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Abstract—Seed scheduling, the order in which seeds are
selected, can greatly affect the performance of a fuzzer. Existing
approaches schedule seeds based on their historical mutation
data, but ignore the structure of the underlying Control Flow
Graph (CFG). Examining the CFG can help seed scheduling by
revealing the potential edge coverage gain from mutating a seed.

An ideal strategy will schedule seeds based on a count of all
reachable and feasible edges from a seed through mutations, but
computing feasibility along all edges is prohibitively expensive.
Therefore, a seed scheduling strategy must approximate this
count. We observe that an approximate count should have
3 properties —(i) it should increase if there are more edges
reachable from a seed; (ii) it should decrease if mutation history
information suggests an edge is hard to reach or is located far
away from currently visited edges; and (iii) it should be efficient
to compute over large CFGs.

We observe that centrality measures from graph analysis
naturally provide these three properties and therefore can ef-
ficiently approximate the likelihood of reaching unvisited edges
by mutating a seed. We therefore build a graph called the edge
horizon graph that connects seeds to their closest unvisited nodes
and compute the seed node’s centrality to measure the potential
edge coverage gain from mutating a seed.

We implement our approach in K-Scheduler and compare
with many popular seed scheduling strategies. We find that
K-Scheduler increases feature coverage by 25.89% compared
to Entropic and edge coverage by 4.21% compared to the next-
best AFL-based seed scheduler, in arithmetic mean on 12 Google
FuzzBench programs. It also finds 3 more previously-unknown
bugs than the next-best AFL-based seed scheduler.

I. INTRODUCTION

Fuzzing is a popular security testing technique that has
found numerous vulnerabilities in real-world programs [46, 6,
15, 20, 13, 35, 37, 55, 59, 52, 64, 55]. Fuzzers automatically
search through the input space of a program for specific
inputs that result in potentially exploitable buggy behaviors.
However, the input spaces of most real-world programs are
too large to explore exhaustively. Therefore, most existing
fuzzers follow an edge-coverage-guided evolutionary approach
for guiding the input generation process to ensure that the
generated inputs explore different control flow edges of the
target program [62, 3, 2]. Starting from a seed input corpus,
a coverage-guided fuzzer repeatedly selects a seed from the
corpus, mutates it, and adds only those mutated inputs back to
the corpus that generate new edge coverage. The performance
of such fuzzers have been shown to heavily depend on seed
scheduling, the order in which the seeds are selected for
mutation [28].

The main challenge in seed scheduling is to identify which
seeds in a corpus, when mutated, are more likely to explore
many new edges. Performing more mutations on such promis-
ing seeds can achieve higher edge coverage. Most prior work
on seed scheduling identifies and prioritizes the promising
seeds based on the historical distribution of edge/path coverage
across prior mutations of the seeds. For example, a fuzzer
can prioritize the seeds whose mutations, in the past, resulted
in a higher path coverage [60] or triggered rarer edges [32].
However, these existing approaches ignore the structure of the
underlying Control Flow Graph (CFG). For example, consider
a seed s1 whose execution path is close to many unvisited
edges and a seed s2 whose execution path is close to only
one unvisited edge. Existing coverage-guided fuzzers might
schedule seed S2 before S1 based on historical patterns.
However, examining the structure of the CFG will reveal that
S1 is indeed more promising than S2 as mutating it can
potentially result in exploration of many unvisited edges that
are close to the S1’s execution path.

The naive strategy of scheduling seeds simply based on
the counts of all potentially reachable edges in the CFG for
each seed is unlikely to be effective. Such a naive approach
assumes that all CFG edges are equally likely to be reachable
through mutations which does not hold true for most real-
world programs. In fact, some shallow edges tend to be
reachable by a large number of mutated inputs while other
deep edges are only reached by a few, if any at all (as
many branches might be infeasible) [40]. An ideal strategy
would schedule seeds based on the count of all reachable
and feasible edges from a seed by mutations. The seeds with
higher edge counts will be mutated more. However, computing
the feasibility along all edges is impractical as it will incur
prohibitive computational cost.

Therefore, a seed scheduling strategy must approximate the
feasible edge count. We observe that such an approxima-
tion should have 3 properties. First, the approximate count
should increase if there are many edges reachable from a
seed. Second, the count should decrease if mutation history
information suggests that an edge is hard to reach or is located
far away from currently visited edges. Empirical evidence from
prior work has shown that reaching child nodes through input
mutations is typically harder than reaching parent nodes [40]
because the number of inputs that can reach a child, for a
given path, is strictly less than or equal to the number of inputs
that can reach the parent. Third, the approximate count must
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be efficient to compute for large CFGs as real-world CFGs
can be quite large (e.g., inter-procedural CFGs might contain
thousands of nodes).

Our key observation is that centrality measures from graph
influence analysis naturally provide the aforementioned prop-
erties while measuring a node’s influence on the graph. Influ-
ence analysis is often used to identify a graph’s (e.g., a social
network’s) most influential nodes and graph centrality mea-
sures each node’s influence on other nodes with three prop-
erties as described below. First, centrality measures additively
scale up a node’s influence proportional to the number of edges
that are reachable from the node. Each sequence of edges of
the same length is treated equally independent of its order.
Second, centrality measures can easily incorporate external
contribution (e.g., based on past mutation history) to a node’s
influence and can decay contributions from farther away nodes
to the node’s influence. Contributions decay multiplicatively
with the increase in distance (i.e., more intermediate nodes)
to reduce contributions from longer paths. Finally, centrality
can be efficiently approximated on large graphs using iterative
methods [29].

In this paper, we introduce a new approach for seed schedul-
ing based on centrality analysis of the seeds on the CFG.
We prioritize scheduling seeds with the largest centrality, i.e.,
approximate counts of unvisited but potentially reachable CFG
edges from a seed through mutations. To measure a seed’s
influence with centrality, we modify the CFG to construct an
edge horizon graph containing the eponymous horizon nodes.
The horizon nodes form the boundary between the visited and
unvisited regions of the CFG for a given fuzzing corpus.

Since horizon nodes delineate between the visited and
unvisited regions of the CFG, we first classify CFG nodes as
visited or unvisited based on the coverage of a fuzzer’s current
corpus. We then define horizon nodes as unvisited nodes with a
visited parent node. These nodes are crucial to fuzzing because
a fuzzer must first visit a horizon node before going further
into the unvisited region of the CFG. The centrality of horizon
nodes reachable by mutations on a seed therefore measures
the seed’s ability to discover new edge coverage. Hence, we
introduce one node corresponding to each seed and connect the
nodes to their corresponding horizon nodes. We do not keep
any visited node in the edge horizon graph to avoid inflating a
seed’s centrality score with contributions from already visited
nodes.

To compute centrality over the edge horizon graph, we
use Katz centrality because it provides all the three desired
approximation properties described earlier in this section and
can operate on directed graphs like CFGs. We also use
historical mutation data to bias the influence of horizon nodes
to a value between 0 and 1 where values closer to 0 mean the
node is harder to reach by mutations. The bias value estimates
the hardness to reach a node by counting how many mutations
reach a node’s parents but fail to reach the node itself. Using
the centrality scores for all seeds, a fuzzer can prioritize
the seed with the highest centrality. We also periodically re-
compute the edge horizon graph and centrality scores during

a fuzzing campaign.
We implement our centrality-analysis-based seed scheduling

technique as part of K-Scheduler (K stands for Katz cen-
trality). Our evaluation shows that K-Scheduler increases
feature coverage by 25.89% compared to Entropic and edge
coverage by 4.21% compared to the next-best AFL-based
seed scheduler, in arithmetic mean on 12 Google FuzzBench
programs. It also finds 3 more previously-unknown bugs than
the next-best AFL-based seed scheduler. We also conduct
preliminary experiments to show the utility of K-Scheduler
in non-fuzzing seed scheduling settings such as concolic
execution and measure the impact of K-Scheduler’s design
choices. Our main contributions are described below:

• We model seed scheduling in fuzzing as a graph centrality
analysis problem.

• We construct an edge horizon graph and use Katz cen-
trality to compute centrality scores that approximate the
number of reachable and feasible unvisited CFG edges
from a seed.

• We implement our approach in K-Scheduler and
integrate it into Libfuzzer and AFL to show the generic
utility of our approach. We release our implementation
on https://github.com/Dongdongshe/K-Scheduler.

• We demonstrate that using K-Scheduler increases
feature coverage by 25.89% compared to Entropic and
edge coverage by 4.21% compared to the next-best AFL-
based seed scheduler, in arithmetic mean on 12 Google
FuzzBench programs. It also finds 3 more previously-
unknown bugs than the next-best AFL-based seed sched-
uler.

