
SoK: How Robust is Image Classification Deep
Neural Network Watermarking?

Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum
University of Waterloo

Waterloo, Canada

{nlukas, eydjiang, xinda.li, florian.kerschbaum}@uwaterloo.ca

Abstract—Deep Neural Network (DNN) watermarking is a
method for provenance verification of DNN models. Watermark-
ing should be robust against watermark removal attacks that de-
rive a surrogate model that evades provenance verification. Many
watermarking schemes that claim robustness have been proposed,
but their robustness is only validated in isolation against a
relatively small set of attacks. There is no systematic, empirical
evaluation of these claims against a common, comprehensive
set of removal attacks. This uncertainty about a watermarking
scheme’s robustness causes difficulty to trust their deployment
in practice. In this paper, we evaluate whether recently proposed
watermarking schemes that claim robustness are robust against
a large set of removal attacks. We survey methods from the
literature that (i) are known removal attacks, (ii) derive surrogate
models but have not been evaluated as removal attacks, and (iii)
novel removal attacks. Weight shifting and smooth retraining are
novel removal attacks adapted to the DNN watermarking schemes
surveyed in this paper. We propose taxonomies for watermarking
schemes and removal attacks. Our empirical evaluation includes
an ablation study over sets of parameters for each attack
and watermarking scheme on the image classification datasets
CIFAR-10 and ImageNet. Surprisingly, our study shows that
none of the surveyed watermarking schemes is robust in practice.
We find that schemes fail to withstand adaptive attacks and
known methods for deriving surrogate models that have not been
evaluated as removal attacks. This points to intrinsic flaws in
how robustness is currently evaluated. Our evaluation includes
a discussion of the runtime of each attack to underpin their
practical relevance. While none of the schemes is robust against
all attacks, none of the attacks removes all watermarks. We show
that attacks can be combined and find combined attacks that
remove all watermarks. We show that watermarking schemes
need to be evaluated against a more extensive set of removal
attacks with a more realistic adversary model. Our source
code and a complete dataset of evaluation results are publicly
available, which allows to independently verify our conclusions.

Index Terms—Deep Neural Network, Watermarking, Robust-
ness, Removal Attacks, Image Classification

I. INTRODUCTION

Deep Neural Networks (DNN) have become state-of-the-

art algorithms for applications such as facial recognition [1]–

[3], medical image classification [4] and autonomous driv-

ing [5]. Training a DNN model can be expensive due to

data preparation (collection, organizing, and cleaning) and

computational resources required for validating a model [6].

For this reason, DNNs are often provided by a single entity

and consumed by many, such as in Machine Learning-as-

a-Service (MLaaS). A model provider may want to restrict

unauthorized redistribution of their source model. The threat

to the model provider is a user who derives a (stolen) surrogate
model from access to the source model and publicly deploys

their surrogate model. Krishna et al. [7] have shown that

such model stealing attacks can be (i) effective because even

high-fidelity surrogates of large models like BERT [8] can be

derived with limited access to domain data and (ii) practical

because surrogate models can be derived for a fraction of the

costs compared to retraining a model.

Papernot et al. [9] describe the confidentiality requirement

as one of the core principles for security and privacy in

machine learning. Preserving a model’s confidentiality refers

to protecting its parameters against model stealing attacks.

Confidentiality is important because the source model con-

stitutes intellectual property and may leak information about

its training dataset. Preventing model stealing is difficult [7],

[10]–[12], but detecting whether the confidentiality of a source

model has been broken serves as a powerful deterrent and can

be achieved through DNN watermarking.

DNN watermarking [13] is a method designed to detect sur-

rogate models. Watermarking embeds a message into a model

that is later extractable using a secret key. Developing DNN

watermarking schemes is an active area of research studied

by large corporations such as Microsoft [14], Google [15]

and IBM [16]. Robustness is a core security property of

watermarking, which states that an attacker cannot derive

surrogate models from access to the source model that do not

retain the watermark. Watermarking schemes that are robust

against such watermark removal attacks are needed to deter

redistribution by adversaries. Claimed security properties of

some existing watermarking schemes [15], [16] had been

broken by novel attacks [17]–[19], but it is unclear how these

attacks generalize to other watermarks.

We perform a systematic evaluation and propose taxonomies

for watermarking schemes and attacks. We survey 29 methods

from the literature that (i) are known removal attacks, such as

weight pruning [20] or knowledge distillation [21], (ii) derive

surrogate models but have not been evaluated as removal

attacks, and (iii) novel removal attacks. A removal attack

is effective if the surrogate model has a high test accuracy

and does not retain the watermark. It is efficient if resources

required to run the attack, such as its runtime, are small

compared to retraining a model from scratch. We measure both

effectiveness and efficiency. In our taxonomy, we categorize

attacks into (i) model modification, (ii) input preprocessing,

787

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Nils Lukas. Under license to IEEE.
DOI 10.1109/SP46214.2022.00004

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

93

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

and (iii) model extraction. Model modification and input

preprocessing modify the source model or its input, whereas

model extraction trains a different surrogate model by distilling

knowledge from the source model.

We survey eleven1 recently proposed watermarking

schemes [13]–[16], [22]–[26] from the literature that claim

robustness. Most of these schemes do not specify whether

their definition of robustness includes model extraction [13],

[14], [16], [22], [23], one scheme restricts the runtime of

the attacker [15] and the remaining schemes claim robustness

against any removal attack [24]–[26]. In this paper, we eval-

uate robustness against any removal attack and demonstrate

whether an attack is efficient by showing its runtime. Our tax-

onomy categorizes these watermarking schemes into (i) model

independent, (ii) model dependent, (iii) parameter encoding,

and (iv) active watermarking schemes.

