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Abstract— Predicting wildfire spread is critical for land man-
agement and disaster preparedness. To this end, we present
“Next Day Wildfire Spread,” a curated, large-scale, multivariate
dataset of historical wildfires aggregating nearly a decade of
remote-sensing data across the United States. In contrast to
existing fire datasets based on Earth observation satellites,
our dataset combines 2-D fire data with multiple explanatory
variables (e.g., topography, vegetation, weather, drought index,
and population density) aligned over 2-D regions, providing a
feature-rich dataset for machine learning. To demonstrate the
usefulness of this dataset, we implement a neural network that
takes advantage of the spatial information of these data to predict
wildfire spread. We compare the performance of the neural
network with other machine learning models: logistic regression
and random forest. This dataset can be used as a benchmark for
developing wildfire propagation models based on remote-sensing
data for a lead time of one day.

Index Terms— Earth Engine, machine learning, remote sens-
ing, wildfire.

I. INTRODUCTION

ILDFIRES can threaten livelihood and properties, and
Wimpact environment and health [1], [2]. Over the last
few decades, wildfire management has changed profoundly,
facing longer fire seasons and more severe fires with more
acres burned on average each year [3]. In 2019, more than
775000 residences across the United States were flagged as at
“extreme” risk of destructive wildfire, amounting to an esti-
mated reconstruction cost of 220 billion dollars [4]. Wildfires
significantly impact the climate and are estimated to contribute
to 10% of the CO, emissions per year worldwide [1]. Further-
more, the health impact due to wildfire aerosols is estimated
at 300000 premature deaths per year [2].

There is a need for novel wildfire warning and prediction
technologies that enable better fire management, mitigation,
and evacuation decisions. In particular, evaluating the fire
likelihood [5]—the probability of wildfire burning in a specific
location—would provide valuable land management and dis-
aster preparedness capabilities. Predictions of where a fire will
spread in the upcoming day are essential to wildfire emergency
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response, leading to optimal allocation of resources and quick
response to fire activity [6], [7]. In addition, identifying regions
of high wildfire likelihood offers the possibility for targeted
fire-prevention measures, such as shutting down power lines to
minimize electrical fire hazards [8], [9], or compartmentalizing
forests by creating vegetation fuel breaks [10], [11].

The increase in the availability of remote-sensing data, com-
putational resources, and advances in machine learning pro-
vides unprecedented opportunities for data-driven approaches
to estimate wildfire likelihood. Herein, we investigate the
potential of deep learning models to predict wildfire spreading
from observational data [12]-[15]. For this purpose, we present
a new dataset: “Next Day Wildfire Spread.”

This “Next Day Wildfire Spread” dataset is a curated, large-
scale, multivariate dataset of historical wildfires over nearly
a decade across the United States, aggregated using Google
Earth Engine (GEE) [16]. This dataset takes advantage of the
increasing availability and capability of remote-sensing tech-
nologies, resulting in extensive spatial and temporal coverage
from a wide range of sensors (e.g., the Moderate Resolution
Imaging Spectroradiometer (MODIS) [17], the Visible Infrared
Imaging Radiometer Suite (VIIRS) [18], and the Shuttle Radar
Topography Mission (SRTM) [19]). Our dataset combines
historical wildfires with 11 observational variables overlaid
over 2-D regions at 1 km resolution: elevation, wind direction,
wind speed, minimum temperature, maximum temperature,
humidity, precipitation, drought index, vegetation, population
density, and energy release component (ERC). The resulting
dataset has 18545 fire events, for which we provide two
snapshots of the fire spreading pattern, at time ¢ and ¢+ 1 day.

Among existing fire datasets based on Earth observation
satellites [20]-[22], most do not include this many variables
at 1 km resolution. Fire datasets, such as FRY [20], Fire
Atlas [21], and the 1.88 million US Wildfires catalog [23],
focus on the total burn area and do not provide the temporal
resolution or the 2-D information required for characterizing
fire spreading patterns. In contrast, GlobFire [22] is designed
for characterizing fires and includes daily timestamps of the
fire perimeter. However, none of these datasets includes other
variables, such as vegetation, weather, drought, or topography
data required for fire prediction. It is true that previous studies
have combined fire data with other variables [24]-[29], but
these datasets have not been publicly released or only partially
so. A dataset of fire events in Canada [30] has been released
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but is limited in geographical coverage and the number of
recorded fire events (386 events). Table I compiles a summary
of these publicly available wildfire datasets.

Benchmark datasets have played an essential role in
driving progress and innovation in machine learning research
[31], [32]. They enable performance comparisons across mod-
els, which, in turn, can lead to better predictive models.
We make the “Next Day Wildfire Spread” dataset available
to the broader scientific community for benchmarks, model
comparisons, and further insights for wildfire predictions.! We
share our GEE data aggregation code for users to adapt to their
use cases.’