II. GRAPH INFLUENCE ANALYSIS BACKGROUND

A. Centrality Measures for Influence Analysis

Identifying a graph’s most influential nodes is a common
and important task in graph analysis. Many different centrality
measures exist in the literature to estimate a node’s influ-
ence [39]. For example, degree centrality measures a node’s
influence by counting its direct neighbors. This technique
can identify a node with local influence over its neighbors.
Eigenvector centrality, in contrast, can identify nodes with
global influence over the entire graph. However, eigenvec-
tor centrality can fail to produce useful scores on directed
graphs [36, 38]. Because program CFGs are directed graphs
and we want to measure the global influence of a node to
reach other nodes in a graph, we use Katz centrality, a variant
of eigenvector centrality for directed graphs. We believe that
Pagerank centrality, another eigenvector centrality variant, is
not suitable for our setting because it dilutes node influence
by the number of its direct neighbors. Such artificial dilutions
will undesirably decrease a node’s influence in a program’s
CFG. We conduct experiments to experimentally support this
claim in Section VI.

For directed graphs like a program CFG, a node’s neighbors
can be defined by incoming or outgoing edges. Therefore,
centrality measures are classified as out-degree if they use
outgoing edges or in-degree if they use incoming edges during
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Fig. 1: Fuzzer workflow with K-Scheduler.

the computation. Their actual usage depend on the target
domain. For example, academic citation graphs use in-degree
centrality measures because influential papers are highly cited.
In our setting, we use out-degree Katz centrality because we
want to measure a node’s ability to reach as many unvisited
CFG edges (with respect to the current fuzzing corpus) as
possible. We describe the details of the out-degree Katz
centrality measure below.

B. Katz Centrality

Let A denote an n by n adjacency matrix of a graph with n
nodes. If there is an edge connecting node i to node j, element
Aij = 1. Otherwise, Aij = 0. Let c denote the Katz centrality
vector of size n. The element corresponding to node i, ci, is
defined as follows,

ci = α

n∑
j=1

Aijcj + βi (1)

where α ∈ [0, 1] and βi is the i-th element of β, a vector
of size n consisting of non-negative elements. Conceptually,
the left equation term captures that node centrality additively
depends on its neighbors centrality and assigns each neighbor
equal weight. Because the sum operator is commutative, the
centrality score is independent of the order in which nodes are
reached. The right term β captures the minimum centrality of
a node, which we will later use in Section IV to bias the
centrality of horizon nodes based on historical mutation data.
The α term represents the decay factor, so that long paths are
weighted less than short paths as we show in Section IV.

In matrix form, equation 1 can be written as

c = αAc+ β (2)

To compute c, the Katz centrality vector, one can solve the
linear system so that

c = (I − αA)−1β (3)

However, computing the matrix inverse in Equation 3 is pro-
hibitively expensive with O(n3) complexity for large graphs.
In practice, an iterative approach called the power method is
used to approximate c based on Equation 2. After initially
setting c(0) = β, the power method computes the t-th iteration
with the following formula,

c(t) = αAc(t− 1) + β (4)

where c(t) denotes the t-th iteration. Each iteration increases
the power of matrix A which corresponds to considering

neighbors farther away. Hence, Katz centrality measures global
node influence over the entire graph. Each iteration also
reduces the contribution of farther away nodes to a node’s
influence as we describe in Section IV. The power method
converges to the centrality vector in Equation 3 with O(n)
complexity under some reasonable assumptions about the
graph topology [38] such as α having to be less than the
multiplicative inverse of the largest eigenvalue. We refer the
reader to [36, 38] for more technical details.

III. OVERVIEW OF OUR APPROACH

Workflow. Figure 1 depicts the workflow of K-Scheduler.
Given a program, seed corpus, and a target program’s inter-
procedural CFG, we modify the CFG to produce an edge
horizon graph composed of only seed, horizon, and non-
horizon unvisited nodes. We then use Katz centrality to per-
form centrality analysis on the edge horizon graph. A fuzzer
prioritizes the seed with the highest centrality score. As a
fuzzer’s mutations reach previously unvisited nodes, we delete
these newly visited nodes and re-compute Katz centrality on
the updated edge horizon graph.

Motivating Example. Figure 2 shows a motivating example to
explain our approach. The sample program (shown on the left)
returns different values based on user input stored in variables
a and b. Intuitively, we want to pick the seed node that can
reach as many unvisited CFG edges as possible. In this case,
this corresponds to seed node (a = 15,b = 30). To do this,
our approach K-Scheduler takes two steps.

Edge Horizon Graph. First, we modify the CFG to build the
edge horizon graph. We classify nodes in the program’s CFG
as visited or unvisited based on the coverage of a fuzzer’s
current corpus. Figure 2a shows a classification of program’s
CFG nodes, where nodes in gray are visited and nodes in
white are unvisited. We next identify horizon nodes, which
border the visited and unvisited CFG. In Figure 2a, the horizon
nodes are nodes A and B since they are unvisited nodes with
a visited parent node. We then insert seed nodes into the
CFG and connect them to any horizon node whose parent
is visited along the seed’s execution path. For example, seed
(a = 5,b = 30) takes both False sides of the branch and
hence its horizon node is node A. We connect this seed node
to horizon node A. Finally, we delete all visited nodes in the
CFG. Figure 2b shows the resulting edge horizon graph.

Katz centrality. Second, we compute Katz centrality over the
edge horizon graph. We use the β parameter in the centrality
computation to estimate the hardness to reach a node by
mutations. For this example, we assume that out of 100
mutations, 70 reached the parent of horizon node A, so its
β = 1− 70

100 = 0.3 and 30 reached the parent of horizon node
B, so its β = 1− 30

100 = 0.7. This shows that horizon node A is
harder to reach by mutations because a fuzzer failed to reach
it with 70% of its mutations. The remaining nodes default to
β = 1 as described in Section IV. Katz centrality also decays
the contribution from further away nodes when computing a
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1 a, b=read_input();
2 if(a > 20){
3 return 1;
4 }
5 else if(a > 10){
6 if (b > 20)
7 return 2;
8 else if (b > 10)
9 return 3;

10 else
11 return 4;
12 }
13 else
14 return 5;

if (a > 20)

if (a > 10)

if (b > 20)

if (b > 10)

ret 1

ret 5

ret 2

ret 3 ret 4

A

B

seed corpus: (a=5, b=30), (a=15, b=30)

T F

T

T

T

F

F

F

(a) Program CFG.

if (b > 10)

ret 1

ret 3 ret 4

(a=5, b=30) (a=15, b=30)

A

B

(b) Edge horizon graph

if (b > 10)

ret 1

ret 3 ret 4

(a=5, b=30) (a=15, b=30)

A

B

c=0.3

c=1.7

c=1 c=1

c=1.15 c=2

C D

S1 S2

(c) Computing Katz Centrality

Fig. 2: This figure shows how K-Scheduler is used for seed scheduling on a small program. Given the code example on the left,
Figure 2a shows the corresponding CFG, colored as gray if a node is visited and white if unvisited based on the fuzzer corpus. Figure
2b shows the edge horizon graph. Figure 2c displays node Katz centrality scores computed by iterative power method illustrated
in Table I. A fuzzer will prioritize seed (a = 15,b = 30) because it has the highest centrality score.

TABLE I: Katz centrality computation by the iterative power
method for the edge horizon graph in Figure 2c. Each row
corresponds to a node’s centrality value and each column
indicates the current iteration. The power method converges in
3 steps on this simple graph. Assume α = 0.5 and β = c(0).

t=0 t=1 t=2 t=3

ca 0.3 0.3 0.3 0.3
cb 0.7 1.7 1.7 1.7
cc 1 1 1 1
cd 1 1 1 1
cs1 1 1.15 1.15 1.15
cs2 1 1.5 2 2

node’s centrality with an α parameter. For this example, we
assume α = 0.5.

Detailed Katz centrality computation. To see how Katz
centrality is computed by the power method from Section
II, we show c(t = 0), c(t = 1), ... until it converges when
t = 3 in Table I, where the rows indicate the centrality
score for a node and the columns indicate time. To explain
the intuition behind Katz centrality, we walk through the
iteration for a single seed node s2 to explain the computation.
Initially, cs2(0) = 1. Using Equation 4 from Section II,
cs2(1) = α(ca(0)+ cb(0))+βs2 = 0.5∗ (0.3+0.7)+1 = 1.5.
Then, the next iteration is cs2(2) = α(ca(1) + cb(1)) + βs2 =
0.5 ∗ (0.3 + 1.7) + 1 = 2 and cs2(3) = cs2(2) due to
convergence. This computation illustrates how Katz centrality
decays contributions from further away nodes. The number of
edges reachable from s2 is 4 but its Katz centrality score is
2 due to this decay. Moreover, the computation reflects that
Katz centrality increases if there are more edges reachable
from a node. Compared to s2, s1 can only reach 1 edge and
hence its centrality of 1.15 is lower. Based on the results of
Katz centrality, a fuzzer will prioritize seed (a = 15,b = 30)
because it has the highest centrality score among seed nodes.

Visited

Unvisited

B1

B2

Fig. 3: A target program’s CFG with visited nodes colored in
gray and unvisited nodes colored white. The dashed-brown line
shows the boundary between the visited and unvisited regions of
the CFG. Horizon nodes B1 and B2 sit at the border and are
defined as unvisited nodes with a visited parent node.