Our new Watermark-Robustness-Toolbox (WRT) imple-

ments all watermarking schemes and removal attacks evaluated

in this paper. We validate the robustness of each scheme

against each removal attack. Our evaluation includes an ab-

lation study over multiple sets of parameters for each water-

marking scheme and removal attack. The defender and attacker

engage in a zero-sum game to choose the best parameter set for

their method, which constitutes the Nash equilibrium. We say a

scheme is robust if the defender can choose a set of parameters

so that no removal attack is effective. Our study analyzes the

robustness of watermarking schemes and the effectiveness and

efficiency of removal attacks. We also study the robustness of

watermarking scheme categories against categories of removal

attacks to identify the category of most effective attacks that

should be used to evaluate the robustness of a watermarking

scheme in a specific category.

Our empirical evaluations are performed on large datasets

to emphasize the practical relevance of our work. The exper-

iments span CIFAR-10 [27] and ImageNet [28], which are

image classification datasets. The ImageNet dataset contains

over 1.2 million training images from 1k categories and is a

broadly accepted benchmark to measure the performance of

state-of-the-art machine learning models [29].

Our study shows that none of the investigated watermarking

schemes is robust against all removal attacks. However, we

also find that none of the attacks from the literature removes all

watermarks. We propose new combined attacks that remove all

investigated watermarks while maintaining a high test accuracy

in the surrogate models. Our study also shows that robustness

should be verified against a more extensive set of attacks and

on a larger number of datasets. We believe that an open-

source implementation of watermarking schemes and removal

attacks enhances the scientific study of a scheme’s robustness.

Towards this goal, we make our new Watermark-Robustness-

Toolbox (WRT) and a complete dataset of evaluation results

publicly available with documentation, which allows indepen-

dently verifying our conclusions.

1Zhang et al. [16] propose three different schemes.

Requirements Description
Fidelity The impact on the model’s task accuracy is small.

Robustness Surrogate models retain the watermark.

Integrity
Models trained without access to the source model

do not retain the watermark.

Capacity The watermark allows encoding large messages sizes.

Efficiency Embedding and extracting the watermark is efficient.

Undetectability
The watermark cannot be detected efficiently

without knowledge of the secret watermarking key.

TABLE I: Requirements for ideal DNN watermarking.

A. Contributions

This work contributes:

• Taxonomies of DNN watermarking schemes and removal

attacks.

• An empirical evaluation of the robustness of DNN wa-

termarking schemes [13]–[16], [22]–[26] against removal

attacks from related work.

• A unified adversary model for the attacker and defender

in any of the evaluated watermarking schemes.

• Proposal of the novel removal attacks weight shifting and

smooth retraining.

• Combined attacks that remove all surveyed watermarks.

• Guidelines to evaluate the robustness of watermarking.

• An open-source implementation of all watermarking

schemes and removal attacks evaluated in this paper.

B. Organization

The rest of the paper is organized as follows. Section II

describes background information on deep neural networks.

Section III presents our taxonomy on watermarking schemes

and removal attacks and Section IV describes a unified adver-

sary model for the attacker and defender. Section V presents

the methodology for our experiments and defines all measured

quantities for our experiments. Empirical results are presented

in Section VI. Section VII-A presents guidelines for evaluating

robustness and Section VIII concludes the paper. Descriptions

of the watermarking schemes and attacks and parameters for

our ablation study can be found in Appendix X and XI.

An extended version of this paper is available as a tech-

nical report [30]. This report additionally contains survey-

style descriptions of the investigated watermarking schemes

and removal attacks and an extended discussion on their

weaknesses and strengths.

II. BACKGROUND

A. Deep Neural Networks (DNNs)

A deep neural network (DNN) classifier is a function

M : X → Y that assigns a likelihood to inputs X ⊆ R
d

for each of K ∈ N classes Y ⊆ R
K . It is a sequence of

layers fi, (i ∈ {1, .., L}) in which each layer implements a

linear function followed by a non-linear function called the

activation function. A neural network is called deep if it has

more than one layer between the input and output layer, called

hidden layers. Hidden layers have weight and bias parameters

used to compute that layer’s activations. A softmax activation

2788

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A categorization of watermarking schemes. The dis-

tinction between ’white-box’ and ’black-box’ refers to the

verification requirement, whereas ’during training’ and ’during

inference’ refer to the embedding of the watermark.

function σ(·) is applied to the output layer fL(·) to convert

likelihoods into probabilities for each predicted class.

σ(fL(x))i =
exp(fL(x)i)∑
j exp(fL(x)j)

(1)

Training a neural network model requires the specification of

a differentiable loss function that is optimized by gradient

descent on all trainable weights and biases. One such loss

function is the cross-entropy loss H for some ground truth

y ∈ Y with respect to the model’s prediction.

H(y, fL(x)) = −
∑

0≤k<K

(yk · log(σ(fL(x))k)) (2)

A black-box deployment of a DNN exposes only the API of

the model. On input of an element x ∈ X , the server responds

with the full confidence vector σ(fL(x)) ∈ Y .

III. TAXONOMY OF WATERMARKING

In this section, we define DNN watermarking and describe

our proposed taxonomy. We introduce watermarking as a

method for DNN provenance verification and propose cate-

gorizations of watermarking schemes and removal attacks.

A. Defining Watermarking.

Watermarking embeds a message into a source model that is

later extractable using a secret watermarking key. The success
rate between two messages can be computed as the number of

matching bits normalized by the message length. It is defined

as follows for messages a, b ∈ {0, 1}N of size N , where δ
denotes the Kronecker delta.

Δ(a, b) =
1

N

∑

i=1..|N |
δ(ai, bi)

A watermark is retained in a model if the same message can

be extracted with a success rate that is higher than a decision
threshold, defined by the watermarking scheme. Otherwise,

we say that a watermark is removed. A watermark should be

retained in surrogate models that are derived from the source

model. Methods of derivation include modifying the source

model, e.g., through fine-tuning [13] or weight pruning [20],

and extraction of the source model, which uses a process

related to knowledge distillation [21] to train a different model.

