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Abstract— Environment perception in autonomous driving
vehicles often heavily relies on deep neural networks (DNNs),
which are subject to domain shifts, leading to a significantly
decreased performance during DNN deployment. Usually, this
problem is addressed by unsupervised domain adaptation (UDA)
approaches trained either simultaneously on source and target
domain datasets or even source-free only on target data in an
offline fashion. In this work, we further expand a source-free
UDA approach to a continual and therefore online-capable UDA
on a single-image basis for semantic segmentation. Accord-
ingly, our method only requires the pre-trained model from
the supplier (trained in the source domain) and the current
(unlabeled target domain) camera image. Our method Continual
BatchNorm Adaptation (CBNA) modifies the source domain
statistics in the batch normalization layers, using target domain
images in an unsupervised fashion, which yields consistent per-
formance improvements during inference. Thereby, in contrast
to existing works, our approach can be applied to improve a
DNN continuously on a single-image basis during deployment
without access to source data, without algorithmic delay, and
nearly without computational overhead. We show the consistent
effectiveness of our method across a wide variety of source/target
domain settings for semantic segmentation. Code is available at
https://github.com/ifnspaml/CBNA

Index Terms— Domain adaptation, neural networks, deep
learning, unsupervised learning, semantic segmentation, batch
normalization.

I. INTRODUCTION

THE information processing concept of an autonomous
driving vehicle as shown in Fig. 1 relies heavily on

deep neural networks (DNNs) to extract information from
sensor inputs such as camera images, RADAR measure-
ments, or LiDAR point clouds. Exemplary tasks executed
by such DNNs are semantic segmentation [1], [2], depth
estimation [3], [4], instance segmentation [5], [6], or object
detection [7], [8], which are expected to provide high-quality
outputs for a safe operation of the vehicle. However, DNNs are
usually trained on annotated datasets [9], [10], only covering
a small portion of real-life scenery. However, when DNNs
are deployed in the car, the environment can change dras-
tically due to, e.g., different image appearances from a new
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Fig. 1. Overview about continual unsupervised domain adaptation, e.g.,
by CBNA, and its deployment in online environment perception.

camera or day/night shifts, leading to a significantly decreased
DNN performance [11], [12]. This problem (known as domain
shift [13]) needs to be addressed for a successful deployment
of DNNs in highly automated vehicles.

Focusing on the semantic segmentation task, two main
concepts have been established to improve the performance
in a real-world target domain that is unlabeled by nature.
Firstly, in domain generalization (DG), the neural network is
trained more robust on several different source domains to
improve performance on unknown target domains [14], [15].
Here, the target domain is assumed to be unavailable and
accordingly one cannot make use of specific target domain
images. Secondly, in unsupervised domain adaptation (UDA),
the model is trained simultaneously on the labeled source
data and unlabeled target data, assuming that data from
both domains is available at the same time [12], [16]–[18].
In practice, however, models are often trained on non-public
datasets, which cannot be passed on due to data-privacy issues
or for other practical reasons, meaning that neither source
data nor representations thereof are available, instead only the
trained model from the supplier is available for adaptation.
In this case, DG as well as standard UDA techniques cannot be
applied. Therefore, similar to [19], we focus on UDA without
source data, meaning that we adapt a given trained model using
only unlabeled target domain data.

In this work, we aim at a task which is even more chal-
lenging yet also more interesting for practical deployment:
We focus on UDA without access to source data, where
the DNN is adapted during inference for every single (target
domain) image in a continual fashion, see the bottom part

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7675-750X
https://orcid.org/0000-0002-8895-5041


20900 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 2. Overview on how our novel CBNA approach differs from
other source-free UDA approaches, e.g., UBNA [19]. Re-initialization and
adaptation with CBNA is performed for each new image during inference.

of Fig. 2. Thereby, even if the domains switch rapidly in
an image stream from a video (e.g., when driving into a
tunnel), the network adapts to this on a single-image basis
and can obtain optimal performance in each situation without
any delay. Examples of such rapid domain changes could be
a different camera illumination when driving into a tunnel or
rapid weather/environmental changes, i.e., domain adaptation
in adverse conditions [20], [21]. Previous standard UDA and
DG approaches are of course inapplicable, as they require
access to source data, which is usually unavailable in a highly
automated vehicle due to storage limitations. Even our earlier
Unsupervised BatchNorm Adaptation (UBNA) work [19] not
relying on source data is not applicable to this task, as its
adaptation takes place on a separate data subset from the
target domain, see top part of Fig. 2. If during deployment the
domain changes again, or even permanently before inference
can take place, the performance of the model decreases as the
adaptation is not applied in a continual fashion. In practice,
however, it would be desirable to adapt and infer the DNN
on a single image basis at once to optimally match each new
domain without algorithmic delay.

To provide a solution for this defined task, we present our
Continual BatchNorm Adaptation (CBNA) method (cf. bot-
tom part of Fig. 2) as an extension of our previous work
UBNA [19]. Here, we mix the batch normalization (BN)
statistics (not the data!) of the source domain and a single
target domain image in a continual fashion for each new image
from the target domain. Thereby, during inference in a vehicle,
we can adapt the deep neural network model instantaneously
to each new image from the video stream of a camera, while
previous approaches [15], [19], [22]–[24] adapt only once in
an offline fashion to a single target domain using multiple
uncorrelated images. Regarding computational complexity,
CBNA introduces only little computational overhead on the
forward pass during inference, while reference approaches
reaching a similar performance [19], [24] would require a

whole additional forward pass through the model. Note, that
all aforementioned known approaches have been proposed
for offline settings (cf. top part of Fig. 2), making a direct
comparison to our new CBNA proposal unfair due to the here
envisaged more constrained continual UDA setting (cf. bottom
part of Fig. 2). Therefore, we report their performance in our
framework under the same constraints as so-called reference
methods, as no baseline approaches for continual UDA of
semantic segmentation exist so far.

Our contributions with this work are as follows: Firstly,
we present our online-capable CBNA method for continual
UDA without source data of semantic segmentation models.
Secondly, we show the successful applicability of CBNA on
a single-image basis during inference, with only little com-
putational overhead and no algorithmic delay being induced.
Thirdly, we show the effectiveness of CBNA across a variety
of source/target domain combinations, where we can even
find hyperparameters which generalize across different target
domains for a given segmentation model proving the practical
applicability of CBNA. We will publish our code to facilitate
further research on continual UDA without source data.

This work is structured as follows. In Section II we discuss
related approaches. Afterwards, in Section III we introduce
our CBNA method as well as reference methods, followed by
our experimental setup in Section IV. We evaluate our method
in Section V and finally conclude this work in Section VI.

II. RELATED WORK

We give an overview on related domain generalization (DG)
and unsupervised domain adaptation (UDA) approaches. For
UDA we particularly discuss approaches not relying on source
data and approaches making use of normalization layers.

A. Domain Generalization (DG)

The aim of DG methods [25]–[28] is to improve DNN
performance in an unknown target domain using data from
(several different) source domains. For semantic segmentation,
several approaches have been proposed [14], [25], [29], e.g.,
Yue et al. [14] mix the style of synthetic images with real
images, using auxiliary source domain datasets, thereby learn-
ing more domain-invariant features. While our CBNA method
for continual source-free UDA is applied after pre-training
and using only the pre-trained model and target domain data,
DG is applied during pre-training on source data (usually with
labels) and without target data. Thereby, if only a given trained
model and unlabeled data from the target domain are available,
DG methods cannot be applied, motivating the application
of methods for continual UDA without source data. Here,
we additionally provide experimental results, where a DNN is
first trained using DG methods and afterwards adapted using
our CBNA algorithm for source-free continual UDA, showing
that both methods for both tasks can be combined.

