
Local-node L3-dirty dp3 + pe 76
Inter-node L3 dr3 + pe + Pn 98
Local-node DDR dpDR 155
Inter-node DDR dppR + Pn 280

to obtain the optimal forwarding performance and scalability.
The north-bridge and south-bridge are two commonly used
components in classic CPUs. They are the communication
channel among the processor, memory, and other peripherals.

First, by simply increasing the number of processors, the full
advantages of multi-cores parallelism are not realized because
of the coding quality. The inter-core transfer overheads are
evaluated under different experiment settings for both single
node and multi-nodes. In the ZXCLOUD R5300 server of
the test bed, the general 2Ghz CPU main parameters are
shown in TABLE III. The access delays of L3 and DDR are
respectively denoted as drs, dppr. As shown in Figure 4,
a CPU can access the data block faster from components
that are within local node. There is a latency penalty when
the objects of data block travel across inter-node which we
refer to as inter-node penalty, denoted as p,,. Moreover, the
cache coherence penalty, denoted as p., is a concern in a
multi-cores environment. Since each core has its own cache,
a copy of the data in that cache may not always be the most
up-to-date version. Specifically, the packet inter-core transfer
overheads are measured by the waiting time that a CPU core
fetches instructions or data. Table VI shows the evaluation.
The multi-cores memory hierarchy has significant impact on
the forwarding performance and scalability.

Since all CPU cores read L3/DDR memory by sharing a
north-bridge. When the north-bridge is congested, all devices
and processors are paralyzed. As computing power increases,
so must memory bandwidth. If the processor cannot be pro-
vided enough data, even more processing cores on a chip will
be of no benefit, especially that a performance penalty incurs
in the processing of packet forwarding. Packets processed
inter-cores must be transferred via the L3 or DDR cache.
As the number of cores increases, the data exchange overheads
of inter-core or inter-node will increase accordingly, and
the performance bottleneck of the north-bridge in response
time will become more and more obvious, thus incurring the
inter-core transfer performance penalty. For certain CPUs, the
careful trade-offs should be made during software coding to
avoid the north-bridge congestion.

Second, some features of the software and hardware in
server become new bottlenecks, which affect the parallel
expansion of performance such as the bus contention and
share memory. Whether it is the main processor or the
accelerator card, or the hard disk or NIC of the south bridge,
it is necessary to frequently access the memory. When these
units all scramble to access memory, the competition for
north-bridge bandwidth intensifies, and there is only one bus
between the north-bridge and the memory. In a COTS for

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

packet forwarding, the access overhead of the NIC or the
accelerator card to the memory far exceeds that of a server
for general computing purposes, which has a significant impact
on the bus communication capability between the north-bridge
and the memory. The access mechanism of memory becomes
another bottleneck of the system design.

V. CONCLUSION

The software-based packet forwarding performance faces a
long-term challenges. NFV acceleration plays a crucial role
in the development of NFV. We believe that the effect of
performance optimization is ultimately reflected in two aspects
at the CPU instruction execution level.

- Increase in eIPC indicators: the code should make full
use of the CPU pipelines to increase the number of
instructions within a clock cycle that can be executed,
e.g., the VPP architecture, loop unrolling, dependence
reduction between instructions, and hardware and soft-
ware prefetching. Then the parallelism can be increased
significantly, though the total number of instructions
executed at a node is constant.

- Decrease in IPP indicators: the number of instructions
required for forwarding processing can be reduced as
much as possible by using the efficient instructions, algo-
rithms, or architectural decomposition, e.g., calculating
ahead is used instead of calculating every iteration in
the loop, node split, traffic offloading, etc. Then, the
number of instructions executed by a node is significantly
reduced.

The NFV acceleration requires a wealth of experience to
quickly identify the bottlenecks, and seek the best measure
from numerous technology options. Future works will focus on
the enrichment and improvement on the knowledge graph of
NFV acceleration, so that the software-based NFV acceleration
become controllable and expected with higher efficiency for
development.

REFERENCES
[1]

A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1-13.

V.-G. Nguyen et al., “SDN/NFV-based mobile packet core network
architectures: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1567-1602, 3rd Quart., 2017.