We differentiate between zero-bit and multi-bit watermark-

ing. Zero-bit watermarking encodes only the presence of a

watermark, whereas multi-bit watermarking allows encoding

a message containing several bits of information. For zero-bit

watermarking schemes, we represent the message that can be

extracted as a bit-string m ⊂ {0, 1}, where mi = 1 means

that the presence of the i-th watermark has been detected and

mi = 0 otherwise. Note that the message embedded into the

source model has zero bits because extracting from a source

model after embedding should always return the message of

all ones. For multi-bit watermarking, the message m ⊂ {0, 1}
can be chosen by the user and thus contains multiple bits of

information. A watermarking scheme can be formalized by an

embedding and extraction procedure.

• Embed(T,m,M): Takes a watermarking key T , a mes-

sage m ⊂ {0, 1} and a model M and outputs a marked

model M̂ embedded with a message m.

• Extract(T,M): Takes a watermarking key T , a model

M and outputs the message m ⊂ {0, 1} extracted from

model M using key T .

The watermarking key T contains the secret information re-

quired to extract a watermark. For example, the watermarking

key can consist of images [15], a bit-vector [13] or a combi-

nation of both [14]. There exists a trivial procedure to verify

whether a model M̂ retains a watermark. This verification

procedure takes as parameters a watermarking key T and

message m, a model M̂ and a decision threshold θ ∈ [0, 1].
The decision threshold specifies the lowest tolerable success

rate between message m and the message extracted from M̂
to verify whether the watermark is retained. The verification

extracts a message m̂ from model M̂ using T and computes

the success rate d = Δ(m̂,m). If the watermark is retained

(d ≥ θ) the verification outputs b = 1 and b = 0 otherwise.

B. Watermarking Categories

We systematize DNN watermarking schemes as a tree

diagram in Figure 1. These schemes can be differentiated by

(i) the watermark carrier, (ii) the stage at which the water-

mark is embedded, and (iii) whether the embedding requires

access to a pre-trained source model for the generation of the

watermarking key. The watermark carrier can be the model’s

parameters or its functionality. In the latter case, modification

of the functionality can either occur during inference while the

model is deployed or during training. If the embedding occurs

during training, a watermarking scheme may require that the

model is pre-trained. In this case, the secret key’s generation

depends on the trained model, e.g., when the secret key con-

tains adversarial examples [31]. Otherwise, the watermarking

key can be generated independently of the model and only

depends on the dataset. In summary, for a systematic analysis

3789

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

of the robustness of watermarking, we propose the following

four categories of watermarking schemes.

1) Model Dependent [23]–[25]: A model dependent scheme

embeds the message into the model’s functionality during

training, where the watermark key samples depend on

the model. Watermarking schemes in this category either

rely on adversarial examples [32] generated for the source

model [23], [25] or use the source model to modify the

watermarking key [24].

2) Model Independent [15], [16], [33]: A model indepen-

dent scheme embeds the message into the functionality

during training, where the watermarking key samples do

not depend on the model. The watermark is a back-
door [34], i.e., secret functionality learned by the source

model from the training set. A backdoor is embedded

by injecting additional samples into the training set, and

hence, the generation of the watermarking key does not

depend on the source model.

3) Active [26]: An active scheme embeds the message into

the model’s functionality during inference. It requires the

defender to control the source model’s deployment. Ac-

tive schemes only defend against attackers with black-box

access to the source model by postprocessing predictions

returned by the source model on input queries.

4) White-box (Parameter Encoding) [13], [14], [22]: A

white-box scheme embeds the message into the model’s

parameters [13], [22] or into the activations of its hidden

layers [14]. Verification requires white-box access to the

source model, i.e., access to the model’s parameters.

C. Watermark Removal Attack Categories

A watermark removal attack takes as input the source model

and outputs a surrogate model. It is successful if the surrogate

model does not retain the watermark, and it has a similar utility

(measured in test accuracy) as the source model. We survey (i)

known removal attacks [13], [17], [20], [35]–[38], (ii) methods

that derive a surrogate model but have not been evaluated as

removal attacks against DNN watermarking [21], [39]–[43],

[43]–[47] and (iii) novel, adaptive attacks proposed in this

paper. We investigate which of these methods successfully

remove watermarks. From all surveyed removal attacks, we

derive the following three attack categories.

• Input Preprocessing: Input preprocessing attacks modify

the data samples for classification before passing them

through the surrogate model. The attacker must have

white-box access to the source model.

• Model Modification: Model modification attacks trans-

form the source model’s parameters, e.g., by fine-

tuning [13] or pruning [20]. The attacker must have

white-box access to the source model.

• Model Extraction: Model extraction attacks train a dif-

ferent surrogate model by transferring knowledge from

the source model into the surrogate model. The surveyed

model extraction attacks need only black-box access

to the source model, with the exception of knowledge

distillation [21] which requires white-box access.

D. Formalizing Watermarking Requirements

Ideal watermarking should satisfy the requirements listed in

Table I. We now formalize the two properties investigated in

this paper: robustness and integrity. We refer to the watermark

extraction procedure by E(T, M̂) for ease of notation.

Robustness: Robustness requires that a message extracted

from a surrogate model is approximately the same as the

message extracted from the source model. The following

condition should hold for ε ≥ 0, a model M , a watermarking

key T , a message m and any watermark removal attack A.

M̂ ← Embed(T,m,M)

Δ
(
E(T, M̂), E(T,A(M̂))

) ≥ 1− ε

Note that robustness as defined is trivial by itself for zero-

bit watermarking since the extraction algorithm could always

return an all-ones message.

Integrity: Integrity requires a low success rate between

messages extracted from a marked model M̂ and an unmarked

model M0. Given the watermarking key T , a message m, the

marked model M̂ as defined above and an unmarked model

M0 the following condition should hold for ε ≥ 0.

Δ(E(T, M̂), E(T,M0)) ≤ ε

We evaluate whether DNN watermarking can satisfy robust-

ness and integrity. In the next section, we define a generic

adversary model and present all watermarking schemes and

removal attacks evaluated in this paper.

IV. ADVERSARY MODEL

In this section, we describe the attacker’s goals and capabil-

ities. Our study covers many different watermarking schemes

and removal attacks that assume different adversary models.