B. Unsupervised Domain Adaptation (UDA)

Standard UDA approaches assume that both labeled source
data and unlabeled target data are available at the same
time. Thereby, the domain transfer can be achieved in an
offline fashion by using domain adaptation training techniques.
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These techniques can be roughly divided into three subcat-
egories: Firstly, domain-adversarial training [12], [30]–[37],
can be applied, where domain-invariant features are learned
by an additional discriminator (loss). Secondly, style trans-
fer [17], [38]–[40], can be used to better match the appearance
of source and target domain by image-to-image translation
approaches. Thirdly, self-training can be employed, where
pseudo-labels are used as an additional supervision signal in
the target domain [17], [41]–[44]. As these approaches all
require labeled source data to be available during the domain
adaptation, they are not applicable when source data is not
available, e.g., due to data privacy issues. If in this case
an improvement in the target domain is still desired, UDA
approaches not relying on source data have to be used instead.

C. UDA Without Source Data

Towards continual adaptation of semantic segmentation
models, it is desirable to remove the need for source data
during the adaptation, as this is usually a large dataset or
a non-available dataset on the car manufacturer side, which
cannot be stored on a deployed vehicle. The approaches
of [45], [46] employ an auxiliary network which has been
trained in the source domain together with the segmentation
model. This network replays source domain knowledge to the
network during adaptation. Moreover, Stan et al. [47] and
Termöhlen et al. [48] learn a source domain distribution, which
is aligned with the target domain distribution during adapta-
tion. These approaches do not make use of source data during
the UDA. However, they still require an additional source
domain representation for their approach (e.g., an additional
network), which is usually also not available for a trained
model.

Only few approaches exist for UDA of a given trained
model relying only on unlabeled target domain data.
Some initial approaches relying on training with pseudo
labels [49], [50], alignment methods for the latent space
distribution [50]–[52], or class-conditional generative adver-
sarial networks [53] focus on simple tasks such as image
classification or object detection. However, the aforementioned
approaches do not address the semantic segmentation task,
which we address in this work. For this task some very recent
methods have been developed concurrently: Teja et al. [54]
apply entropy minimization on the posterior and maximize
the noise robustness of latent features. Kundu et al. [55] use
self-training on pseudo labels. Liu et al. [56] also make use
of this technique and in addition apply data-free knowledge
distillation. Our main distinguishing aspect from these works
is the proposal of an efficient continual domain adaptation on
a single-image basis, while to the best of our knowledge all
other source-free methods for semantic segmentation rely on
a time-consuming second training stage on many images in
the target domain.

D. UDA via Normalization Layers

The initial works of Li et al. [22], [23] for image classifi-
cation and Zhang et al. [15] for semantic segmentation show
that the re-estimation of batch normalization (BN) statistics
in the target domain can be used for UDA without source
data. The UBNA method from Klingner et al. [19] has shown

that mixing statistics from the source and target domain
outperforms these initial works, which we build upon for
our method design. These findings for domain adaptation
are also supported by the work on adversarial robustness of
Schneider et al. [24], where the beneficial effect of mixing
statistics from perturbed and clean images is shown. However,
the approaches mentioned before are only applicable to an
offline UDA on a dataset, i.e., they still require statistics
from multiple uncorrelated images in the target domain for
a successful application. This is disadvantageous for continual
UDA settings, where it would be desirable to continuously
adapt on a single-image basis to avoid algorithmic delay
during deployment in rapidly changing domains. In contrast
to existing methods [15], [19], [22]–[24], our CBNA method
is applicable to these continual UDA settings, which we will
show by our successful single-image adaptation results without
the usage of additional uncorrelated images. Another novelty
of CBNA is its integration into the single-image inference
forward pass of an already trained model, which introduces
nearly no computational overhead during inference.

III. BATCHNORM ADAPTATION METHODS

In this section we first revisit the batch normalization (BN)
layer and thereby introduce notations. Afterwards, we provide
reference methods for continual UDA of BN parameters
during inference, which we derive from their originally pub-
lished offline versions. Finally, we introduce our novel CBNA
method.

A. Revisiting the Batch Normalization Layer, Notations

As our adaptation method relies on the usage of batch
normalization (BN) layers, we briefly revisit the BN operation
for the scope of a fully convolutional DNN with two spatial
dimensions following [57]. Each BN layer then processes a
batch of input feature maps f � ∈ R

B×H�×W�×C� with batch
size B, height H�, width W�, and number of channels C�

of the feature map in the BN layer with index �. Then the
normalization is given by

f̂b,�,i,c = γ�,c · (fb,�,i,c − μ�,c) ·
(
σ2

�,c + ε
)− 1

2 + β�,c , (1)

where each feature fb,�,i,c ∈ R is normalized over the batch
and spatial dimensions with indices b ∈ B = {1, . . . , B}
and i ∈ I� = {1, . . . , H� · W�}, respectively, on a channel-
wise basis (channel index c ∈ C� = {1, . . . , C�}), yielding
the normalized output f̂ �. In (1), μ� = (μ�,c) ∈ R

C� and
σ� = (σ�,c) ∈ R

C�
+ are the channel-wise computed mean

and standard deviations in layer �, respectively, while γ� =
(γ�,c) ∈ R

C� and β� = (β�,c) ∈ R
C� are learnable scaling and

shifting parameters. The constant ε > 0 is a small number
avoiding divisions by zero.

During learning step K in training, the mean vector μ̌
(K)
� =

(μ̌(K)
�,c ) and standard deviation vector σ̌

(K)
� = (σ̌(K)

�,c ) of the
features f � from the current batch B are calculated as

μ̌
(K)
�,c =

1
BH�W�

∑
b∈B

∑
i∈I�

fb,�,i,c, (2)

(
σ̌

(K)
�,c

)2

=
1

BH�W�

∑
b∈B

∑
i∈I�

(
fb,�,i,c − μ̌

(K)
�,c

)2

. (3)
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During training, these values are directly used for the forward
pass computation in (1), i.e., μ� = μ̌

(K)
� and σ� = σ̌

(K)
� .

However, during inference, one does not desire a normalization
over the batch dimension, as this would make the output of
the DNN on one image dependent on the other images in
the batch, inducing indeterministic performance. Therefore,
as preparation for inference, the BN statistics of the entire
training dataset is approximated by recursively tracking mean
and variance from (2) and (3) as

μ̌
(K)
�,c = (1 − η) · μ̌(K−1)

�,c + η · μ̌(K)
�,c , (4)

(
σ̌

(K)
�,c

)2

= (1 − η) ·
(
σ̌

(K−1)
�,c

)2

+ η ·
(
σ̌

(K)
�,c

)2

, (5)

using a momentum parameter η ∈ [0, 1]. The final values
from (4) and (5) after K learning steps are then stored and
used later for inference, i.e., in (1) we employ μ� = μ̌

(K)
� and

σ� = σ̌
(K)
� .

B. Continuous Adaptation Reference Methods (C-X)

To improve the semantic segmentation DNN’s performance
during inference, we aim at adapting to each single image DT

t

from the target domain DT from a video at time t, imple-
menting a continual UDA. We assume that besides the input
image DT

t only the trained model parameters from the
source domain are available for this purpose. For seman-
tic segmentation, there are no baseline methods known for
this task, however, we still want to allow a comparison to
previous works and therefore we modify several approaches
to fit into our defined task, which then serve as reference
approaches C-X to our CBNA method.

