2022 IEEE Symposium on Security and Privacy (SP) | 978-1-6654-1316-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/SP46214.2022.9833803

2022 IEEE Symposium on Security and Privacy (SP)

Robbery on DevOps: Understanding and Mitigating Illicit Cryptomining on
Continuous Integration Service Platforms

Zhi Li*tt Weijie Liu$, Hongbo Chen$, XiaoFeng Wang?, Xiaojing Liao¥,
Luyi Xing®, Mingming Zha%, Hai Jin'*, Deqing Zou**
*School of Cyber Science and Engineering, Huazhong Univ. of Sci. & Tech., China
School of Computer Science and Technology, Huazhong Univ. of Sci. & Tech., China
i{National Engineering Research Center for Big Data Tech. and Sys., Cluster and Grid Computing Lab, Services Computing
Tech. and Sys. Lab, and Big Data Security Engineering Research Center, Huazhong Univ. of Sci. & Tech., China}
$Indiana University Bloomington, USA

Abstract—The recent wave of in-browser cryptojacking has
ebbed away, due to the new updates of mainstream cryp-
tocurrrencies, which demand the level of mining resources
browsers cannot afford. As replacements, resource-rich, loosely
protected free Internet services, such as Continuous Integration
(CI) platforms, have become attractive targets. In this paper,
we report a systematic study on real-world illicit cryptomining
on public CI platforms (called Cijacking). Unlike in-browser
cryptojacking, Cijacks masquerade as CI jobs and are therefore
more difficult to detect, since legitimate CI workflows such
as container image building and testing also entail intensive
computing. In our research, we leveraged the critical mining
information the adversary has to specify, such as wallet addresses
and mining pool domains, to recover the attack traces from
GitHub repositories and the log files on CI platforms, leading to
the discovery of 1,974 Cijacking instances, 30 campaigns across
12 different cryptocurrencies on 11 mainstream CI platforms.
Further, our study unveils the evolution of attack strategies, in
response to the protection put in place by the platforms, the
duration of the mining jobs (as long as 33 months), and their
lifecycle. Further discovered is the revenue of the attack, over
$20,000 per month.

Since robust detection of cryptojacking is known to be hard, we
developed a novel technique, called Cijitter, to strategically inject
delays to the execution of a CI workflow to disproportionally
penalize the mining jobs that need to work on a series of
tasks under time constraints. Our analysis and evaluation, as
conducted on both benchmarks and common CI jobs, show
that our approach substantially suppresses the miner’s revenues,
rendering them unprofitable, but only has small impacts on the
performance of CI jobs and developer productivity (94.3% of CI
jobs see a less than 10% delay).

I. INTRODUCTION

The gold rush of cryptocurrencies has attracted millions of
digital miners. Among them are cybercriminals seeking wealth
at others’ expense through cryptojacking, a crime in which
computing resources of compromised hosts or web browsers
are abused for unauthorized cryptomining. Particularly, mali-
cious actors are reported to deploy JavaScript miners through
vulnerable or malicious websites so those visiting the sites
automatically run the scripts in their browsers, unwittingly
committing resources to serve the attacker’s cause [55]. With
thousands of such cryptojacking sites discovered and million

Work done when Zhi Li visiting Indiana University Bloomington.
Corresponding authors: Weijie Liu, XiaoFeng Wang and Xiaojing Liao.

dollar revenues generated from the stolen resources [51], re-
cent updates of the mining algorithms underlying mainstream
cryptocurrencies like Monero [62], however, start to render
such in-browser cryptojacking ineffective, due to the require-
ment of gigabytes of memory for bootstrapping the mining
computation, which cannot be afforded by browsers [50].

In response to this change, cybercriminals have been re-
ported to look for new targets — resource-rich but less protected
public services, DevOps platforms [2], [31] in particular.
DevOps platforms help developers build, test (continuous
integration, i.e., CI, step), and deploy (continuous delivery,
i.e., CD, step) applications. Among these steps, CI entails
intensive computation for building a project’s Dockerfile into a
Docker image and further testing the image using developers’
scripts. This level of computing support makes the CI step
and its associated platforms (e.g., TravisCI [32], CircleCI [9],
Wercker [34]) appealing targets for cryptojacking, particularly
for executing the mining algorithms like RandomX used by
Monero, which need gigabytes of memory to start with. How-
ever, little has been done so far to systematically discover and
analyze such trending cryptojacking activities, not to mention
any effort to mitigate the security risk they are exposed to.

Finding Cryptojacking on the CI platforms. In our research,
we performed a systematic analysis of cryptojacking risks
on 23 popular CI platforms. More specifically, to discover
the attempts to abuse a CI service for cryptomining, which
we call Cijacking, we came up with CijScan, a methodology
for finding the traces of Cijacking. Our approach leverages
the observation that a GitHub project’s workflow on the CI
platform is well documented, either in a DevOps configuration
file stored in its GitHub repository [69] or in the execution log
on CI platform. Given this observation, CijScan is designed
to automatically analyze both the configuration file and the
log, looking for the information related to cryptomining, such
as wallet addresses and domains of mining pools directly
embedded in the command parameters or indirectly included
in the file pointed to by the parameters, and the outputs of
cryptomining jobs recorded in the log (Section III-A). Running
CijScan on over 580K GitHub repositories, we discovered
1,974 instances of Cijacking, which involve 12 different cryp-

© 2022, Zhi Li. Under license to IEEE. 2397

DOI 10.1109/SP46214.2022.00022

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

tocurrencies and almost all CPU-intensive mining algorithms.
Up to our knowledge, this is the first time that Cijacking
instances have been discovered on a large scale.

Measurement and discoveries. Looking into these Cijacking
instances, we found that such cybercrimes appeared on CI
platforms as early as March 2014 but the cases have started
to surge since May 2017 with the price of Monero soaring,
and continue to go up until now. During this period, we
observed the evolution of attack strategies, which apparently
aim at evading the protection put in place by CI platforms:
for example, renaming cryptomining tools to avoid detection,
terminating a mining job before time-out by the platform to
avoid getting blocked, etc. Also some cybercriminals contin-
uously execute mining jobs from their repositories, stopping
right before the timeout each time and immediately launching
a new one, for as long as 33 months on 4 CI platforms (which
was still going on during our study, until at least July 2020). In
the meantime, some miscreants are found to maintain multiple
code repositories, as many as 297, for dispatching mining
jobs to multiple CI platforms simultaneously. These attacks
are made possible by the generous free trial services offered
by popular CI platforms, which allow one GitHub repository
to utilize a large amount of resources (e.g., 8 GB memory) for
7 to 14 days, and then switch to a free plan with a lower level
of resources allocated (e.g., 1 GB memory) indefinitely. We
found that some cybercriminals open new GitHub accounts to
sign up for the CI platforms for a new round of free trials
after their current trials end. Our incomplete estimate shows
that such Cijacking attacks has brought in at least 793,836
dollars in 2017 ($20,890 per month). We have reported our
findings to both GitHub and affected CI platforms, which have
acknowledged the presence of the abuses we discovered and
removed them from the platform.

Mitigation. Defending against cryptojacking is known to be
hard. Existing techniques are mostly based upon signature-
based detection, looking for the patterns in mining code [43],
[55], [67] or their runtime statistics (CPU, memory usage,
etc.) [42], [45], [64]. These approaches are either susceptible to
code obfuscation, or incurring false positives that mistakenly
flag legitimate operations. To address these challenges, we
developed a novel mitigation technique for protecting CI
platform, which uses the unique features of cryptomining
to introduce runtime delays with asymmetric impacts on
Cijacking and legitimate jobs. More specifically, cryptomining
needs to accomplish a series of small tasks, each within a short
time window. Failing to complete such a task results in loss
of its related revenue and waste of all computation invested in
the task. So our approach, called Cijitter, strategically injects
a small delay to each time window to suppress a miner’s
revenue, with only minor performance impacts on legitimate
CI jobs. Cijitter leverages the observation that intensive hash
computing at the center of every mining algorithm inevitably
leads to high frequent memory-page access, and prioritizes
the interference with the visits to these pages. Unlike the
signature-based detection, this strategy avoids delaying

legitimate jobs when they do not have such memory-access
behavior (as in most cases) and only moderately slows
them down when they have, while significantly affecting the
revenues of all mining tasks running under time constraints.
Our theoretic analysis and experimental evaluation show that
Cijitter is able to render Cijacking unprofitable, while incurring
less than 10% overheads for 94.3% of legitimate CI jobs and
reducing the throughput of a CI platform by merely 4%.

Contributions. The paper’s contributions are outlined below:

o New discoveries and new understanding. We report a sys-
tematic study on cryptojacking of public CI platforms, which
unveils real-world Cijacking instances and their impacts. Un-
like in-browser cryptojacking, these new attacks are found to
work well with the new updates of cryptomining algorithms
and become increasingly aggressive, thereby significantly un-
dermining the public CI services. Our finding brings to the
spotlight this new threat and the challenges in addressing it.

e New techniques. We developed a novel solution to the
Cijacking threat, through strategic injection of delays to
the processing of individual projects. Our approach causes
asymmetric impacts on legitimate and illicit mining jobs,
eliminating the revenues expected by the cybercriminals (so
as to disincentivize them from exploiting a CI platform) with
small impacts on legitimate jobs. Our analysis demonstrates
that the gain the platform can achieve by using our protection
significantly outweighs the price it pays. We released the
datasets and the source code of our techniques online [22].

II. BACKGROUND
A. Cryptocurrency Mining

Cryptomining process. Cryptomining is a process to validate
transactions on a blockchain network, and a miner who accom-
plishes the assigned task is awarded with new cryptocurrency.
During this process, the miner has to solve a mathematical
puzzle for transaction validation, which requires the miner to
perform a significant amount of trial-and-error with a high
frequency through a one-way hash function to find a nonce
that produces the target hash value as Proof-of-Work (PoW).

To boost generation of PoWs and increase revenue, hard-
ware optimizations based on GPU and ASIC have been
widely used for specific hash algorithms [56]. However, such
technologies lead to a monopoly on cryptomining: a small set
of participants with a huge amount of computation power can
control a blockchain, which runs against its decentralized prin-
ciple [43], [60]. To prevent such accelerated hardware, many
cryptocurrencies [29], [40], [63] today have updated their algo-
rithms to operate more efficiently on the commodity CPU with
a large amount of memory [54] to resist ASIC-based mining.

Cryptocurrency mining pools. As the difficulty of mining
increases over time, miners today tend to combine their com-
putation resources to build mining pools, which can turn down
their cost and improve their chance to find a block. Typically,
a mining pool divides a mining job into the tasks with various
difficulty levels and assigns them to miners. Each miner works
on her task separately and submits the result (a partial PoW) to

2398

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

the pool to have her workload certified. Note that this pooled
mining process is time-critical: if a task cannot be finished
successfully within a time limit (before a new block is found),
its result becomes invalid and all effort invested will be in vain.