IV. METHODOLOGY

In this section, we detail our approach to seed selection
with influence analysis. We first describe how we build an
edge horizon graph from a program’s CFG and then how we
compute Katz centrality on the edge horizon graph. Lastly, we
describe how our approach can be integrated into a coverage-
guided fuzzer.

A. Edge Horizon Graph Construction

We construct the target program’s directed inter-procedural
control-flow graph CFG = (N,E), where N is the set of
nodes representing the basic blocks and E is the set of edges
capturing control-flow transitions through branches, jumps,
etc. In the rest of the paper, for clarity, we use CFG to refer
to the inter-procedural CFG unless otherwise noted. Directly
computing centrality over the original CFG is not useful
for seed selection because the graph lacks any reference to
seed nodes. Hence, we modify the CFG to construct an edge
horizon graph that contains seed nodes. We can then compute a
seed’s centrality for seed selection. At a high level, we classify
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Algorithm 1 Edge Horizon Graph Construction.
Input: G ← Inter-procedural CFG

S ← Seed corpus
P ← Program

1: /* Classify Nodes as Visited/Unvisited */
2: V, U = {}, {}
3: for s ∈ S do
4: visited nodes = GetCoverage(P, s)
5: V = V ∪ visited nodes . Union visited nodes with V
6: U = G.nodes \ V . Compute the complement set of V
7:
8: /* Identify Horizon Nodes */
9: H = {}

10: for u ∈ U do
11: for p ∈ u.parents do
12: if p ∈ V then
13: H = H ∪ u . Union u with H
14:
15: /* Insert Seed Nodes */
16: for s ∈ S do
17: seed node = G.AddNode(s)
18: visited nodes = GetCoverage(P, s)
19: for v ∈ visited nodes do
20: for n ∈ v.children do
21: if n ∈ H then
22: G.AddEdge(seed node, n)

23:
24: for v ∈ V do
25: G.RemoveNode(v) . Remove visited nodes
26: G.RemoveLoops() . Convert G to directed acyclic graph

original CFG nodes as visited or unvisited and connect newly-
inserted seed nodes to their corresponding horizon nodes,
which are unvisited nodes with a visited parent node. Such
connections ensure that a seed’s centrality measures its ability
to discover new edge coverage. We also delete visited nodes
from the CFG to avoid their contributions increasing a seed’s
centrality score. Lastly, we convert the CFG to a directed
acyclic graph to mitigate the undesirable effects of loops on
centrality. We present the algorithm for constructing the edge
horizon graph in Algorithm 1 and discuss each step in more
detail below.

Classifying Nodes as Visited or Unvisited. We first classify
all CFG nodes as visited or unvisited based on the coverage
of a fuzzer’s current corpus. A CFG node is visited if it is
reached by the execution path of any seed in the corpus, or
elsewise unvisited. We denote the set of visited nodes as V
and the set of unvisited nodes as U . More formally,

V = {n|n ∈ N, visited(n) = 1} (5)

U = {n|n ∈ N, visited(n) = 0} (6)

Lines 1 to 6 in Algorithm 1 detail the classification process.
Figure 3 colors visited nodes in gray and unvisited nodes in
white based on the fuzzer’s current corpus.

Identifying Horizon Nodes. We define a horizon node in
terms of the prior graph partition of V and U , the visited
and unvisited nodes as shown below.

H = {u|(v, u) ∈ E, v ∈ V, u ∈ U} (7)

In other words, a horizon node is an unvisited node with a
visited parent node. Conceptually, horizon nodes border the

invisiable

c=5

c=5

c=5 c=1c=1

c=1.7

B1

B2

(a) Original CFG

c=3.5

c=1.3

c=1 c=1c=1

c=1.7

B1

B2

invisiable
(b) Transformed CFG

Fig. 4: Figure 4a shows that node B1 has the same centrality
as node B2 as an artifact of the loop. However, B1 should have
higher centrality than B2 because it can reach more edges. To
resolve this, we remove loops from the CFG and Figure 4b shows
the graph after this transformation.

unvisited and visited region between V and U . Figure 3 shows
how horizon nodes B1 and B2 border the unvisited and visited
regions of the CFG. Algorithm 1 computes this set of horizon
nodes in lines 8-13. Horizon nodes are crucial for fuzzing
because a fuzzer must first reach a horizon node to increase
edge coverage. This property can be seen in Figure 3 where a
fuzzer must first reach horizon node B1 or B2 to discover
new edge coverage. Therefore, a horizon node’s centrality
measures the number of edges that can potentially be reached
by mutations after visiting a horizon node.

Not all horizon nodes, however, have equal centrality. Some
horizon nodes can increase edge coverage more than others.
As shown in Figure 3, horizon node B2 reaches more edges
in U than horizon node B1. Hence, a fuzzer should prioritize
seeds close to horizon node B2 because B2 can reach more
edges in the unvisited CFG.

Inserting Seed Nodes. For each seed, we insert one node
into the edge horizon graph and connect this seed node to
a horizon node if the horizon node’s parent is visited along
the seed’s execution path. Lines 15 to 22 from Algorithm 1
specify how seed nodes are connected to horizon nodes and
Figure 2b visualizes the connection between seed nodes and
horizon nodes. Connecting seed nodes to their corresponding
horizon nodes ensures that a seed node’s centrality is the sum
of its horizon nodes centrality (i.e., Equation 1). Therefore,
a seed’s centrality measures its ability to discover new edge
coverage through mutations.

Deleting Visited Nodes. We delete visited nodes from the
edge horizon graph because we do not want a seed’s centrality
score to include contributions from already visited nodes. Note
that we preserve the connectivity of the CFG when deleting
visited nodes. For example, given a graph A → B → C, if
B was visited, we preserve the connectivity by adding an
edge producing A → C . Although this deletion changes the
distance between nodes (i.e., A → C now has distance 1), it
does preserve the connectivity, which is the most critical when
measuring centrality.

Mitigating the effect of loops on centrality. Loops in a
CFG can hurt the utility of a seed’s centrality score for seed
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selection. Figure 4a shows a level loop where node B1 and
its child node B2 are assigned equal scores by a centrality
analysis. However, nodes that initiate a loop should have more
centrality than nodes in the loop body. In this case, the node
that initiates the loop B1 should have higher centrality because
it can reach more edges. To solve this problem, we convert
the CFG to a directed acyclic graph by removing loops in
the CFG. Such loops originate in program constructs such as
while or for statements as well as connections between
caller and callee nodes (i.e., caller to callee edge and callee
to caller backedge can form a loop).

B. Influence Analysis

To compute a seed’s centrality, we could count the number
of potentially reachable edges from a seed node in the edge
horizon graph. However, this count assumes that all edges in-
dependent of distance are equally reachable and feasible which
does not hold true for most real-world programs [61, 40].
Ideally, we want to count all feasible and reachable edges from
a seed through mutations, but this is impractical to compute
as it requires computing feasibility along all edges. Instead we
use Katz centrality to approximate this count. Katz centrality
provides three properties that make it a natural fit to approxi-
mate this count. First, it increases its approximation additively
if more edges can be reached from a seed node independent
of the order as described in Section II. Second, Katz centrality
decreases its approximation if mutation frequency information
suggests an edge is hard to reach or if edges are far away.
Third, Katz centrality is efficient to compute with the power
method as discussed in Section II.

Below, we explain how we set the mutation frequency infor-
mation mechanism in Katz centrality and why Katz centrality
multiplicatively decays contributions from further-away edges.

Using historical mutation data as a bias. We observe that
β is a generic way of biasing a node’s centrality based on
external information. We therefore use β to lower a node’s
centrality if a node appears harder to reach by mutations. We
set each element of β to range from 0 to 1, where values
closer to 0 mean the node is harder to reach through mutations.
To measure this hardness, we use historical mutation data.
We initialize β = 1 if there are no mutations and iteratively
refine it as a fuzzer generates mutations. We use the following
equation for node i,

βi = 1− Ri

T
(8)

where Ri measures the number of mutations that reach node
i’s parents and T measures the total number of mutations for
all seeds.

Lastly, to set α, which ranges from 0 to 1, from Equation
9, we observe that setting α = 0 means all nodes in the edge
horizon graph will have the same centrality. This would not
be useful for seed selection because we could not distinguish
which seed node was more likely to discover new edge
coverage with its centrality score. In contrast, setting α = 1
treats closer and further-away edges with equal contribution,

which fails to reflect program behavior. In practice, we set
α = 0.5 based on our experiments as described in Section VI.

Decaying contributions from longer paths. Katz centrality
multiplicatively decays the contribution from further away
edges when computing a node’s centrality . This decay corre-
sponds to a well-known program behavior where further away
edges are harder to reach by mutations [40]. We also verify
this behavior with our own experiments in Appendix B. To see
how Katz centrality reduces the contribution from further-away
edges toward a node’s centrality, consider Equation 9 which
shows the 2nd iteration of the power method from Section II.

c(2) = ((α)0I + (α)1A+ (α)2A2)β (9)

Notice how the parameter α, which ranges between 0 and 1,
multiplicatively decays the contribution from higher matrix
powers. As discussed in Section II, higher matrix powers
consider edges farther away. Thus, this equation shows Katz
centrality reduces the contribution from further away edges
with multiplicative decay.