The first such reference is a version of the AdaBN approach
from Li et al. [22], [23], who replace the source domain’s
BN statistics μ̌

(K)
� , σ̌

(K)
� by the target domain’s BN statistics

during inference. Originally, Li et al. employ the statistics
from all uncorrelated images of the test set in the computation.
This, however, is not suitable for our single-image continual
UDA task and would incur a large algorithmic delay of the
method. Therefore, to fit into our task definition, we modify
AdaBN [22], [23] as follows: In (1), the BN mean μ�,c and
variance σ2

�,c of each layer � and channel c are set individually

for each target domain image DT

t during inference, i.e.,
μ�,c ≡ μt,�,c and σ2

�,c ≡ σ2
t,�,c. They are calculated as

μt,�,c = μ̌t,�,c and σ2
t,�,c = σ̌2

t,�,c, (6)

where μ̌t,�,c and σ̌2
t,�,c are computed according to (2) and (3),

respectively, using only a batch size of B = 1, which is only
the available single-image input DT

t . We dub this method
C-Li, “continuous Li”, noting that this procedure requires only
a single forward pass during inference, as (6) can be computed
during the inference forward pass.1 Interestingly, the approach
from Zhang et al. [15] reduces to the same formulation, if only
a single target-domain image is used for adaptation during
inference. We dub it C-Zhang.

The second reference method is derived from the UBNA
approach of Klingner et al. [19] (C-Klingner), which adapts

1This is essentially the same (efficient) computation which is also carried
out during training of the BN layer with a batch size of B = 1.

Algorithm 1 Model Adaptation and Inference With CBNA
1: Load segmentation model trained on source data,

including the source domain’s BN statistics μ̌
(K)
� , σ̌

(K)
� as

trained in K steps of (4), (5)
2: Take current image DT

t from the target domain DT

3: CBNA: Initialize BN momentum ηDS
for all BN layers �

4: Pass image DT

t through the model until the first BN layer
5: for BN layer � ∈ {1, . . . , L} do
6: CBNA: Calculate BN statistics according to (9), (10)
7: CBNA: Update BN statistics according to (11), (12)
8: Pass features through the BN layer according to (1)
9: Pass features further until the next BN layer � + 1

10: end for
11: Pass features up to the end and generate the output DT

t

a model on a separate adaptation set by mixing the source
domain BN statistics with the target domain BN statistics.
While they do this using 50 adaptation steps, a separate adap-
tation to each single image with 50 additional forward passes
may cause too much computational overhead for deployment
of the method in a vehicle. However, it can be shown that
in the limit of using the same single adaptation image in
all 50 adaptation steps, UBNA can be reduced to a single
additional forward pass. On the first forward pass, the statistics
μ̌t,�, σ̌t,� of the target domain image DT

t are determined as
in C-Li. Afterwards, before the second forward pass with the
same image, the image-specific BN statistics μt,�, σt,� used
during inference are updated element-wise as:

μt,�,c =
(
1 − ηDS

)
· μ̌(K)

�,c + ηDS · μ̌t,�,c, (7)

σ2
t,�,c =

(
1 − ηDS

)
·
(
σ̌

(K)
�,c

)2

+ ηDS · σ̌2
t,�,c, (8)

by additionally considering the source-domain statistics μ̌
(K)
� ,

σ̌
(K)
� (obtained from (4) and (5) after K training steps),

which were disregarded in C-Li. The mixing weight ηDS ∈
[0, 1] is used to weigh the influence of the target domain
statistics. Interestingly, the same formulation can be derived
from the method of [24], although they use a different hyper-
parameter formulation for ηDS

and apply their method to
improve adversarial robustness. While the mixing of source
and target-domain statistics in C-Klingner by (7) and (8) is
shown to be beneficial for performance, it also induces a
second forward pass, which is disadvantageous in terms of
computational complexity.

C. Novel Continuous BatchNorm Adaptation (CBNA)

While both presented reference methods C-X come with the
mentioned disadvantages, our CBNA method is able to mix
BN statistics μ̌

(K)
� , σ̌

(K)
� from the source domain and the

statistics of a single target-domain image DT

t during a single
inference forward pass as shown in Fig. 3. Before the features
f t,� are normalized, their statistics are calculated and mixed
with the stored source domain statistics. The mixed statistics
are subsequently used to normalize the features. This method,
also described by Algorithm 1, is simply executed as one
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Fig. 3. Overview on how our novel CBNA approach mixes source and
target domain BN statistics on a single forward pass. The color code shows,
whether the network parts are optimized using information from the target-
domain image (green) or the source-domain data (orange).

forward pass for each new target domain image DT

t . Note that
in contrast to previous source-free UDA methods [54]–[56]
our CBNA method is a continual source-free UDA method
(cf. Fig. 2).

In contrast to C-Li, our CBNA method mixes source and
target domain statistics, which is beneficial for performance
and stability (cf. Table II). In contrast to C-Klingner, the
mixing of source and target domain statistics is done in a
single forward pass, which significantly reduces the additional
computational complexity introduced through the continual
adaptation (cf. Table III).

The details of our proposed CBNA are as follows. We ini-
tialize by imposing a weighting factor ηDS

between source
and target domain. This factor has to be chosen w.r.t. the
source domain model and should not differ for different
target domains as the information about the target domain
is only available during deployment and cannot always
be known in advance. Notably, target domain information
is, however, required for all previously proposed (offline)
methods [15], [19], [22], [23].

During the single inference forward pass, CBNA is applied,
while the image DT

t is processed by the segmentation DNN.
When the feature processing in the DNN reaches BN layer �,
we first compute the layer’s image-specific BN statistics as

μ̃t,�,c =
1

H�W�

∑
i∈I�

ft,�,i,c, c ∈ C�, (9)

σ̃2
t,�,c =

1
H�W�

∑
i∈I�

(ft,�,i,c − μ̃t,�,c)
2
, c ∈ C�, (10)

Fig. 4. Online adaptation and inference setup of our CBNA method
during deployment. Shown is a detail of Fig. 2 (bottom).

where the statistics are not only computed in dependency of
the target domain image’s statistics as in C-Li and C-Zhang
and in the first forward pass of C-Klingner, but in dependency
of the mixed statistics μt,λ and σt,λ from all previous BN
layers λ ∈ {1, 2, . . . , � − 1} (cf. Fig 3), the �-th BN layer
features depend upon.2 Consequently, these image-specific
statistics μ̃t,� and σ̃t,� from (9) and (10), respectively, are
applied immediately to update the BN statistics used for
normalization of the features f t,� in BN layer � as

μt,�,c =
(
1 − ηDS

)
· μ̌(K)

�,c + ηDS · μ̃t,�,c, c ∈ C�, (11)

σ2
t,�,c =

(
1 − ηDS

)
·
(
σ̌

(K)
�,c

)2

+ ηDS · σ̃2
t,�,c, c ∈ C�, (12)

Finally, the features are normalized according to (1) using the
statistics from (11) and (12) and processed further until the
next BN layer � + 1. This procedure is repeated progressively
through all BN layers of the model until the segmentation
mask DT

t has been generated (cf. Algorithm 1). Note that
the application of CBNA does only involve a single inference
forward pass through the model with minimal computational
overhead for computing (9) and (10) in each BN layer, and for
updating the statistics in (11) and (12) in each BN layer, which
presents a strong advantage over the C-Klingner reference
method.

During deployment, our CBNA method can be used for
DNN adaptation during the inference forward pass of each
individual image DT

t of a video as shown in Fig. 4. Thereby,
at time index t, the pre-trained model’s BN statistics μ̌

(K)
� ,

σ̌
(K)
� are adapted to the current (target domain) image DT

t

by CBNA, as detailed in Algorithm 1. For the next image
DT

t+1, again the pre-trained model from the source domain
(with BN statistics μ̌

(K)
� , σ̌

(K)
� ) is used as re-initialization

before the adaptation with CBNA during the inference forward
pass. Thereby, CBNA can be applied in a continual fashion
with very little computational overhead during deployment of
a semantic segmentation DNN in a vehicle.