For example, model modification attacks require white-box

access to the source model, whereas many model extraction

attacks only require black-box access. We present a generic

adversary model for any watermarking scheme and watermark

removal attack. Tables II and III summarize the defender’s and

attacker’s capabilities for all methods surveyed in this paper.

A. Attacker’s Goals

The attacker’s primary goal is to derive a surrogate model

from access to the source model (i) without the retained

watermark that is (ii) well-trained, i.e., it has a similar test

accuracy as the source model. A secondary goal is to reduce

resources needed for the removal attack, such as the attack’s

computation time. We formalize a security game between the

attacker and the defender. Given a secret watermarking key T
and message m, only known to the defender, two well-trained,

unmarked models M,M0 and a watermark removal attack A,

the security game can be formalized as follows for ε ≥ 0.

1) Train M and M0 and send M to the defender.

2) Defender embeds the watermark M̂ ← Embed(T,m,M)
3) Attacker derives the surrogate model M1 ← A(M̂)

4) Sample Mb
$←− {M0,M1} and send Mb to the defender

4790

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Defense Category Verification Capacity
Adi [15] Model Independent Black-Box Multi-bit

Content [16], Noise [16],
Unrelated [16]

Model Independent Black-Box Zero-bit

Jia [24], Frontier Stitching [25] Model Dependent Black-box Zero-bit
Blackmarks [23] Model Dependent Black-box Multi-bit

Uchida [13], Deepsigns [14],
DeepMarks [22]

Parameter Encoding White-box Multi-bit

DAWN [26] Active Black-box Multi-bit

TABLE II: All watermarking schemes evaluated in this paper. See Appendix X for a description of each method.

Attack Category Deployment Data
Input Reconstruction [46], JPEG Compression [44], Input Quantization [42],

Input Smoothing [43], Input Noising [45], Input Flipping, Feature Squeezing [43]
Input Preprocessing White-box None

Adversarial Training [41], Fine-Tuning (RTLL, RTAL) [13], Weight Quantization [47],
Label Smoothing [48], Fine Pruning [38], Feature Permutation (Ours), Weight Pruning [20],
Weight Shifting (Ours), Neural Cleanse [37], Regularization [17], Neural Laundering [35]

Model Modification White-box Domain

Overwriting [13], Fine-Tuning (FTLL, FTAL) [13] Model Modification White-box Labeled

Knockoff Nets [40] Model Extraction Black-box Transfer

Distillation [21] Model Extraction White-box Domain
Transfer Learning, Retraining [36], Smooth Retraining (Ours)

Cross-Architecture Retraining (Ours), Adversarial Training (From Scratch) [41]
Model Extraction Black-box Domain

TABLE III: A list of all watermark removal attacks evaluated in this paper and the attacker’s capabilities (see Section IV). We

refer to Appendix XI for a more detailed description of the attacks and their parameters used for our ablation study. RTAL

and RTLL use predicted labels, whereas FTAL and FTLL use ground-truth labels (otherwise, gradients are zero).

5) Attacker wins if:

Pr[Verify2(T,Mb) = b] ≤ 0.5 + ε

The robustness and integrity of a watermarking scheme are

violated if an attacker can win this security game.

B. Attacker’s Capabilities.

We now present the capabilities of an attacker in the form

of a unified adversary model. Tables II and III summarize the

adversary model for each watermarking scheme and removal

attack surveyed in this paper.

Deployment. The deployment property summarizes the

access of the attacker to the source model’s parameters. It

is white-box if all of the source model’s parameters are

accessible to the attacker and black-box if only the source

model’s API is accessible. Note that an attacker with white-

box access is more informed and can also invoke attacks of

an attacker who only has black-box access.

Dataset. The dataset property summarizes the availability

of an auxiliary dataset to the attacker. Many attacks from

related work require at least the availability of unlabeled

domain data, and some even need access to data where a

subset is labeled with ground-truth labels. We assume the

attacker is limited in the amount of labeled data; otherwise,

they could train their own model and would not need to steal

the defender’s source model. From all attacks, we identify the

availability of the following three datasets to the attacker.

1) Labeled: Data from the same distribution where a subset

of at most a third of the data is labeled.

2The process ’Verify’ checks if the success rate of the embedded and
extracted message is higher than the decision threshold (see Section III-A)

2) Domain: Unlabeled data from the same distribution.

3) Transfer: Labeled data from a different distribution.

An attacker with access to a subset of labeled data is more

informed than an attacker with access to only domain data. We

consider collecting labeled data from a different distribution,

and in all of our experiments, we use the Open Images [49]

dataset as our transfer set.

Speed. Throughout the paper, we assume unbounded

computational resources for the attacker. We only measure the

runtime of attacks for a discussion of the practicality of the

attack. Attacks are categorized concerning the total training

time of an unmarked model from scratch. We consider an

attack to be fast if it requires less than 25% of the training

time, medium for times between 25% and 75% and slow for

longer runtimes. We categorize speed according to the attack’s

runtime on the highest resolution dataset investigated in this

paper (i.e., ImageNet [28]).

V. MEASURED QUANTITIES

In this section, we present the measured quantities for

conducting our experiments and describe the criteria for a

watermark to be considered robust. Quantities, such as the test

accuracy or an attack’s runtime, are measured for the outcome

of each removal attack against every watermarking scheme.

We describe a method to empirically determine a decision

threshold (see Section II) for each watermarking scheme and

dataset. We introduce the Nash equilibrium as a method to

determine the best choice of parameters in an adversarial

setting. The Nash equilibrium is computed over multiple

parameter configurations for each scheme and removal attack.

Our goal is to empirically determine whether watermarking

schemes are robust to removal attacks.

5791

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

A. Measurements

First, we describe the quantities measured for each exper-

iment and our processing of these measurements to ensure

comparability between watermarking schemes.

Embedding and Stealing Losses. We measure the embed-
ding and stealing losses as differences in test accuracy between

an unmarked and a marked model and between a marked and

a stolen surrogate model. The test accuracy is the accuracy of

a model’s predictions on an unseen, labeled dataset from the

same distribution. First, we define an auxiliary function that

computes the accuracy of a model M on a dataset D ⊆ X×Y .

acc(M,D) = Pr
(x,y)∈D

[argmax
i

(M(x)) = argmax
j

(y)]

The embedding loss is the difference in test accuracy between

an unmarked model M0 and a marked source model M̂ on a

labeled test dataset Dval ⊆ X × Y .

