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Adaptive Target Tracking With Interacting
Heterogeneous Motion Models

Ki-In Na , Sunglok Choi , Member, IEEE, and Jong-Hwan Kim , Fellow, IEEE

Abstract— Multiple motion estimators such as an interacting
multiple model (IMM) have been utilized to track target objects
such as cars and pedestrians with diverse motion patterns.
However, the standard IMM has limitations in combining motion
models with different state definitions, so it cannot contain
a complementary set of models that accurately work for all
motion patterns. In this paper, we propose IMM-based adaptive
target tracking with heterogeneous velocity representations and
linear/curvilinear motion models. It can integrate four motion
models with different state definitions and dimensions to be
completely complimentary for all types of motions. We exper-
imentally demonstrate the effectiveness of the proposed method
with accuracy for various motion patterns using two types
of datasets: synthetic datasets and real datasets. Experimental
results show that the proposed method achieves the adaptive
target tracking for diverse types of motion and also for various
objects such as cars, pedestrians, and drones in the real world.

Index Terms— Target tracking, interacting multiple model,
heterogeneous motion models, Bayesian filtering.

I. INTRODUCTION

ROAD objects such as cars, pedestrians, and cyclists
exhibit various motion patterns, and those patterns can

be dynamically changed with respect to traffic situations. It is
important to select an appropriate motion model that can
reliably track all surrounding objects for the safe operation
of ADAS, and autonomous driving [1]–[3]. However, since
each motion model has different tracking performance for dif-
ferent motion patterns, a single motion model is not sufficient
to deal with diverse motion patterns of road objects [4]–[11].
Therefore, it is crucial to combine multiple motion models
and compensate for their weaknesses for accurate and reliable
object tracking.

Multiple model (MM) estimation methods utilizing mul-
tiple motion models have been studied such as generalized
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pseudo-Bayesian (GPB) [12], interacting multiple model
(IMM) [13], and variable-structure multiple model (VSMM)
[14]. IMM is widely used for tracking road objects as one
of the most effective MM algorithms since it provides the
best compromise between estimation accuracy and computa-
tional cost [15]–[17]. Increasing the number of motion models
in IMM does not always guarantee better accuracy. Thus,
it needs to compose a compact and complete set of motion
models to achieve computational efficiency and tracking
performance [18].

The combination of heterogeneous motion models has been
investigated to positively affect MM estimation in [19], [20].
It has been demonstrated that IMM estimators applying linear
(constant velocity; CV) and curvilinear (coordinated turn;
CT) motion models with heterogeneous state dimensions can
track moving objects in various motions (so called state
augmentation) [21]–[26]. The tracking accuracy of IMM esti-
mators can also be improved by integrating motion models
represented in heterogeneous coordinates such as Cartesian
and polar coordinates (so called state mixing). The previous
work of the state mixing transforms all states into the same
coordinates, mixes them, and then returns them to their orig-
inal coordinates [27]. However, motion models do not work
complementary since the tracking result is biased when all
states are transformed to the same coordinates. Additionally,
the previous IMMs cannot conduct state augmentation and
mixing simultaneously, so motion models with heterogeneous
state dimensions and coordinate representations cannot be
combined.

In this light, we propose the adaptive target tracking in
which motion models with heterogeneous velocity represen-
tations and state dimensions can completely complement each
other. For unbiased state mixing, Q mixing is proposed to
generate unbiased transition noise for states with both velocity
representations in a single model. We also extend the state
mixing by proposing ω mixing to apply motion models with
heterogeneous state dimensions. To the best of our knowledge,
the proposed method is the first IMM estimator capable of
simultaneously applying multiple motion models with het-
erogeneous state dimensions (state augmentation) and veloc-
ity representations (state mixing) without bias. Accordingly,
the proposed IMM estimator with interacting heterogeneous
motion models effectively compensates for the weaknesses of
each single motion model, and can reliably track objects with
dynamically changing motions.

The main contributions of this paper are summarized as
follows:
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• An in-depth analysis of motion models is conducted for
different motion complexities (CV and CT) and different
velocity representations (Cartesian and polar velocity).

• The IMM-based adaptive target tracking is proposed for
unbiased interaction of motion models with heteroge-
neous velocity representations and state dimensions.

• The improvement of the proposed method is demon-
strated in experiments using synthetic dataset for diverse
motions and real dataset for multiple objects.

The rest of this paper is organized as follows. Section II
summarizes the recent related works on motion models
and IMM estimators with heterogeneous motion models.
Section III introduces the target tracking using single motion
models and state augmentation of multiple motion models
with different state dimensions. Section IV proposes adaptive
tracking using IMM estimators with heterogeneous velocity
representations and also extends it to integrate multiple mod-
els with different-sized states. Sections V and VI illustrate
experiments with synthetic datasets on four different motions
and real datasets on three road objects, respectively. The
concluding remarks follow in Section VII.

II. RELATED WORKS

A. Motion Models

1) Model Complexity: Object motion can be modeled in
numerous motion models according to the model complexity,
such as CV and CT. Previous studies have compared linear
and curvilinear motion models to understand the relation-
ship between model complexity and tracking performance.
Tsogas et al. [4] empirically demonstrated that the more
sophisticated models such as constant turn rate and constant
tangential acceleration model (CTRA) accurately estimate the
dynamic behavior of an object with an unscented Kalman filter
(UKF). Schubert et al. [5] also represented that increasing
model complexity to some extent helps to improve tracking
performance. In their follow-up study [6], they described that
the selection of an appropriate model depends on various
factors such as the scenario, the observability of motion
parameters, and the required prediction interval.