C. Seed Scheduling

Algorithm 2 shows how to integrate K-Scheduler into a
coverage-guided fuzzer. K-Scheduler first builds the edge
horizon graph as shown in Algorithm 1 and computes the Katz
centrality over it to measure each seed’s centrality. A fuzzer
then uses these scores for seed scheduling which consists
of selecting a seed and allocating a corresponding mutation
budget. Because popular fuzzers such as AFL and LibFuzzer
differ greatly in these two components, we abstract them out
in lines 10 and 11 and specify how to integrate our generic
technique into them in Section V. Finally, K-Scheduler re-
computes the edge horizon graph and its Katz centrality when
the fuzzer discovers new edge coverage or a fixed time has
elapsed. Periodically updating centrality (i.e. via β) ensures
that K-Scheduler provides useful guidance even when a
fuzzer fails to find new edge coverage.

Algorithm 2 Fuzzer integration with K-Scheduler.
Input: G ← Inter-procedural CFG

S ← Seed corpus
P ← Program

1: stats = {} . Store mutation statistics
2: has new = False . Indicate new edge coverage
3: t = CreateTimer(k) . Build horizon graph every k seconds
4: while fuzzer is running do
5: if has new = True or stats = ∅ or t.timeout() then
6: H = GetHorizonNodes(G,S, P )
7: Beta = ComputeBeta(H, stats)
8: Ghorizon = GetHorizonGraph(G,S, P )
9: Ckatz = KatzCentrality(Ghorizon, Beta)

10: t.reset() . Reset timer t
11: seed = ChooseSeed(S,Ckatz)
12: energy = ComputeEnergy(seed, Ckatz)
13: has new = Mutate(seed, energy) . Fuzz seed with energy
14: stats.update()
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V. IMPLEMENTATION

K-Scheduler consists of two components. First, to build
the edge horizon graph, we construct the target program’s
inter-procedural CFG. We initially compile the program with
wllvm [5] and use the LLVM’s (version 11.0.1) opt tool to
extract each function’s intra-procedural CFG. In Python 3.7,
we then merge each intra-procedural CFG together based on
caller-callee relations to produce the inter-procedural CFG.
We also implement all pieces from Algorithm 1 such as loop
removal in Python. To classify CFG nodes as visited, we re-
use a fuzzer’s edge coverage information to identify visited
basic blocks. Second, to compute Katz centrality, we use the
power method provided by networkit [4], a large-scale graph
computing library.

We now describe how we integrate K-Scheduler into
LibFuzzer [3] and AFL [62] to show our technique is generic
and widely applicable. We run K-Scheduler as a standalone
process that communicates with a fuzzer to set the fuzzer’s
seed ranking based on centrality and identify the mapping
between a seed node and its corresponding horizon nodes.
We measure how much overhead K-Scheduler adds to the
fuzzing process in Section VI.

Libfuzzer Integration. Libfuzzer [3] computes an energy for
each seed in the form of a probability and flips a coin with bias
corresponding to the seed’s energy to determine whether a seed
should be selected for mutation. Higher energy probabilities
indicate a seed will be chosen more frequently. To integrate
into Libfuzzer, we follow the same integration as Entropic,
a state-of-the-art seed scheduler for Libfuzzer, and set each
seed’s energy to its Katz centrality score normalized by the
total centrality scores for all seeds.

AFL Integration. Unlike Libfuzzer’s probabilistic seed selec-
tion, AFL generally selects every seed for mutation. A seed’s
energy also determines its corresponding mutation budget. To
integrate into AFL, we set each seed’s energy directly to its
Katz centrality score.

VI. EVALUATION

Our evaluation aims to answer the following questions.
1) Comparison against seed schedulers: How does

K-Scheduler compare against other seed scheduling
strategies?

2) Bug Finding: Does K-Scheduler improve a fuzzer’s
ability to find bugs?

3) Runtime Overhead: What is the performance overhead
of K-Scheduler?

4) Impact of Design Choices: How do K-Scheduler’s
various design choices contribute to its performance?

5) Non-evolutionary fuzzing settings: Does
K-Scheduler show promise for seed scheduling in
non-evolutionary fuzzing settings?

A. Experimental Setup

1) Baseline Seed Scheduling Strategies: We compare
against popular seed scheduling strategies from industry and

the academic community. These strategies are generally in-
tegrated into AFL or Libfuzzer. Directly comparing a seed
scheduling strategy that uses AFL with another seed schedul-
ing strategy that uses Libfuzzer can be misleading since the
underlying fuzzers may cause the performance difference in-
stead of the underlying seed scheduling strategy. Therefore, to
be fair, we integrate K-Scheduler into both Libfuzzer and
AFL separately and make comparisons about seed scheduling
strategies when the underlying fuzzer is the same. Note this
integration also demonstrates that K-Scheduler is generic
and widely applicable.

For K-Scheduler’s comparison against Libfuzzer-based
seed schedulers, we compare K-Scheduler against En-
tropic, a state-of-the-art seed scheduler in Libfuzzer [9]. To
ensure a fair comparsion, we follow the same integration with
Libfuzzer as Entropic. We also compare against Libfuzzer’s
default seed scheduler as a baseline and refer to it as Default.
We use Libfuzzer and Entropic from LLVM 11.0.1 in our
comparison. For K-Scheduler’s comparison against AFL-
based seed schedulers, we compare against strategies that
prioritize seeds if they take paths rarely observed (RarePath),
reach rarely observed edges (RareEdge) or discover new
paths (NewPath). We also compare against a strategy that
prioritizes seeds based on security-sensitive coverage (Sec-
Cov). To compare against RarePath, RareEdge, NewPath, and
SecCov we use AFLFast [7], FairFuzz [32], EcoFuzz [60],
and TortoiseFuzz [55] respectively. Since these fuzzers all
modify AFL, we integrate K-Scheduler into AFL using
their same modifications for a fair comparison. Moreover, we
set each fuzzer to use the same mutation strategy to a enable
a fair comparison. Hence, we disabled FairFuzz’s custom
mutation strategy. We also compare against AFL’s default seed
scheduling strategy as a baseline and refer to it as Default.

2) Benchmark Programs: In our seed scheduler compari-
son, we use the Google FuzzBench benchmark, a commonly
used dataset to evaluate fuzzing performance on real-world
programs. At the time of this writing, the benchmark consists
of 40+ programs, so we decide to evaluate over a subset
of them. We pick 12 diverse real-world programs from the
benchmark that includes cryptographic and database programs
as well as parsers as shown in Table III. We plan to evaluate
against the entire benchmark in the future. We also use
the default seed corpus and configuration provided by the
benchmark to enable a fair comparison. Note that Google
FuzzBench configures all AFL-based fuzzers to use havoc
mode by default [1], since AFL havoc mode has been shown
to significantly outperform AFL deterministic mode [58].

For our bug-finding experiments, we select 12 real-world
parsing programs commonly used to evaluate fuzzer’s bug
finding performance [7, 32, 60]. The 12 programs cover 8 file
formats: ELF, ZIP, PNG, JPEG, TIFF, TAR, TEXT
and XML. The list of programs and their details can be found
in Table VI. Since these programs do not come with a default
seed corpus, we make a corpus with small valid files.

3) Environmental Setup: We run all our evaluations on 4
64-bit machines running Ubuntu 20.04 with Intel Xeon E5-
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2623 CPUs (96 cores in total). We follow standard operating
procedure in fuzzing evaluations [7, 9, 32] and bound each
fuzzer to 1 CPU core. Because our current implementation
runs K-Scheduler in a separate process, we assign fuzzers
using K-Scheduler 2 cores, one for the fuzzer and one for
the K-Scheduler.

B. RQ1: Seed scheduling comparison

For K-Scheduler’s comparison against Libfuzzer-based
seed schedulers, we follow the original evaluation of En-
tropic [9] and use the same two metrics for comparison: edge
coverage and feature coverage. Edge coverage measures how
many branches were reached along an input’s execution path,
whereas feature coverage includes this information as well
as branch hit count. For example, edge coverage would not
distinguish coverage between two inputs that visit the same
branch a different number of times, but feature coverage would
distinguish them.