2For the first layer (� = 1), there is obviously no previous BN layer and
therefore also no dependency of its statistics.
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TABLE I

AVAILABLE DATABASES AND THEIR CORRESPONDING NUMBER

OF IMAGES USED FOR TRAINING AND FOR EVALUATION

IV. EXPERIMENTAL AND EVALUATION SETUP

In this section, we first describe our used databases. Then,
we explain our training procedures resulting in the given mod-
els for adaptation. Finally, we introduce evaluation metrics.

A. Databases

We carry out experiments across a variety of datasets used
for training the given models (top part of Tab. I) and for
evaluation of the CBNA method (bottom part of Tab. I). Our
main experiments use pre-trained models from the synthetic
datasets GTA-5 (DS) [58] and SYNTHIA (DS) [59], which are
commonly used in other UDA works [12], [16]–[18]. To show
the applicability of CBNA to real-to-real adaptation settings
we alternatively use the real dataset Cityscapes (DS) [10]
for training. The real dataset KITTI (DS) [9] utilizing the
200 training images from the KITTI 2015 dataset [60] is used
as additional source-domain training material throughout the
later described domain generalization (DG-Init) experiments.

Although CBNA is meant to be applied to image sequences
(i.e., a video) during deployment, there are no well-established
video benchmarks for UDA of semantic segmentation. How-
ever, as CBNA and all C-X reference methods are applicable
on a single-image basis, the evaluation can be carried out
equivalently on single images of a validation/test set con-
taining uncorrelated images. For our main experiments (based
on GTA-5 and SYNTHIA training) we use the target domain
Cityscapes (DT) with 500 validation images to optimize our
method’s hyperparameters and 2,975 test images (official train-
ing images) to show their generalizability. Note that we use the
official Cityscapes training images in our test set, as the official
test set has no publicly available labels. Moreover, we use the
target domains KITTI (DT) [9], [60], BDD (DT) [61], and
Mapillary (DT) [62] (further details in Appendix A) during
ablation experiments. Whenever the domains Cityscapes (DS)
or KITTI (DS) have been used during training, we do not
employ the respective target domains during evaluation.

B. Training of the “Given” Source-Domain Models

We use the same network architecture as in [19] relying
on the widely used VGG [63] and ResNet [5] network
architectures (further details in Appendix B). The input to
the network is an RGB image DS

t ∈ I
H×W×C from the

source domain DS with height H , width W , and number

of channels C = 3. The image is normalized to the range
I = [0, 1]. The network predicts a posterior probability tensor
DS

t = (yDS

t,i,s) ∈ I
H×W×|S|, where yDS

t,i,s is the probability

that a pixel DS

t,i ∈ I
C with i ∈ I = {1, . . . , H · W} belongs

to class s ∈ S = {1, . . . , |S|}. For simplicity, we henceforth
set DS

t = t and DS

t = t in this section. During
inference, the final class can be determined through mt,i =
argmaxs∈Syt,i,s, yielding a pixel-wise semantic segmentation

map mt = (mt,i) ∈ SH×W . During training, the network is
optimized using ground truth labels mt ∈ SH×W , which are
one-hot encoded such that mt,i = argmaxs∈Syt,i,s, yielding
a ground truth tensor yt = (yt,i,s) = {0, 1}H× W×|S|. For
optimization, we use the weighted cross-entropy loss

J seg
t = − 1

H · W
∑
i∈I

∑
s∈S

wsyt,i,s · log (yt,i,s) , (13)

where the class-wise weights ws are determined as in [64].
During optimization with (13) as loss function, we resize

the images from GTA-5, SYNTHIA, Cityscapes, and KITTI
to resolutions of 1024 × 576, 1024 × 608, 1024 × 512,
and 1024 × 320, respectively. Subsequently, these resized
images are randomly cropped to a resolution of 640 × 192.
As data augmentations we use horizontal flipping, random
brightness (±0.2), contrast (±0.2), saturation (±0.2), and hue
(±0.1). We optimize our segmentation models for 20 epochs
(10, 000 training steps approximately comprise one epoch),
using the Adam optimizer [65] and a batch size of B = 12 if
we only use a single dataset. As a simple DG method we use
mixed batches from two datasets (6 images from each dataset),
which we mark by (DG-Init) during evaluation. This may not
be the latest state-of-the-art DG method, however, the scope of
this work is not to optimize a DG method but merely to show
that CBNA can be applied to given models that were trained
by DG methods. The learning rate is initially set to 10−4 and
reduced to 10−5 for the last 5 epochs.

C. Evaluation Metrics

We evaluate the semantic segmentation output by calculat-
ing the mean intersection-over-union (mIoU) [66]

mIoU =
1
|S|

∑
s∈S

IoUs =
1
|S|

∑
s∈S

TPs

TPs + FPs + FNs
(14)

over all |S| = 19 classes as defined in [10], except for
models trained on SYNTHIA, where we follow common
practices [67], [68] in evaluating over subsets of 13 and
16 classes. For each class s the number of true positives
(TPs), false negatives (FNs), and false positives (FPs), cal-
culated between predictions mt and ground truths mt, are
accumulated over all T images of the validation/test set. For
adaptation and evaluation (with (14) being used as metric)
we resize the images from Cityscapes, KITTI, BDD, and
Mapillary to resolutions of 1024×512, 1024×320, 1024×576,
and 1024× 576, respectively.

V. EXPERIMENTAL EVALUATION

To evaluate our method, we first give an ablation on
how the hyperparameters of CBNA influence the method’s
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Fig. 5. CBNA: Influence of the weighting factor ηDS
(11), (12) for the

VGG-16-based model, when performing an adaptation from GTA-5 (DS) to
several target domain validation sets (cf. Table I).

performance. The final chosen model is then compared to
several re-implemented reference methods (C-X) and to the
only offline-capable UBNA from [19]. Finally, we compare
our method on standard UDA benchmarks and give some
qualitative results.

A. CBNA Method Design and Ablation

When applying CBNA, first the question arises on how
to weigh the influence of the source domain statistics and
the statistics of the target domain image in (11) and (12),

which is determined by the weighting factor ηDS
. The analysis

in Fig. 5 shows this influence for a VGG-16-based model
being adapted from GTA-5 to several target domains, where
ηDS

= 0 represents using only the source domain statistics
(no adaptation), and ηDS

= 1 represents using only the target
domain image’s statistics (i.e., the C-Li method). We observe
that the mIoU performance can be improved by approximately
3% . . . 5% absolute (depending on the target domain) when
mixing source and target domain statistics. However, if the
influence from the target domain becomes too large, the
performance decreases again. This is expected to some degree,
as a high weight on the target domain image’s BN statistics
means that the network is strongly influenced by presumably
rather unstable (i.e., highly time-variant) statistics of just a
single image, compared to the statistics of many images from
the source domain.

For the considered source domain model in Fig. 5, dif-
ferent optimal weightings ηDS

would be obtained for differ-
ent target domains. However, in practice, we cannot assume
prior knowledge about the target domain. Accordingly, each
source domain model should only use a single weight-
ing factor for all considered target domains and for any
considered target image in general. Therefore, we choose
the following strategy to obtain just a single weighting
for all considered target domains: From the set E =
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} we first take the
best weighting for each target domain validation set. Then we
average the target domain-specific weighting factors. Finally,
we round to the next best weighting factor from E . By this
strategy we obtain a weighting factor of ηDS

= 0.2 for models
trained on GTA-5 and SYNTHIA, and ηDS

= 0.1 for models

Fig. 6. CBNA: Influence of considering ΔN −1 preceding video frames
for the VGG-16-based model, when performing an adaptation from several
source domains to the Cityscapes (DT) validation set.

trained on Cityscapes. In the following experiments we will
use these weighting factors for all experiments. To ensure
fairness, we optimize the reference method C-Klingner in the
same fashion, while the reference methods C-Li and C-Zhang
do not contain such hyperparameters and therefore do not need
to be optimized.