Upon finishing a task in time, a miner earns a “share” to
keep track of her contribution to the progress of block dis-
covery. Once a block is found, miners are rewarded according
to the accepted shares they hold, and those who have more
shares certainly get more profit.

B. Container and DevOps Service

Docker container. Docker container is a runtime under OS-
level virtualization, which can create isolated and standardized
computing environments for an application. The library depen-
dencies of this application are packed into a static image of
the container by running a series of commands documented by
a Dockerfile. After instantiating a container from its image, its
inclusion of dependencies provides a consistent environment
for development, testing, and production of an application.
With these benefits, Docker container today has been widely
adopted in the CI/CD pipeline to facilitate and simplify
application development, serving as the default runtime for
almost all commercial CI/CD platforms.

CI/CD service model and pipeline. DevOps is a set
of practices that combine software development (Dev)
and IT operations (Ops), aiming at accelerating software
development through continuous integration and continuous
delivery [57]. The pipeline of CI/CD includes building,
testing, and deployment stages, with each of them running
as a job and their ordered executions forming a workflow.
Such a workflow is set up by the developer who configures
a Docker image for each job, which allows her to build
and test her application in the container. More specifically,
the developer specifies a configuration file in her repository,
which indicates the runtime and workflow to build or test
her application on CI/CD platforms. The repositories used
for the CI/CD platforms are commonly hosted on GitHub,
GitLab, and Bitbucket. All CI/CD platforms support that
developers use accounts of GitHub, GitLab, and Bitbucket to
easily login. However, GitLab and Bitbucket are more facing
to private developers and focus on protecting their privacy.
Thus, we select GitHub as the target for our next study.

Terms of use, entry requirements and protection. As stated
in their terms of service, all CI platforms prohibit any behavior
harmful to their services, such as denial of service, malware
spread. In particular, most of them, such as TravisCI [32],
Buddy [7], Bitrise [6], and GitLab-CI [13], explicitly forbid
any parties to use their service for cryptomining. If a user ac-
count violates such a policy, it will be denied for access to the
CI platforms and their services, with the account suspended.
However, one can open many new accounts to use the services
again and again. Actually, GitHub users and those associated
with other repositories can conveniently log into these CI
platforms using their repository credentials, so one can easily
acquire free services from CI platforms by opening new
accounts on the repositories with different email addresses.

+|Context constructor Static parameter identifier gomTmemmmenneey, .
: T | .E

i |Code repository
Command parser checker
H .| I3 0

crawler

External script extractor |

i Mallc.mus

R

DevOps log Trace
crawler il -Vl Execution trace identifier |' semmes "' checker |}
@ Crawler @ Interpreter (@ Mining Detector

Fig. 1. CijScan architecture

C. Threat Model

We consider an adversary who aims at utilizing free CI
services to stealthily run cryptomining jobs for profit. For
this purpose, the adversary opens accounts on free software
development repositories like GitHub, GitLab, and Bitbucket
and crafts a platform-specific configuration file for each of
his project to specify the workflow involving cryptomining
jobs to be executed on the CI platforms associated with
these repositories. We assume that the adversary is capable
of creating a large number of repository accounts, each with a
very small cost (e.g., passing the CAPTCHA test on Google).

We also observed that mainstream CI platforms commit
a large amount of resources (CPU cycles, large memory,
and stable network connections) to support free trials and
free plans. The procedure to execute the workflow specified
by a project’s configuration file is public, which starts with
known launch commands. Also these platforms will monitor
the progress of each CI task, recording its runtime statistics
like usage of CPU, memory, disk, network, and 1/O.

III. CRYPTOJACKING ON DEVOPS PLATFORM
A. Cijacking Discovery

Here we elaborate on the design and implementation of
CijScan, our methodology for finding Cijacking instances on
popular CI platforms.

Idea and architecture. Since all jobs to be executed by a CI
platform are defined by a project’s configuration file in its code
repository, a cryptomining job, if exists, must be triggered
by the commands in the file. Further running a mining job
requires a wallet address for receiving rewards and domains
of mining pools when miners use these services (which is
the most likely situation). As a result, these parameters will
appear in the commands or in the CI platform’s logs that also
record the intermediate meta-data produced when executing
a job, should the job indeed perform illicit cryptomining.
Based on the observations, we built CijScan, a simple scanner
to find such parameters and intermediate meta-data in both
commands and logs.

Fig. 1 shows the architecture of CijScan, including a
crawler, an interpreter, and a mining detector. The crawler is
designed to collect Cl-related repositories and their associated
configuration files from GitHub, as well as their log files from
CI platforms. From such a configuration file, the interpreter
runs a command parser to extract commands and then a static
parameter identifier to recognize their parameters. For parsing
the parameters pointing to files, it further utilizes a context
constructor to retrieve the filesystem of the related container
image. Also, some commands are included in external scripts

2399

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

Y

(D Deploy Code, @ Authorize ’@, &
Repository @@ % (=]
E @ Add Config File [o 0 =]
ckers Code R itory) ® Trigger __Build Test Deploy

@ Inject Mining Tasks Cl Platforms

Fig. 2. Attack overview

such as bash scripts and Dockerfile (within the filesystem or
hosted remotely). To recover these commands, the interpreter
operates an external script extractor to collect the scripts and
parse their commands and parameters. In addition, it analyzes
the log files to find each command’s execution traces using an
execution trace identifier (see interpreting below). These traces
and command parameters are then used to search for wallet
addresses and domain names of mining pools by a mining
detector. Other information to be sought from the execution
traces is mining jobs’ intermediate meta-data, including noti-
fication of hash rate, connection status of networks, feedback
from mining process (e.g., share accepted, mining difficulty
changed, and new block detected). Report of any of these
parameters (i.e., wallet address and mining pool, intermediate
meta-data) leads to flagging of the associated repository as
illicit (see mining detection below).

Interpreting. On a configuration file, we bootstrap the in-
terpreter by identifying its related container image. Such
image carries information necessary for determining parameter
values, including the content of a file as pointed by a directory
path. Specifically, to extract the image information, we devel-
oped a set of parsers to handle the unique configuration struc-
tures of different CI platforms, on top of yaml they use, accord-
ing to these platforms’ documentation. Further, our approach
downloads the image to fetch its filesystem as the context in-
formation to support the command’s parameter interpretation.
After that, the interpreter extracts the commands from the
configuration file and parses the command parameters for
Cijacking instance detection. A problem here is that some
parameters are variables (e.g., $var), pointers (e.g., file path),
or even being obfuscated (e.g., string encoding, string slicing),
whose values can be hard to determine. To solve this problem,
we built the static parameter identifier on top of the open-
source bash interpreter [3] to interpret each command without
running it. More challenging here is that some commands can
trigger external scripts to execute other commands. To handle
this situation, the interpreter uses the external script extractor
to parse the scripts and extract additional commands. Note that
these external scripts are usually kept inside the repository or
its container images. Thus, the extractor first attempts to search
the local repository and the image’s file directories to locate the
scripts. If unsuccessful, it inspects the names of the external
files associated with download commands (such as wget, curl,
and git clone), as output by the parameter identifier to find
those included in the command parameters and download
them for a further analysis by the identifier. Note that the bash
interpreter cannot handle some commands in the languages
like Python. In this case, it simply outputs the commands
together with their parameters for the mining detection.

In addition, for the log files crawled from the targeted CI
platforms, the execution trace identifier statically recovers the
traces for execution of the commands on the platform by
parsing the output component in the log file. Such information,
including the parameters and the traces, also serves as inputs
for mining detection.

Mining detection. With the command parameters and ex-
ecution traces, our mining detector searches for indicators
of cryptomining, which include wallet addresses, domains
of mining pools, and mining job’s intermediate meta-data.
Common cryptocurrencies have wallet addresses comprised of
alphanumeric characters with lengths ranging from 24 to 100,
or in the form of email addresses. The domain of a mining pool
always starts with ”stratum+tcp://” and ends with a port num-
ber. Leveraging this observation, our detector runs a parameter
checker that utilizes regular expressions to locate the wallet
address and mining pool domains from command parameters.
Also to be inspected are execution traces collected from CI
platform logs. From these traces, our trace checker looks for
not only wallet addresses and domains, but also other statistics
output by cryptomining tools at runtime, such as hash rates,
block detection notifications, the connection status to networks
(e.g., mining pools), etc., using a set of signatures (Appendix
Table IITI). Whenever any of such information has been dis-
covered, our detector flags the associated repository as illicit.

B. Cijacking Analysis on CI Platforms

Data collection. In our research, we run our crawler on
GitHub, which utilizes Bigquery [4] and GitHub API [19]
to search across 100M repositories for the configuration files
related to different CI platforms using their unique names: e.g.,
.travis.yml for TravisCl, ./circleci/config.yml for CircleCI. Also
there are a small number of platforms (2 out of 23) that keep
configuration files of their connected projects on the platform
side. So the crawler also takes a look at the commitment
record reported on each project’s GitHub page, which keeps
track of the CI platforms involved in building the project. This
allows our crawler to retrieve the configuration files from the
corresponding platforms. Altogether, we gathered Cl-related
information from 582,438 GitHub repositories confirmed to
use some platforms before the end of May, 2020.

Validation and findings. We used five servers (32 cores AMD
Opteron 6276, 16 GB memory) with a total of 192 threads to
run CijScan on 582,438 GitHub repositories. It took CijScan
17 days to finish all tasks including the command and trace
analysis and mining detection. Among all the components of
CijScan, the context constructor within interpreter performed
the most time-consuming task (10 days), since the container
image needs to be downloaded from its registry. It only took
12 hours for the mining detector to flag illicit repositories.
Scanning these repositories and the logs on their related CI
platforms, our approach flagged 894 repositories (0.153%) as
illicit. To validate the results, we replayed CI workflows of
all 894 repositories and manually recovered the binary code
of each process in the CI jobs, and further leveraged Virus-
Total [65] to identify the processes launched by cryptomining

2400

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

NN R W =

tools. Further, we traced these processes to find out whether
they had wallet addresses necessary receiving mining revenue.