We run K-Scheduler, Default (i.e., Libfuzzer’s default
seed scheduler), and Entropic on the 12 Google FuzzBench
programs for 24 hours. We repeat each 24 hour run ten
times for statistical power. In arithmetic mean over these
10 runs, Table II and Table III summarize the edge and
feature coverage results for 1 hour and 24 hours, respectively.
Appendix Table XV and Table XVI show the corresponding
result from applying the Mann Whitney U test between
K-Scheduler and the tested seed schedulers in terms of
edge and feature coverage. Within 1 hour, K-Scheduler
improves upon next-best seed scheduling strategy Entropic by
20.11% in median and 31.75% in arithmetic mean over the
12 FuzzBench programs in feature coverage. For the 24 hour
runs, K-Scheduler achieves 20.66% in median and 25.89%
in arithmetic mean more feature coverage than Entropic. We
attribute the increased improvement of K-Scheduler over
Entropic within the first hour to K-Scheduler’s scheduling
of promising seeds more frequently given a limited fuzzing
budget (i.e., fuzzer only schedules a limited number of seeds).
However, as the fuzzing budget increases to 24 hours, Entropic
will eventually also schedule those promising seeds more
frequently, which narrows the performance difference between
K-Scheduler. Moreover, with a significance level of 0.05,
our feature coverage over Entropic results are statistically
significant for all programs for 24 hour runs and all programs
except zlib for the 1 hour runs. Our results show that using
the CFG structure for seed scheduling can improve fuzzing
performance.

For K-Scheduler’s comparison against AFL-based seed
schedulers, we only use edge coverage as a metric for com-
parison because AFL does not report feature coverage. We run
K-Scheduler, Default (i.e., AFL’s default seed scheduler),
RarePath, RareEdge, NewPath, and SecurityCov on the same
12 Google FuzzBench programs for 24 hours, repeated ten
times. In arithmetic mean over these 10 runs, Table IV
and Table V summarize the edge coverage results for 1
hour and 24 hours respectively. Appendix Table XVII and
Table XVIII show the Mann-Whitney U test results. Similar

TABLE II: Arithmetic mean feature and edge coverage of
Libfuzzer-based seed schedulers on 12 FuzzBench programs for
1 hour over 10 runs. We mark the highest number in bold.

Programs K-Scheduler Entropic Default
feature edge feature edge feature edge

freetype 51,184 10,886 46,698 10,691 40,040 9,446
libxml2 39,240 7,661 24,167 6,128 25,914 6,296
lcms 2,886 1,497 1,707 1,004 1,392 874
harfbuzz 35,017 9,112 23,349 7,551 23,455 7,588
libjpeg 10,974 2,553 7,424 2,193 7,510 2,208
libpng 5,001 1,501 4,604 1,469 4,525 1,476
openssl 14,520 4,622 12,830 4,294 13,029 4,327
openthread 6,525 3,318 5,397 3,044 5,150 2,947
re2 31,292 6,275 28,877 6,147 29,941 6,207
sqlite 73,532 13,299 44,198 12,189 52,060 12,735
vorbis 9,106 2,136 7,632 2,010 5,710 1,823
zlib 2,711 790 2,572 784 2,408 782

Arithmetic mean coverage gain 31.75% 12.51% 37.37% 15.72%
Median coverage gain 20.11% 8.32% 34.54% 13.91%

TABLE III: Arithmetic mean feature and edge coverage of
Libfuzzer-based seed schedulers on 12 FuzzBench programs for
24 hours over 10 runs. We mark the highest number in bold.

Programs K-Scheduler Entropic Default
feature edge feature edge feature edge

freetype 71,717 13,754 75,370 14,120 67,510 12,870
libxml2 54,081 9,869 36,958 7,038 39,247 7,310
lcms 6,345 2,541 4,425 2,082 3,413 1,784
harfbuzz 48,105 10,358 32,799 8,808 33,499 8,912
libjpeg 15,861 3,033 11,755 2,646 11,220 2,574
libpng 5,312 1,535 5,002 1,501 4,992 1,501
openssl 16,644 4,971 15,137 4,731 15,173 4,738
openthread 11,405 4,965 6,435 3,276 6,123 3,196
re2 33,797 6,482 32,401 6,347 32,725 6,367
sqlite 92,493 15,540 75,723 14,351 83,228 14,710
vorbis 10,417 2,247 9,906 2,208 8,873 2,115
zlib 3,215 801 2,698 790 2,510 787

Arithmetic mean coverage gain 25.89% 13.69% 31.43% 16.34%
Median coverage gain 20.66% 6.68% 22.75% 6.54%

to the comparison against Libfuzzer-based seed schedulers,
we observe a higher improvement of K-Scheduler over
the other seed scheduling strategies within the first hour.
K-Scheduler outperforms the next best seed scheduling
strategy (RarePath) by 7.95% in arithmetic mean and 3.62%
in median over the 12 FuzzBench programs. For the 24 hour
runs, K-Scheduler achieves 4.21% in arithmetic mean and
1.91% in median more coverage than RarePath. We note that
the improvement of K-Scheduler against AFL-based seed
schedulers is not as significant as K-Scheduler’s com-
parison against Libfuzzer-based seed schedulers. We believe
K-Scheduler’s diminished performance difference occurs
because the underlying fuzzer, AFL, iterates over the seed
queue multiple times during the 24 hours fuzzing campaign
and therefore will schedule nearly all seeds frequently, reduc-
ing the effect of seed selection.

The coverage plots over time also highlight the promise of
K-Scheduler. Figure 5 and 6 show that K-Scheduler
generally maintains its performance advantage during the
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TABLE IV: Arithmetic mean edge coverage of AFL-based seed
schedulers on 12 FuzzBench programs for 1 hour over 10 runs.

K-Sched Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AFL AflFast FairFuzz EcoFuzz TortoiseFuzz

freetype 12,077 11,001 10,707 11,319 8,925 10,532
libxml2 8,120 5,793 5,836 7,247 5,841 5,476
lcms 1,882 1,989 1,540 1,343 1,117 1,327
harfbuzz 9,169 8,864 9,022 8,767 7,629 8,773
libjpeg 2,391 2,354 2,374 2,140 1,739 2,073
libpng 1,470 1,488 1,460 1,430 1,428 1,456
openssl 4,560 4,485 4,399 4,381 4,252 4,336
openthread 5,245 5,063 5,064 5,047 5,047 5,012
re2 5,792 5,612 5,533 5,335 5,484 5,252
sqlite 9,865 10,038 9,890 10,065 9,722 9,627
vorbis 2,048 2,006 1,946 1,933 1,761 1,914
zlib 761 758 752 746 745 752

Arithmetic mean gain 4.80% 7.95% 8.39% 20.01% 13.03%
Median gain 1.87% 3.62% 5.27% 11.77% 6.07%

TABLE V: Arithmetic mean edge coverage of AFL-based seed
schedulers on 12 FuzzBench programs for 24 hours over 10 runs.

K-Sched Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AFL AflFast FairFuzz EcoFuzz TortoiseFuzz

freetype 14,188 13,508 13,646 13,486 11,965 13,206
libxml2 10,936 9,295 8,546 10,241 8,964 9,147
lcms 2,325 2,247 2,160 2,190 1,892 2,162
harfbuzz 10,061 9,980 10,019 9,804 9,946 9,882
libjpeg 2,678 2,513 2,601 2,497 2,309 2,413
libpng 1,536 1,536 1,535 1,524 1,528 1,528
openssl 4,863 4,805 4,761 4,788 4,732 4,685
openthread 5,766 5,704 5,646 5,666 5,527 5,636
re2 5,887 5,875 5,790 5,536 5,774 5,758
sqlite 12,081 12,360 12,019 10,648 12,199 11,810
vorbis 2,215 2,195 2,202 2,100 2,171 2,184
zlib 780 780 775 778 777 769

Arithmetic mean gain 2.89% 4.21% 4.81% 7.63% 5.11%
Median gain 1.00% 1.91% 5.34% 2.38% 2.30%

lifetime of the fuzzing campaign. The consistency of
K-Scheduler’s gain across many different seed schedulers
show the promise of scheduling seeds based on CFG infor-
mation. Moreover, it suggests K-Scheduler can be helpful
independent of a fuzzer as we later explore.

Result 1: K-Scheduler increases feature coverage by
25.89% compared to Entropic and edge coverage by
4.21% compared to the next-best AFL-based seed scheduler
(RarePath), in arithmetic mean on 12 Google FuzzBench
programs.

C. RQ2: Bug Finding

In order to detect memory corruption bugs that do not
necessarily lead to a crash, we compile program binaries
with Address and Undefined Behavior Sanitizers. We then ran
K-Scheduler, Default (i.e., AFL’s default seed scheduler),
RarePath, RareEdge, and NewPath on 12 real-world parsing
programs for 24 hours, a total of 10 times. We could not

TABLE VI: Tested Programs in Bug Finding Experiments.

Subjects Version Format # lines
xmllint libxml2-2.9.7 XML 72,630
miniunz zlib-1.2.11 ZIP 1,895
readpng libpng-1.6.37 PNG 3,205
djpeg libjpeg-9d JPEG 9,204
size binutils-2.36.1 ELF 51,203
readelf -a binutils-2.36.1 ELF 29,954
nm -C binutils-2.36.1 ELF 52,763
objdump -D binutils-2.36.1 ELF 78,610
strip binutils-2.36.1 ELF 59,680
tiff2pdf tiff-4.3.0 TIFF 20,387
bsdtar -xf libarchive-3.5.1 TAR 45,031
infotocap ncurses-6.2 TEXT 23,145

TABLE VII: Overview of bugs discovered in our AFL-based
seed scheduling experiments categorized by type.