2) Velocity Representation: Past studies have also shown
that tracking performance is dependent on the choice of state
coordinate representations [7]–[11]. They generally compared
the CT motion models with different velocity representations:
Cartesian and polar velocities. It was demonstrated that CT
models with the polar velocity representation provide better
tracking performance than Cartesian velocity. Roth et al. [11]
additionally suggested that for CT with Cartesian velocity, the
sensitivity of the tracking performance to the noise parameters
was reduced using UKF.

It is crucial to select the appropriate model complexity
and velocity representation of the motion model according
to the tracking situation, but in-depth analysis on it is still
lacking despite many past studies. Moreover, it is difficult
to track objects in the real environment with only a single
motion model because the tracking situations are varied and
complicated in real environments. Therefore, multi-motion
estimators, IMMs, have been studied to combine multiple

motion models with different model complexity and velocity
representations.

B. IMM Estimators With Heterogeneous Motion Models

1) State Augmentation: The IMM estimator has been stud-
ied for state augmentation to simultaneously employ motion
models with heterogeneous-sized states of different model
complexity: simple, unbiased, and prior approaches. Simple
approach [12] augments state variables with zero mean and
variance in the smaller state, but this leads to biased estima-
tion of the corresponding state variables in the larger state.
Yuan et al. [21] proposed an unbiased approach that augments
the smaller state with the mean and variance from the larger
state. This approach achieves reasonable results with real data
from thrusting ballistic projectiles. However, when a mode
probability of a larger state is close to zero, it provides numer-
ically unstable results because the weighted sum of covariance
is nearly a singular matrix. Lopez et al. [22] presented a
method similar to the unbiased method but it is implemented
state-by-state, in contrast to [21] which is conducted directly
on the state vector. Granstrom et al. [23] presented a prior
approach that utilizes a uniform distribution derived from prior
knowledge of minimum and maximum values for variance
distribution of augmented state. The choice of augmentation
distribution significantly affects the tracking performance of
the IMM estimator.

Ou and Wang [24] employed the state augmentation to
determine the optimal mode mixing strategy among simple,
unbiased, and prior approaches. The optimal approach is
dynamically selected based on mode probability and innova-
tion matrix, implicitly meaning the target status. They also
demonstrated that the simple and unbiased approaches perform
well during CV motion, but the tracking error increases
extremely when the target status is switched. Meanwhile,
the prior approach utilizes a uniform distribution to keep a
more significant covariance. This approach achieves robustness
in sudden mode transitions but sacrifices tracking accuracy
for steady status. Laneuveille [25] extended the study of
performance comparisons between CT models with Cartesian
velocity and polar velocity to a MM estimator. They exhib-
ited that IMMs containing CV and CT models with polar
velocity significantly improve tracking accuracy compared to
IMMs containing CV and CT models with Cartesian velocity.
Visina et al. [26] introduced the nonzero mean, white noise
turn-rate (WNTR) model to handle the sharp turns quickly.
They also added a CT mode to the IMM estimator with
WMTRs for adaptive tracking in both slow and sharp turns
based on the prior approach. Allig and Wanielik [28] pre-
sented the fusion of tracks with unequal dimensional state
spaces, called heterogeneous track-to-track fusion (HT2TF),
using covariance intersection. They investigated different state
augmentation approaches and compared different optimization
variants because state augmentation influences the optimiza-
tion of the covariance intersection.

2) State Mixing: The appropriate combination of multiple
motion models is required to compensate for the differ-
ent weaknesses depending on model complexity and veloc-
ity representations of the motion models. Therefore, an
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IMM estimator needs to fuse multiple motion models with
heterogeneous state dimensions as well as heterogeneous
velocity representations. Gao et al. [27] presented the IMM
estimator mixing multiple motion models represented in het-
erogeneous state spaces. The model states are transformed into
a common coordinate space for fusing multiple models in a
linear relationship. The transformed states, however, are biased
to the result of the target coordinates, so the transformation
breaks the complementarity. In this regard, we propose a novel
method for the IMM estimator to mix motion models with
heterogeneous velocity representations to complement each
other completely. Also, the proposed state mixing method
is extended by including state augmentation to fuse motion
models with unequal state dimensions.

III. TARGET TRACKING WITH HOMOGENEOUS

VELOCITY REPRESENTATION

A. Notation

In this paper, target tracking is performed in the
2-dimensional space. The position of the target is repre-
sented as x and y in the Cartesian coordinate system and
its orientation is denoted as θ with respect to the X-axis in
the world coordinate system. Even though the real world is
3-dimensional, the 2-dimensional representation is common
in many applications where a target is located on a plane
such as ground, indoor floors, and roads. In the 2-dimensional
space, the linear velocity (also known as speed) of the target
is represented as v as a scalar and (ẋ , ẏ) as a Cartesian vector
in the world coordinate system, respectively. If the target
always moves along with its orientation without slippage, these
velocity representations are related as

ẋ = v cos θ and ẏ = v sin θ. (1)

Equation (1) is also known as nonholonomic constraint [29]
or ideal unicycle kinematics. The angular velocity (also known
as turn rate) is denoted as w whose value is positive when the
target turns counterclockwise (CCW) with the corresponding
to the right-hand coordinate system. We expect that our idea
and verification in the 2-dimensional representation is also
effective for its extension to the 3-dimensional representation.