Lembed(M0, M̂ ,Dval) = acc(M0, Dval)− acc(M̂,Dval)

The stealing loss is the difference in test accuracy between a

marked source model M̂ and a stolen surrogate model MS .

Lsteal(M̂,MS , Dval) = acc(M̂,Dval)− acc(MS , Dval)

The defender wants to minimize the embedding loss and the

attacker wants to minimize the stealing loss.

Watermark Accuracy. The watermark accuracy is equal to

the success rate defined in Section III-A. We define the water-

mark accuracy for a surrogate model M̂ and the message m
embedded into the source model using the secret watermarking

key T . Let E be the message extraction function described in

Section III-D.

wmacc(M̂,m) = Δ(E(T, M̂),m)

Decision Threshold. The decision threshold θ ∈ [0, 1] deter-

mines the lowest tolerated watermark accuracy to verify that

a watermark is retained in a model. Ideally, a scheme defines

a decision threshold as part of their adversary model that we

could use to assess its robustness. Unfortunately, such methods

are missing from the surveyed papers, meaning that we have to

find a methodology to empirically derive decision thresholds

for each watermarking scheme.

Determining the decision threshold for a watermarking

scheme is difficult. The decision threshold depends on the

watermark accuracy of an unmarked model, which can be

influenced by factors such as the model’s architecture or the

randomness during training. For example, consider the case of

the zero-bit, model dependent watermarking scheme Frontier

Stitching [25]. The presence of a watermark is detected if a

surrogate model predicts the ground-truth labels for images

that are part of the watermarking key. The watermarking

key is composed of adversarial examples [32] generated for

the source model. During the embedding, the source model

is adversarially trained [41] to predict ground-truth labels

for the watermarking key, whereas unmarked models still

likely predict incorrect labels if the adversarial examples

are transferable [50]. The problem is that the watermark

accuracy of an unmarked model can increase without access

to the source model by using adversarial training. This affects

this watermarking scheme’s decision threshold, which should

be chosen large enough so that unmarked models are not

incorrectly verified. The challenge lies in estimating the cu-

mulative probability distribution that an unmarked model has

a watermarking accuracy larger than some decision threshold.

Such an estimation enables determining a decision threshold

so that an incorrect verification (i.e., falsely claiming that a

watermark is retained in a model) has a given probability.

Modeling the Decision Threshold. We empirically estimate

an unmarked model’s watermark accuracy given two random

variables: the unmarked model and the watermarking key.

Our goal is to estimate the cumulative probability that the

watermark accuracy of a randomly generated watermarking

key and a randomly sampled unmarked model is higher

than some threshold. We make an i.i.d. assumption for our

random variables and randomly generate 100 watermarking

keys, each with a bit-length of N = 100. Then, we compute

the watermark accuracy on a set of 30 unmarked models

for CIFAR-10 and 20 unmarked models for ImageNet for

every key and model pair. We model the cumulative normal

probability distribution for the expected number of matched

bits and choose a decision threshold. For our experiments, we

choose a p-value of 0.05. Table IV shows a summary of the

resulting decision thresholds for CIFAR-10 and ImageNet. We

observe that some decision thresholds are different between

CIFAR-10 and ImageNet, which requires the defender to

derive a threshold specific to the model and dataset they want

to protect. For the watermarking schemes Content, Noise,

Frontier Stitching and Blackmarks, we observed that the

choice of parameters affects their decision thresholds. In these

cases, Table IV shows the largest computed decision threshold,

and we refer to Appendix XIII for more information.

Rescaling Watermark Accuracies. Our goal is to compare

the robustness of different watermarking schemes. Relating

watermark accuracies from different schemes with each other

is difficult because their decision threshold may differ. In

such cases, the watermark accuracy alone does not indicate

whether a scheme is robust without knowledge of the scheme’s

decision threshold. We avoid this issue by linearly rescaling the

watermark accuracy by the scheme’s decision threshold θ so

that a watermark is retained if the rescaled watermark accuracy

is at least equal to some fixed value θ′ = 0.5 and removed

otherwise. This allows us to plot the watermark accuracies

for different schemes into the same graph. We define a linear

scaling function S(x; θ) that rescales the watermark accuracy

so that (i) S(θ; θ) = θ′ and (ii) S(1; θ) = 1. The rescaling

function uses the scheme’s (unscaled) decision threshold θ as

a parameter and returns the scaled watermark accuracy.

S(x; θ) = max(0,
1− θ′

1− θ
x+

θ′ − θ

1− θ
) (3)

We clip the output to avoid negative watermark accuracies.

From this point forward, unless stated otherwise, we only refer

to the rescaled watermark accuracy and decision threshold.

6792

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Content Noise Unrelated Adi Jia FS Blackmarks Deepmarks Deesigns Uchida Dawn
CIFAR-10 0.0717 0.4867 0.1485 0.1504 0.0518 0.5330 0.6225 0.3964 0.5254 0.5798 0.1641
ImageNet 0.0018 0.0229 0.0074 0.0066 0.1638 0.7164 0.8073 0.3183 0.5848 0.5817 0.0061

TABLE IV: This table shows the empirically determined, unscaled decision thresholds for each watermarking scheme on two

datasets with a p-value of 0.05. We obtain these decision thresholds by generating 100 watermarking keys with a key length

of N = 100 each and compute the mean watermark accuracy on a set of unmarked models. We use 30 unmarked models for

CIFAR-10 and 20 models for ImageNet. We refer to Appendix XIII for details on the computation of the decision thresholds.

Runtime. The runtime helps assess the practicality of a

watermarking scheme or removal attack. We measure the

runtime to (i) embed the watermark and (ii) run a removal

attack. Since runtimes depend on the hardware, we report all

runtimes measured on (single) Tesla P100 GPUs.