K-Sched Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AFL AflFast FairFuzz EcoFuzz Tortoise†

out-of-memory 21 14 19 17 18 21
memory leak 24 20 21 19 20 22
integer overflow 3 2 3 3 2 2

Total 48 36 43 39 40 45
† Tortoise denotes TortoiseFuzz.

run the Libfuzzer-based seed schedulers because the 12 pars-
ing programs are not equipped with a Libfuzzer-compatible
fuzzing harness (i.e., LLVMFuzzerTestOneInput is undefined).

In our 24 hour runs, we found real-world bugs in binutils.
Table VII shows the bug count for each seed scheduling
strategy in terms of integer overflow, out of memory and
memory leak bugs, in arithmetic mean over the 10 runs.
We count bugs with the following procedure based on prior
work [6, 15, 48]. We first use AFL-CMin to reduce the number
of crashing inputs. We then further deduplicate the crashing
inputs by filtering them by unique stack traces. We lastly triage
the remaining crashing inputs by manually reviewing their
stack traces and corresponding source code. Our results show
that K-Scheduler finds 3 more bugs than the next best
seed scheduling strategy SecCov (i.e., TortoiseFuzz), which
optimizes for bug-finding.

Result 2: K-Scheduler discovers 3 more bugs than the
next best seed-scheduling strategy (SecCov).

D. RQ3: Runtime Overhead
In this experiment, we measure the overhead that

K-Scheduler adds to a fuzzer. The runtime overhead can
be classified into two components: a fuzzer maintenance
(i.e., record hit count of edges and compute seeds’ energy)
and a fuzzer invoking K-Scheduler (i.e., construct edge
horizon graph and perform Katz centrality analysis) for seed
scheduling. To measure these overheads, we run our modified
versions (see Section V) of AFL and Libfuzzer against all 12
FuzzBench programs for 24 hours, recording the total time
they spend in maintenance and separately the total time spent
in computing Katz centrality over the edge horizon graph in
the standalone process. We repeat this experiment 10 times
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Fig. 5: The arithemic mean feature coverage of Libfuzzer-based seed schedulers running for 24 hours and one standard deviation
error bars over 10 runs. Default refers to the default seed scheduler in Libfuzzer.

to minimize variance. Table VIII summarizes the runtime
overhead added to AFL’s and LibFuzzer fuzzing processes in
terms of fuzzer maintenance and graph centrality analysis.

The overhead of fuzzer maintenance is 0.28% for AFL
and 1.74% for Libfuzzer, in arithmetic mean over the 12
FuzzBench programs. The graph analysis overhead is minimal,
adding 0.15% in arithmetic mean over the 12 FuzzBench
programs. We believe these small graph analysis overheads
exist because Katz centrality can be efficiently computed with
the power method (Section II) and the edge horizon graph
is cached and updated instead of being constructed from
scratch each time. For clarity, we did not report graph analysis
overheads for AFL and Libfuzzer separately because they use
the same standalone process, so the overheads were nearly
indistinguishable. Moreover, the difference in overheads per-
program is explained by the variance in the target program’s
CFG size (i.e., number of nodes).

Result 3: K-Scheduler adds at most 1% overhead from
graph analysis and at most 2% overhead for fuzzer mainte-
nance.

TABLE VIII: Runtime overhead from K-Scheduler in Lib-
fuzzer and AFL-based seed scheduling.

Programs Nodes # Graph Analysis Fuzzer Maintenance
LibFuzzer AFL

freetype 38,352 0.20% 1.71% 0.23%
libxml2 96,732 0.22% 2.53% 0.39%

lcms 13,081 0.06% 0.92% 0.08%
harfbuzz 21,066 0.11% 2.25% 0.17%
libjpeg 16,508 0.04% 0.79% 0.06%
libpng 7,215 0.02% 0.53% 0.03%
openssl 57,729 0.25% 2.43% 0.67%

openthread 27,263 0.09% 1.48% 0.24%
re2 12,020 0.03% 1.39% 0.26%

sqlite 70,703 0.75% 3.12% 0.41%
vorbis 9,494 0.04% 0.80% 0.55%
zlib 1,882 0.02% 2.96% 0.29%

Arithmetic mean 31,004 0.15% 1.74% 0.28%
Median 18,787 0.08% 1.60% 0.25%

E. RQ4: Impact of Design Choices

We conduct experiments to measure the performance effect
of five design choices: (i) centrality measure, (ii) β parameter-
ization, (iii) visited node deletion, (iv) loop removal, and (v) α
parameterization. For each design choice experiment, we run
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Fig. 6: The arithmetic mean edge coverage of of AFL-based seed schedulers running for 24 hours and one standard deviation error
bars over 10 runs. Default refers to the default seed scheduler in AFL.

K-Scheduler with Libfuzzer on the 12 Google FuzzBench
programs for 1 hour, repeated 10 times, and compare their
feature coverage. We run for 1 hour because the first hour of
a fuzzing run often discovers more coverage than later hours
and hence our results better measure the effect of the design
choices. We also choose feature coverage because it provides
more fine-grained information about a fuzzer’s behavior than
edge coverage. We describe each design choice experiment in
more detail below.

1) Centrality measure: We measure the effect of the cen-
trality measure on seed scheduling in this experiment by
varying the centrality measure used in K-Scheduler. We
compare Eigenvector, Degree, Katz and PageRank central-
ity measures. Table IX shows the feature coverage results.
Enabling Katz centrality improves the feature coverage by
16.54%, 23.69%, and 19.17% in arithmetic mean over the 12
FuzzBench programs, relative to Pagerank, Eigenvector, and
Degree centrality, respectively. These results experimentally
justify our claim from Section II that Katz centrality is most
desirable for seed scheduling. However, these results also show
that for some programs, other forms of centrality are a better
fit such as the superior performance of Pagerank on re2 and
Degree on vorbis.

TABLE IX: Arithmetic mean feature coverage of K-Scheduler
with different centrality metrics.

Programs Katz Pagerank Eigenvector Degree

freetype 51,184 44,394 40,723 38,332
libxml2 39,240 29,575 28,473 28,014
lcms 2,886 2,071 1,557 2,054
harfbuzz 35,017 28,563 26,253 27,485
libjpeg 10,974 9,250 10,454 8,713
libpng 5,001 4,804 4,505 4,923
openssl 14,520 13,035 13,385 13,555
openthread 6,525 5,201 5,380 5,298
re2 31,292 32,309 29,648 29,595
sqlite 73,532 68,328 65,538 63,997
vorbis 9,106 8,129 7,470 9,363
zlib 2,711 2,410 2,323 2,404

Arithmetic mean coverage gain 16.54% 23.69% 19.17%
Median coverage gain 13.89% 18.99% 19.03%

2) β parameterization: In Section IV, we describe how we
set β based on historical mutation data. In this comparison, we
see the effect of this technique by comparing K-Scheduler
with uniform β against K-Scheduler with non-uniform β.
Table X shows the feature coverage results. The non-uniform β
technique increases feature coverage by 24.19% in arithmetic
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TABLE X: Arithmetic mean feature coverage from analyzing
the effect of non-uniform β.

Programs Non-uniform β Uniform β

freetype 51,184 40,396
libxml2 39,240 31,733
lcms 2,886 1,506
harfbuzz 35,017 29,380
libjpeg 10,974 8,834
libpng 5,001 4,761
openssl 14,520 12,542
openthread 6,525 5,271
re2 31,292 28,263
sqlite 73,532 64,893
vorbis 9,106 7,679
zlib 2,711 2,305

Arithmetic mean coverage gain 24.19%
Median coverage gain 18.88%

TABLE XI: Arithmetic mean feature coverage from analyzing
the effect of α.

Programs 0.5 0.25 0.75 1

freetype 51,184 38,369 41,777 40,723
libxml2 39,240 28,644 29,992 28,473
lcms 2,886 1,313 1,552 1,557
harfbuzz 35,017 27,250 28,276 26,253
libjpeg 10,974 9,542 10,336 10,454
libpng 5,001 4,913 4,929 4,505
openssl 14,520 13,420 13,302 13,385
openthread 6,525 6,216 5,597 5,380
re2 31,292 29,590 31,885 29,648
sqlite 73,532 64,175 68,550 65,538
vorbis 9,106 8,092 8,066 7,470
zlib 2,711 2,378 2,282 2,323

Arithmetic mean coverage gain 24.53% 19.47% 23.69%
Median coverage gain 14.29% 14.74% 18.99%

TABLE XII: Arithmetic mean feature coverage from analyzing
the effect of loop removal.

Programs loop removal no loop removal

freetype 51,184 38,646
libxml2 39,240 28,737
lcms 2,886 1,455
harfbuzz 35,017 28,849
libjpeg 10,974 10,142
libpng 5,001 4,846
openssl 14,520 13,300
openthread 6,525 5,430
re2 31,292 31,609
sqlite 73,532 64,560
vorbis 9,106 9,350
zlib 2,711 2,247

Arithmetic mean coverage gain 21.70%
Median coverage gain 17.03%

mean over the 12 FuzzBench programs. These results show
the utility of biasing β.