Our target tracking is based on discrete-time Bayesian
filtering which is widely used in the area of target tracking.
In this paper, the state variable is represented as x and time
interval between state transitions is denoted as T . When the
uncertainty of the state variable is described as a covariance
matrix, it is denoted as P. The Bayesian filtering is composed
of two steps, state prediction and correction, in conjunction
with

xk = f (xk−1,uk) and zk = h(xk), (2)

where f is a transition function that predicts the current state
from the previous state with a control input u, and h is an
observation function that simulates a measurement z from
the current state. The measurement vector z can be defined
diversely according to sensors and their perception outputs.
Here, we commonly define the measurement vector as z =
[x, y]� by considering GPS positioning, range-based object

detection, and visual surveillance. In addition, we mainly
use the unscented Kalman filter (UKF) since it can model
nonlinear transition and observation functions efficiently and
accurately compared to the original Kalman filter and extended
Kalman filter (EKF) [30]. The UKF involves not only state
variables but also sigma points to represent uncertainty of the
state better. Its formulation and procedure are described in the
accompanying supplementary material in detail.

B. Motion Models

We investigate four types of motion models with combina-
tions of motion assumptions and representations, which are
enumerated in Table I [8], [12]. The four motion models,
CV-CC, CV-PC, CT-CC, and CT-PC, are commonly based on
constant velocity, also known as white noise acceleration. The
prefix in the model name indicates the velocity assumptions as
constant velocity (CV-) and coordinated turn (CT-). The suffix
denotes the velocity representations in Cartesian coordinates
(-CC) and polar coordinates (-PC).

Firstly, the motion models are categorized as two groups
with respect to their velocity assumptions. The CV- group is
based on constant linear velocity and zero angular velocity
(so called constant velocity; CV) [5]. Even though real targets
violate this assumption (e.g. v̇ �= 0 or ω �= 0), their linear
velocity and direction are updated due to the noise considered
in Bayesian filtering. For example, the linear velocity v of
CV-PC will be updated due to white noise of linear accel-
eration whose covariance is σ 2

v̇ . Similarly, the orientation θ
of CV-PC model will be updated due to σ 2

ω̇ . It is important
to assign those noise parameters large enough to take into
account unmodeled physics. The orientation of CV-CC model
is not defined, but it can be instantaneously derived according
to θ = tan−1 ẏ

ẋ from (1) when the target moves under the
nonholonomic constraint [29]. The CV-PC is also known as
constant steering angle and velocity (CSAV) model [5].

Next, the CT- group is derived under the assumption of
constant linear and angular velocities (so called coordinated
turn; CT) [9]. Since motion models in the CT group are
degenerated in case of zero angular velocity (ω = 0), it is
common to use the CV models instead in near-zero angular
velocity. However, there is no common rule or threshold to
determine the near-zero to switch CT models to CV models.
On the other hand, our motion model interaction automatically
decides such substitution in the IMM filter framework.

In addition, the models are also divided into another two
groups with respect to their velocity representations [7]. The
-CC group represents its target velocity as a vector [ẋ, ẏ]�
in the world Cartesian coordinate system. The -PC group
represents its target velocity as a scalar v, which is the
radial (or magnitude) component in the local polar coordinate
system. Three velocity variables are connected each other as
shown in (1) involving the target orientation θ . The CT-PC
model is well-known as a velocity motion model [31] or a
constant turn rate and velocity (CTRV) model [5].

C. Motion Model Analysis

Motion models with different velocity representations
have different uncertainty propagation of target position
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TABLE I

SINGLE MOTION MODELS (ACCORDING TO MOTION ASSUMPTIONS AND REPRESENTATIONS)

Fig. 1. Error and uncertainty propagation of CT-CC and CT-PC in Monte
Carlo experiments (104 trials).

and orientation. Such differences lead to distinct position
and orientation accuracies in Bayesian filtering, which is our
motivation to adopt multiple motion models in the filtering.
To visualize uncertainty propagation of the motion models,
Monte Carlo experiments were performed with CT-CC and
CT-PC models. In the experiments, state prediction was exe-
cuted 104 times from the initial state (θ = π/4 rad) with
respect to varying linear velocity (from 0 to 100 m/s) and
angular velocity (from 0.01 to 20 rad/s). The state prediction
involved unbiased Gaussian noises on orientation and velocity,
whose values of standard deviation were σθ = 0.1 rad,
σv = 0.3 m/s, and σω = 0.1 rad/s with T = 0.1 s. Fig. 1 shows
the medians of position and orientation errors in logarithmic
scale along with their 10 and 90 percentiles of which region
represents the degree of uncertainty.

Fig. 1 (a) and (b) show position and orientation errors and
uncertainty in varying linear velocity with a fixed angular

velocity, ω = 0.1 rad/s. In low speed (v < 0.1 m/s), the
CT-CC model has higher position accuracy but quite worse
orientation accuracy compared to CT-PC. It is evident that
CT-CC has worse orientation error because its orientation
calculation, θ = tan−1 ẏ

ẋ , becomes unstable when ẋ is small.
As the speed increases, CT-CC has lower position accuracy
than CT-PC, but with less uncertainty. On the contrary,
CT-CC provides better orientation accuracy than CT-PC in
high speeds. CT-PC has the same orientation error and uncer-
tainty at various linear velocities.

Fig. 1 (c) and (d) reveal accuracy and uncertainty in varying
angular velocity with a fixed linear velocity, v = 10 m/s.
CT-CC mostly has lower position accuracy with less uncer-
tainty, but the accuracy becomes higher in a very high angular
displacement (around ωT = 1.5 rad). CT-CC, however, has
higher orientation accuracy with large uncertainty in slow
angular velocity (low curvature; smooth turn) and worse orien-
tation accuracy with less uncertainty in fast angular velocity
(high curvature; sharp turn). On the other hand, CT-PC has
almost the same accuracy and uncertainty of position and
orientation at various angular velocities.