It is further of interest, whether the performance can be
improved by considering the BN statistics from additional
target domain images, which is investigated in Fig. 6. Here, for
each sample, we additionally consider preceding image frames
from its corresponding video (available in Cityscapes (DT)).
Interestingly, there is no gain in performance, indicating that
the statistics of a single target domain image in combination
with the source domain statistics is already sufficient for a
stable adaptation. One could argue that this behavior could also
be expected due to the high correlation between consecutive
images. However, side experiments show that using random
uncorrelated frames from the target domain yields essentially
the same behavior as observed for highly correlated preceding
video frames in Fig. 6. Interestingly, this is not in contrast
to [19], where additional images improved the adaptation
performance, as in [19] a single offline adaptation was used
to adapt to the entire target domain (which can of course be
better represented by statistics from several images), whereas
CBNA adapts to each single image separately. Accordingly,
we can draw the conclusion that for the scope of our method
the adaptation can be done on a single image basis during
inference, which is a huge advantage in terms of applicability
and latency (reaction time to domain shift).

B. Comparison to Reference Continual UDA Methods

After having found suitable method hyperparameters,
we facilitate a comparison to other possible approaches. As no
continual UDA approaches for semantic segmentation exist
so far, we reimplemented current related approaches and
transferred them to our continual setting as described in
Sec. III-B. We compare the results to our CBNA method in
Table II for VGG-16-based and ResNet-50-based network
architectures, with the adaptations from GTA-5 to Cityscapes
and SYNTHIA to Cityscapes. The hyperparameters of CBNA
and C-Klingner have been optimized for applicability to many
target domains, as described in Section V-A on the validation
sets of all target domains (cf. Table I). We test their gener-
alization to unseen data by utilizing the official Cityscapes
training set as our test set. In Table II we observe that just
using the target domain statistics (C-Li and C-Zhang) does
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TABLE II

PERFORMANCE COMPARISON OF CBNA TO RE-SIMULATED

METHODS MODIFIED TO BECOME CONTINUAL SINGLE-IMAGE

SOURCE-FREE UDA REFERENCE METHODS. RESULTS

ARE REPORTED ON CITYSCAPES(DT)

not improve the results significantly and even reduces the
performance in some cases, e.g., for the adaptation of both
architectures from SYNTHIA to Cityscapes. This is consistent
with the observations from Fig. 5, where ηDS

= 1 decreased
the performance in all cases.

The reference method C-Klingner, mixing source and target
domain statistics, improves significantly over the “no adapta-
tion” baseline, however, it involves the execution of a second
forward pass, adding a lot of computations during inference
(cf. Table III). A detailed analysis is given in the Appendix.
In total, our CBNA method always performs second-ranked,
close after C-Klingner, requiring only a single forward pass
with almost no computational overhead. On the used Tesla
P100 graphics card, the VGG-16-based architecture with
CBNA can be executed at 20fps (same as the “no adaptation”
baseline), while C-Klingner reaches only 10fps. Compared to
the source domain model, our CBNA method yields 3.2% and
3.3% absolute mIoU improvement for the adaptations from
SYNTHIA to Cityscapes and GTA-5 to Cityscapes (test set),
respectively, when applied to the ResNet-50-based model.
Consistent improvements are also achieved for VGG-16-based
models in these adaptation settings.

C. Comparison to Offline Methods

To better understand the advantages that our method
offers, we also compare to the offline-capable UBNA method
from [19] in Tables IV and V. Notably, UBNA is applied
on 50 random images of the target domain, meaning that in
order to apply this method in a vehicle, the time of domain
switch needs to be known (otherwise complexity would be
dramatically too high). In contrast, CBNA is applied on a
single-image basis during inference, thus an adaptation to the
current domain is applied in a continuous fashion. We there-
fore take a model from GTA-5 and adapt it to 4 different target
domains with UBNA (cf. the right-hand side of Table IV). It is
observable that UBNA improves the behavior on the domain
it adapts to, e.g., from 33.6% to 37.5% for the ResNet-50
model on Cityscapes. However, on other domains the perfor-
mance often decreases, e.g., the ResNet-50 model exhibits

TABLE III

ADDITIONAL COMPLEXITY IN 109 FLOPS/IMAGE FOR ONLINE

ADAPTATION IN INFERENCE; IMAGE RESOLUTION OF 512 × 1024

decreased performance on KITTI, BDD, and Mapillary when
being adapted to Cityscapes. Similar behavior can also be
observed for the other UBNA adaptations, when using a
model pre-trained on GTA-5. In the same source domain
condition (GTA-5), CBNA improves the performance for both
ResNet-50 and VGG-16 in all target domains.

In total, Table IV shows 16 adaptation conditions (2 source
domains, 4 target domains, 2 network architectures). Here, our
novel CBNA (one method!) secured in total twelve 1st or 2nd

ranks, without any need of target domain data beforehand,
while none of the four UBNA settings could achieve more
than five such ranks. Presuming that the time of domain
switch is always known, then all four methods “UBNA adapted
to X” may be combined, achieving 16 1st or 2nd ranks,
which performs comparable to our proposed CBNA, however,
if the time of domain switch is not detected, then drastic
performance decreases may occur. It is important to note
that CBNA solves this issue with excellent computational
efficiency, and does not suffer from adaptation mismatch.
Accordingly, in only 3 out of 16 cases performance slightly
decreased, while for UBNA there are many cases, where an
adaptation mismatch leads to drastic decreases in performance.

To also answer the question, whether CBNA works when
being applied to a model with significantly higher initial
performance (real-to-real adaptation), we also experiment
with models pre-trained on Cityscapes, as shown in Table V.
Here, we again observe significant gains in performance, e.g.,
an absolute 7.0%, 1.7%, and 2.8% on KITTI, BDD, and Map-
illary, respectively, for the ResNet-50 model. In comparison
to the three UBNA methods, CBNA is always first or second
ranked (6 such ranks) in any case better than the baseline
without adaptation. The three UBNA methods together only
achieve 3 such ranks, often exhibiting an even decreased
performance in the target domain.

D. Method Performance Analysis

While all presented results up to now can be applied
without making use of source data, the question arises how
CBNA, using only the source domain model and target data,
compares to standard UDA methods, which make use of
source and target domain data at once (no “source-free adap-
tation”, not online capable). We provide such a comparison in
Tables VI and VII for the commonly used benchmarks GTA-5
to Cityscapes and SYNTHIA to Cityscapes, respectively.
We compare to some of the latest state-of-the-art methods,
where we observe that CBNA—as expected—performs worse
than these UDA methods due to our much more constrained
task definition. In a practical scenario, data often cannot
be transferred from the model supplier, making CBNA the
only method applicable to improve the model in such cases.
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TABLE IV

COMPARISON TO OFFLINE METHODS (UBNA [19]) ACROSS VARIOUS SYNTHETIC SOURCE DOMAINS AND REAL TARGET DOMAIN DATASETS

SHOWING THE STRONG ONLINE CAPABILITY OF OUR CBNA ALGORITHM. MIOU VALUES IN %; BEST RESULTS WRITTEN IN BOLDFACE

TABLE V

COMPARISON TO OFFLINE METHODS (UBNA [19]) ACROSS FOR ONE

REAL SOURCE DOMAIN AND VARIOUS REAL TARGET DOMAIN

DATASETS SHOWING THE STRONG ONLINE CAPABILITY OF OUR

CBNA ALGORITHM. MIOU VALUES IN %; BEST

RESULTS WRITTEN IN BOLDFACE

Here, for a VGG-16-based model adaptation to Cityscapes
(DT), we observe improvements from 31.5% to 36.4%
(DS: GTA-5) and from 30.0% to 32.1%/from 35.2% to
37.7% (DS: SYNTHIA). Similar improvements are achieved
with a ResNet-50 backbone.