3) Visited node deletion: In Section IV, we describe why
we remove visited nodes from the edge horizon graph. In
this comparison, we experimentally justify this choice. We

TABLE XIII: Arithmetic mean feature coverage from analyzing
the effect of deleting visited nodes.

Programs Original Deleted

freetype 51,184 39,892
libxml2 39,240 28,973
lcms 2,886 1,493
harfbuzz 35,017 24,667
libjpeg 10,974 9,715
libpng 5,001 4,827
openssl 14,520 13,121
openthread 6,525 5,712
re2 31,292 29,408
sqlite 73,532 61,609
vorbis 9,106 8,020
zlib 2,711 2,470

Arithmetic mean coverage gain 24.13%
Median coverage gain 13.89%

compare K-Scheduler with visited node deletions from the
edge horizon graph against K-Scheduler with no deletions
from the edge horizon graph. Table XIII shows the feature
coverage results. The deleted edge horizon graph improves
feature coverage by 24.13% in arithmetic mean over the
12 FuzzBench programs. Therefore, this result justifies our
deletion of visited nodes.

4) Loop Removal: In Section IV, we introduce our loop
removal transform as a technique to mitigate the effects of
loops on computing centrality. In this experiment, we measure
this effect by comparing K-Scheduler with and without the
loop removal transform. Table XII shows that the loop removal
transform improves edge coverage by 21.70% in arithmetic
mean over the 12 FuzzBench programs, justifying our loop
removal transform.

5) α parameterization: In this design choice experiment,
we study how the choice of α affects the K-Scheduler’s
performance. Table XI summarizes our findings. As described
in Section IV, α = 1 treats far and close paths with equal
contribution to centrality and its experimental results are worse
compared to distinguishing them, showing the utility of the
multipicative decay effect. We note that α = 1 is equivalent
to Eigenvector centrality as seen by comparing the relevant
column from Table IX. Given α = 0.5 performs best in
arithmetic mean over the 12 FuzzBench programs, we pick
it in our current implementation.

Result 4: Our results empirically support K-Scheduler’s
design choices.

F. RQ5: Utility for non-evolutionary input generation

In this experiment, we show the promise of K-Scheduler
in non-fuzzing settings, we integrate K-Scheduler into
concolic execution seed scheduling. Concolic execution is
known to incur high overhead [61, 42] during path constraint
collection and solving. Hence, in concolic execution, schedul-
ing promising seeds is crucial to its performance [16, 63]. To
perform this experiment, we use the concolic executor from
QSYM’s latest version [61]. QSYM, a hybrid fuzzer, consists
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TABLE XIV: Edge coverage of concolic-execution-based seed
scheduling on 3 real-world programs for 24 hours over 5 runs.

Scheduling K-Scheduler Default

libarchive 3,886 3,230
size 3,068 2,602
tcpdump 3,552 2,101

Arithmetic mean coverage gain 35.76%
Median coverage gain 20.31%

of three components, a concolic executor, a fuzzer, and a
coordinator that schedules seeds for the concolic executor.
Since our goal is to show the utility of K-Scheduler for
concolic execution seed scheduling, we disabled QSYM’s
fuzzer and only modified its coordinator’s seed scheduling
algorithm to use K-Scheduler. We did not modify QSYM’s
concolic executor logic. We evaluate on the 3 programs (size,
libarchive and tcpdump). Note we did not run on
SymCC because SymCC and QSYM have the same concolic
execution scheduler [42], so comparing against one is suffi-
cient. We run K-Scheduler against the default seed sched-
uler in QSYM on the 3 real world programs for 24 hours and
compare the total edge coverage. In arithmetic mean over the
10 runs, Table XIV shows that K-Scheduler improves edge
coverage by 35.76%, in arithmetic mean over the 3 programs.
Hence, this shows the potential promise K-Scheduler for
seed scheduling in non-evolutionary fuzzing settings. How-
ever, we note that our results are preliminary and are incon-
clusive. We leave a detailed evaluation to future work.

Result 5: K-Scheduler increases edge coverage by
35.76%, in arithmetic mean over 3 programs, compared to
QSYM’s default seed scheduling strategy.

VII. RELATED WORK

A. Graph Centrality

Centrality is a commonly used measure in graph analysis.
Researchers have proposed various centrality metrics including
degree centrality [47], semi-local centrality [14], closeness
centrality [45], betweenness centrality [21], eigenvector cen-
trality [51], Katz centrality [30], and PageRank [10]. These
centrality measures has been applied to various fields such as
social network analysis [27, 11], biology [31], finance [44]
and geography [19]. To the best of our knowledge, we are the
first to use centrality for seed selection in fuzzing.

B. Seed Scheduling

While prior work has proposed a wide range of techniques
to improve fuzzing such as symbolic execution [12, 24, 25,
49, 61, 40, 17, 50], dynamic taint analysis [54, 15, 23, 22, 43]
and machine learning [26, 48, 65], in this paper we focus
on improving the seed scheduling component in a fuzzer. We
describe prior work that has focused on improving fuzzing
through seed scheduling. Seed scheduling consists of two main
components: input prioritization [55, 52, 53] and the input’s
corresponding mutation budget (i.e., power schedule) [9, 7].
Prior seed scheduling work has prioritized seeds based on

edge or path coverage [32, 7, 9, 60] as well as more security-
sensitive metrics such as execution time [41, 33], exploitabil-
ity [57], memory accesses [18, 56, 55], or a combination of
them [52, 53] Another line of work prioritizes seeds based
on call graphs [34]. In contrast, we prioritize seeds based on
the entire inter-procedural CFG. While AFLGo [8] also uses
the entire inter-procedural CFG, it computes the distance over
the CFG for directed fuzzing and assigning a seed’s mutation
budget. In contrast, we approximate the count of reachable
and feasible edges from a seed and use it for coverage-
guided fuzzing. SAVIOR [17] also approximates this count
but uses it for bug-driven hybrid testing. Its approximation
assumes all edges are equally likely to be reachable and
feasible, independent of their distance from a seed’s execution
path, which does not hold true for many real-world programs
as we showed in Section VI. In contrast, we use the mul-
tiplicative decay property of Katz centrality to reflect this
behavior in real-world programs and better approximate this
count. Moreover, SAVIOR [17]’s approximation is equivalent
to setting α = 1 (i.e, no multiplicative decay) and our
design choice experiments show this approximation performs
worse than K-Scheduler’s default settings. Nonetheless,
both K-Scheduler and SAVIOR utilize the mutation history
information to improve their approximation.

Seed scheduling has also been a topic in other program
testing techniques aside from fuzzing such as concolic ex-
ecution [16, 63]. Our preliminary experiments suggest that
K-Scheduler can improve seed scheduling for concolic
execution.

VIII. CONCLUSION

In this paper, we introduce a new approach to seed schedul-
ing based on centrality analysis of seeds on the CFG. Central-
ity measures have several desirable properties that make them
a natural fit for the seed scheduling problem. We implement
our approach in K-Scheduler and show its effectiveness
in seed scheduling: increasing feature coverage by 25.89%
compared to Entropic and edge coverage by 4.21% compared
to the next-best AFL-based seed scheduler, in arithmetic mean
on 12 Google FuzzBench programs.
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[31] Dirk Koschützki and Falk Schreiber. Centrality analysis

methods for biological networks and their application to
gene regulatory networks. Gene regulation and systems
biology, 2:193–201, 05 2008. doi: 10.4137/grsb.s702.

[32] Caroline Lemieux and Koushik Sen. Fairfuzz: Targeting
rare branches to rapidly increase greybox fuzz testing
coverage. In Proceedings of the 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering.
Acm, 2018.

[33] Caroline Lemieux, Rohan Padhye, Koushik Sen, and
Dawn Song. Perffuzz: Automatically generating patho-
logical inputs. ISSTA 2018, New York, NY, USA, 2018.
Association for Computing Machinery.

[34] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu,
Cen Zhang, Xiaofei Xie, Haijun Wang, and Yang Liu.
Cerebro: Context-aware adaptive fuzzing for effective
vulnerability detection. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, New York, NY,
USA, 2019. Association for Computing Machinery.

[35] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li,
Wei-Han Lee, Yu Song, and Raheem Beyah. MOPT:
Optimized mutation scheduling for fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19).
USENIX Association, 2019.
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APPENDIX

A. Mann-Whitney U Test Results

TABLE XV: Mann-Whitney U test results over the feature
and edge coverage of Libfuzzer-based seed schedulers on 12
FuzzBench programs for 1 hour over 10 runs (corresponding
to Table II).