TABLE I
THE TARGETED CRYPTOCURRENCIES AND THE MINING POOLS

. . . . Type Tool(s) Pool(s) % Cijacking instances
This manual analysis took 3 cybersecurity professionals 9 pool minexmr.com
. . S 1. .C
days to accomplish. An instance was flagged when all of the ool minergate.com
. C L e1s ini Ihub.
annotators reached a consensus. Here inter-coder reliability nanopalore pool usxmrpool.com
we measured (among the annotators) using Cohen’s kappa Monero | amitak | Do ey ulero .67%
H H : cpuminer mine.ppxxmr.com
coefficient [11] is 0.947. The annotated dataset is released e udwaripool.com
online [22]. In Section III-D, we discuss the potential missing monerolindon-pool.win
pool.moriaxmr.com
cases under this analysis. ‘r‘;;)‘;‘:;"mhﬁ;‘;;‘f;
Listing 1. Malicious Dockerfile example. Line 2-4 represents a normal project Darkco_'" T d'Ak'Cpu’poovl'“e‘ 2A31%
building progress. Line 6 shows that mining command is inserted in RUN. Bytecoin minergate-cli_| POOMPytecoin-party 395%
Litecoin cpuminer Itc.pool.minergate.com 1.87%
FROM ubuntu:18.04 #Base Image Cranepay cpuminer pool.cryply.io 0.80%
uspool.electroneum.com
WORKDIR / pool‘.etn.spucepoo]s,org
RUN apt install git make -y Electroneum | xmr-stak e{n.tuilrh;xsh.t)rg N 0.60%
RUN git clone <project> && make -7j4 zi’c’;‘z‘r)o':cif:;g:}‘l‘\':ﬁ:r;’ro
RUN wget <url:mining tool> em—us—eastl.‘nanopoo].‘org
RUN ./<mining tool> -u <wallet id> -o <pool address> AEON xmr-stak mine.aeon-pool.com 0.20%
ENTRYPOINT ./<project> Fantomcoin zﬁ':izmer fen.pool.minergate.com 0.15%
Arto xmr-stak arto.cryptonight.me 0.05%
.. . AIO i aio.mine2 Ji 0.05%
C. Cijacking Workflow — St i STE
Bitcoin cpuminer ;1ic‘ehasi1.comg. e 0.05%
Attack process. Looking into the discovered Cijacking cases, SHG xmrs@k | poolsupporishg.com 0.05%
Sharkcoin xmr-stak coinshak.com 0.05%

we pieced together the attack’s workflow as shown in Fig. 2.
First the adversary needs to create a code repository on a
public code-hosting platform (@), such as GitHub, GitLab, or
Bitbucket, and authorize CI platforms to access the repository
(®). Then he specifies a set of jobs as the workflow to be
run on each platform by creating a configuration file on the
repository (®). Such a workflow includes normal, legitimate
jobs, such as docker image building, source code compiling,
and ones related to illicit cryptomining. In addition to injecting
such a mining job as a standalone job in the workflow to the
platform (@), the adversary could opt for a stealthier way to
hide it behind a legitimate job in one workflow. As an example,
Listing 1 shows that mining commands are inserted into a job
for docker image building, which are launched by command
docker build and activated when the building progresses.
Once the workflow is configured, the adversary needs to
trigger it on a CI platform (®). This can be done auto-
matically whenever the code in his repository is committed.
Alternatively, he can start the workflow manually or through
the CI platform’s API, which enables him to launch a new
cryptomining job immediately after one finishes or times out.

Participants. As illustrated in Fig. 2, there are three parties
involved in a Cijacking attack, as follows:

e Attacker is the adversary who abuses the computing re-
sources of CI platforms to run cryptomining jobs for profit.
For this purpose, he needs to provide his wallet address to
receive award and the domains of mining pools involved.

e Code hosting platforms provide code repositories and con-
nect them to CI platforms. The repositories under the attacker’s
control include mining tools or scripts, and the configuration
file for the CI platforms to specify how to launch a workflow
with cryptomining jobs on the platforms.

o CI platforms are the services the attacker abuses to run
cryptomining jobs. Such a platform automatically processes
a linked project from a code repository, committing resources
to build a Docker image and test its code.

D. Discussion

Private repositories and inactive accounts. Our experiment
focuses on public repositories and active accounts, since the
code and logs of private repositories and inactive accounts are
not available for analysis. Note that starting from Jan. 2019,
GitHub offers free unlimited private repositories [20], which
can be utilized by the adversary to deploy Cijacking code.
Potential evasive cases. Our static analysis-based approach
might miss some evasive repositories, e.g., those obfuscating
their traces and using stepping stone servers to connect to
mining pools (Section II-A). To evaluate the coverage of our
approach, we randomly sampled and manually validated 10K
repositories from the 580K Cl-related repositories we collected
(see the validation approach in Section III-B). Among them,
14 (0.14%) repositories were found to involve illicit mining,
which have been discovered by CijScan independently.

IV. MEASUREMENT
A. Landscape

Our study reveals that Cijacking is indeed trending in the
CI platforms. Altogether, on 23 platforms, CijScan detected
1,974 Cijacking instances (or simply a Cijack, which refers
to a mining job launched by a unique GitHub repository on
a CI platform) associated with 865 GitHub repositories, 607
GitHub accounts, 71 mining pools, and 104 wallet addresses.
Among all the instances discovered, 73.08% wallet addresses
are used by at least 768 (38.9%) Cijacking instances. Fig. 3
further shows the distribution of Cijacking instances across
different CI platforms. As we can see here, TravisCI has the
most Cijacks, followed by Wercker and Tddium.

Popular pools and cryptocurrencies in Cijacking. Looking
into the wallet addresses and mining pool domains reported,
we found 71 mining pools of 13 different kinds of cryp-
tocurrencies involved in Cijacking. Interestingly, all discovered

2401

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

500 100
of Cijacking instances

mmm # of wallet address
400 -r80

60

40

of wallet address

of Cijacking instances

20

0

O 4y b % S Su 5. G 9% b, So. % % O
s% sﬁq’» %, o(‘Q % . S %%%,00-6{% s%} %, a,% oo,}%%e% O% 4%
7% G %, 9, PN
o 2 ’5%*0, % % 9, % o 60»

S

Fig. 3. Distribution of victimized CI platforms

Cijacks turn out to use mining pools, as presented by Table I,
which ranks these pools in the order of the number of instances
they are associated with. From the table, we can see that
miners tend to use the services of popular mining pools, those
contributing relatively high hash rates to their corresponding
blockchain networks: particularly, xmrpool.minergate.com is
the most popular pool for Monero (32.9%), followed by
pool.minexmr.com (29.2%) and pool.supportxmr.com (22.4%).

Also our study shows that Cijacks have been used to
mine almost all mainstream cryptocurrencies, from Monero,
Darkcoin to Bytecoin and Litecoin. However, Monero is the
most preferred one, being targeted by 1,336 (67.67%) Cijacks,
which is possibly due to its highest mining profitability (based
on the historical statistic of BitinfoCharts [5]).

Cijacking campaign discovery. We found that different Ci-
jacks may share the same wallet addresses and/or GitHub
accounts, indicating the presence of relations among their
initiators (the attackers). To identify such relations across
Cijacking instances, we built a graph for campaign discovery.
In the graph, each Cijacking instance is represented as a
node, and two instances sharing a wallet address or a GitHub
account is described by an edge. All the instances on the
connected graph formed in this way are considered to be
in the same campaign. Altogether, 30 campaigns with 1886
instances in total have been discovered. Table II presents
the top-10 campaigns containing most instances, with the
largest one including 879 Cijacks. These campaigns describe
a lower bound for the impact an attacker can have on the
platforms, because one may have multiple wallets, which are
not observable to us due to the limited information.

Looking into individual campaigns, we found that many
of them enable attackers to concurrently execute a lot of
Cijacking instances across multiple platforms: on average, an
attacker exploits 4 platforms, with 15.7 instances running on
each platform during the same period of time. Actually, such
attackers do not even bother hiding relations among these
tasks: on average, 3.39 instances from the same repositories,
1.07 from the same GitHub accounts, and 62.86 having the
same wallet addresses are found from each campaign to be
active during the same period of time. Particularly, the owner
of the wallet address “soku2.ko” creates 248 GitHub accounts
and names each account using a list of most popular given
name (AlexaBierm, BarbaBecke, ChrisAchen, etc.). On the
other hand, there are situations where the attackers apparently

TABLE I
CIJACKING TOP-10 CAMPAIGNS IDENTIFIED BY WALLET ADDRESS
of pai # of CI platforms # of repos # of inst:
Campaign - I 4 293 879
Campaign - II 11 107 296
Campaign - IIT 8 51 192
Campaign - IV 1 116 116
Campaign - V 5 14 70
Campaign - VI 1 46 46
Campaign - VII 2 16 32
Campaign - VIII 5 4 20
Campaign - IX 3 16 16
Campaign - X 2 16 16

try to avoid sanctions imposed by CI platforms: we observed
that in 17 campaigns, Cijacking operations start from some
GitHub accounts right after they end in other accounts.

Also, we observed some campaigns across multiple CI
platforms. Particularly, 27 campaigns were run on CircleCl,
TravisCI, Wercker, and GitLab-CI simultaneously. We mea-
sured the relations between the sets of campaigns observed
from two different CI platforms using Jaccard similarity coeffi-
cient, as illustrated by the grid between them (on x-axis and y-
axis respectively) in Fig. 4. The coefficient here demonstrates
how campaigns are distributed across different platforms,
especially those platforms with similar running environments
and operation modes. For example, the campaign set on Bitrise
is highly similar to that on Cirrus, since their environments
and settings are quite close. In this way, the attackers can
maximize their profits by re-using the same attack scripts on
another platform.

B. Cijacking Scripts

Mining tools. Most cryptomining tools allow for configurable
parameters, which limits a miner’s CPU usage and thread num-
ber. We manually analyzed all 865 GitHub repositories related
to Cijacking discovered and extracted their mining configura-
tions (CPU throttle, number of threads, and running time). We
find that 46.58% of mining-related scripts are present in Dock-
erfile while the rest are in the other files (e.g., Configuration
file, Makefile). Also, most of Cijacking instances (72.34%),
that is, the workflows containing mining code uploaded to
individual platforms, set the average CPU throttle to 80%
and the thread number to 4, in contrast to the browser-based
cryptojacking (typically 25% CPU throttle) [47]. Interestingly,
from the commit logs of these GitHub repositories, we ob-
served that Cijacking miners updated their scripts to change
the parameter settings to balance between gaining enough
profit and avoiding detection from CI platforms.