In recent years, deep learning approaches have been increas-
ingly adopted for prediction tasks from remote-sensing data,
as reviewed in [15]. For instance, Alonso-Betanzos et al. [33]
used a deep learning model to estimate the daily fire likelihood
from temperature, humidity, and rainfall data from five weather
stations in the Galicia region of Spain. On Lebanon data,
Sakr et al. [34] implemented a neural network for predicting
the occurrence of wildfires based only on monthly relative
humidity and cumulative precipitation data. Compared to these
two datasets, the “Next Day Wildfire Spread” dataset has more
data samples and a much greater geographical coverage. In
an Australian study, Dutta et al. [35] use neural networks on
aggregated monthly meteorological data (evaporation, precip-
itation, incoming solar irradiance, maximum temperature, soil
moisture, wind speed, pressure, and humidity) to estimate the
risk of fire occurrence. However, with monthly timestamps,
their dataset does not have the temporal resolution for esti-
mating fire spreading.

For fire spread prediction, Hodges and Lattimer [36] use
a convolutional neural network to predict spreading patterns
from environmental variables, such as topography and weather,
but only use synthetic data from computational models.
In [37], a similar method is used to predict fire spread but
from remote-sensing data collected from geographic infor-
mation systems (GISs), combining topography and weather
(pressure, temperature, dew point, wind direction, wind speed,
precipitation, and relative humidity). The objectives of this
study are similar to the ones in our work but differ in the
methodology and data aggregation. The dataset was limited
to regions in Colorado and constrained to the data available
in the Geospatial Multi-Agency Coordination (GeoMAC) sys-
tem [38]. Moreover, the datasets from studies [33]-[37] were
not publicly released.

In contrast, our “Next Day Wildfire Spread” is an exten-
sive publicly available dataset for ML fire spread prediction.
Aggregating large datasets with many observational variables
is challenging because it is usually limited by the data avail-
ability across multiple data sources. We tackle this challenge
by using the GEE framework, which allows capturing a large
ensemble of fire events and more observational variables than
any of the aforementioned datasets, all at 1 km resolution
instead of pointwise locations. In addition, it is the only dataset

"https://www.kaggle.com/fantineh/next-day-wildfire-spread
Zhttps://github.com/google-research/google-research/tree/master/simulation_
research/next_day_wildfire_spread
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of this type to have a variable to represent anthropogenic
activity. Moreover, its spatial dimension makes it suitable for
computer vision and segmentation tasks.

By releasing the dataset with its interactive GEE aggregation
code, we offer an end-to-end framework for taking advantage
of GEE capabilities for developing ML datasets. We include
the full preprocessing and data interface to make it as acces-
sible as possible to ML practitioners.

To illustrate the usefulness of our “Next Day Wildfire
Spread” dataset, we train a deep learning model for fire
spread prediction. Given a wildfire, we predict where the fire
will spread the following day. We implement a convolutional
autoencoder, a specialized type of neural network, to take
advantage of the 2-D information of this dataset and compare
its performance with two other ML models, namely, logistic
regression and random forest.

The remainder of this manuscript has the following struc-
ture. Section II describes our data aggregation workflow for
historical remote-sensing data. In Section III, we discuss our
processing pipeline for the fire spread predictions. Section IV
presents the deep learning model, and results are pre-
sented in Section V. This article finishes with conclusions
in Section VI.

II. DATASET AGGREGATION

With the continuing improvements in quality, resolution,
and coverage of remote-sensing technologies, we now have
access to increasingly more data for characterizing wildfires.
Using data sources available in GEE [16], we present a data
aggregation workflow for creating the “Next Day Wildfire
Spread” dataset, combining historical fire events with remote-
sensing data.

A. Motivation

We collect the data at different locations and times at which
wildfires occurred. We extract the data as 64 km x 64 km
regions at 1 km resolution to capture all typical active fire
sizes [39]-[41]. We process the data from GEE to represent
the fire information as a fire mask over each region, showing
the locations of “fire” versus “no fire,” with an additional class
for uncertain labels (i.e., cloud coverage or other unprocessed
data). We include both the fire mask at time ¢ and at time
t+1 day to provide two snapshots of the fire spreading pattern.