From the above analysis on Fig. 1, we observed that
motion models with the same motion assumptions but dif-
ferent velocity representations do not have the same accuracy
(shown as mean values) and uncertainty (shown as 10 and
90 percentiles) under various motion conditions of linear and
angular velocities. Our observations on motion models with
different velocity representations have triggered us to focus
on motion models against diverse motion types such as slow-
to-fast speed and smooth-to-sharp turn.

D. IMM-UKF Tracking With State Augmentation

Two IMM estimators containing CV and CT modes with
homogeneous velocity representations are designed to verify
the state augmentation: IMM-AUG-CC (CV-CC and CT-CC)
and IMM-AUG-PC (CV-PC and CT-PC), as shown in Table II.
Since CT models include one more state variable of angular
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TABLE II

IMM WITH STATE AUGMENTATION FOR HETEROGENEOUS SIZED STATES

velocity ω than CV models, IMM filters must employ multiple
motion models with unequal dimensional states. Therefore,
we apply an unbiased approach for the state augmentation
in which CV mode with the smaller dimensional state takes
the mean and variance for the absent state variable ω from
CT mode with a larger dimensional state when calculating the
mixed state of CT mode in interaction step of IMM [21]. The
state augmentation in the unbiased approach is represented as
follows:

xCT =
[

xCT
ωc

xCT
ω

]
, PCT =

[
PCT
ωcωc PCT

ωcω

PCT
ωωc PCT

ωω

]
, (3)

xCV =
[

xCV
ωc

xCT
ω

]
, PCV =

[
PCV
ωcωc 0
0 PCT

ωω

]
, (4)

where xCT and PCT are the state and covariance of CT
mode, and xCV and PCV are those of CV mode, respectively.
xωc refers to state variables other than ω, and is common state
variables in both motion models: [x y ẋ ẏ] for IMM-AUG-CC
and [x y θ v] for IMM-AUG-PC. The CV mode is augmented
with the state ω of the CT mode when the mixed state x̃CT

and covariance P̃CT of CT mode are calculated as follows:
x̃CT = μCV|CTxCV + μCT|CTxCT, (5)

P̃CT = μCV|CT(PCV + δCVδCV�
)+ μCT|CT(PCT + δCTδCT�

),

(6)

with

δCV = xCV − x̃CT and δCT = xCT − x̃CT, (7)

where μCT|CT and μCV|CT are the mixing probabilities for CT
modes. x̃CT is derived by the weighted sum of two mode
states. P̃CT is calculated as the weighted sum with variance
correction from δCV and δCT, which are differences between
the mixed state and each mode state. The mixed state x̃CV

and covariance P̃CV of CV mode are estimated in the standard
approach of IMM (See supplementary material for details
of IMM-UKF.).

The unbiased approach for state augmentation outperforms
the simple approach in normal cases [24]. However, when
mixing probability of modes with a larger state, μCT|CT is
close to zero, tracking results are numerically unstable because

the weighted sum of covariance becomes a nearly singular
matrix. In this case, we set a small value to the covariance
of w to keep it the positive definite. The prior approach [23]
utilizes a uniform distribution according to the value range for
the augmented state. This approach performs better in mode
change or dynamic motions but cannot adequately generate
covariance in regular motions. Therefore, this paper applies
the unbiased approach to implement the IMM estimator for
state augmentation.

IV. ADAPTIVE TRACKING WITH INTERACTING

HETEROGENEOUS MOTION MODELS

Depending on the velocity representation, the motion model
shows different tracking performance with changes in linear
and angular velocities as described in Section III-C. In this
light, we first propose an IMM estimator capable of uti-
lizing motion models with heterogeneous velocity states to
compensate for the weaknesses of their respective velocity
representations. In addition, we introduce an IMM estimator
that simultaneously applies both state augmentation for hetero-
geneous dimensional states and state mixing for heterogeneous
velocity states to achieve adaptive tracking of dynamically
moving objects.

A. IMM-UKF Tracking With State Mixing for Heterogeneous
Velocity Representations

To apply motion models with different velocity representa-
tions to IMM, we design IMM-CV-MIX for mixing two CV
models (CV-CC and CV-PC) and IMM-CT-MIX for mixing
two CT models (CT-CC and CT-PC), as reported in Table III.
Each mode of IMMs has velocity state variables represented
in different coordinates: (ẋ , ẏ) for Cartesian coordinates and
(θ , v) for polar coordinates. Thus, we set the state vectors as
[θ v ẋ ẏ] to redundantly contain the velocity states represented
in both coordinates. The added velocity states from other
coordinates are calculated by the predicted original veloc-
ity states of the modes in the prediction step. In addition,
to calculate the noise covariance for the other representations,
we propose Q mixing that multiplies the Jacobian J between
two different velocity representations as follows:

�̃v̇ω̇ = JCP�ẍ ÿJ�
CP and �̃ẍ ÿ = JPC�v̇ω̇J�

PC, (8)
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TABLE III

IMM WITH STATE MIXING FOR HETEROGENEOUS VELOCITY REPRESENTATIONS

where �̃v̇ω̇ and �̃ẍ ÿ are the mixed noise covariance trans-
formed from the original noise covariances �ẍ ÿ and �v̇ω̇,
respectively. JCP is transformation from Cartesian to polar
coordinates and JPC is the opposite as