Time-out mechanisms. CI platforms tend to utilize time-out
mechanisms to defend against resource abuse: a platform (e.g.,
TravisCI, Wercker, CircleCI) terminates an instance running
more than 4 hours (time-limit timeout), or without producing
any output via stderr or stdout (i.e., no-output timeout).
Also, CI platforms block the instances frequently triggering
time-out. We found that Cijacking miners responded to such
protection with evasive tricks to avoid being blocked. For
example, most miners utilize the “fimeout” command to end
their Cijacking tasks within 3 hours. An interesting exception
is “fewa342rwr@tutanota.com”, whose workflow establishes
a SSH reverse channel with the attacker and terminates before

2402

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

circleci '0.07 0.2 0.04 0.08 0.08 0.12 0.07 0.08 0.18 0.04 0.08 0.04
travis —0,070.04 0.01 0.03 0.04 0.03 0.04 0.03 0.05 0.01 0.01 0.01
appveyor - 0.2 0.040.11 0 012 0 01 014025 01 0 017
buddy -0.04 0.01 0.110.14 0 014012 0 018012 O 0
codeship -0.08 0.03 0 0.14 0 033012 0 018 0 02 O
codefresh -0.08 0.04 0.12 0 0 0 0.14 0.25 0.2 0.14 0.25 0.33
shippable -0.12 0.03 0 0.14 033 0 0.29 02 018 0 02 ©0
gitlab -0.07 0.04 0.1 0.12 0.12 0.14 0.29 04 017 025 0 0.2
bitrise -0.08 0.03 0.14 0 0 025 02 04 01 017 0
wercker -0.18 0.05 0.25 0.18 0.18 0.2 0.18 0.17 0.1 0,17 0.22 0.11
azure -0.04 0.01 0.1 0.12 0 0.14 0 0.250.17 0.17 0 02

solano -0.08 0.01 0 0 02 02502 0 0 022 0 0

LN 0.11 02 0
'

cirrus -0.04 0.01 0.17 0 0 033 0 02
' ' | [| 1

I

Cirey s, 9 b, Copy. COpy. Shy. ity Bity, W, o Sozs. Ciy

"Clee, Vs pﬁveyzgoy Uesh;ef,ggp%l;/eb ise e’c/(ef‘/fs ane Mus
e

Fig. 4. Jaccard similarities on different platforms

time-out, apparently, by acting upon remote instructions. This
remote control does not leave much trace, as compared to
running the “time-out” command, since the termination is
not recorded by the platform-side log. Also, to avoid the no-
output timeout, the workflow of “fewa342rwr@tutanota.com”
generates random strings as output.

Instance triggering method. As mentioned earlier, Cijacking
miners frequently re-launch Cijacking instances to avoid time-
out (which can lead to blockage). Particularly, from the logs
from CI platforms, we find that each Cijacking instance has
been re-launched 105 times on average. To launch an instance
on a CI platform, one could commit an update to the code
repository, or trigger an instance manually or through APIs
(e.g., POST /workflow/{id}/rerun [10]). In our study, we ob-
served that a Cijacking miner “jerolamo.r” committed 46,496
updates on 16 code repositories over 4 months (02/17/2018 to
06/19/2018) to run 48 Cijacking instances on 3 CI platforms.

Code obfuscation. CI platforms (e.g., CircleCI) scan con-
figuration files for the names of mining tools. To evade
the detection, Cijacking miners usually rename the tools to
meaningless words or after common web services (e.g., Nginx,
Node). In the meantime, we find that CI platforms do not flag
the keywords related to mining pools’ connection information,
such as their domain names, which CijScan utilizes for finding
mining instances (Section III).

C. Longitudinal Study of Cijacking

Attack lifecycle. Different from the browser-based Crypto-
jacking [51], [53], [55], Cijacks leave their traces in the
commit logs of GitHub repositories and instance logs of CI
platforms, which allows us to profile their lifecycle. Specifi-
cally, in our research, we analyzed different timestamps from
commit logs and instance logs, including the creation time of
a Cijacking instance’s repository (Z.), the first launch time of
the instance (%;), the last update time of its configuration file
(ty), and the ending time of the instance’s last execution (tx).
To this end, we crawled the GitHub commit logs from the 865
repositories and the logs of their 1,467 Cijacking instances on
11 CI platforms from Mar 2014 to July 2020, using the first

—— Cijacking start time
creation-launch time

mmm Jaunch-last update time

1400 last update-kill time

1200

=
© o
=3 S
o S

No.# Cijacking instances
o
3

400

200

% Y D Y Y Y D Y D D Y D D Y D D Y .
Qg Qg %0y % %05 %05 P Cog U %5 %5 %3 %o % 9 g Lo Lo X %
0570:72,70,70572,%0,%0,%2,70,70,70,70,%0,%¢,%0,%0,%0,%0, %0,

Fig. 5. Lifecycle of Cijacking instances

commit date of each instance’s repository as its ¢, and the last
commit of its configuration file as t,. Also to determine the
instance’s t; and ¢, we tracked its earliest launching date and
the last termination date.

Fig. 5 shows the lifecycle of each Cijacking instance, ranked
by their launch times (¢;). The average lifecyle of a Cijacking
instance (i.e., max(t,t,) —t;) spans 42.8 days, 2.46 times as
long as the period during which the attacker uses its repository
to control the instance (i.e., t,, —%;). Also the average life time
of these instances’ repositories is 337.8 days (i.e., t, — t¢).
Interestingly, the duration of controlling an instance from a
Cijacking repository (t,, — t;), which is 17.4 days, is in line
with the length of free-trials provided by many CI platforms
(14 days on average).

We observed that from 2017 to 2019, the number of Cijack-
ing instances increased rapidly. 86.18% of the instances found
in our study appeared during this period. Meanwhile, 57.01%
of the GitHub repositories associated with Cijacking instances
were created between Jan 2014 and Jan 2018. Interestingly,
there is a time gap between the creation of a repository ¢, and
the first launch of a Cijacking instance from the repository
(the earliest ¢; associated with the repository) for 34.23% of
the instances and the average length of such gaps is 861.5 days.
Looking into these instances, we were surprised to find that
100 of these repositories likely changed hands among different
accounts, since those making the first commits were not
the current repository owners. When manually checking the
historical content of such repositories, we observed semantic
differences (e.g., demo a webapp vs launch a cryptomining
tool). We contacted a repository’s original owner, who re-
sponded that he was unaware of the change.

Of particular interest is the observation that 17.91% of the
Cijacking miners rapidly adjust their Cijack scripts after their
attack instances are launched. When manually investigating
these updates in the commit logs, we find that those updates
mainly aim at improving the effectiveness of Cijacking op-

2403

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

of new instances 350
—e— Prices of Monero

200 -£300
250
150
2008
100 /\/ _\/\ 150 ;
/\‘\ AN
/J e ? a2 ad

0
2017-07

nero ($)

f M

of new instances

2
100§

u
=]

50

2018-01 2018-07 2019-01 2019-07 2020-01

Fig. 6. Correlation between Monero prices and Cijacking trend

erations (e.g., testing different parameters to optimize mining
tools, see Section IV-B, or updating mining tools or mining
pools), changing attack targets (e.g., targeting different cryp-
tocurrency), or adding code components for evading detection
(e.g., code obfuscation, see Section IV-B).

Correlation between attacks and Monero prices. To under-
stand the evolution of Cijacks, we monitored newly-appeared
Cijacking instances over time. Fig. 6 illustrates the number
of new Cijacking instances emerging per month from 07/2017
to 05/2020 and its relations with the change of the Monero
price, with the price information coming from coinmarket-
cap.com [15]. From the figure, we can see that a large number
of instances appears between 07/2017 and 04/2018, with the
price moving toward its peak and such growth starts to slow
down with the price going down. Indeed, the changes of the
instances track closely with the dynamics of the Monero price,
with the Pearson correlation coefficient [28] which measures
the similarity of two data distributions, being 0.83. New
Cijacking instances only spring up when the Monero is rising
in price. The largest peak with an increase of over 231 new in-
stances is observed around 02/2018 with the Monero price also
hitting its peak $351.43. After that, new Cijacking instances
decline to around 2.13 per month with the Monero price drops
to $100.81. Our hypothesis is that the depreciation of the
cryptocurrency renders it less attractive to the new comers,
who might opt for more profitable underground businesses.

D. Profit from Cijacking

To understand the economic incentives behind Cijacking,
we estimate the revenue of Cijacking, and compare it with
that generated by browser-based cryptojacking. Specifically,
we utilize the model of browser-based cryptojacking [51] to
identify the revenue per Cijacking instance, as follows.

_ ll X hi
- d
where R; is the revenue of a Cijacking instance ¢, [; is the
lifecycle (i.e., tx-t;, see Section IV-C) of ¢, h; is the instance’s
hash rate, d is the difficulty to mine a cryptocurrency block,
and r;, is the reward for each block discovered.

To estimate a Cijacking instance’s hash rate h;, we set
up simulated CI environments locally for 11 available CI
platforms (based upon their hardware settings) and ran the
mining algorithms on them. Specifically, we extracted the
runtime setting and the hardware environment of each CI
platform using procfs [48]. Then, we tested the underlying
algorithms of the cryptomining tools collected, including

R;

X Ty

CryptoNight and RandomX, with their default settings (4
threads), to measure their hash rates. (see hardware settings
and hash rates in Appendix Table IV).

To find out the mining difficulty d of the jobs issued by
mining pools and the reward r, for a new block discovered
during a Cijacking lifecycle, we gathered the historical data
about mining difficulties and reward per block from Bitin-
foCharts [5], a cryptocurrency statistics gathering platform.

With these parameters, we estimate the total revenue of the
1336 Monero Cijacking instances from March 2017 to May
2020 across 11 CI platforms to be $793,836.49 ($20,890.43
per month, when 1 XMR = $117.62). Note that for the
instances before Oct 2019, we use the hash rate of CryptoNight
(the old mining algorithm of Monero), while applying the
hash rate of RandomX (the new one) for other instances.
This is because the algorithm of the Monero mining tools was
migrated from CryptoNight to RandomX during that time.

Further, we compared the monthly revenue of Cijacking
with that of browser-based cryptojacking, to find out how
popular an illicit mining site needs to be for generating a
comparable revenue as produced by a Cijacking campaign. For
this purpose, we utilized the model and parameter settings of
the prior work [51] to estimate the revenue of a cryptojacking
site. Specifically, Campaign II discovered in our study (Ta-
ble II) gained about $172,746.75 from March, 2017 to July,
2018 ($10,161.57 per month). This revenue is slightly higher
than the browser-based cryptojacking on an Alexa top-1K
website [1], which could generate $10,021.11 based upon its
popularity, using the aforementioned model [51]. Also it is im-
portant to note that after the update of the PoW algorithm (Sec-
tion II-A), which requires a large amount of memory, browser-
based cryptojacking no longer works on Monero [12], [66].

V. MITIGATION
A. Overview

Idea and design goals. Although CijScan reports 1,974
Cijacking instances, which is the largest amount of real-
world Cijacking instances being reported, detection of such
illicit activities on CI platforms is challenging in general,
particularly when the attackers are aware of the protection
and make attempts to evade. More specifically, all the traces
in configuration files can be obfuscated, with wallet addresses
and mining pool domains being constructed only during a CI
job’s runtime. Further, the attacker could run a proxy to avoid
leaving traces in the log file. Also, although machine-learning
based cryptojacking detectors have been proposed by prior
research, they are known to be fragile, easily affected by their
runtime environments (e.g, presence of multi-users), and can
be circumvented by a knowledgeable adversary [55]. So we
need a more robust solution to mitigate the threat, without
significant impacts on the performance of both CI platforms
and the experience of their users.