Using GEE, we aggregate data from different data sources
and align the data in location and time using the same pro-
jection (WGS84). With this methodology, we combine these
fire masks with variables that are of direct relevance to wildfire
predictions [28], [35], [42], [43]: elevation, wind direction and
wind speed, minimum and maximum temperatures, humidity,
precipitation, drought index, normalized difference vegetation
index (NDVI), and ERC. In particular, NDVI, drought index,
and the weather variables provide information relevant to
fuel properties. ERC is a calculated output of the National
Fire Danger Rating System (NFDRS) [44]. It is considered a
composite fuel moisture index as it reflects the contribution
of all fuels to potential fire intensity. In addition, we include
population density to correlate the wildfires to anthropogenic
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TABLE 1
PUBLICLY AVAILABLE FIRE DATASETS
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*The total burn area by itself does not provide information about the fire spreading pattern.

ignitions and for risk-severity assessment. Humans cause 84%
of fires [45], so we use population density as a proxy for
anthropogenic activity. Examples from this dataset are illus-
trated in Fig. 1.

In collecting this dataset, we prioritized data from publicly
available data sources that are regularly updated with recent
data. This enables the methodologies developed on this dataset
to translate to future data predictions, including near real-time
prediction. The use of openly available data with generous
terms of use allows it to be incorporated into dynamic wildfire
prevention and management tools for future applications with
minimum licensing constraints.

This feature-rich dataset has multiple applications. It can be
used for statistical analysis or to study correlations between
various variables. To demonstrate this capability, we use this
dataset for predicting wildfire propagation. The dataset can be
resampled to different region sizes, spatial resolutions, or any
subset of the provided data. In addition to the data itself,
we also release the GEE export code that generates the dataset,
giving users the flexibility of adapting it to their use cases.?
The export code can be changed to incorporate additional data
sources, in a different geographic region or worldwide, over
different time scales and intervals (hourly, daily, or weekly).
For instance, Huot et al. [46] present examples of the same
dataset extracted as weekly time sequences to create maps of
the total burn area.

B. Data Sources From Earth Engine

We compile this dataset from multiple remote-sensing data
sources from GEE [16]. We selected data sources with exten-
sive geographical and historical coverage, and reduced missing
data.

1) Historical wildfire data are from the MODI14A1 V6
dataset [17], a collection of daily fire mask composites
at 1 km resolution since 2000, provided by NASA LP
DAAC at the USGS EROS Center.

2) Topography data are from the SRTM [19], sampled at
30 m resolution.

3) USA Weather data are from the University of
Idaho Gridded Surface Meteorological Dataset (GRID-
MET) [47], a collection of daily surface fields of tem-
perature, precipitation, winds, and humidity at 4 km
resolution since 1979, provided by the University of
California at Merced.

4) USA Drought data are from GRIDMET Drought, a col-
lection of drought indices derived from the GRIDMET
dataset [48], sampled at 4 km resolution every five days
since 1979, provided by the University of California at
Merced.

5) Vegetation data are from the Suomi National
Polar-orbiting Partnership (S-NPP) NASA VIIRS
Vegetation Indices (VNP13A1) dataset [18], a collection
of vegetation indices sampled at 0.5 km resolution
every eight days since 2012, provided by NASA LP
DAAC at the USGS EROS Center.

6) Population density data are from the Gridded Popula-
tion of World Version 4 (GPWv4) dataset by the Center
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Fig. 1. Examples from our “Next Day Wildfire Spread” dataset. Each example is 64 km x 64 km at 1 km resolution. Each row corresponds to a location

and time ¢ at which a fire occurred, and the columns represent the different variables. In each row, all the weather, drought, vegetation, and population density

variables are extracted at that same location at time f.

“temp” denotes temperature;

“wind direction” is the azimuth in degrees clockwise from north. The

“previous fire mask” corresponds to the fire locations at time ¢, while “fire mask” corresponds to the following day at ¢ 4+ 1 day. In the fire masks, red
corresponds to fire, and while gray corresponds to no fire. Black indicates uncertain labels (i.e., cloud coverage or other unprocessed data).

for International Earth Science Information Network
(CIESIN) [49]. These data contain the distribution of
the global human population, sampled every five years
at 1 km resolution.

All the variables in our dataset are available from the data
sources cited; none were calculated by us.

While we selected these data sources for creating our
dataset, users can change the data sources based on their
needs using the provided GEE data export code. For instance,
other fire mask datasets include the Fire Information for
Resource Management System (FIRMS) [50], or GOES-16
and GOES-17 [51], [52]. Additional variables can be extracted
and combined from the data from the MODIS Aqua and Terra
satellites [53]. As such, the data export code can be adapted to
encompass a variety of wildfire problems beyond fire spread
prediction, such as identifying fire precursors, probability of
ignition, and long-term fire risk patterns.

C. Data Aggregation

From these data sources, we sample examples at all loca-
tions and times with active fires. We consider fires separated
by more than 10 km as belonging to a different fire. We extract
both the fire mask at time 7, which we denote “previous fire
mask,” and at time ¢t + 1 day, which we denote “fire mask.”
For characterizing fire spreading, we only keep samples for
which there was at least one area on fire within the region
at time ¢, in other words, for which the “previous fire mask”
contains any fire at all.