Attack Success Criterion. A success criterion determines

whether a removal attack was successful in removing a wa-

termark. We consider the watermark accuracy and the stealing

loss of the surrogate model. We say a removal attack was

successful when the surrogate model’s watermark accuracy is

lower than the scheme’s decision threshold and the surrogate

model is well-trained. In our paper, we consider a maximum

stealing loss of five percentage points for a surrogate model

to be considered well-trained. We refer to Section IV-A for a

security game that formalizes our success criterion.

B. Nash Equilibrium

Our empirical analysis performs an ablation study over

multiple sets of parameters for each watermarking scheme

and removal attack. We now describe a method to measure

the robustness of a watermarking scheme against one or more

removal attacks under the consideration that the defender

and attacker can choose from a set of parameters. For every

watermarking scheme and removal attack, we ablate over

multiple parameters (see Appendix X and XI) from which the

defender and attacker can choose. We define a zero-sum game

between the defender and attacker, where both players want

to choose optimal parameters to maximize their gains.

We construct a payoff matrix V ∈ R
m×n for n water-

marking scheme parameters {d0, .., dn} and m removal attack

parameters {a0, .., am}. The defender and attacker have full

knowledge of this payoff matrix. An entry in this matrix is

computed by applying a payoff function on the outcome of

running an attack with the row’s parameters against a wa-

termarking scheme with the column’s parameters. We define

the following payoff function. The payoff is zero for non-

successful attacks, and otherwise, the payoff is equal to the

surrogate model’s test accuracy. At the start of the game, both

players choose their strategy from the payoff matrix. We ob-

serve that the defender maximizes their gain if they minimize

the payoff, whereas the attacker wants to maximize the payoff.

A Nash equilibrium is found when neither player gains from

changing their chosen parameters. Optimal parameters for both

players can be derived as follows.

(d∗, a∗) = (di, aj) = argmin
i

(argmax
j

V [i, j]) (4)

Using the Nash equilibrium to present our results, we demon-

strate that successful watermark removal attacks exist due to

the watermarking scheme’s vulnerability rather than a wrong

choice of parameters.

VI. EXPERIMENTS

In this section, we present the results of our experiments. We

describe our experimental setup, a methodology for splitting

data between the attacker and defender, and the model archi-

tectures. Then, we report measured quantities of the attacks

and schemes, such as their runtimes or the embedding loss.

We analyze the robustness of each watermarking scheme

against (i) all attacks, (ii) categories of attacks, and (iii) indi-

vidual attacks. The first experiment validates whether a scheme

is robust if the attacker knows which scheme the defender

has chosen (but not its parameters). The second experiment

analyzes which attack categories are most effective against

each watermarking scheme. The third experiment focuses on

finding dominant attacks, i.e., successful removal attacks that

remove any watermark. Our results show that none of the

single attacks on their own removes all watermarks. Still, we

can find combined attacks that are dominant. We cannot depict

all evaluation results in this paper. Hence, we will make our

results publicly available via an interactive graph that shows

the Nash equilibrium for a set of attacks against a set of

watermarking schemes3.

A. Setup

We implement all watermark schemes and removal attacks

in our novel Watermark-Robustness-Toolbox (WRT) with Py-

Torch [51] running as its backend. WRT will be made available

as open-source code, which allows independently verifying

our empirical results. All reported runtimes in this paper were

obtained using (single) Tesla P100 GPUs.

B. Datasets

We embed watermarks into source models trained on the im-

age classification datasets CIFAR-10 [27] and ImageNet [28].

The Open Images [49] dataset is used as a transfer dataset (see

Section IV-B). Our method of splitting the dataset between

the attacker and defender differs depending on the attack’s

category. For model modification attacks, the attacker has

access to a third of the dataset and the defender can access the

remaining two thirds. Model extraction attacks require more

data to achieve a high test accuracy, hence the attacker and

defender have access to the entire training dataset. We refer

3https://crysp.uwaterloo.ca/research/mlsec/wrt

7793

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

(d) (e) (f)

Fig. 2: The measured runtimes for embedding and attacking a watermark and the embedding losses for each watermark on

CIFAR-10 (top) and ImageNet (bottom). Figures 2a, 2d show the embedding times and Figures 2b, 2e show the removal

attack runtime. Figures 2c, 2f show the embedding loss of each watermarking scheme, which is the difference in test accuracy

between an unmarked model and the (marked) source model.

to Appendix XII for a description of the datasets and details

on our method of splitting the training dataset.

C. Model Architectures

All of our experiments assume that the attacker knows the

source model’s architecture. For CIFAR-10, we use the wide

ResNet 28x10 [52] and for ImageNet the ResNet-50 [53]

architectures. We also perform cross-architecture retraining

using a DenseNet-121 [54] for CIFAR-10 and ImageNet.

D. Runtimes and Embedding Losses

We report the runtimes for the removal attacks and wa-

termark embeddings. Since the runtimes are influenced by the

choice of parameters, the results can only show general trends.

We ensured choosing parameters and training configurations

that an attacker or defender would also likely choose in

practice, such as using early stopping for the embedding. For a

detailed description of the chosen parameters and implemen-

tation details we refer to Appendixes X and XI. Figures 2a

to 2c show results for CIFAR-10 and Figures 2d to 2f for

ImageNet. All graphs are shown as horizontal bar charts with

the watermarking scheme or removal attack on the y-axis and

the runtime or the embedding loss on the x-axis. The coloring

indicates the category of a scheme or removal attack.

Embedding Runtimes. Figures 2a and 2d show the embed-

ding runtimes for CIFAR-10 and ImageNet. We refer to the

training time as the time it takes to train an unmarked model

from scratch. This training time serves as a point of reference

to assess the practicality of removal attacks and watermarking

schemes. For CIFAR-10 and ImageNet we observe a training

time of 1h and 100h, respectively.