A key observation in our research is that pooled mining
operates under time constraints: a miner is expected to finish
his job within a given time window or receive nothing in
return for all the computation spent in the window. This

2404

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

fundamentally differentiates mining from a legitimate CI job,
whose completion is not contingent upon the progress within
each window but upon the accumulated effort across the
windows. Leveraging this observation, we can come up with
a strategy to periodically inject “jitters” into the progress of a
job, in the hope to reduce the probability for each mining job
to complete if it exists, but only moderately delay the progress
of a legitimate job and incur only a negligible impact on the
CI platform’s throughput.

However, blind injection of jitters may not work well, which
forces delay in the operations unlikely to be part of crypto-
mining. Alternatively, we can introduce jitters only at selected
moments, when the activities triggered by a job look less likely
to be innocent: e.g., high-frequent visits to a certain page,
indicating possible hash operations. Note that unlike detection,
our approach is meant to slow down running of a suspicious
job a little bit, so we can focus on the unavoidable behaviors
for cryptomining, even though they may also be observed
in many legitimate tasks. Following this line of thoughts
we developed a new Cijacking mitigation approach, called
Cijitter, aiming at two goals: (1) significant and robust impacts
on cryptocurrency mining so the miner cannot profit, and
(2) small impacts on CI services and moderate slowdown on
legitimate tasks. Here we present the design, implementation,
and evaluation of the technique.

Architecture. Fig. 7 illustrates the architecture of our design,
which includes two components: a delay injector to introduce
jitters to a job and a memory access pattern profiler to inspect
the progress of the job and determine when to cause delays.
The key idea of our design is to monitor memory access for
the sign of cryptomining, focusing on its necessary condition
— a large amount of hash computations that inevitably result in
intensive visits to certain code pages hosting the hash function.
Once a set of pages have been found to have high access rates,
jitters are injected into the corresponding process to slow it
down, according to the time window of cryptomining.

In our research, we built this design on gVisor, Google’s
container runtime [37], with the profiler running inside a
kernel module and the injector operating in the Sentry module
under the user land, which interposes on the system calls
from a specific process to manage its interactions with the
kernel. Under the strict control of gVisor, Sentry is sandboxed
and cannot directly communicate with the kernel. So our
implementation utilizes the gVisor’s gofer module [38] as
a relay to establish a communication channel between the
injector and the profiler.

B. Design and Implementation

Cijitter monitors and interferes with the operations of every
workflow on CI platforms. Whenever a job within a workflow
is launched, a profiler instance is initiated to track its memory
access, identifying a set of pages that have been frequently
visited. Such visits are then jittered with delays by the injector,
as commanded by the profiler.

Memory access pattern profiling. Our profiler is designed to
monitor the memory access pattern of a process through ma-

Application
Runtime: gVisor
Delay Injector

Sentry—> gofer

Host Kernel

Fig. 7. Mitigation architecture

nipulating the access bit of each page table entry (PTE), which
is known to be much more efficient than instrumentation-
based profiling [58]. Specifically, every PTE has a series of
bits representing the status of its corresponding page frame
including permissions, present, dirty, and access. When a page
frame is accessed, its PTE’s access bit is set. To evaluate
the frequency of the accesses to a target page, the profiler
periodically checks and clears its access bit.

With its relatively low overhead, access bit manipulation can
still be too expensive if it has been used to profile every single
page of a process, as the cost goes up linearly with the number
of the pages. To address this problem, we utilize a sampling
technique for efficient performance profiling [58], by dividing
the code address space into multiple regions and randomly
picking up one page from each region to track. This strategy
leverages the locality of reference [23], [41], a property that
adjacent pages are more likely to have similar access patterns,
which allows us to just sample one of them as a representative
to understand the overall access pattern for the region.

Profiling the memory access patterns of a process is done
through a sequence of inspection periods, with a random
interval between two consecutive periods. During each period,
the profiler repeatedly checks the access bit of each sampled
page (one for each memory region), recording its status and
clearing the bit if set. At the end of the period, it waits for
a random interval before running the next set of inspections.
The length of the interval is randomly drawn from a uniform
distribution, whose mean is well below the size of the time
window for a mining job, which ensures that each window
has been adequately sampled. The access rate estimated from
each inspection period is compared with that of the next one: a
consistent high rate observed across both rounds indicates pos-
sible hash computation, which is characterized by persistent
high-frequent memory accesses (Section II-A); On the other
hand, if the observed access rate is irregular, the profiler may
choose another page from the region to monitor.

A problem here is that repeated visits to a page may not be
always observable from its PTE’s access bit, since its virtual-
physical address translation can be cached by Translation
Lookaside Buffer (TLB), rendering its PTE bit unchanged
during subsequent accesses until the page’s TLB entry has
been evicted. In practice, however, the size of today’s mining
algorithms tend to be large, covering hundreds of pages (e.g.,
RandomX with more than 2,080 MB), well above the size of
TLB (typically 64 entries), so still a page’s access rate can
be roughly estimated from its PTE’s status. Note that such a
mining algorithm is carefully designed and cannot be easily
changed without undermining its performance. Even when it
is indeed changed to restrict memory visits to only a small

2405

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

set of pages, we can run TLB flush to evict the a page’s TLB
entry, to ensure the visibility of the access to the page at a
moderate cost.

Delay injection. The outcome of the profiling instructs the
injector to strategically slow down the accesses a process
makes to a set of memory pages. Specifically, we analyzed
the relation between the page access rate and the hash rate
for leading cryptocurrencies through experiments, and then
approximated such relations through linear regression. The
linear functions obtained in this way (see Section V-C) are
then utilized by the injector to determine a threshold for the
access rate given a target hash rate. If the access rate to a
sampled page goes above the threshold, the injector introduces
a delay to each access to the page during the interval between
inspection periods. The delay is determined by another linear
function (see Section V-C) that maps an observed access rate
and the threshold to the waiting time for each access.

Enforcing the delay to each access is done using the
Software-based Fault Isolation technique, through triggering
a segmentation fault during each access to a page with
permissions removed and then setting the permissions back
during the fault handling after a pre-determined waiting time
has passed. Specifically, the injector first makes the system call
mprotect to clear all permissions of a target page including
read, write, and execution, which induces a segmentation fault
whenever the page is visited, causing a SIGSEGV signal to be
issued. Upon receiving the signal, the fault handler in Sentry,
which is instrumented by Cijitter, runs a sleep function to
pause the current process for a duration given by the injector,
as calculated from the delay function (usleep). After that,
our instrumentation calls mprotect to restore the target
page’s permissions, allowing the access to proceed.

C. Security Analysis

To understand the security guarantee Cijitter can provide,
we look into a profiling and delay cycle with a duration
T, including an inspection period 7}, and the inter-period
interval T,; during which delays are injected into the target
process. Since our approach does not rely on the differentiation
between mining jobs and legitimate ones, we consider any job
running on CI platforms potentially mining cryptocurrencies.
So for each job, we derive its hash rate from the access
rate observed through profiling to determine a delay for
suppressing the revenue that can possibly be generated. For
this purpose, we evaluated popular mining algorithms and
utilized numeric analysis to derive two bijective functions:
one maps an access rate to a hash rate and the other maps
a hash rate to the expected mining revenue. Following we
present an analysis that uses the functions to estimate Cijitter’s
impacts on mining revenue, operations of legitimate jobs and
the throughput of the CI platform, and further instantiate the
estimates using an example for understanding the security
implications of our approach.

Mining revenue. Let a be the access rate of the target
page to be delayed, as observed by the profiler during the

inspection period, and a; be the new access rate for the
page when the delays introduced by the injector kick in.
We can estimate the upper-bound of the putative miner’s
expected revenue 7, (should all accesses serve the mining
purpose), using two bijective functions derived through linear
regression. Specifically, F' : @ — h is built for hash rate h
estimate, based upon our testing of mining hash functions
(RandomX), and R : h — r for expected revenue r estimate,
through querying the profit calculator on the mining pool’s
website [25]. Following is our estimate:

F(a) x Ty + F(ay) x Tqg
))
T

Note that for simplicity, we assume that the inspections
performed by our profiler do not affect the access rate, so the
access rate during the inspection period remains a. In reality,
the rate should be lower, which brings down the hash rate and
the revenue during this period. So the revenue above is just

an upper bound.

Tm < R(

Delay. To suppress the expected mining revenue, our approach
forces the target process to sleep for a short period of time
ts to slow it down. For this purpose, our injector removes all
permissions of the target page to induce a segmentation fault
for any access attempt and then gives the permissions back
after the delay, as mentioned earlier. This brings in a fixed
cost, a delay ty, for permission removal, context switch, and
fault handling. With these parameters, we can estimate the
sleeping time ¢ using function G, as follows:

sty (o> a)
Glaya) = a a 1 7% @)
0 (a < ayp)

So, given a and the target access rate a;, our approach runs
G(a, a;) to estimate ¢ to be injected into each page visit. Note
that although the delay takes its toll on the performance of the
target process, its effect is limited when the original access
rate a is low, as happens in many real-world legitimate jobs.
Also the delay introduced by sleeping does not undermine the
throughput of the CI platform, which can move the computing
resources to other jobs.

Throughput loss. Further, we estimate the throughput loss
introduced by Cijitter to the CI platform. For simplicity,
we estimate the loss by looking at the total time wasted
for controlling page access rates on the platform, including
(pessimistically) the whole inspection period Tzf’j and the cost
of the delay induced for each access ti;j during the follow-up
delay period T, across all profiling-delay cycles j of a job
and across all jobs i. This wasted time is compared with the
total execution time across all jobs, which is lower-bounded by
the accumulated duration of each profiling-delay period (7°%7)
across all the periods of each job, and across all jobs. Note
that we do not count in the sleeping time ¢%7, since it can be
recycled by the platform to serve other jobs. As a result, we
have the throughput loss rate [estimated as follows:

Lo X la) T x 1) £ 53, T
Zi Zj T

3)

2406

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

Analysis. Here we use an example to analyze the security
guarantee offered by Cijitter, using parameters collected from
real-world settings and experiments. Our experiments were
performed on Intel i7-4770 CPU and 8 GB memory. On the
system, we first estimated F' and G. Specifically, for F', we
tested RandomX at different hash rates (from 50 H/s to 1,500
H/s) and utilized linear regression to model the results: F'(a) =
0.36 x a with the R-square 0.986. Further we used the data
from supportxmr.com to model the relation between hash rates
and expected revenues (XMR) per day: R(h) = 8 x 10~ 7h,
with the R-square of line regression being 0.997.