We extract the data over the contiguous United States
from 2012 to 2020. We select this time period due to data
availability. We split the data between training, evaluating, and
testing by randomly separating all the weeks between 2012 and
2020 according to an 8:1:1 ratio, respectively, while keeping a
one-day buffer between weeks from which we do not sample
data.

Since the data sources have different spatial resolutions,
we align all the data to a 1 km resolution, which corresponds
to the spatial resolution of the fire masks. We downsample the
topography and vegetation data and use bicubic interpolation

for the weather and drought data. The data sources also have
different temporal resolutions and are refreshed over different
time intervals. For variables that vary slowly over time, we take
the last available time stamp at time ¢. For the weather data,
refreshed four times a day, we take the average of each weather
variable over the day corresponding to time ?.

Using these data sources, we see in Fig. 1 that variables such
as elevation, vegetation, and population density show a lot of
variation across a 64 km x 64 km region. Physical quantities,
such as temperatures and precipitation, are smoother across
the region. The two last columns display the fire locations at
times ¢ and ¢t + 1 day, where “no fire” is indicated in gray,
“fire” in red, and missing data in black.

The resulting dataset contains 18545 samples. In 58% of
these samples (10798 samples), the fire increases in size from
t to t 4+ 1 day. In 39% (7191 samples), the fire decreases in
size. In the remaining samples, the fire stays the same size.

III. DATA PREPROCESSING

For the machine learning task, we treat the variables and
the “previous fire mask™” at time ¢ as data features and the
“fire mask” at time t 4+ 1 day as labels. The values of
each data feature, except for the fire masks, are first clipped
between a minimum and a maximum clip value, with different
clipping values for each feature. We then normalize each
feature separately by subtracting the mean and dividing by
the standard deviation.

We clip the data because analysis of the features revealed
the presence of extreme values, some of which were not
even physically reasonable. Moreover, physical variables that
span an extensive dynamic range can lead to vanishing or
exploding gradients in the deep learning training process. The
clipping values were either based on physical knowledge (e.g.,
percentages between 0% and 100%) or set to the 0.1th and
99.9th percentiles for each feature. Statistics for processing the
input data were calculated over the training dataset. Means and
standard deviations were calculated after clipping. This allows
us to process the data for inference without knowing whether
there is currently a fire.
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Fig. 2. Convolutional autoencoder for estimating fire spreading

In our dataset, the fire events are generally centered within
each 64 km x 64 km region. Therefore, we perform data
augmentation in the machine learning input pipeline to offer
data examples of fires occurring at different locations. We do
so by randomly cropping 32 km x 32 km regions from the
original 64 km x 64 km regions.

IV. MACHINE LEARNING APPLICATION

We illustrate the usefulness of the “Next Day Wildfire
Spread” dataset by training a deep learning model for fire
spread prediction.

A. Models for Segmentation

We frame the ML task as an image segmentation problem
where we classify each area as either containing fire or no fire
given the location of the fire on the previous day and the data
features described in Section II.

We implement a deep learning model that takes advantage
of the spatial information in the input data to perform this
task. We use a convolutional autoencoder, a specialized type
of neural network for precise image segmentation (see Fig. 2).
This model was selected because the remote-sensing data can
be treated as a multichannel input image and the fire mask as
a segmentation map.

In addition to the deep learning model, we also train two
machine learning models for comparison: a logistic regression
model and a random forest. These non-deep learning models
do not take advantage of the 2-D information the way the
convolutional autoencoder does. Therefore, with these models,
the image segmentation is performed areawise (pixelwise).
In this setting, the target label for each training sample is a
1 km x 1 km area (pixel). The label is the presence of fire
in that area at time t + 1 day. The input variables are all
the features for that area at time ¢ and the eight neighboring
areas (pixels) around it.

Additional details on model implementation are provided in
Appendix A.

B. Training Details and Hyperparameter Tuning

Since wildfires represent only a small area within a region,
we use a weighted cross-entropy loss [54] and explore a range
of different weights on the “fire” labels to take into account
the class imbalance. Uncertain labels are ignored in the loss
and performance calculations.

For the deep learning model, we include data augmentation
by random crop, random flip, and random rotation. We train
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TABLE II
WILDFIRE SPREADING PREDICTION METRICS
AUC (PR) Precision Recall
Neural Network 28.4 33.6 43.1
Random Forest 22.5 26.3 46.9
Logistic Regression 19.8 325 353
Persistence 11.5 35.7 27.3

it over 1000 epochs, with 1000 iteration steps per epoch, with
an Adam optimizer, on four V100 GPUs. We perform the
hyperparameter selection by grid search. The resulting network
architecture and hyperparameter tuning details are provided in
Appendix A-A.