JCP =

⎡
⎢⎢⎣

ẋ√
ẋ2 + ẏ2

ẏ√
ẋ2 + ẏ2

−ẏ

ẋ2 + ẏ2

ẋ

ẋ2 + ẏ2

⎤
⎥⎥⎦ and

JPC =
[

cos θ −v cos θ
sin θ v cos θ

]
, (9)

and �ẍ ÿ and �v̇ω̇ are the original noise covariances for CC
and PC groups, respectively, as

�ẍ ÿ =
[
σ 2

ẍ 0
0 σ 2

ÿ

]
and �v̇ω̇=

[
σ 2
v̇ 0
0 σ 2

ω̇

]
. (10)

The proposed state mixing method consists of redundant
velocity states and Q mixing. In IMM, each mode inde-
pendently estimates the state vector and covariance matrix
in prediction and correction steps, and the motion models
are mixed in the interaction step. Thus, it is crucial to
prevent poorly performing coordinate representations from
ruining the results in the interaction step. Redundant velocity
states with heterogeneous representations provide robustness
to various motion changes without bias, allowing recovery
from instability when one of the velocity state representations
degrades. Moreover, transition covariance of the motion model
with redundant velocity states is computed to maintain a
complementary relationship through Q mixing.

Lastly, in combination step, an IMM estimator with different
velocity representations generates combined velocity states
as follows:

x =
∑
i∈M

μi xi , (11)

P =
∑
i∈M

μi

[
Pi + (x − xi)(x − xi )

�]
, (12)

xCC
ẋ ẏ = μPCψPC(xθv )+ μCCxẋ ẏ, (13)

PCC
ẋ ẏ = μPCJPCPθv J�

PC + μCCPẋ ẏ, (14)

where M is a model set of IMM estimator and μi is the
mode probability of the i -th mode. ψPC transforms the polar
velocity, xθv into the Cartesian velocity, xẋ ẏ . Consequently,
the proposed method combines the results of all modes and
derive a result represented in one coordinate.

The IMM with CV and CT using state augmentation pro-
vides reliable tracking performance for linear and curvilinear
motions. In addition, the IMM applying the state mixing of
CC and PC is designed to compensate for the shortcomings of
each motion model according to the velocity representation.
To compensate for all the weaknesses of motion models
with different model complexity and velocity representation,
we propose IMM-AUG-MIX by combining the state aug-
mentation and the state mixing. IMM-AUG-MIX can be
modeled by combining two or more among the four single
motion models; CV-CC, CV-PC, CT-CC, and CT-PC. As a
result of comparing all combinations, the combination of
the four models provides the same or better performance.
Therefore, we design IMM-AUG-MIX combining all four
models in Table IV.

B. IMM-UKF Tracking With State Augmentation and Mixing

The process of IMM-AUG-MIX is configured as shown in
Fig. 2. The ω mixing is proposed to obtain the augmented
state and covariance of CV modes from two CT modes and
to calculate the mixed state x̃CT

i and covariance P̃CT
i of the

i -th CT mode by mixing all modes through unbiased state
augmentation in the interaction step. The augmented state xCT

i,ω
and covariance PCT

i,ωω for angular velocity ω of CV modes are
derived from the normalized weighted sum of CT modes with
the mixing probability as follows:

xCT
i,ω =

∑
j∈MCT

μ j |i x j
ω

/ ∑
j∈MCT

μ j |i , (15)

PCT
i,ωω =

∑
j∈MCT

μ j |i P j
ωω

/ ∑
j∈MCT

μ j |i , (16)

where μ j |i is the mixing probability of the j -th mode to
estimate the mixed state of i -th mode. MCT is a set of
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TABLE IV

IMM WITH STATE AUGMENTATION AND STATE MIXING FOR FOUR HETEROGENEOUS MOTION MODELS

Fig. 2. Tracking process of IMM-AUG-MIX with state augmentation and
state mixing of four motion models: CV-CC, CV-PC, CT-CC, and CT-PC.
λk is the likelihood of each mode to evaluate mode probabilities.

CT modes. Then, the mixed state x̃CT
i and covariance P̃CT

i of
the CT mode are calculated as the weighted sum of all modes
through the unbiased state augmentation [21] as follows:

x̃CT
i =

∑
p∈MCV

μp|i xCV
p +

∑
q∈MCT

μq|i xCT
q , (17)

P̃CT
i =

∑
p∈MCV

μp|i (PCV
p + δCV

p δCV
p

�
)

+
∑

q∈MCT

μq|i (PCT
q + δCT

q δCT
q

�
), (18)

where

xCV
p =

[
xCV

p,ωc

xCT
i,ω

]
,PCV

p =
[

PCV
p,ωcωc 0

0 PCT
i,ωω

]
, (19)

Fig. 3. Synthetic datasets for various motions in 10 m/s: go-straight,
stop-and-go, turns, and sharp-turns, sequentially.

xCT
q =

[
xCT

q,ωc

xCT
q,ω

]
,PCT

q =
[

PCT
q,ωcωc PCT

q,ωcω

PCT
q,ωωc PCT

q,ωω

]
, (20)

δCV
p = xCV

p − x̃CT
p and δCT

q = xCT
q − x̃CT

q . (21)

The mixed state of CV modes, such as CV-CC and CV-PC, are
fused in the standard approach of the IMM. Q mixing is also
conducted for the state mixing as described in Section IV-A.
Consequently, the proposed IMM estimator, IMM-AUG-MIX,
can combine motion models with both heterogeneous state
dimensions and heterogeneous velocity representations.