The hash rate achievable on our system is 975 H/s, with a
page access rate a of 2,710 times/s for the target page selected
by Cijitter. Also the target hash rate h’ set in our experiment
is 40 H/s to ensure that the mining will not be profitable.
Specifically, at this target hash rate, the revenue of mining, as
estimated by G, is 3.2 x 107 XMR per day. During the free
trials of CI platforms (mostly 14 days), the upper bound of one
Cijacking instance’s expected revenue becomes 4.48 x 10~*
XMR, about $0.01 (with the average price $41.6/XMR during
01/2020 - 05/2020). However, this income level does not make
an attacker profitable, due to the cost for automatically regis-
tering GitHub accounts for continuing the mining effort after
the free trials. In our research, we find that the cheapest service
selling email accounts in bulk (for opening GitHub accounts)
is $0.01 per email [17]. Also, the lowest price for solving
GitHub CAPTCHAs is $0.0024 per account [8]. Therefore,
the total cost per account $0.0124 is a little above the revenue
in 14 days $0.01, rendering the Cijacking unprofitable.

With the above target hash rate k', we estimated its access
rate through F~! to be 111 times/s. We then randomly selected
a 30-minutes window from the log file of TravisCI to collect
386 jobs, and used their individual access rates (as measured
by our profiler) and G to determine the delays to be injected
to each job. In the experiment, we set the average length of a
profiling-delay cycle to 5,000 ms and the inspection duration
T, to 100 ms. Also each segmentation handling cost ¢ ¢ is about
0.4 ms as we measured. Across all these 386 jobs, 67.1% of
their elapsed wall time was delayed by our profiler. With all the
parameters measured from the experiment, Formula 3 shows
that the total throughput loss ratio caused by Cijitter is below
4.92%. In Section V-D we further report our evaluation of the
delays introduced to individual jobs.

D. Evaluation

Setting. We evaluated the performance of our prototype of
Cijitter and its impacts on the execution of legitimate jobs.
All our experiments were conducted on Ubuntu 18.04, with
the Linux kernel 4.4.0, and the hardware settings include a
system with a 4 cores Intel i7-4770 CPU and 8GB memory.

Effectiveness and comparison. We first evaluated the
effectiveness of Cijitter against all available mining tools
on different cryptocurrencies. Specifically, we evaluated the
effectiveness of Cijitter on seven cryptocurrencies found
in CI platforms: Monero (algorithm: RandomX), Dashcoin

B xmrig
10° Y wm xmrstak
107 4 MMM cpuminer

B cnrig

Hash Rate (H/s)
=~ = =
L LI

._.
2
|

MD’TE'rO Arto Hycon Firo LfteCoi,'?yteco;?ashcojnAEON Bftco,‘n

Fig. 8. Effectiveness on defending against different miners

140 { mmm MineGuard-based reference
@ HPCDetector-based reference
120 mmm Cijitter

100 -
80+

60 -

Average delay ratio (%)

40 1

207

0 jobs 4 jobs 8 jobs

The number of jobs running in parallel

16 jobs
Fig. 9. Effectiveness of Cijitter and references

(X11), Bytecoin (Cryptonight), Litecoin (Scrypt), AEON
(K12), Arto (CryptonightArto), Bitcoin (sha256d), as well as
two cryptocurrencies profitable to mine with CPU from the
market [24], i.e., Hycon (Cryptonight V7) and Firo (MTP).
Note that other cryptocurrencies on CI platforms including
Cranepay, Electroneum, Fantomcoin, AIO, SHG, and
Sharkcoin are either inactive or can no longer be mined [14],
[16], [18]. Hence, we ignore them in our experiment.

Fig. 8 shows the hash rate for mining different cryptocurren-
cies with and without Cijitter, and the blank part in each bar
shows the hash rate declined by Cijitter (a.k.a., delay ratio).
The result shows that the hash rate was reduced by Cijitter by
over 95.3% on average. Among them, the lowest delay ratio
is 93.1% on Bitcoin and the highest one is 97.3% on AEON.
In addition, for Monero, Arto, Hycon, and Firo, Cijitter can
downgrade their hash rates to turn mining on these cryptocur-
rencies from profitable to unprofitable. Particularly, mining
Monero (the most profitable cryptocurrency we studied) on
CI platforms sees its profit in 14 days decrease from $11.70
to $0. Also, the 14 days’ profit of Arto, Hycon, and Firo went
down from $1.04, $0.14, and $0.11, respectively, to $0.

We then evaluated the effectiveness of Cijitter in multi-
tasking environment and compared it with the state-of-the-art
detection methods MineGuard [64] and Conti et al. [42] (a.k.a.,
HPCDetector). To compare MineGuard and HPCDetector, we
constructed two references, each using a different approach
(based upon hardware performance counter, HPC) to replace
the profiler for detecting suspicious jobs (MineGuard and
HPCDetector, respectively) and then injecting jitters to these
jobs as Cijitter does. We further ran these references and

2407

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

120%

115%

110%

105%

Normalized execution time

100%

" 4,

%%, O O U K I AAT NS 9.0 %29,/ QLo R 7%
e 2 90, 8 0,05 O O S 685 9628 O o XX 00,0 SO 4
A 00 L 0 o 9 e, 7 R L8 RNt

s "0/ 2% 7 % O 90 %o% \o‘“\%&g AN
R % o, % 4 o
5 © by &

Fig. 10. Performance overhead on PARSEC

measured their effectiveness in decreasing hash rates on the
above nine cryptocurrencies. Particularly, in our experiment
(with 4 cores Intel i7-4770 CPU), we ran a set of 0, 4, 8
or 16 concurrent benign CI jobs side by side with a mining
job to simulate the multitasking environments of real-world
CI platforms, as we observed from three platforms, including
CircleCI, Wercker, and Codefresh (see Appendix Table V).

Fig. 9 shows the average delay ratio on these mining
jobs. The results show that Cijitter outperforms the references
operating MineGuard and HPCDetector. Specifically, as shown
in Fig. 9, the delay ratio introduced by Cijitter is always around
94.8% in all concurrent environments, while the ratios for the
references go down quickly in the presence of multiple tasks,
from 94.2% with a single job to 79.8%, 64.1%, 54.7% for
the MineGuard-based reference, and 79.6%, 64.6%, 55.1%
for the HPCDetector-based reference, when 4, 8, and 16
jobs run concurrently. This is because both MineGuard and
HPCDetector use the performance counter for job profiling,
which is known to be non-deterministic under the multitasking
environment [44], [68] and tends to introduce false negatives.
By comparison, our profiler is designed to capture the jobs
with elevated memory accesses, so it ensures a high coverage
at the cost of false positives, which however causes little harm
to a legitimate job except a small delay (see below).

Performance of benchmarks. We evaluated the perfor-
mance impacts of our approach using PARSEC benchmarks
suit [27] and SPEC 2017 benchmark [30]. Cijitter’s over-
head on PARSEC and SPEC are presented in Fig. 10 and
Fig. 11, respectively. The results show that Cijitter intro-
duces low performance overhead. More specifically, running
Cijitter on all 27 PARSEC benchmarks, we observed the
overhead (delay) on 21 of them below 10%. For the remaining
benchmarks ‘ocean_cp’, ‘canneal’, ‘water_nsq’, ‘streamclus-
ter’, ‘ocean_ncp’, and ‘fft’, our approach introduces an over-
head between 10% and 15% (i.e., 10.91%, 12.66%, 13.85%,
14.60%, 14.32%, and 14.73%, respectively), since they are
all characterized by relatively intensive page accesses. For
the SPEC 2017 benchmarks, the overheads of Cijitter are
all lower than 15%, with 33 of 41 benchmarks below 10%,
indicating that our approach incurs only small delays. The
rest benchmarks, ‘perlbench_r’, ‘perlbench_s’, ‘fotonik3d_r’,
‘mef_s’, ‘actuBSSN_s’, ‘bwaves_r’, ‘bwaves_s’, and ‘lbm_r’,
were delayed by 11.28%, 11.78%, 12.33%, 12.61%, 13.13%,

120%

115%

110%

105%

Normalized execution time

100%

ALy AT, AT L TUORN A RN () O
’c;a& G2%, YO R % %&%}VT‘; % R N
F) ©
2. . S N o K. 2, 7\ % ®]%,

Fig. 11. Performance overhead on SPEC 2017

120%

115%

110%

105%

Normalized execution time

100%

% S, %y %, %, %, %, 9%,9%,% %050, %, P2 %, @, U,
> 0. R s, ;g O s s, NI AT KL
0,3 o %6, %, R AN A N A
%, U % Nyt © N 240
K % © e s 5, %

Fig. 12. Performance overhead on Pyperformance

13.81%, 13.96%, and 14.95% respectively.

Since Python is the most popular programming language
used in CI services like TravisCI [46], we further evaluated
our prototype on python benchmarks - Pyperformance [36].
As shown in Fig. 12, 2/3 of the 15 benchmarks tested in
our experiment suffer less than 8% delay. Besides, almost
all benchmarks in Pyperformance performed well on Cijitter,
with an overhead of 7.28% on average (geometric mean).
Nevertheless, the execution of ‘genshi_xml’ and ‘unpickle’
were delayed by 15% due to their frequent memory accesses.

Performance of real-world CI jobs. To evaluate the perfor-
mance impacts of Cijitter on real-world CI jobs, we randomly
sampled 264 CI jobs (from the datasets of CI-utilizing GitHub
repositories) and measured the elapsed wall time of individual
CI job, when running them with and without Cijitter in place.
Our evaluation shows that Cijitter introduces low impacts on
the performance of CI jobs and developer productivity.

Fig. 13 presents the distributions of relative overheads (the
percentage of performance degradation) and absolute over-
heads on CI jobs under Cijitter. The lower and upper bounds
in the box plots are set to the Sth and 95th percentile across
all these jobs in terms of their overheads, and dots outside the
boxes are outliers. As shown in Fig. 13(a), the median of these
jobs’ relative overheads is just 3.1%, with the 95th percentile
at 10.6%. Overall, the overhead of 94.3% of CI jobs is below
10%. The outliers include the job with the maximum relative
overhead of 63.5%, which however is only 4.2 seconds. The
slowdown of all outliers is below 30 seconds (Appendix
Table VI). Regarding the absolute overheads (Fig. 13(b)), the
median overhead is 6.1 seconds and its 95th percentile is 74.2
seconds with a relative overhead of 8.1%. Moreover, the jobs
with absolute overheads above the 95th percentile all have

2408

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

200

100

1751
80 150 4
1254

60
100 A

Absolute Delay (s)

20 751 95th: 74.25

Relative Delay Ratio (%)

50 4

20 4
o

95th: 10.62% H 254

median: 3.11% median: 6.1s

07 “sthi0.04% °1 sthois

(a) Relative overhead (b) Absolute overhead

Fig. 13. Performance overhead on CI jobs

lower than 9.8% relative overheads (Appendix Table VII).
Particularly, even though the maximum delay observed reaches
181.5 seconds, the job is only slowed down by 6.8%.