On CIFAR-10, model independent schemes have the highest

embedding time of about 20% of the training time, whereas

parameter encoding schemes have the lowest embedding times

and require only about 9% of the training time. We do not

consider the runtime for the active scheme DAWN but point

out that deploying DAWN incurs computational costs for each

inference. On ImageNet, we observe that schemes such as

Jia and Deepmarks require considerably more time than on

CIFAR-10, whereas model independent schemes are relatively

fast to embed. The longest embedding time has Jia with more

than 1.6% of the training time. These embedding times are

low compared to the training times for both datasets, and we

conclude that all surveyed schemes are efficient.

Attack Runtimes. Figures 2b and 2e show the attack

runtimes for CIFAR-10 and ImageNet. Input Preprocessing

attacks are not shown, because they run only during inference.

We observe that the runtimes of all attacks are proportionally

8794

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

similar on CIFAR-10 and ImageNet. On both datasets, model

extraction attacks require significantly longer than model mod-

ification attacks. Transfer learning is an exception for a model

extraction attack that is relatively fast as it requires about 40%
of the training time on CIFAR-10 and roughly 25% of the

training time on ImageNet. Knockoff is the slowest attack

which takes considerably longer than retraining due to the

larger size of the training dataset.

Embedding Losses. Figures 2c and 2f show the embedding

loss for each scheme, which is the drop in test accuracy due

to embedding the watermark into the source model (see Sec-

tion V-A). Embedding losses for CIFAR-10 and ImageNet are

about one percentage point, with the exception of Deepsigns

on ImageNet, which has an embedding loss of more than three

percentage points. The parameter encoding scheme Deepmarks

incurs the lowest embedding loss on both datasets.

E. Robustness of Watermarking Schemes

In this section, we analyze the robustness of each wa-

termarking scheme against all attacks. This means that the

defender can choose from a set of parameters for a single

watermarking scheme, whereas an attacker can choose from

all parameters for all removal attacks. The goal of this analysis

is to evaluate whether any watermarking scheme can be

considered robust against an adaptive adversary. We assume

that the attacker knows the watermarking scheme chosen by

the defender but not its parameters.

Robustness. The results are illustrated in Figures 3b and 3e

in the form of a scatter plot. The x-axis shows the stealing

loss, which is the drop in test accuracy in the surrogate model

compared to the source model, and the y-axis shows the

rescaled watermark accuracy (see Section V-A). A watermark

accuracy lower than θ′ = 0.5 means that the watermark has

been removed. We highlight θ′ by a dashed line in the graph.

We draw the Pareto frontier, which is the set of watermarking

schemes with a watermark accuracy or stealing loss so that no

other watermarking scheme improves upon both metrics. Jia,

Content, and Deepmarks are members of the Pareto frontier

for CIFAR-10 and only Jia for ImageNet.

We observe that none of the watermarking schemes is

robust. For CIFAR-10, the marked source models can be

stolen with a stealing loss of less than one percentage point,

i.e., without a considerable loss of utility. For ImageNet,

we observe that removal attacks incur a higher stealing loss

overall. Jia has the highest stealing loss of three percentage

points, whereas the remaining watermarking schemes have a

stealing loss of at most two percentage points. We designed

a set of adaptive attacks against a subset of watermarking

schemes and feature their results separately as following. We

refer to Appendix XI for a detailed description of all attacks.

• Smooth Retraining: The smooth retraining attack is

adapted to the active watermarking scheme DAWN. The

idea is to query DAWN multiple times with the same

image, using a different affine transformation (e.g., crop-

ping, horizontal flipping) for each query. The label for

each image is the mean over all received labels for each

image. Smooth retraining is the only attack that removes

DAWN on CIFAR-10.

• Feature Permutation: Hidden layer neurons are permu-

tation invariant, meaning that we can apply a random

permutation on the features without losing any utility of

the model. We observe that Deepsigns is the only scheme

that is not robust against feature permutation attacks.

• Weight Shifting: Weight shifting perturbs the filter

weights of each convolutional layer by the negative mean

over all its filters, adds a small amount of noise, and fine-

tunes the model. We observe that weight shifting is the

only model modification attack that removes Uchida on

CIFAR-10 and ImageNet.

Fastest Attacks. Figures 3c and 3f show the fastest attacks

that successfully remove a watermark. On CIFAR-10, we

observe that some schemes such as Deepsigns, Blackmarks,

and Adi can be removed with a negligible runtime, whereas Jia

and Unrelated require the highest runtime. On ImageNet, we

observe that the removal of the watermarks from Unrelated and

Jia requires the highest runtime, whereas parameter encoding

schemes can be removed in the shortest amount of time. For

both datasets, we observe that the fastest attacks depend on

the watermarking scheme, i.e., there is no single fastest attack

or attack category against all watermarking schemes.

Dataset Availability. We stated that the dataset available to

a model extraction attack is larger than for model modification

attacks. We ablate over the amount of data available to the

attacker to achieve a given test accuracy. This is relevant to

discuss the practicality of model extraction attacks because the

attacker wants to minimize both (i) the training time and (ii)

the amount of data required to perform an attack.

Figures 3a and 3d show the amount of unlabeled data in

relation to the surrogate model’s test accuracy for CIFAR-10

and ImageNet. The attacker trains their surrogate model on

data labeled by source models with a test accuracy of 94.20%

on CIFAR-10 and 75.48% on ImageNet. On CIFAR-10, we

observe that transfer learning achieves a significantly higher

test accuracy than retraining from scratch using the same

amount of data. Retraining requires at least about 20k samples

to perform a successful attack, whereas transfer learning needs

only about 5k samples. On ImageNet, the difference between

retraining and transfer learning goes to zero when more

than 250k samples are available to the attacker. Performing

a successful removal attack requires at least 500k samples.

While transfer learning still requires the same amount of data

as retraining from scratch, we point out that transfer learning

requires significantly less computation time.