V. EXPERIMENTS WITH SYNTHETIC DATASETS

A. Experimental Setting

We compared the tracking accuracy of the motion models
introduced in this paper by applying UKF: CV-CC, CV-PC,
CT-CC, CT-PC, IMM-AUG-CC, IMM-AUG-PC, IMM-CV-
MIX, IMM-CT-MIX, and IMM-AUG-MIX. For the perfor-
mance evaluation according to different motions, we built
synthetic datasets with sequential motions of go-straight,
stop-and-go, turns, and sharp-turns as shown in
Fig. 3. The linear velocities of synthetic datasets were set
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Fig. 4. Accuracy of 5 m/s and 10 m/s for each motion in experiments with synthetic datasets. For clear comparison, the positional errors are represented as
a ratio with IMM-AUG-MIX.

TABLE V

RANK OF TRACKING ACCURACY FOR MOTIONS AND VELOCITIES (RED: 1ST, BLUE: 2ND, GREEN: 3RD)

based on the typical speed of pedestrians, bicycles, and cars
in the real environment as 1 m/s, 5 m/s, 10 m/s, and 20 m/s.
The first go-straight was set as a linear motion for 30 s.
In the stop-and-go, objects reached the target speed
within 5 s from a standstill and stopped from the target speed
within 5 s. It also continued motion for 5 s between decelera-
tion and acceleration. The turns consists of smooth left turns
and smooth right turns. The angular velocity of turns was
set at ±0.1 rad/s for left and right turns of ±π/2 rad. The
sharp-turns consists of sharp left turns and sharp right
turns, which were designed to rotate ±π/2 rad in a single
frame (T = 0.1 s). After every sharp turn, it linearly moves
until the next sharp turn.

The input period was set to 10 Hz. The position noise was
added through a normal distribution with a standard deviation
of 0.1 m. Each motion in synthetic datasets has a linear motion
for 10 s at the end of the motion, allowing the motion esti-
mators to enter the subsequent motion in a stable status. Also,
we estimated the appropriate noise variance of each single
motion model through a grid search, a brute-force search-
ing from a manually specified subset, for go-straight
and turns. These experiments with synthetic datasets were
performed with 100 Monte Carlo simulations for each linear
velocity and motion.

B. Results and Analysis

The position error, εp was calculated as the root mean
square error (RMSE) between the tracking result and the
ground truth to evaluate the tracking accuracy. As shown in

Fig. 4, the position errors of motion models were compared in
proportion to the IMM-AUG-MIX. Moreover, we ranked the
motion models on position error to demonstrate the robustness
of motion models in Table V for each motion and target speed.
A small rank-sum means that the motion model consistently
achieves better tracking performance for all motions. For clear
comparison, we colored the results in red, blue, and green in
order, starting with the smallest rank sum in Table V. For IMM
estimators, the mode probabilities were additionally visualized
to confirm which modes are dominant for each motion as
shown in Fig. 5.

1) Go Straight: CT-PC (8), IMM-CT-MIX (11), IMM-
AUG-CC (14), and IMM-AUG-MIX (14) provide higher
tracking accuracy than other models in the order, but the
difference among them is not significant. The number in
parentheses means the sum of ranks in the correspond-
ing motion. The large noise covariance of the CV model,
which is set for both straight and circular motion, increases
the position error for go-straight motion. Therefore,
CT models commonly show more accurate performance than
CV models, when modeling a straight motion. Similarly, IMM
filters with CT models produce lower position errors than those
with CV models. IMM estimators mainly select CT-CC and
CT-PC modes, as can be seen from the mode probabilities μ
in Fig. 5. In particular, CT-CC and CT-PC of IMM-CT-MIX
have similar mode probabilities because they produce equally
accurate tracking results in linear motion.

2) Stop and Go: IMM estimators such as IMM-AUG-
MIX (10), IMM-AUG-PC (16), and IMM-AUG-CC (17)
achieve far superior accuracy to the other. CV-CC is more
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Fig. 5. Tracking results of synthetic datasets for position, velocity, orientation, and mode probability over time when moving at 10 m/s.

accurate than other single motion models for lower target
speeds (1 and 5 m/s). CT-PC (10 m/s) and CV-PC (20 m/s) are
better for higher target speeds. However, with these results,
it is not sufficient to analyze the performance of motion
models for stop-and-go motion. stop-and-go consists
of four motion parts: deceleration, stop, start, and acceleration.
Therefore, we compared the dominance of the motion model
according to detailed motions using the mode probability.

As shown in Fig. 5, for IMM-CT-MIX, models with Carte-
sian velocity states have more significant mode probability
only when the object starts moving. For IMM-AUG-PC, when
stopping and start, CV-PC has a larger mode probability
than CT-PC. Specifically, the CC models can quickly react
to sudden motion changes, such as the starting motion since
velocity states ẋ and ẏ of CC models are independently
separated. CV-PC is stable to the positional noise when
stationary, and CT-PC tracks the object accurately in both

acceleration and deceleration. These results are more evident
in IMM-AUG-MIX. As shown in Fig. 5(d), CV-PC during the
stop, CV-CC at the start, and CT-PC during deceleration and
acceleration become dominant. This result demonstrates that
each motion model has strengths in different situations, and the
IMM-AUG-MIX, which combines them all, shows the most
advanced tracking performance.