The training and hyperparameter details of the logistic
regression model and the random forest are described in
Appendix A-B.

The best model is selected as the one with the best area
under the precision—recall curve (AUC PR). We use AUC
PR instead of accuracy because AUC PR is a more effective
diagnostic metric for imbalanced binary classification [55], and
our dataset contains more “no fire” than “fire” samples.

V. RESULTS

We compare the predictions on where the fire will be at
time 7 + 1 day given data for a region with an ongoing fire at
time 7.

A. Prediction Results

Metrics on fire spread prediction per area (1 km x 1 km)
are shown in Table II. All trained models achieve a higher
AUC than the persistence baseline, which has an AUC of
11.5%. The model with the highest AUC is the neural network
at 28.4%, followed by the random forest and then logistic
regression. The precision and recall for the neural network
on the positive class are 33.6% and 43.1%, respectively. The
AUCs of the logistic regression and random forest models—
the non-deep learning models—are within 3% of one another
and at least 6% lower than the neural network. The logistic
regression baseline achieves nearly the same precision as the
neural network at 32.5% but has a lower recall at 35.3%.
The random forest baseline has a higher recall than the neural
network at 46.9% but has a lower precision at 26.3%.

While the metrics on the positive class seem low, visualiza-
tions of some samples with predictions and targets in Fig. 3
show that fires are predicted. The predicted fires are roughly
in the target location and are often rounder with smoother
borders than the target. Predictions may connect fires that are
close together into a single fire. There is a strong dependence
on the previous fire mask, with the model predicting that a
previous small fire grows, while, in the target, the fire was no
longer present. The segmentation errors result from missing
small fires and misclassified pixels at the boundary between
fire and nonfire and between nearby fire areas.
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Fig. 3.  Examples of target labels for next day fire spread and predictions
from the deep learning model. Red corresponds to “fire,” gray corresponds to
“no fire,” and black indicates missing data.

To illustrate how to use the ML workflow in practice,
we evaluate predictions from the deep learning model on
a set of six known historical fires. Using our GEE code,
we aggregate the input variables at the start of each event
and predict the next day’s fire spreading. Examples of these
known fires are shown in Fig. 4. The model achieves an AUC
of 38.7% on these historical fires, higher than that of the test
set. The precision of 33.4% and recall of 37.2% are similar to
the test set metrics. The visualized results are similar to other
examples in the dataset, with good recognition of larger fires
(such as the Grizzly Creek fire). While the exact outline of
the fires is not accurate, the model tends to capture the extent
of the fire spreading well (for instance, predicting a large fire
for the LNU Lightning Complex). The limitations are similar
to those observed on the test set: the model tends to predict
smoother boundaries than the target (such as the Bighorn fire),
can miss smaller fires entirely (such as the Evans Canyon fire),
and can merge multiple separated segments of the fire (such
as the LNU Lightning Complex).

Noticing that it is easier to predict the presence or the
absence of fire over a larger area, we experiment with pre-
dicting fire spread at a coarser, lower resolution than the
input data. This is to explore and quantify the tradeoff of
prediction performance with resolution, that is, predictions for
a2km x 2km (2 x 2 pixel) area instead of a 1 km x 1 km
(1 x 1 pixel) area. This turns the problem framing from pixel
classification and segmentation into classification over a larger
and larger area, as shown in Fig. 5. Each row illustrates
the target and prediction for fire spread at time ¢ + 1 day
at progressively lower resolution. An area (pixel) within the
region is labeled as fire if there is any fire within that area.
Similar to previous experiments, the model predicts fire over
a larger area than the target. The predictions connect several
small areas with fire into a larger fire. The boundaries of

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Bighorn
Fire

CZU Lightning Evans Canyon Grizzly Creek LNU Lightning
Complex i i

East Canyon
Fir Complex

[ =
— -
] ” o

Fire v

mask =
e
Predicted - 1

fire

mask

- - d

Fig. 4. Examples of historical fires with the target labels for next day fire
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the Bighorn fire (Santa Catalina Mountains, AZ, USA; June 7, 2020), CZU
lightning complex (Santa Cruz Mountains, CA, USA; August 19, 2020), East
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Canyon, CO, USA; August 12, 2020), and LNU lightning complex (Sonoma,
CA, USA; August 19, 2020). Red corresponds to “fire,” gray corresponds to
“no fire,” and black indicates missing data.
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the predictions are also smoother than the target. The model
sometimes misses lone small fires.