An observation is that some legitimate processes also cal-
culate hash values, particularly those of package managers
for installing new packages (e.g., npm install, yarn install),
which need to perform heavy hash calculation for checking
integrity of large packages (a behavior similar to that of
miners). To avoid unnecessarily slowing down these processes,
our approach automatically identifies them based upon the
observation that they are typically invoked by a few common,
legitimate package managers (such as npm [26] and yarn [35]),
and utilizes a whitelist and checksum to identify their binaries
so as to filter out related processes in our experiments.

Overall, our evaluation shows that Cijitter in general in-
troduces low overheads to individual CI jobs and thus low
impacts on developer productivity. According to prior stud-
ies [39], [49], the elapsed wall time of a CI job generally
comes with measurable variations/delays (median: 8.5 min-
utes, mean: 19.64 minutes), as introduced by CI platforms,
and a variation less than one minute is considered to have a
very low impact on developer productivity. We also consider
a job is slightly affected if the relative overhead is less than
10%. In our experiments, no CI jobs under Cijitter suffer from
an overhead beyond this low impact level (i.e., with both an
absolute overhead of over one minute and a relative overhead
of at least 10%).

E. Discussion

A challenging issue is to understand whether the adversary
can evade this protection, which requires reforming the mining
algorithms to cause the checking of the memory access pattern
to fail (Section V-B). In order to evade our defense, crypto-
mining jobs should be able to split and assign the block data
from one memory page into multiple pages, since the access
frequency of memory pages could be lower than our detection
bar. Or cryptomining jobs can allocate multiple memory copies
and switch to them to continue mining jobs, after our defense
identifying suspicious memory pages. However, any obfus-
cation will inevitably increase cache/TLB misses and bring
down the hash rate, which impacts the revenue of the mining.

Particularly, the random profiling techniques we utilize make it
hard for the adversary to predict when the profiling stage starts
so as to change the mining behavior accordingly. As a result,
the hash operations have to be slowed down significantly to
keep the mining under the radar, at the cost of revenue loss.

VI. RELATED WORK

licit cryptocurrency mining has been studied for long.
Huang et al. [52] studied Bitcoin mining malware and
revealed the operation of Bitcoin mining botnets on PCs.
Pastrana et al. [59] conducted a large-scale measurement of
cryptomining malware samples to analyze the underlying
infrastructure. Konoth et al. [55] performed an empirical
study on browser-based cryptomining and proposed a defense
mechanism, along with a series of cryptojacking studies [51],
[53], [61]. Also, [21], [33] reported a set of insider (e.g., IT
admins, unethical employees) attacks on cloud platforms to
launch cryptomining jobs. In terms of cryptomining detection,
in addition to MineGuard [64] and HPCDector [42] discussed
in Section V-D, SEISMIC [67] utilizes the unique features
of WebAssembly to detect cryptomining in browsers, which
however cannot be moved onto cloud-based CI platforms due
to the absence of the features on the platforms. The static
analysis of Minesweeper [55] is also designed for the browser
architecture, and its dynamic analysis leverages HPC to find
browser-based cryptomining, which does not suit CI platforms
(Section V-D). Darabian et al. [43] use the features extracted
from the library call-chains as discovered in the Windows
binary to detect Windows cryptomining malware; the static
nature of the approach makes it vulnerable to an obfuscation
attack, and also its precision-oriented design could reduce the
coverage of cryptomining detection, a problem that Cijitter is
designed to address.

VII. CONCLUSION

In this paper, we report a study on cryptomining of CI
platforms. Unlike in-browser cryptojacking, this new type of
attacks hide their mining jobs behind the intensive computing
for processing CI workflows, as legitimate jobs also involve,
and therefore become harder to detect. Our research has
brought to light the operations of such attacks, their perva-
siveness, evolving strategies, lifecycle and revenue. Further we
present a novel mitigation technique to address the challenge
of detecting those attacks. Our approach leverages the unique
feature of cryptomining to strategically add delays so as to
disproportionally affect mining jobs, rendering the miners
unprofitable with only moderate overheads introduced to the
CI platforms and legitimate jobs. Our discoveries and new
technique have made a step toward better understanding the
new trend of cryptojacking, contributing to more effective
defense against the threat.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments. Zhi Li, Hai Jin, and Deqing Zou are
supported by the National Key R&D Plan of China (No.
2019YFB2101700).

2409

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

[3]
[4]

[5]
[6]

[7]
[8]
[9]
[10]
(1]
[12]

[13]
[14]
[15]
(16]
(17]
(18]
[19]

[20]

[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]
[36]

(37]
(38]

[39]

[40]

[41]

Mauro Conti, Ankit Gangwal, Gianluca Lain, and Samuele Giuliano
Piazzetta. Detecting covert cryptomining using HPC. In Proceedings of
the 2020 International Conference on Cryptology and Network Security,
pages 344-364, 2020.

Hamid Darabian, Sajad Homayounoot, Ali Dehghantanha, Sattar
Hashemi, Hadis Karimipour, Reza M Parizi, and Kim-Kwang Raymond
Choo. Detecting cryptomining malware: a deep learning approach for
static and dynamic analysis. Journal of Grid Computing, 18:293-303,
2020.

Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. Sok: The challenges, pitfalls, and perils of using
hardware performance counters for security. In Proceedings of the 2019
IEEE Symposium on Security and Privacy (S&P), pages 20-38, 2019.
Dragos Draghicescu, Alexandru Caranica, Alexandru Vulpe, and Oc-
tavian Fratu. Crypto-mining application fingerprinting method. In
Proceedings of the 2018 International Conference on Communications,
pages 543-546, 2018.

Thomas Durieux, Rui Abreu, Martin Monperrus, Tegawendé F. Bis-
syandé, and Luis Cruz. An analysis of 35+ million jobs of Travis CI.
In Proceedings of the 2019 IEEE International Conference on Software
Maintenance and Evolution, pages 291-295, 2019.

Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy
Clark. A first look at browser-based cryptojacking. In Proceedings of the
2018 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pages 58—66, 2018.

Xing Gao, Benjamin Steenkamer, Zhongshu Gu, Mehmet Kayaalp,
Dimitrios Pendarakis, and Haining Wang. A study on the security impli-
cations of information leakages in container clouds. IEEE Transactions
on Dependable and Secure Computing, 18(1):174-191, 2021.

Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. An
empirical study of the long duration of continuous integration builds.
Empirical Software Engineering, 24(4):2102-2139, 2019.

Runchao Han, Nikos Foutris, and Christos Kotselidis. Demystifying
crypto-mining: Analysis and optimizations of memory-hard pow algo-
rithms. In Proceedings of the 2019 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 22-33, 2019.
Geng Hong, Zhemin Yang, Sen Yang, Lei Zhang, Yuhong Nan, Zhibo
Zhang, Min Yang, Yuan Zhang, Zhiyun Qian, and Hai-Xin Duan. How
you get shot in the back: A systematical study about cryptojacking in
the real world. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, page 1701-1713, 2018.
Danny Yuxing Huang, Hitesh Dharmdasani, Sarah Meiklejohn, Vacha
Dave, Chris Grier, Damon McCoy, Stefan Savage, Nicholas Weaver,
Alex C. Snoeren, and Kirill Levchenko. Botcoin: Monetizing stolen
cycles. In Proceedings of the 2014 Network and Distributed Systems
Security Symposium, 2014.

Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason,
Andrew Miller, Nikita Borisov, Manos Antonakakis, and Michael Bailey.
Outguard: Detecting in-browser covert cryptocurrency mining in the
wild. In Proceedings of the 2019 The World Wide Web Conference,
pages 840-852, 2019.

Hyunjun Kim, Kyungho Kim, Hyeokdong Kwon, and Hwajeong Seo.
Asic-resistant proof of work based on power analysis of low-end
microcontrollers. Mathematics, 8(8):1343, 2020.

Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Mar-
tina Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna.
Minesweeper: An in-depth look into drive-by cryptocurrency mining and
its defense. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1714-1730, 2018.
Kay Kurokawa. Forking for asic resistance: A monero case study.
https://perma.cc/5JL6-RPPS.

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo
Meirelles. A survey of devops concepts and challenges. ACM
Computing Surveys (CSUR), 52(6):1-35, 2019.

Seonglae Park, Yunjae Lee, and Heon Y. Yeom. Profiling dynamic data
access patterns with controlled overhead and quality. In Proceedings of
the 20th International Middleware Conference Industrial Track, pages

1-7, 2019.

Sergio Pastrana and Guillermo Suarez-Tangil. A first look at the
crypto-mining malware ecosystem: A decade of unrestricted wealth. In
Proceedings of the 2019 Internet Measurement Conference, pages 73—

REFERENCES [42]

Alexa. https://www.alexa.com/.
Atlassian thwarts bitcoin mining attack on kubernetes environ-
ment. https://www.itnews.com.au/news/atlassian-thwarts-bitcoin-minin [43]
g-attack-on-kubernetes-environment-523071/.
Bash. https://www.gnu.org/software/bash/manual/bash.pdf.
BigQuery: Cloud Data Warehouse — Google Cloud. https://cloud.go
ogle.com/bigquery.
Bitinfocharts. https://bitinfocharts.com/. [44]
Bitrise - Mobile Continuous Integration and Delivery. https://www.bitr
ise.io/.
Buddy: The DevOps Automation Platform. https://buddy.works/. (45]
Captcha test services. http://www.ttshitu.com/price.html.
CircleCI. https://circleci.com/.
CircleCI API. https://circleci.com/docs/api/v2/#rerun-a- workflow.
Cohen’s kappa. https://en.wikipedia.org/wiki/Cohen%?27s_kappa. [46]
Coinimp stop monero service in browser. https://www.coinimp.com/ne
ws/coinimp-will-no-longer- support-monero- xmr-coin-mining.
Continuous Integration (CI/CD) - GitLab. https://docs.gitlab.com/ee/ci/.
Cranepay (crp). https://cryptorival.com/calcs/cranepay/. [47]
Cryptocurrencies Market Capitalization. https://coinmarketcap.com/.
Electroneum pool. https://electroneum.miningpoolhub.com/.
Email address transactions. http://ipcbuy.com/newsinfo.asp?id=48.
Fantomcoin (fcn). https://whattomine.com/coins/102-fcn-cryptonight/. [48]
GitHub API v3 — GitHub Developer Guide. https://developer.github.c
om/v3/.
Github unlimited free private accounts. https://github.blog/
2019-01-07-new-year-new-github/. [49]
How to Get Rich on Bitcoin, By a System Administrator Who’s
Secretly Growing Them On His School’s Computers. https://www.vi
ce.com/en_us/article/nzzz37/how-to- get-rich-on-bitcoin- by-a-system-a [50]
dministrator-who-s-secretly- growing-them- on-his-school-s-computers.
Illicit repositories dataset and cijitter codes. https://sites.google.com/v
iew/cijitter.
Locality of reference. https://en.wikipedia.org/wiki/Locality_of_referen [51]
cel.
Mining guides. https://f2pool.io/mining/guides.
Monero Mining Pool. pool.minexmr.com.
npm package. https://www.npmjs.com/package/package.
Parsec. https://parsec.cs.princeton.edu/. [52]
Pearson correlation coefficient. https://en.wikipedia.org/wiki/Pearson_c
orrelation_coefficient.
Randomx. https://github.com/tevador/RandomX.
Spec. http://www.spec.org/index.html.
Threat alert: Massive cryptomining campaign abusing github, docker [53]
hub, travis ci & circle ci. https://blog.aquasec.com/container-security-a
lert-campaign-abusing- github-dockerhub-travis-ci-circle-ci/.
Travis-CI. https://travis-ci.org/.
Us government bans professor for mining bitcoin with a supercomputer.