3) Turns: IMM-AUG-PC (9), IMM-CT-MIX (9), and CT-
CC (12) achieve better tracking performance. Except for
CV-related models such as CV-CC, CV-PC, and IMM-CV-
MIX, the tracking accuracy of the other models is almost
analogous. In other words, CT models are commonly superior
to CV models similar to go-straight. The IMM-CV-MIX
containing only CV modes exhibits a higher position error
than the IMM-CT-MIX containing CT modes. Moreover,
CT-CC and CT-PC are primarily selected in IMM filters.
Through the results of go-straight and turns motions,
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Fig. 6. Real objects datasets for cars, pedestrians, and UAVs. We sampled three scenes for each object to evaluate the tracking performance.

it is demonstrated that the CT model is a suitable motion
model for normal smooth motions. A single motion model
of CT, such as CT-CC and CT-PC, can also achieve the
same performance as multi-motion estimators in such normal
motions.

4) Sharp Turns: IMM-AUG-MIX (5), IMM-CV-MIX (7),
and IMM-AUG-CC (13) produce much lower position errors
than other motion models. CT-PC, which performs best in
regular motions, has the lowest tracking accuracy. On the other
hand, CV-CC performs the best among single motion models
in sharp-turns. As shown in Fig. 5(a) and (d), CV-CC
is mainly selected at abrupt turns, and as it gradually stabi-
lizes, the mode probability of other models increases. Also,
IMM-CT-MIX mostly chose CT-CC in sharp-turns
motion. To the specific, CC mode is more adaptive to sharp
orientation changes because CC mode has independent axial
velocity variances. Briefly, CV and CC provide better perfor-
mance than CT and PC, respectively, for a sudden large turn.

To sum up, each single motion model exhibits different
tracking accuracy depending on the speed and the rate of
motion change. Since a single motion model cannot reliably
track an object moving in diverse motions, IMM estimators
with suitable combinations achieve relatively better tracking
performance. As the above results show, the mode probability
of multiple motion models generally depends on the perfor-
mance of single motion models for each motion. CT models
such as CT-CC and CT-PC present reliable tracking accuracy
in both linear and curvilinear motions, but degrade in abruptly
changing motions as stop-and-go and sharp-turn.
Therefore, in rapidly changing motions, CV-CC and CV-PC
are mainly selected over CT models in the IMM estimator.

As shown in Table V, IMM-AUG-PC with state augmen-
tation for motion models of polar velocity representation
improves tracking performance in smooth motion, but not in
sharp motion changes. On the other hand, IMM-CV-MIX with
state mixing for two CV models provides more accurate target
tracking for abrupt motion changes, but not for smooth motion
changes. IMM-AUG-MIX with state augmentation and state
mixing for all types of heterogeneous motion models shows
the most reliable tracking performance for smooth motion
and sharp motion changes, regardless of straight or curved
motions. In other words, the proposed adaptive target tracking

allows heterogeneous motion models to interact without bias,
thus completely complementing the weakness of each single
motion model with each other.

VI. EXPERIMENTS WITH REAL DATASETS

A. Experimental Setting

The tracking performance was evaluated for real road
objects with different motion characteristics, such as cars,
pedestrians, and UAVs. Therefore, we employed datasets for
a car, pedestrian, and UAV from the KITTI odometry dataset,
New York’s grand central station dataset, and UZH-FPV drone
racing dataset, respectively, as shown in Fig. 6.

1) Car: KITTI odometry dataset [32] was recorded by
driving around the mid-size city of Karlsruhe, in rural areas,
and on highways. This dataset is mainly used to evaluate the
results of monocular or stereo visual odometry, but we utilized
it to evaluate a single target tracking for a car. We selected
4 scenes out of 11 sequences with ground-truth trajectories
and extracted trajectories of 1500 frames in 10 Hz.

2) Pedestrian: To demonstrate the target tracking for pedes-
trians, we used New York’s grand central station dataset [33].
This dataset includes manually annotated pedestrian trajecto-
ries in a crowded space. Moreover, it contains longer trajecto-
ries than other pedestrian datasets. We selected four non-linear
pedestrian trajectories with 200 frames at 2.5 Hz.

3) UAV: UZH-FPV drone racing dataset [34] is the most
aggressive visual-inertial odometry dataset for UAVs. The
drones in the dataset move dynamically both indoors and
outdoors, with large accelerations and rotations. We selected
four scenes facing forward, including two indoor scenes and
two outdoor scenes. UZH-FPV dataset was originally captured
in 1000 Hz, but we converted those ground-truth trajectories
to 400 frames in 10 Hz like real detection observations.

Each dataset for one object type has four scenes: one for
noise covariance estimation through a grid search and three
for performance evaluation. We added a normally distributed
positional noise with a standard deviation of 0.01 m to the
pedestrian dataset and 0.1 m to the car and drone datasets to
produce real-like detection. We estimated the noise covariance
of each single motion model for one scene of each object
type, and the IMM estimator utilized the single motion models
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Fig. 7. Real experiment accuracy results for each pair of objects and scenes. All εp are normalized to the results of IMM-AUG-MIX to clearly compare
performance with IMM-AUG-MIX.

TABLE VI

RANK OF TRACKING ACCURACY FOR REAL ROAD-OBJECTS (RED: 1ST, BLUE: 2ND, GREEN: 3RD)

with these noise covariances. The real experiment was also
performed with 100 Monte Carlo simulations for each pair of
objects and scenes.

B. Results and Analysis

We compared the tracking accuracy of motion estimators
by measuring the position errors εp for each pair of objects
and scenes, as shown in Fig. 7 and in Table VI.