The best precision/recall tradeoff for different resolutions
is when the output corresponds to an area that is eight times
larger than the input area. This results in an AUC of 66.3%.
While the prediction metrics improve as the prediction region
size increases, the predictions become less useful from an
operational perspective due to less localization of the fire.
When predicting at lower spatial resolutions, smaller fires are
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TABLE III
LOWER RESOLUTION PREDICTIONS
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TABLE IV
FEATURE ABLATION: REMOVE ONE FEATURE

Label Lower AUC (PR) Precision Recall
Resolution
2x 38.8 48.4 40.8
Decimal 4x 52.3 69.1 39.8
8x 64.5 88.7 24.7
2x 39.8 40.3 51.9
Binary 4x 53.5 48.8 61.0
8x 66.3 62.1 63.1
2x 19.5 45.6 36.8
Persistence 4x 30.6 56.0 46.8
8x 41.3 64.0 52.5

missed due to the coarser resolution. We experiment with two
methods of combining labels for a larger region: a decimal
representing the percent of pixels that are on fire, and a binary
value that represents any pixel within that region being on fire.
For each of these types of labels, experiments are conducted at
different resolutions, as shown in Table III. The neural network
performs with higher AUC than the persistence baseline, with
most of the gains due to achieving higher precision than the
persistence baseline.

B. Feature Analysis

To analyze the effect of different input features on prediction
results, we conduct ablation studies using the model with the
highest AUC—the deep learning model. The feature analyses
on the random forest and the logistic regression model are
provided in Appendices A-C and A-D. We do not explicitly
program the deep learning model to weigh certain variables
more than others. Hence, ablation experiments provide insights
into which variables provide the most significant contribution
to the model’s predictive capabilities.

First, for each of the input features, we remove that input
feature and retrain the remaining ones. The metrics of the
resulting models are summarized in Table IV. Removing the
current fire location results in the most significant decrease
in AUC compared to using all the input features. This result
makes intuitive sense and illustrates the importance of the
current fire location as a predictor variable. Among the other
input features, removing any one of them results in a similar
overall performance to using all the input features, which
seems reasonable because many of these features are corre-
lated. Removing some of these input features even resulted
in slightly better performance. This increase could be due to
randomness, as we have observed that our experiments have a
0.5% variation in AUC due to random cropping. In addition,
reducing the number of features makes the model simpler,
making it less prone to overfitting and reducing the noisiness
and redundancies of all the features.

Due to the previous fire mask overwhelmingly contributing
to the prediction performance, we also retrain the model

Removed feature AUC (PR) Precision Recall
Previous fire mask 6.8 4.6 0.2
Humidity 26.1 35.4 35.7
Max temperature 26.8 354 36.6
Wind speed 27.2 33.1 42.4
Vegetation 27.7 35.0 40.0
Precipitation 28.0 325 42.0
Population 28.1 32.8 43.0
Wind direction 28.3 32.8 43.1
Min temperature 28.6 35.2 40.9
Elevation 28.8 33.6 43.0
Drought 28.8 36.8 39.0
ERC 28.8 33.0 43.2
TABLE V

FEATURE ABLATION: KEEP PREVIOUS FIRE MASK
AND ONE OTHER FEATURE

Kept feature AUC (PR) Precision Recall
Vegetation 28.2 33.0 41.4
Elevation 27.0 31.3 44.4
Max temperature 26.7 32.7 43.5
Population 26.6 32.6 43.2
Precipitation 26.6 34.1 40.6
Min temperature 26.2 29.9 47.2
Drought 26.0 30.8 44.1
Wind speed 259 30.3 45.6
ERC 25.8 30.7 45.0
Humidity 25.7 324 41.7
Wind direction 25.5 30.9 43.5

keeping only two features, the previous fire mask, and each
of the other features (see Table V). We see that vegetation
and elevation result in the best performance. The relative
ordering of the features changed between leaving a feature out
compared to keeping only that feature along with the previous
fire. Because the input features are correlated, we also retrain
with only a single feature. Unfortunately, using a single feature
resulted in a recall of zero, for all features except for the
previous fire mask. Using only the previous fire mask as input
results in a recall of 49.6%, which is higher than the recall of
using all features. However, the precision and AUC when only
using the previous fire mask are lower, at 29.2% and 22.9%
respectively.

VI. CONCLUSION

We present this “Next Day Wildfire Spread” dataset as
an open data resource for further research to advance our
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collective ability to anticipate and respond to wildfires. Open
datasets allow benchmarking and ML model comparisons,
making them essential to producing high-quality ML mod-
els for real-world fire scenarios. We create this dataset by
aggregating nearly a decade of remote-sensing data, combining
features including topography, weather, drought index, veg-
etation, and population density with historical fire records.
Using this dataset, we demonstrate the potential of deep
learning approaches to predict wildfires from remote-sensing
data and illustrate the performance gaps on the example task
of day-ahead fire spread prediction. Once the ML model is
trained, we apply it to examples of historical fires, illustrating
how it could be used for anticipating the extent of fires
the following day. This information could be valuable for
allocating resources for fire suppression efforts.