A particular advantage is that CBNA can be combined
with any domain generalization (DG) pre-training, which is
not necessarily the case for standard UDA methods. This
would allow a supplier to improve the model, while the car
manufacturer can still improve the final model performance
on the target domain during vehicle operation using CBNA.
Exploiting this advantage, we also present results for such
a DG-initialized model, where for VGG-16-based models
and the adaptation from GTA-5 or SYNTHIA to Cityscapes,
we achieve significantly higher performances of 43.1% and
44.7%/51.3%, respectively, than without DG initialization
(36.4% and 32.1%/37.7%). This reduces the gap to UDA
methods, which are sometimes even outperformed by the com-
bination of DG pre-training and CBNA as, e.g., for a VGG-16-
based model and the adaptation from SYNTHIA to Cityscapes.
In other cases, the final performance of CBNA with DG
pre-training is still slightly worse than UDA methods, but
offers a good alternative to UDA methods, when simultaneous
access to source and target domain data is not possible.

Fig. 7. Probability distributions over the absolute single-image per-
formances (top) and the single-image performance difference before and
after application of CBNA (bottom) when adapting from GTA-5 (DS) to
Cityscapes (DT) using a VGG-16 backbone.

As our method is applicable on a single-image basis,
we further analyze the single-image performance in Fig. 7.
In the top part, we plot the distributions over the absolute
performance for different models. We observe a clear shift
towards a higher performance for CBNA compared to the
no adaptation model. We further compare the performance
before and after application of CBNA for single images and
plot the distribution over this performance difference in the
bottom part of Fig. 7. We can see that for the large majority
of images CBNA improves performance, but for some images
the performance also decreases slightly.

The mentioned improvements are also illustrated in Fig. 8,
where the segmentation masks generated by CBNA contain
much fewer artifacts than the ones of the “no adaptation”
baseline. Using a model that has been pre-trained using a
DG pre-training improves the results even further, which is
consistent with the results from Tables VI and VII.

VI. CONCLUSION

We presented a continual domain adaptation method for
semantic segmentation in constrained (practical) scenarios,
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TABLE VI

COMPARISON TO UDA METHODS ON THE CITYSCAPES VALIDATION SET FOR THE ADAPTATION FROM GTA-5 (DS)

TO CITYSCAPES (DT). BEST UDA RESULTS AND BEST SOURCE-FREE UDA RESULTS IN BOLDFACE;

RESULTS MARKED WITH ∗ ARE TAKEN FROM THE RESPECTIVE PUBLICATIONS

TABLE VII

COMPARISON TO UDA METHODS ON THE CITYSCAPES VALIDATION SET FOR THE ADAPTATION FROM SYNTHIA (DS) TO

CITYSCAPES (DT). BEST UDA RESULTS AND BEST SOURCE-FREE UDA RESULTS IN BOLDFACE; RESULTS MARKED

WITH ∗ ARE TAKEN FROM THE RESPECTIVE PUBLICATIONS

where one does not have simultaneous access to both source
and target domain data. For these cases, the given trained
deep neural network (DNN) model from the source domain
can be adapted in an online fashion to single images of
different target domains by using our source-free Continu-
ous BatchNorm Adaptation (CBNA) method, which yields
a significant increase in performance. This presents a clear

advantage over previous offline unsupervised domain adapta-
tion (UDA) methods, as we perform a single-image adaptation
which is employed during inference, requiring only minimal
computational overhead while incurring no algorithmic delay.
For semantic segmentation, we presented experiments for
three source domains and four target domains, showing the
good generalization capability of our method. We thereby
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Fig. 8. Qualitative comparison when adapting from GTA-5 (DS) to
Cityscapes (DT) between the model without adaptation and our CBNA
models using a VGG-16 backbone. Single image mIoU performance [%]
in white.

offer the possibility to deploy a UDA method in an online
fashion (i.e., in an operating vehicle) for continual adapta-
tion. Future works could integrate our method in tasks such
as instance segmentation or object detection as a standard
normalization layer modification to improve these tasks’ tar-
get domain performance. Also, transferring the advances of
other source-free domain adaptation methods to the contin-
ual setting may further facilitate target domain performance
gains.

APPENDIX

A. Mapillary Label Inconsistency

To deal with the label inconsistency between Cityscapes and
Mapillary, the classes “bike-lane”, “crosswalk-plain”, “road”,
“lane marking - crosswalk”, and “lane marking - general”
are mapped to the “road” class, and the classes “bicyclist”,
“motorcyclist”, and “other rider” are mapped to the “rider”
class. All other classes defined in Cityscapes are also present in
Mapillary and can be mapped in a straightforward fashion. All
remaining additional classes defined in Mapillary are mapped
to the background class.

B. Network Architecture Details

We rely on the encoder-decoder network architecture
from [19]. The encoder is a standard ResNet-50 [5] or
VGG-16 [63] model with Imagenet-pretrained weights [71].

TABLE VIII

ADDITIONAL FLOPS INDUCED BY THE SINGLE EQUATIONS INVOLVED

FOR CBNA AND FOR THE REFERENCE METHODS C-X

The basic setup of each layer in these architectures is the use of
a convolutional layer, followed by a batch normalization (BN)
layer, followed by an activation function (mainly ReLU vari-
ants), where the BN layers in the encoder are essential for our
adaptation method. In total, the feature resolution is downsam-
pled five times resulting in a downsampling factor of 25. The
intermediate features at each resolution are passed on to the
decoder, implementing a U-Net-like structure inspired by [72].

The decoder uses a simple fully convolutional architecture
as defined in [73]. The features from the skip connections
are concatenated with the features from the decoder, followed
by two convolutional layers with ELU activation and nearest
neighbor upsampling. Note that no BN layers are used in
the decoder. The output convolution produces output logits in
S = |S| feature maps, which are converted to posterior class
probabilities for each pixel by a pixel-wise softmax function.

C. Method Complexity Analysis

To better understand the additional computational complex-
ity induced by CBNA and the reference methods C-X, we ana-
lyze the single involved equations in terms of their induced
additional FLOPs in Table VIII. The numbers are accumulated
over all BN layers in the VGG-16 and ResNet-50 network
architectures. For the reference methods C-Li and C-Zhang,
we need to apply (2) and (3), which then replace the source
domain statistics. As here the mean over each feature map is
computed, the additional FLOPs induced by these equations
scale with the feature map resolution H� ·W� and the number
of feature maps C�.

For C-Klingner, additionally (7) and (8) are applied on the
first forward pass to mix source and target domain statistics.
As, however, only one value per feature map is updated,
these equations induce additional FLOPs in the order of C�.
However, here most additional computations are induced by
the additional forward pass (cf. Table VIII), where all com-
putations in the convolutional layers have to be recomputed,
inducing much more additional FLOPs than just a few addi-
tional computations in the BN layers as in C-Li/C-Zhang.