1) Car: The trajectories are mostly smooth straight and
curved motion with few sharp turns as shown in Fig. 6(a).
Therefore, CV models commonly produce larger εp than CT
models in a single motion model comparison. Likewise, IMM-
CV-MIX has lower tracking performance than IMM-CT-MIX.
Except for IMM-CV-MIX, the IMM estimators have small
tracking errors and no significant performance difference.
As shown in Fig. 8(a), CT-PC of IMM-AUG-MIX is mostly
dominant in normal motions. Other alternative motion models
back up CT-PC when the orientation and velocity abruptly
and largely change, as in the experimental results of synthetic
datasets. Specifically, at 40 s, since the orientation is sharply
changed, the CV-CC and CV-PC modes sequentially become
dominant with a large mode probability. Also, since CT-CC
has a lower position error than CT-PC at low speed and
sharp turn, the mode probability of CT-CC becomes higher
at 100 s. At 130 s, the mode probabilities of CT-CC and
CV-CC sequentially increase. When the linear and angular
velocities are simply decelerated, CT-CC dominates for a short
time. After that, because both velocities rapidly change to
acceleration, CV-CC becomes the dominant mode to stabilize
unstable motion estimation. In short, CV-CC is needed to
recover from unstable estimates caused by sudden starts, rapid

accelerations and sharp turns. Cars move fast with smooth
turns on highways, so IMM-CT-MIX is more suitable for
object tracking than IMM-AUG-MIX, which requires more
computation. On the other hand, cars include not only smooth
motion, but also sudden motion changes such as stop-and-go
and U-turns on urban roads. Therefore, IMM-AUG-MIX using
state augmentation and mixing is essential for adaptive object
tracking on urban roads.

2) Pedestrian: As shown in Fig. 6(b), in crowded spaces
such as train stations, pedestrians usually move at low speeds,
sometimes with sudden large turns or back-and-forth motions.
Therefore, motion models with Cartesian velocity states pro-
vide much more accurate tracking than those with polar
velocity states in such a non-linear slow motions. Notably,
CV-CC and CT-CC achieve low positional errors even com-
pared to IMM estimators. On the other hand, CV-PC and
CT-PC generate high position errors. Except for IMM-AUG-
PC, which contains only PC models, IMM estimators with
at least one CC model do not differ significantly from each
other in tracking accuracy. The proposed IMM-AUG-MIX
takes second place with CV-CC and IMM-CV-MIX. However,
unlike inconsistent motion in crowded space, pedestrians move
smoothly and monotonously in non-crowded open spaces such
as parks. In other words, pedestrians exhibit sharp and smooth
movement patterns depending on the complexity of their
surroundings. Therefore, the superiority of IMM-AUG-MIX
for pedestrian tracking will become evident in spaces with
varying degrees of openness and congestion.

3) UAV: UAVs have the most dynamic motions, rapidly
moving with sharp turns. For scenes 1 and 2, CV and CC are
better than CT and PC, respectively, but for scene 3, almost the
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Fig. 8. Real object tracking results of IMM-AUG-MIX for position, velocity, orientation, and mode probability over time.

opposite. This is because the UAV motions in scenes 1 and 2
change more dynamically than in scene 3. As shown in
Fig. 8(b), CV-CC and CT-CC alternately have high mode
probabilities. Specifically, the direction of rotation changes
while moving rapidly at 6 s, 13 s, and 22 s. Therefore, CV-CC
takes all mode probabilities to recover from unstable motion
estimation quickly. From 34 s to 40 s, CT-CC prevails because
the target moves at low linear and high angular velocities.
IMM-AUG-MIX attains remarkable tracking performance in
all UAV scenes, and its superiority is strongly demonstrated in
more dynamic scenes. The dynamically changing mode proba-
bilities of IMM-AUG-MIX in Fig. 8(b) also prove that all four
modes actively interact in the IMM estimator. This completely
complementary relationship enables adaptive tracking of flying
drones in diverse motions and dynamic changes.

In summary, IMM-AUG-MIX achieves the lowest sum of
rank, as reported in Table VI. It demonstrates the track-
ing reliability of IMM-AUG-MIX for a variety of objects
with different motion characteristics. Similar to experiment
results on synthetic datasets, multi-motion combinations of
different model complexity (straight and circular motions)
and velocity representations (Cartesian and polar velocities)
provides evenly-enhanced performance for all object tracking.
It is also confirmed that the proposed state mixing of an
IMM estimator properly complements the weaknesses of each
velocity representations. Consequently, IMM-AUG-MIX with
the interaction of heterogeneous motion models is the most
adaptable IMM estimator for tracking moving objects with
diverse motions and change rates.

VII. CONCLUSION

We proposed an IMM-based adaptive target tracking that
can integrate multiple motion models with heterogeneous

velocity representations without bias and be extended to
combine motion models with different model complexity.
Therefore, the proposed IMM-AUG-MIX can contain multiple
motion models with different state dimensions through state
augmentation and different velocity representations through
state mixing. Experiments with synthetic and real datasets
demonstrated that an IMM estimator with heterogeneous
motion models significantly improves tracking performance
for moving objects with various motions and motion change
rates. Moreover, an in-depth analysis of the motion models
helps to understand the strengths and weaknesses of each
motion model for different tracking situations. The proposed
adaptive target tracking with interacting heterogeneous motion
models can be applied to many automotive applications, such
as localization and multi-object tracking. Also, the improve-
ment of the proposed method will be noticeable on urban roads
where various dynamic objects such as cars, pedestrians, and
cyclists exist.

As further work, we will apply IMM-AUG-MIX to multi-
target tracking in complex urban environments by simultane-
ously fine-tuning models for multiple objects. We expect that
the proposed method can be applied to combine not only the
four adopted motion models but also other motion models with
heterogeneous state definitions and dimensions.
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