M. Satyanarayanan et al., “An open ecosystem for mobile-cloud con-
vergence,” I[EEE Commun. Mag., vol. 53, no. 3, pp. 63-70, Mar. 2015.
L. Linguaglossa et al., “Survey of performance acceleration techniques
for network function virtualization,” Proc. IEEE, vol. 107, no. 4,
pp. 746-764, Apr. 2019.

X. Fei et al., “Paving the way for NFV acceleration: A taxonomy, survey
and future directions,” ACM Comput. Surv., vol. 53, no. 4, pp. 1-42,
Sep. 2020.

A. Brunnert et al., “Performance-oriented DevOps: A research agenda,”
2015, arXiv:1508.04752.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devOps: Migration to a cloud-native architecture,” IEEE
Softw., vol. 33, no. 3, pp. 42-52, May /Jun. 2016.

J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High perfor-
mance and flexible networking using virtualization on commodity plat-
forms,” IEEE Trans. Netw. Service Manage., vol. 12, no. 1, pp. 34-47,
Mar. 2015.

R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236-262, Ist Quart., 2016.

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

WU et al.: PERFORMANCE TUNING VIA LEAN MEASUREMENTS FOR ACCELERATION OF NFV

[10] S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 639-652, Feb. 2020.

[11] R. Kundel, F. Siegmund, R. Hark, A. Rizk, and B. Koldehofe, “Network
testing utilizing programmable network hardware,” [EEE Commun.
Mag., vol. 60, no. 2, pp. 12-17, Feb. 2022.

[12] F. Lou, “Network acceleration and performance improvement,” DPDK
Summit China, 2017. [Online]. Available: https://www.dpdk.org/wp-
content/uploads/sites/35/2018/06/DPDK-China2017-Lou-Network-
Performance-Tuning.pdf

[13] J. Pernstal, R. Feldt, and T. Gorschek, “The lean gap: A review of lean
approaches to large-scale software systems development,” J. Syst. Softw.,
vol. 86, no. 11, pp. 2797-2821, Nov. 2013.

[14] P. Rodriguez et al., “Building lean thinking in a telecom software
development organization: Strengths and challenges,” in Proc. Int. Conf.
Softw. and Syst. Process, 2013, pp. 98-107.

[15] M. Wagner. Lean NFV Aims to Reignite Virtualization. Accessed: 2019.
[Online]. Available: https://www.lightreading.com/nfv/nfv-specs-open-
source/lean-nfv-aims-to-reignite-virtualizatio n/d/d-id/750646

[16] K. Petersen and C. Wohlin, “Software process improvement through the
lean measurement (SPI-LEAM) method,” J. Syst. Softw., vol. 83, no. 7,
pp. 1275-1287, Jul. 2010.

[17] M. Condoluci and T. Mahmoodi, “Softwarization and virtualization in
5G mobile networks: Benefits, trends and challenges,” Comput. Netw.,
vol. 146, pp. 65-84, Dec. 2018.

[18] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33-38, Jul. 2008.

[19] X. H. Sun and L. M. Ni, “Scalable problems and memory-bounded
speedup,” J. Parallel Distrib. Comput., vol. 19, no. 1, pp. 27-37,
Sep. 1993.

[20] Y. Le et al., “UNO: Uniflying host and smart NIC offload for flexible
packet processing,” in Proc. Symp. Cloud Comput., 2017, pp. 506-519.

[21] P. Stenstrom, T. Joe, and A. Gupta, “Comparative performance evalua-
tion of cache-coherent NUMA and COMA architectures,” in Proc. 19th
Annu. Int. Symp. Comput. Archit., 1995, pp. 315-326.

[22] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moreto, and
M. Casas, “Reducing cache coherence traffic with a NUMA-aware
runtime approach,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 5,
pp. 1174-1187, May 2018.

[23] G. Fursin et al., “Collective mind: Towards practical and collaborative
auto-tuning,” Sci. Program., vol. 22, no. 4, pp. 309-329, 2014.

[24] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, and
D. Rossi, “High-speed software data plane via vectorized packet process-
ing,” IEEE Commun. Mag., vol. 56, no. 12, pp. 97-103, Dec. 2018.

[25] B. Calder and G. Reinman, “A comparative survey of load speculation
architectures,” J. Instruct., Level Parallelism, vol. 2, pp. 1-39, 2000.