For CBNA, on the other hand, first (9) and (10) have to be
applied, which, however, induces exactly the same number of
additional FLOPs as (2) and (3) for C-Li/C-Zhang, i.e., (9)
and (10) also scale with H� · W� · C�. Afterwards only (11)
and (12) have to be executed, which only induces additional
FLOPS in the order of C�. For the given network architecture,
the feature map resolution is up to the order of H� ·W� ∼ 106

(image resolution of 512×1024), while the maximum number
of channels is only in the order of C� ∼ 103, which is why
the main complexity of CBNA is caused by (9) and (10). This
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also explains, why the number of additional FLOPs of CBNA
and C-Li/C-Zhang in Table III appears to be equal, as the
additional complexity induced by (11) and (12) is negligible.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Boston, MA, USA, Jun. 2015, pp. 3431–3440.

[2] L. C. Chen, G. Papandreou, and I. Kokkinos, “DeepLab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 834–848, Jun. 2017.

[3] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Proc. Adv. Neural
Inf. Process. Syst., Montréal, QC, Canada, Jun. 2014, pp. 2366–2374.

[4] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 1851–1860.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[6] A. Kirillov, R. Girshick, K. He, C. Rother, and P. Dollár, “Panoptic
segmentation,” in Proc. CVPR, Long Beach, CA, USA, Jun. 2019,
pp. 9404–9413.

[7] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Las Condes, Chile, Dec. 2015, pp. 1440–1448.

[8] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain
adaptive faster R-CNN for object detection in the wild,” in Proc. CVPR,
Salt Lake City, UT, USA, Jun. 2018, pp. 3339–3348.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[10] M. Cordts, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas,
NV, USA, Jul. 2016, pp. 3213–3223.

[11] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
propagation,” in Proc. ICML, Lille, France, Jul. 2015, pp. 1180–1189.

[12] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, “Learning to adapt structured output space for semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Salt Lake City, UT, USA, Jun. 2018, pp. 7472–7481.

[13] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” J. Big Data, vol. 3, no. 1, pp. 1–40, Dec. 2016.

[14] X. Yue, Y. Zhang, S. Zhao, A. Sangiovanni-Vincentelli, K. Keutzer, and
B. Gong, “Domain randomization and pyramid consistency: Simulation-
to-real generalization without accessing target domain data,” in Proc.
ICCV, Seoul, South Korea, Oct. 2019, pp. 2100–2110.

[15] J. Zhang, L. Qi, Y. Shi, and Y. Gao, “Generalizable semantic segmen-
tation via model-agnostic learning and target-specific normalization,”
Pattern Recognit., vol. 122, no. 122, Feb. 2022, Art. no. 108292.

[16] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, “Unsupervised intra-
domain adaptation for semantic segmentation through self-supervision,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Seattle, WA, USA, Jun. 2020, pp. 3764–3773.

[17] Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for domain
adaptation of semantic segmentation,” in Proc. CVPR, Long Beach, CA,
USA, Jun. 2019, pp. 6936–6945.

[18] Z. Wang et al., “Differential treatment for stuff and things: A simple
unsupervised domain adaptation method for semantic segmentation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Seattle,
WA, USA, Jun. 2020, pp. 12635–12644.

[19] M. Klingner, J.-A. Termohlen, J. Ritterbach, and T. Fingscheidt, “Unsu-
pervised BatchNorm adaptation (UBNA): A domain adaptation method
for semantic segmentation without using source domain representa-
tions,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. Workshops
(WACVW), Waikoloa, HI, USA, Jan. 2022, pp. 1–11.

[20] R. Gong et al., “Cluster, split, fuse, and update: Meta-learning for open
compound domain adaptive semantic segmentation,” in Proc. CVPR,
Jun. 2021, pp. 8344–8354.

[21] J. Zhang, K. Yang, A. Constantinescu, K. Peng, K. Müller, and
R. Stiefelhagen, “Trans4Trans: Efficient transformer for transparent
object segmentation to help visually impaired people navigate in the real
world,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW),
Oct. 2021, pp. 1760–1770.

[22] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normal-
ization for practical domain adaptation,” in Proc. ICLR, Toulon, France,
Apr. 2017, pp. 1–10.

[23] Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu, “Adaptive batch nor-
malization for practical domain adaptation,” Pattern Recognit., vol. 80,
pp. 109–117, Aug. 2018.

[24] T. Saikia, C. Schmid, and T. Brox, “Improving robustness against
common corruptions with frequency biased models,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 1–13.

[25] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning
and generalization capacities via IBN-Net,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), Munich, Germany, Sep. 2018, pp. 464–479.

[26] Q. Dou, D. C. de Castro, K. Kamnitsas, and B. Glocker, “Domain
generalization via model-agnostic learning of semantic features,” in
Proc. NeurIPS, Vancouver, BC, Canada, Dec. 2019, pp. 6447–6458.

[27] D. Li, J. Zhang, Y. Yang, C. Liu, Y.-Z. Song, and T. M. Hospedales,
“Episodic training for domain generalization,” in Proc. CVPR, Seoul,
South Korea, Oct. 2019, pp. 1446–1455.

[28] S. Seo, Y. Suh, D. Kim, G. Kim, J. Han, and B. Han, “Learning to
optimize domain specific normalization for domain generalization,” in
Proc. ECCV, Glasgow, U.K., Aug. 2020, pp. 68–83.

[29] S. Choi, S. Jung, H. Yun, J. T. Kim, S. Kim, and J. Choo, “RobustNet:
Improving domain generalization in urban-scene segmentation via
instance selective whitening,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 11580–11590.

[30] J.-A. Bolte et al., “Unsupervised domain adaptation to improve image
segmentation quality both in the source and target domain,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Long Beach, CA, USA, Jun. 2019, pp. 1404–1413.

[31] M. Chen, H. Xue, and D. Cai, “Domain adaptation for semantic
segmentation with maximum squares loss,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Seoul, South Korea, Oct. 2019, pp. 2090–2099.

[32] J. Dong, Y. Cong, G. Sun, Y. Liu, and X. Xu, “CSCL: Critical semantic-
consistent learning for unsupervised domain adaptation,” in Proc. ECCV,
Glasgow, U.K., Aug. 2020, pp. 745–762.

[33] L. Du et al., “SSF-DAN: Separated semantic feature based domain
adaptation network for semantic segmentation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Seoul, South Korea, Oct. 2019, pp. 982–991.

[34] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “FCNs in the
wild: Pixel-level adversarial and constraint-based adaptation,” 2016,
arXiv:1612.02649.

[35] J. Huang, S. Lu, D. Guan, and X. Zhang, “Contextual-relation consistent
domain adaptation for semantic segmentation,” in Proc. ECCV, Glasow,
U.K., Aug. 2020, pp. 705–722.

[36] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, “ADVENT:
Adversarial entropy minimization for domain adaptation in semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Long Beach, CA, USA, Jun. 2019, pp. 2517–2526.

[37] J. Xu, L. Xiao, and A. M. López, “Self-supervised domain adaptation
for computer vision tasks,” IEEE Access, vol. 7, pp. 156694–156706,
2019.

[38] R. Gong, W. Li, Y. Chen, and L. Van Gool, “DLOW: Domain flow
for adaptation and generalization,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 2477–2486.

[39] J. Hoffman et al., “CyCADA: Cycle-consistent adversarial domain adap-
tation,” in Proc. ICML, Stockholm, Sweden, Jul. 2018, pp. 1989–1998.

[40] Y. Yang and S. Soatto, “FDA: Fourier domain adaptation for semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Seattle, WA, USA, Jun. 2020, pp. 4085–4095.

[41] J. Choi, T. Kim, and C. Kim, “Self-ensembling with GAN-based
data augmentation for domain adaptation in semantic segmentation,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, South Korea,
Oct. 2019, pp. 6830–6840.