However, this experiment has some data limitations that
must be addressed before incorporating such data-driven
approaches into wildfire warning and prediction technologies.
The 1-km spatial and daily temporal resolution of the MODIS
data limits the ML model’s prediction resolution. As such,
it does not provide the fine-scale information required for
tactical decision-making. As for the GRIDMET weather data,
their spatial and temporal resolutions are insufficient to capture
the local wind patterns that drive fire spreading.

Since we use the MODIS data for labeling the active fires,
our dataset comes with the same caveats as the MODIS data.
For instance, MODIS does not sample the late afternoon when
conditions are most favorable for fire intensification. In addi-
tion, it does not separate wildfire events from other prescribed
fires. To the extent that prescribed fires correlate with land use,
we include population density as a proxy for anthropogenic
activity. Moreover, since we focus on the fire spreading pat-
tern, our data aggregation does not include the small fires that

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE VI
RANDOM FOREST: GINI IMPORTANCE

Feature Gini Importance
Previous fire mask (5) 0.092
Previous fire mask (6) 0.074
Previous fire mask (4) 0.073
Previous fire mask (2) 0.071
Previous fire mask (1) 0.068
Previous fire mask (8) 0.067
Previous fire mask (9) 0.061
Previous fire mask (3) 0.052
Previous fire mask (7) 0.051
ERC (7) 0.017
ERC (8) 0.014
ERC (5) 0.014
ERC (6) 0.012
ERC (9) 0.01
ERC (2) 0.008
ERC (1) 0.008
ERC (4) 0.008
ERC (3) 0.007
Elevation (7) 0.007
Elevation (9) 0.005

occur only on one day, excluding some of the noisy labels from
MODIS. Still, we do not explicitly separate wildfires from pre-
scribed fires. The MODIS fire detection algorithm is also con-
servative, especially at night or when there is cloud coverage.
We include an uncertain label that the ML model ignores to
account for these pixels, but artificial patterns in fire-spreading
labels can still occur. Last but not least, the MODIS labels
are affected by fire suppression efforts. While including the
population density map can account for this effect to some
degree, this is bound to influence the ML model’s predictive
capabilities.

These limitations highlight some of the challenges of wild-
fire prediction from remote-sensing data. Therefore, we release
this dataset with its GEE data aggregation code, making it
more than just a static dataset but an end-to-end framework for
aggregating ML datasets from GEE. We designed this code in
a modular fashion to easily change the time, the data sources,
the geographical area, or the temporal and spatial sampling.
As more curated data sources become available on the GEE
platform, our framework can be used to improve the dataset.
Future datasets could be expanded to a global scale or cover a
more extensive time period. Data from recent years, with more
fires and larger burned areas, could be weighted more heavily
than data from a decade ago. We could also complement
the study with synthetically generated data from high-fidelity
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fire simulations. Beyond wildfires, the described workflow APPENDIX A

and methodology could be expanded to other problems, such
as estimating the likelihood of regions to droughts, hurri-
canes, and other phenomena from historical remote-sensing
data.

MACHINE LEARNING MODEL DETAILS
A. Deep Learning Model

The architecture of the deep learning model used for image
segmentation is shown in Fig. 6. All convolutions are 3 x 3
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TABLE VII

LOGISTIC REGRESSION: COEFFICIENTS

Feature Coefficient Standard nits
Deviation
Min temp. (3) -7.2 8.98 K
Max temp. (3) 6.01 9.82 K
ERC (1) -5.69 20.85 index
Max temp. (5) -5.49 9.82 K
ERC (5) 4.97 20.85 index
Min temp. (5) 4.77 8.98 K
Humidity (1) -3.64 0.0 kg/kg
Max temp. (8) -3.5 9.82 K
Min temp. (8) 3.24 8.98 K
Min temp. (4) -3.16 8.98 K
Max temp. (1) 2.87 9.82 K
ERC (7) 2.71 20.85 index
Precipitation (1) -2.44 4.48 mm
Precipitation (5) 2.43 4.48 mm
Max temp. (2) -2.31 9.82 K
Precipitation (9) -2.09 4.48 mm
Min temp. (2) 1.96 8.98 K
Min temp. (1) 1.87 8.98 K
ERC (4) -1.81 20.85 index
ERC (3) 1.73 20.85 index

with a stride of 1 x 1, pooling is 2 x 2, and the dropout rate
is 0.1. All convolutional blocks have 16 filters except for the
middle two residual blocks (ResBlocks), which uses 32 filters,