Programs Entropic Default
feature edge feature edge

freetype 4.40E-4 1.62E-2 7.69E-4 1.71E-3
libxml2 1.83E-4 1.82E-4 1.83E-4 1.83E-4
lcms 3.61E-3 1.31E-3 1.83E-4 1.83E-4
harfbuzz 1.82E-4 1.83E-4 1.83E-4 1.82E-4
libjpeg 1.83E-4 1.82E-4 1.83E-4 1.82E-4
libpng 1.82E-4 1.68E-4 1.81E-4 1.67E-4
openssl 1.83E-4 1.82E-4 1.83E-4 1.82E-4
openthread 1.83E-4 2.19E-3 1.83E-4 1.83E-4
re2 2.46E-4 3.28E-4 1.71E-3 2.47E-3
sqlite 1.83E-4 1.83E-4 1.83E-4 1.73E-2
vorbis 4.40E-4 7.69E-4 2.46E-4 2.46E-4
zlib 8.90E-2 6.72E-2 1.31E-3 6.13E-2

TABLE XVI: Mann-Whitney U test results over the fuzzer
and edge coverage of Libfuzzer-based seed schedulers on 12
FuzzBench programs for 24 hours over 10 runs (corresponding
to Table III).

Programs Entropic Default
feature edge feature edge

freetype 1.70E-3 7.56E-2 2.12E-1 3.12E-2
libxml2 1.83E-4 1.83E-4 1.83E-4 1.83E-4
lcms 3.61E-3 9.11E-3 2.20E-3 3.61E-3
harfbuzz 1.83E-4 1.82E-4 1.83E-4 1.82E-4
libjpeg 1.83E-4 2.45E-4 1.83E-4 1.82E-4
libpng 1.31E-3 2.89E-4 7.58E-4 2.74E-4
openssl 1.82E-4 1.82E-4 1.83E-4 1.80E-4
openthread 1.83E-4 1.83E-4 1.83E-4 1.83E-4
re2 3.30E-4 3.17E-3 7.65E-4 3.60E-3
sqlite 1.83E-4 1.01E-3 1.31E-3 3.76E-2
vorbis 1.83E-4 2.40E-4 1.83E-4 4.33E-4
zlib 2.19E-3 5.65E-3 1.82E-4 3.84E-3

TABLE XVII: Mann-Whitney U test results over the fuzzer and
edge coverage of AFL-based seed schedulers on 12 FuzzBench
programs for 1 hour over 10 runs (corresponding to Table IV).

Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AflFast FairFuzz EcoFuzz TortoiseFuzz

freetype 2.16E-3 2.16E-3 2.16E-3 2.16E-3 2.16E-3
libxml2 2.16E-3 2.16E-3 2.16E-3 2.16E-3 2.16E-3
lcms 8.18E-2 1.99E-2 1.52E-3 4.33E-4 9.31E-3
harfbuzz 2.16E-3 2.47E-2 2.60E-2 2.16E-3 8.13E-3
libjpeg 5.75E-2 6.87E-2 6.46E-3 4.99E-4 2.01E-3
libpng 8.86E-2 8.85E-2 1.71E-2 1.71E-2 6.10E-2
openssl 1.14E-2 2.86E-3 9.52E-4 9.52E-4 9.52E-4
openthread 2.00E-2 1.14E-2 1.14E-2 3.81E-3 6.63E-3
re2 8.67E-3 9.31E-2 2.16E-3 2.16E-3 2.16E-3
sqlite 5.89E-2 1.01E-1 3.10E-2 3.10E-2 3.94E-2
vorbis 2.45E-2 8.14E-3 6.63E-3 9.52E-4 1.14E-2
zlib 8.82E-2 4.65E-2 1.99E-2 2.58E-3 3.34E-2
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TABLE XVIII: Mann-Whitney U test results over the fuzzer and
edge coverage of AFL-based seed schedulers on 12 FuzzBench
programs for 24 hours over 10 runs (corresponding to Table V).

Default RarePath RareEdge NewPath SecCov

Fuzzer AFL AflFast FairFuzz EcoFuzz TortoiseFuzz

freetype 5.89E-2 8.18E-2 4.85E-2 2.16E-4 6.49E-3
libxml2 2.16E-3 2.16E-3 1.80E-2 2.16E-3 2.16E-3
lcms 3.10E-2 2.41E-2 6.49E-3 2.16E-4 2.41E-2
harfbuzz 1.32E-2 5.89E-2 2.16E-4 6.49E-3 1.52E-3
libjpeg 3.91E-2 8.20E-2 6.51E-3 2.16E-4 2.01E-3
libpng 7.70E-2 1.12E-1 5.35E-3 2.39E-3 1.30E-2
openssl 3.43E-2 1.14E-2 1.14E-2 9.52E-4 9.52E-4
openthread 4.86E-2 2.87E-3 2.57E-2 9.52E-4 1.14E-2
re2 3.94E-2 1.09E-2 2.60E-3 1.29E-3 8.65E-4
sqlite 6.99E-2 8.18E-2 1.51E-3 9.37E-2 3.94E-2
vorbis 2.01E-2 2.85E-3 1.87E-3 1.65E-2 3.92E-2
zlib 9.35E-2 2.40E-2 1.34E-2 5.79E-2 1.93E-2

B. Further-away Edges Are Harder to Reach by Mutations

We run an experiment verifying our observation that further
away edges in programs are harder to reach by mutations. In
Section IV, we claimed that further away edges are harder
to reach by mutations. This program property justified Katz
centrality, which decays the contribution from further out
edges. To validate this claim, we measure the likelihood that
a seed mutation will reach further-away edges on 3 real-world
programs. For each program, we choose 10 seeds and mutate
each seed 10,000 times. We repeat this process 10 times to
minimize variance. Figure 7 shows the result, where n-hop
indicates distance n from the original seed’s execution path.
This experimentally shows that fewer mutations will reach
farther away edges and hence further-away edges are harder
to reach by mutations.
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Fig. 7: The transition probability on 3 real-world programs using
10 seeds with 10,000 mutations per seed. The 1-hop transition
probability indicates the normalized amount of mutations that
reached an edge of distance 1 from the current execution path,
and similarly for 2-hop and 3-hop.

C. K-Scheduler’s Approximation Accuracy

In this section, we run an experiment to show the accuracy
of Katz centrality in approximating the count of reachable

TABLE XIX: Using the Kendall tau independence test to mea-
sure the agreement between K-Scheduler’s per node rankings
with the ideal seed scheduling ranking (i.e., the count of all
reachable and feasible edges from a node). The correlation score
ranges between [−1, 1], with higher values indicating stronger
agreement. Given the the absolute value of the correlation is
small due to the large size of the ranking list (i.e., thousands
of nodes), we also report the p-value and statistical significance
under a 0.05 significance level.

Programs Correlation p-value Statistical
Significance

freetype 0.01 8.9E-1 ×
libxml2 0.03 1.33E-58 X

lcms 0.06 4.10E-24 X
harfbuzz 0.09 4.58E-80 X
libjpeg -0.03 4.72E-9 X
libpng 0.05 2.24E-9 X
openssl 0.01 3.4E-1 ×

openthread -0.01 1.12E-5 X
re2 0.01 2.01E-2 X

sqlite 0.06 4.24E-107 X
vorbis 0.04 3.47E-6 X
zlib 0.07 1.92E-5 X

and feasible edges. In Section IV, we claimed that an ideal
seed scheduling strategy would prioritize seeds based on the
count of all reachable and feasible edges from a seed by
mutations. To better support this claim, we measure how much
agreement exists between K-Scheduler’s centrality-based
ranking with this ideal seed scheduler’s ranking. We simulate
the ideal seed scheduler’s ranking by computing each CFG
node’s count of reachable and feasible edges based on graph
traversal and covered edges (i.e., feasible) from 24 hour runs
of Libfuzzer with K-Scheduler over all 12 FuzzBench
programs, repeated 10 times. We then use the Kendall tau
independence test to measure the agreement between two
rankings with a value between [-1, 1] and report if the
measured agreement is statistically significant. We note this
Kendall tau independence test and its p-values are entirely
separate from the Mann Whitney U test and its p-values from
our edge coverage experiments.

Table XIX shows the results from the Kendall tau in-
dependence test. The absolute values of the correlation are
expectedly small given the large size of the ranking lists
(on the order of thousands). K-Scheduler’s centrality-based
rankings and the ideal strategy’s ranking strongly agree on 10
of the 12 programs (i.e., positive correlation values). On 8 of
these 10 programs, this agreement is statistically significant
with a significance level of 0.05. This agreement suggests
that K-Scheduler’s increased performance in our edge
coverage experiments derives from approximating this ideal
seed scheduling strategy and that improved approximations
would lead to better seed scheduling strategies.

D. Limitations

K-Scheduler does not currently handle indirect function
calls. We plan to handle them with static analysis techniques
(e.g., Andersen’s points-to analysis) similar to prior work [17].
Such a static analysis may produce imprecise CFGs which
can affect the utility of a seed’s centrality score for seed
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selection. However, K-Scheduler can mitigate the effects
of imprecise CFGs on centrality by reducing the contributions
from further away nodes (i.e. nodes in callee functions).
Therefore, we believe K-Scheduler will still provide useful
guidance despite the imprecision of the CFG. We also envision
using β for specific CFG nodes (i.e., nodes with indirect
function calls) to further mitigate the effects of imprecise
CFGs on centrality. We leave this to future work.
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