https://bitcoinmagazine.com/articles/government-bans-professor-minin ~ [54]
g-bitcoin-supercomputer-1402002877.
Wercker. https://wercker.com/.
yarn package. https://yarnpkg.com/. [55]
The Python Performance Benchmark Suite, 2017. https://pyperforma
nce.readthedocs.io/.
gVisor, 2019. https://gvisor.dev/docs/.
gVisor Security Basics, 2019. https://gvisor.dev/blog/2019/11/18/gvis
or-security-basics-part- 1/. [56]
Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests
broke the build: An explorative analysis of travis ci with github. In [57]
Proceedings of the 14th IEEE/ACM International Conference on Mining
Software Repositories (MSR), pages 356-367, 2017.
Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. Balloon [58]
hashing: A memory-hard function providing provable protection against
sequential attacks. In Proceedings of the 2016 International Conference
on the Theory and Application of Cryptology and Information Security,
pages 220-248, 2016. [59]
Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber.
Competitive paging with locality of reference. Journal of Computer and
System Sciences, 50(2):244-258, 1995.

2410

86, 2019.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

[60] Marc Pilkington. Blockchain technology: principles and applications. In
Research handbook on digital transformations. Edward Elgar Publishing,
2016.

Jan Riith, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld.

Digging into browser-based crypto mining. In Proceedings of the 2018

[61]

Internet Measurement Conference, pages 70-76, 2018.

Nicolas Van Saberhagen. Monero (cryptocurrency). https:/golden.com
/wiki/Monero_(cryptocurrency)-Z6GPZ9.

Seigen, Max Jameson, Tuomo Nieminen, Neocortex, and Antonio M.
Juarez. Cryptonight hash function. https://cryptonote.org/cns/cns008.txt.
Rashid Tahir, Muhammad Huzaifa, Anupam Das, Mohammad Ahmad,
Carl Gunter, Fareed Zaffar, Matthew Caesar, and Nikita Borisov. Mining
on someone else’s dime: Mitigating covert mining operations in clouds
and enterprises. In Proceedings of the 2017 International Symposium

on Research in Attacks, Intrusions, and Defenses, pages 287-310, 2017.
Virus Total. Virustotal-free online virus, malware and url scanner.
https://www.virustotal.com.

Said Varlioglu, Bilal Gonen, Murat Ozer, and Mehmet Bastug. Is
cryptojacking dead after coinhive shutdown? In Proceedings of the 3rd

[65]

[66]

International Conference on Information and Computer Technologies,
pages 385-389, 2020.

Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W Hamlen, and
Shuang Hao. Seismic: Secure in-lined script monitors for interrupting
cryptojacks. In Proceedings of the 2018 European Symposium on

[67]

Research in Computer Security, pages 122-142, 2018.
Vincent M. Weaver and Sally A. McKee. Can hardware performance
counters be trusted? In Proceedings of the 2008 IEEE International

[68]

Symposium on Workload Characterization, pages 141-150, 2008.

Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov.
One size does not fit all: an empirical study of containerized continuous
deployment workflows. In Proceedings of the 26th ACM Joint Meeting

[69]

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 295-306, 2018.

APPENDIX A

This section describes additional data, results and observa-
tions related to Table III, IV, V, VI, and VII, referenced in
prior sections of this paper.

Keywords for Cijacking discovery. Corresponding to the
mining detection in Section III-A, more details about the
keywords used to discover Cijacking are shown in Table III.
It presents the signatures in the format of regular expressions
used for keyword matching in the repositories and CI plat-
forms’ execution traces.

The hardware environment and runtime setting of 11
major CI platforms. The runtime environment and hardware
settings of 11 major CI platforms (Table IV) are extracted
from procfs [48] of CI jobs, which includes CPU information
(/proc/cpuinfo), memory information (/proc/meminfo), and the
information about job runtime (/proc/l/cgroup). As mentioned
in Section IV-D, in our simulated CI environments (based upon
real CI platforms’ hardware settings), we tested the underlying
algorithms of the cryptomining tools, including CryptoNight
and RandomX with their default settings (4 threads), and
measured their hash rates. The results are shown in Table IV.

High concurrency and CPU usage on real-world CI plat-
forms. The real-world CI platforms are typically featured
multitasking environments with high-concurrency and often
have a high CPU usage based on our observation. We inves-
tigated three mainstream CI platforms (Circle CI, Wercker,
Codefresh) and measured their average/peak concurrency and
average/peak CPU usage for a period of 14 days (see the
results in Table V). The results were obtained through the

procfs [48] on these platforms (e.g., /proc/stat, /proc/cpuinfo
and /proc/cgroups). The concurrency is measured by the
number of concurrent jobs divided by the number of CPU
cores.

2411

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

TABLE III
MINING JOBS’ SIGNATURES

Intermediate meta-data

Signatures

Hash rate

(T0(s)2760(s)2715(m))7\ s* [0-91+(.[0-97%)\ s *[KkMm] 7H/s

Wallet address

1[0-9a-zA-Z]

-u\s*[0-9a-zA-Z]{24,100}\s
[48][0-9AB][1-9A-HJ-NP-Za-km-z] {93}
Ox[a-fA-F0-91{40}
[LM3][a-km-zA-HJ-NP-Z1-9]{26,33}
[13][a-km-zA-HI-NP-Z1-91{33}

A[0-9a-zA-Z]{33}
D{1}[5-9A-HJ-NP-U{1}[1-9A-HJ-NP-Za-km-z]{32}
X[1-9A-HJ-NP-Za-km-z]{33}

{24,34}

Domain name of mining pools

(stratum\+tcp://)[a-zA-Z0-9][-a-zA-Z0-91{0,62 } (\.[a-zA-Z][-a-zA-Z1{0,62 D LATC[0-91{ 1,5) [-a-2A-Z0-90) @:%_\\\+\.~#I&//=]*

Connection status of mining pools

[-a-zA-Z0-9(

)@:%_\\\+\.~#?&//=]*(\s[LlJogged\sin)?

([PpJool:7\s?)?(stratum \ +tcp://)[a-zA-Z0-9][-a-zA-Z0-9]{0,62 }(\ .[a-zA-Z][-a-zA-Z]{0,62}){ 1,4} (:[0-9]{1,5})?

Feedback of mining process

([Ss]hare)?\s([Aa]ccepted|[Rr]ejected)\s?(\([0-9]\/[0-9]\))?
[Dd]iff(iculty)?\s(changed.\sNow:\s|set\sto\s)?[1-9][0-9]*\s*
[NnJew\s[Bb]lock\s[Dd]etected.

TABLE IV

COMPUTING POWER OF EACH CI PLATFORMS PER ADVERSARY

CI platforms

Task Runtime

Hardware Configurations

Computing Power

CPU Memory | Cryptonight | RandomX
CircleCI Container Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (36 cores) 72 GB 634 H/s 3174 H/s
Wercker Container Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz (8 cores) 32 GB 331 H/s 1645 H/s
Buddy Container Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (8 cores) 32 GB 288 H/s 1016 H/s
Azure Pipeline | Container Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz (2 cores) 8 GB 176 H/s 940 H/s
Codefresh Container Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz (4 cores) 16 GB 157 H/s 872 H/s
Bitrise Container (isolated by VM) | Intel(R) Xeon(R) CPU @ 2.30GHz (2 cores) 8 GB 119 H/s 523 H/s
Scrutinizer Container (isolated by VM) | Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz (8 cores) 16 GB 117 H/s 494 H/s
Codeship Container (isolated by VM) | Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz (2 cores) 4 GB 121 H/s 489 H/s
Travis Container (isolated by VM) | Intel(R) Xeon(R) CPU 8 GB 86 H/s 486 H/s
Appveyor Container (isolated by VM) | Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz 6 GB 92 H/s 473 H/s
DockerHub Container (isolated by VM) | Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz (1 core) 4 GB 27 H/s 136 H/s
TABLE V
CPU USAGE AND CONCURRENCY ON THREE CI PLATFORMS
CI platforms CircleCI Wercker Codefresh
Peak concurrency 1.81x 4.38x 4.25x
Average concurrency 1.18x 2.28x 1.98x
Peak CPU usage 99.54% 98.18% 79.74% TABLE VII
Average CPU usage 52.85% 34.17% 9.55% ALL 14 OUTLIER JOBS IN THE EVALUATION OF ABSOLUTE OVERHEADS
Job No. | Absolute overhead | Corresponding relative overhead
1 74.2s 8.10%
2 74.5s 8.47%
3 74.8s 7.44%
TABLE VI 7 75,75 7.08%
ALL 14 OUTLIER JOBS IN THE EVALUATION OF RELATIVE OVERHEADS 5 7635 841%
Job No. | Relative overhead | Corresponding absolute overhead 6 76.1s 9.74%
T 10.69% T1.7s 7 76.5s 4.78%
2 10.73% 16.55 8 83.0s 8.02%
3 11.63% 39.05 9 91.5s 9.21%
7} 13.67% 143s 10 92.0s 8.17%
3 14.50% 30s 11 100.5s 4.42%
5 16.39% 10355 12 139.1s 8.07%
= 18.67% 7 7S 13 158.5s 9.57%
g 33.08% 7 0s 14 181.5s 6.84%
9 27.27% 3.0s
10 33.33% 3.0s
11 36.00% 6.5s
12 42.13% 3.3s
13 50.00% 1.0s
14 63.49% 4.2s

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 09,2024 at 05:05:15 UTC from IEEE Xplore. Restrictions apply.

2412