TABLE VIII
LOGISTIC REGRESSION: REMOVE ONE FEATURE

Removed feature AUC (PR) Precision Recall
Previous fire mask 3.1 0.0 0.0
ERC 19.6 324 35.5
Elevation 19.6 323 35.5
Drought 19.6 324 354
Min temperature 19.6 322 355
Wind direction 19.7 323 35.7
Max temperature 19.7 323 35.5
Vegetation 19.8 323 35.6
Precipitation 19.8 323 35.6
Population 19.8 323 35.6
Humidity 19.8 324 35.6
Wind speed 20.0 32.1 35.7

and the last layer has one filter for the segmentation output.
The segmentation model is trained with a learning rate of
0.0001 and a weight of 3 in the “fire” class. It is implemented
using TensorFlow [56].

We perform the hyperparameter selection for the deep
learning model by grid search. The best model is selected
as the one with the best AUC PR on the validation dataset.
We implement the number of layers and the number of filters
in each layer as hyperparameters. We explore the number of
filters in the first convolutional block between 16, 32, and 64.
We allow the number of residual blocks in the encoder portion
of the network to vary between | and 4, with the number
of filters doubling in each subsequent block. We define the
number of filters in the decoder portion of the segmentation
model symmetrically.
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Fig. 10. Examples of worse coarse segmentation predictions. Each pair of rows is a sample.

We explore batch sizes of 32, 64, 128, and 256, learning
rates of 0.01, 0.001, 0.0001, and 0.00001, dropout rates in
increments of 0.1, and adding L1 and L2 regularization in
powers of 10.

B. Nondeep Learning Models

The two nondeep learning models are implemented using
Scikit-learn [57]. For these models, the training dataset is
balanced to contain the fire and nonfire examples in an
approximately 1:1 ratio. Metrics are calculated on the entire
test dataset with no balancing. Unknown labels are ignored
during training and evaluation.

With these models, the image segmentation is performed
areawise (pixelwise). Consequently, the input variables corre-
spond to a single area (pixel) in the input region. To provide
spatial context, we include the eight neighboring areas (pixels)
in a square around the input area (pixel). To avoid missing
data, we exclude the 1-pixel border around the image during
training and evaluation.

For the logistic regression model, we use the default hyper-
parameters from the Scikit-learn package. For the random
forest, we sweep over values of the maximum tree depth
between 1 and 20. As we increase the maximum depth, pre-
cision increases, while recall decreases. Therefore, we select
the value with the highest AUC (PR) on the validation set.
Using this methodology, we select a maximum depth of 15.
All other hyperparameters are set to the default values from
the Scikit-learn package.

Initial results from both models show that they overpredict
the presence of fire with very low precision and high recall.
Therefore, we weigh the “no fire” class using a weight defined
as follows:

number of examples

number of “no fire” examples

where W is a factor we adjust to increase the weight.
We search over increasing values of W from 1 to 8. We select
the value of the W that yields the highest AUC (PR) on the
validation dataset. For logistic regression, W is 7, and for the
random forest, W is 5.
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C. Random Forest Feature Analysis

The 20 most important features in the random forest model
are reported in Table VI. Feature importance is considered as
the mean decrease in Gini impurity brought by splitting on that
feature across the trees. The Gini impurity of a set of points
after a split is the probability of misclassification if each point
is randomly classified according to the distribution of labels
in the set of points. Features are numbered in row-major order
for the nine pixels (3 x 3 square) included in each example.
Pixel number 5 is the input pixel. For example, “previous fire
mask (3)” is the previous fire mask of the top-right neighbor of
the input pixel. Based on this analysis, the previous fire mask
of the input pixel is the most important feature, followed by
the previous fire mask of the neighboring pixels. ERC follows
as the next most important feature, and the remaining features
all have very low importance. Precipitation for all pixels is the
least important feature.

D. Logistic Regression Feature Analysis

The 20 largest magnitude coefficients of the logistic regres-
sion model by absolute value are reported in Table VII.
Features are numbered in row-major order for the nine pixels
(3 x 3 square) included in each example. Pixel number 5 is
the input pixel. For example, “Min temp. (3)” is the minimum
temperature of the top-right neighbor of the input pixel.

We conduct a feature ablation study by comparing the
results of removing each feature during training. The resulting
metrics are reported in Table VIII. This analysis demonstrates
that the previous fire mask is the most important feature of
the logistic regression model, similar to the other models.

APPENDIX B
ADDITIONAL VISUALIZATIONS

Figs. 7 and 8 provide additional examples of fire spreading
prediction results. Figs. 9 and 10 provide additional examples
of prediction results at coarser resolution.
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