[42] K. Mei, C. Zhu, J. Zou, and S. Zhang, “Instance adaptive self-training
for unsupervised domain adaptation,” in Proc. ECCV, Glasgow, U.K.,
Jul. 2020, pp. 415–430.

[43] M. N. Subhani and M. Ali, “Learning from scale-invariant examples for
domain adaptation in semantic segmentation,” in Proc. ECCV, Glasgow,
U.K., Aug. 2020, pp. 290–306.

[44] Y. Zou, Z. Yu, B. V. K. V. Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,”
in Proc. ECCV, Munich, Germany, Sep. 2018, pp. 289–305.

[45] V. K. Kurmi, V. K. Subramanian, and V. P. Namboodiri, “Domain
impression: A source data free domain adaptation method,” in Proc.
IEEE Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 615–625.



KLINGNER et al.: CBNA FOR SEMANTIC SEGMENTATION 20911

[46] M. Wulfmeier, A. Bewley, and I. Posner, “Incremental adversarial
domain adaptation for continually changing environments,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Brisbane, QD, Australia,
May 2018, pp. 4489–4495.

[47] S. Stan and M. Rostami, “Unsupervised model adaptation for continual
semantic segmentation,” 2020, arXiv:2009.12518.

[48] J.-A. Termohlen, M. Klingner, L. J. Brettin, N. M. Schmidt, and
T. Fingscheidt, “Continual unsupervised domain adaptation for semantic
segmentation by online frequency domain style transfer,” in Proc. IEEE
Int. Intell. Transp. Syst. Conf. (ITSC), Sep. 2021, pp. 2881–2888.

[49] X. Li et al., “A free lunch for unsupervised domain adaptive object
detection without source data,” 2020, arXiv:2012.05400.

[50] H.-W. Yeh, B. Yang, P. C. Yuen, and T. Harada, “SoFA: Source-data-free
feature alignment for unsupervised domain adaptation,” in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 474–483.

[51] S. Li, X. Wang, Y. Cao, F. Xue, Z. Yan, and H. Zha, “Self-supervised
deep visual odometry with online adaptation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 2020,
pp. 6339–6348.

[52] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source
data? Source hypothesis transfer for unsupervised domain adaptation,”
in Proc. ICML, Jul. 2020, pp. 6028–6039.

[53] R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu, “Model adapta-
tion: Unsupervised domain adaptation without source data,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA,
USA, Jun. 2020, pp. 9641–9650.

[54] F. Fleuret, “Uncertainty reduction for model adaptation in semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 9613–9623.

[55] J. N. Kundu, A. Kulkarni, A. Singh, V. Jampani, and R. V. Babu,
“Generalize then adapt: Source-free domain adaptive semantic segmen-
tation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 7046–7056.

[56] Y. Liu, W. Zhang, and J. Wang, “Source-free domain adaptation for
semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 1215–1224.

[57] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., Lille, France, Jul. 2015, pp. 448–456.

[58] S. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in Proc. ECCV, Amsterdam,
The Netherlands, Oct. 2016, pp. 102–118.

[59] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez,
“The SYNTHIA dataset: A large collection of synthetic images for
semantic segmentation of urban scenes,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 3234–3243.

[60] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston,
MA, USA, Jun. 2015, pp. 3061–3070.

[61] F. Yu et al., “BDD100 K: A diverse driving video database with scalable
annotation tooling,” 2018, arXiv:1805.04687.

[62] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder,
“The Mapillary vistas dataset for semantic understanding of street
scenes,” in Proc. Int. Conf. Comput. Vis. (ICCV), Venice, Italy,
Oct. 2017, pp. 4990–4999.

[63] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, San Diego, CA, USA,
May 2015, pp. 1–27.

[64] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A deep
neural network architecture for real-time semantic segmentation,” 2016,
arXiv:1606.02147.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, San Diego, CA, USA, May 2015, pp. 1–15.

[66] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL visual object classes chal-
lenge: A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,
Jan. 2015.

[67] K.-H. Lee, G. Ros, J. Li, and A. Gaidon, “SPIGAN: Privileged adversar-
ial learning from simulation,” in Proc. ICLR, New Orleans, LA, USA,
Apr. 2019, pp. 1–14.

[68] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. P. Perez, “DADA: Depth-
aware domain adaptation in semantic segmentation,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Seoul, South Korea, Oct. 2019,
pp. 7364–7373.

[69] M. Kim and H. Byun, “Learning texture invariant representation for
domain adaptation of semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 2020,
pp. 12975–12984.

[70] J. Yang, W. An, S. Wang, X. Zhu, C. Yan, and J. Huang, “Label-driven
reconstruction for domain adaptation in semantic segmentation,” in Proc.
ECCV, Glasgow, U.K., Aug. 2020, pp. 480–498.

[71] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[72] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., Munich, Germany, Oct. 2015,
pp. 234–241.

[73] C. Godard, O. M. Aodha, M. Firman, and G. J. Brostow, “Digging into
self-supervised monocular depth estimation,” in Proc. IEEE Int. Conf.
Comput. Vis., Seoul, South Korea, Oct. 2019, pp. 3828–3838.

Marvin Klingner (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in
physics from Georg-August-Universität Göttingen,
Germany, in 2016 and 2018, respectively. He is
currently pursuing the Ph.D. degree with the
Faculty of Electrical Engineering, Information
Technology, and Physics, Technische Universität
Braunschweig, Germany. His research interests lie
in self-supervised 3D geometry perception with
neural networks and in multi-task learning and
domain adaptation approaches for neural networks

with focus on computer vision tasks. He was the recipient of the
Dr. Berliner–Dr. Ungewitter Award of the Faculty of Physics at Georg-August-
Universität Göttingen in 2018 and was given the CVPR Workshop Best Paper
Award in 2020 and 2021.

Mouadh Ayache received the B.Sc. degree in
industrial engineering, specialized in electrical engi-
neering, from Technische Universität Braunschweig,
Germany, in 2019, where he currently studies
the M.Sc. degree in electrical engineering. Since
January 2021, he has been writing his master’s thesis
“Adaptive Online Domain Adaption Without Source
Data” under the supervision of T. Fingscheidt and
M. Klingner with the Signal Processing and Machine
Learning Group. He is interested in deep learning
applications in autonomous driving, security, and
digital hardware design.

Tim Fingscheidt (Senior Member, IEEE) received
the Dipl.-Ing. degree in electrical engineering and
the Ph.D. degree from RWTH Aachen University,
Germany, in 1993 and 1998, respectively. He joined
AT&T Labs, Florham Park, NJ, USA, in 1998;
and Siemens AG (Mobile Devices), Munich,
Germany, in 1999. With Siemens Corporate Technol-
ogy, Munich, he was leading the speech technology
development activities from 2005 to 2006. Since
2006, he has been a Full Professor with the Insti-
tute for Communications Technology, Technische

Universität Braunschweig, Germany. His research interests include speech
technology and vision for autonomous driving. He was a member of the IEEE
Speech and Language Processing Technical Committee from 2011 to 2018.
He was the recipient of several awards, including the Vodafone Mobile
Communications Foundation Prize in 1999 and the 2002 ITG Prize of the
Association of German Electrical Engineers (VDE ITG). In 2017 and 2020,
he coauthored the ITG Award-winning publication. He was given the Best
Paper Award of a CVPR Workshop from 2019 to 2021. He has been the
Speaker of the Speech Acoustics Committee ITG AT3 since 2015. He was
an Associate Editor of the IEEE TRANSACTIONS ON AUDIO, SPEECH, AND

LANGUAGE PROCESSING from 2008 to 2010.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