[26] B. Jenkins, “Hash functions,” Dr. Dobb’s J., Sep. 1997. [Online].
Available: http://www.burtleburtle.net/bob/hash/doobs.html

[27] M. B. Rutzig et al., “TLP and ILP exploitation through a reconfigurable
multiprocessor system,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., Workshops Phd Forum (IPDPSW), Apr. 2010, pp. 1-8.

[28] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen, and
S. J. Eggers, “Converting thread-level parallelism to instruction-level
parallelism via simultaneous multithreading,” ACM Trans. Comput. Syst.,
vol. 15, no. 3, pp. 322-354, Aug. 1997.

[29] P. Zheng, A. Narayanan, and Z.-L. Zhang, “A closer look at NFV exe-
cution models,” in Proc. 3rd Asia—Pacific Workshop Netw., Aug. 2019,
pp- 85-91.

[30] (2019). Intel VTune Amplifier. [Online]. Available: https://software.
intel.com/en-us/vtune

[31] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, Multi-
Core Cache Hierarchies. Williston, VT, USA: Morgan & Claypool,
Nov. 2011.

Qiang Wu (Member, IEEE) is currently a Pro-
fessor with the College of Computer Science and
Technology, Nanjing University of Aeronautics and
Astronautics. Before that, he worked as a member
of the Academic Committee of State Key Laboratory
A of Mobile Networks and Mobile Multimedia Tech-
: nology, ZTE Corporation, China. He has more than
100 authorized patents, of which nearly 20 patents
correspond to international standards. His research
interests include mobile networks, industrial internet,
integration of satellite-terrestrial networks, and cyber
security. He is a Fellow of CICC. The Chinese government honored him with
the Second-Class National Science and Technology Progress Award in 2009
and the Second-Class National Technology Innovation Award in 2014.

379

Xiangping Bryce Zhai (Member, IEEE) received
the B.Eng. degree in computer science and tech-
nology from Shandong University in 2006 and the
Ph.D. degree in computer science from the City
University of Hong Kong in 2013. He is currently
an Associate Professor with the College of Com-
puter Science and Technology, Nanjing University
of Aeronautics and Astronautics, China. He is also
with the Collaborative Innovation Center of Novel
Software Technology and Industrialization, Nanjing,
China. Previously, he was a Post-Doctoral Fellow

with the City University of Hong Kong. His research interests include the
Internet of Things, power control, edge computing, resource optimization, and
spatial analytics. He has been actively involved in organizing and chairing
several international conferences, and has served as reviewer for several

journals.

Xi Liu received the B.E. and Ph.D. degrees
from the Army Engineering University of PLA,
Nanjing, China, in 1995 and 2013, respectively.
He is currently an Associate Professor with the
College of Communications Engineering, Army
Engineering University of PLA. The main research
interests include computer networking, SDN, and
data communications.

Chun-Ming Wu received the Ph.D. degree in com-
puter science from Zhejiang University in 1995.
He is currently a Professor with the College of Com-
puter Science and Technology, Zhejiang University.
He is also the Associate Director of the Research
Institute of Computer System Architecture and Net-
work Security, Zhejiang University; and the Direc-
tor of the NGNT Laboratory. His research fields
include reconfigurable networks, networks security,
and next-generation networks infrastructures.

Fangliang Lou is a Systems Architecture Expert
with the State Key Laboratory of Mobile Net-
works and Mobile Multimedia Technology, ZTE
Corporation, Nanjing, China. He focuses on the
cut edge research and product implementation of
packet forwarding technology in packet communi-
cation equipment, and has over 20 years of expe-
rience in the research and development field of
telecommunication.

Hongke Zhang (Fellow, IEEE) received the Ph.D.
degree from the University of Electronic Science
and Technology of China, Chengdu, China, in 1992.
He was elected as an academician of the Chinese
Academy of Engineering in November 2021. He is
currently a Professor with the School of Electronic
and Information Engineering, Beijing Jiaotong Uni-
versity, Beijing, China, where he currently directs
the National Engineering Laboratory on Internet
Technology for Next-Generation Internet, China.
His research has resulted in many research papers,

books, patents, systems, and equipment in the areas of communications and

computer networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