F. Robustness against Attack Categories

In the previous section, we showed that none of the wa-

termarking schemes is robust against all attacks. We further

analyze the robustness of each watermarking scheme against

categories of removal attacks. The defender can choose from

the set of parameters for each watermarking scheme, and the

attacker can choose from the set of parameters for attacks

of only one category. This analysis provides insights into

9795

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

(d) (e) (f)

Fig. 3: Figures (a,d) compare the amount of training data required for the transfer learning and retraining attacks to achieve a

given test accuracy. Figures (b,e) show the Pareto frontier for all watermarking schemes with respect to the stealing loss (defined

in Section V-A) and watermark accuracy of the best attack. A watermark accuracy lower than θ′ = 0.5 means that the watermark

is not robust. Figures (c, f) show the fastest attack that removes each watermark. For DAWN, the attacker has to obtain white-

box access by extracting the source model before using other attacks. For a fair comparison with other schemes, we do not

consider this extraction runtime.

the vulnerability of watermarking schemes to certain attack

categories. We refer the reader to Table III for a list of all

attacks and their categories.

Figure 4 shows a radar plot of our result for CIFAR-

10 and ImageNet. The radar plot axis shows the watermark

accuracy of each scheme against the best, successful attack

from each attack category. A larger covered area of the

watermarking scheme in the plot illustrates higher robustness

to multiple attack categories. A scheme is robust against the

attack category if the watermark accuracy is at least θ′ = 0.5
(see Section V-A). We analyze the results for each category.

Input Preprocessing. We observe that input preprocessing

attacks often do not remove a watermark on either CIFAR-10

or ImageNet, but these attacks often impact the watermark ac-

curacy. Input smoothing and input reconstruction are effective

against Adi and Noise on CIFAR-10, but not on ImageNet. We

always apply feature permutation because it does not impact

the model’s utility and requires negligible computational costs.

For this reason, Deepsigns, which is vulnerable to feature

permutation, is removed by input preprocessing attacks for

both CIFAR-10 and ImageNet. Similarly, DAWN is not robust

because it requires extracting a surrogate model prior to run-

ning an input preprocessing or model modification attack. We

extract a surrogate model for DAWN using smooth retraining,

which already removes the watermark.

Model Modification. Model modification attacks are suc-

cessful at removing all watermarks for CIFAR-10 and Im-

ageNet, except for Jia on ImageNet. Many surveyed wa-

termarking schemes are vulnerable against multiple model

modification attacks, whereas other schemes such as Uchida

are only vulnerable to our adaptive weight shifting attack.

Similar to input preprocessing attacks, we observe that model

modification attacks that do not remove the watermark can

still significantly lower the watermark accuracy.

Model Extraction. We observe that almost none of the

schemes is robust to model extraction attacks on CIFAR-10

and ImageNet. The most effective attack is transfer learning

for both CIFAR-10 and ImageNet because it requires a fraction

of the training time for an unmarked model, and it removes

almost all of the surveyed watermarks. Notable exceptions are

Noise and Blackmarks, which are robust against transfer learn-

ing on ImageNet, but Noise is not robust against retraining on

ImageNet and Blackmarks is not robust against adversarial

training. Retraining, distillation, and adversarial training from

10796

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: This figure illustrates the robustness of each surveyed watermarking scheme against categories of attacks for CIFAR-10

(top) and ImageNet (bottom). The axes show the (scaled) watermark accuracy of a scheme against the best attack from each

category. A watermark is robust against a category if the watermark accuracy is at least θ′ = 0.5. The scheme and attack

parameters are chosen using the Nash Equilibrium, and we ignore attacks when their stealing loss exceeds five percentage

points. The attack categories are Input Preprocessing (IP), Model Modification (MM), and Model Extraction (ME).

scratch yield similar results as transfer learning, but they

require (i) at least as much data and (ii) have a significantly

longer runtime. Therefore we do not evaluate distillation and

adversarial model extraction on ImageNet if a model is already

vulnerable to transfer learning or retraining.

In summary, we conclude that model extraction attacks

are the most effective removal attacks against a majority of

watermarks. Jia and Blackmarks are robust against retraining,

but Jia is not robust against transfer learning, and Blackmarks

is not robust against adversarial training. Even when a scheme

is robust to retraining with the same architecture, the attacker

can obtain a well-trained surrogate model by switching to

a different architecture. We believe that transfer learning is

more effective at removing some watermarks because the

model re-uses low-level features learned from another task.

Hence, watermarks encoded into low-level features are less

likely to be robust against transfer learning. None of the

parameter encoding schemes is robust to transfer learning,

also because extraction of such a watermark is not defined for

a different model architecture. For example, Uchida defines

a secret watermarking key that expects a layer’s weights to

be in the same shape as the source model’s layer used for

the embedding. Input preprocessing attacks are often non-

successful at removing a watermark, but they can reduce the

watermark accuracy. Model modification attacks, especially

our novel adaptive attacks, are successful in removing the

watermark of a subset of watermarking schemes and require

(i) significantly fewer data and (ii) computational resources

than model extraction attacks.

G. Attack’s Effectiveness.

Table V shows whether a scheme is robust against an

attack on CIFAR-10 and ImageNet for a subset of attacks. We

make the observations that (i) attacks designed against one

category of watermarks are not necessarily effective against

watermarks from this category, and (ii) no scheme is robust

against all model extraction attacks. Neural Cleanse [35] and

Regularization [17] were designed against model independent

watermarks, but they often only decrease the watermark accu-

racy instead of removing the watermark. Jia is robust against

retraining, but not against transfer learning suggesting that it

is encoded into the low-level features of the source model.

Transfer learning does not re-learn these low-level features

from scratch, which could explain why transfer learning is

more effective than retraining at removing the Jia watermark.

H. Dominant Attacks

This section analyzes whether a dominant attack exists that

removes all watermarks. The existence of a dominant attack

would mean that an attacker does not require knowledge about

the scheme used by the defender to remove their watermark.

11797

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Attack
Watermark Content

[16]
Noise
[16]

Unrelated
[16]

Adi
[15]

Jia
[24]

FS
[25]

BM
[23]

Deepmarks
[22]

Deepsigns
[14]

Uchida
[13]

DAWN
[26]

INPUT PREPROCESSING

Input Smoothing [43]
(Gaussian Kernel)

�/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�
MODEL MODIFICATION

Regularization [17] �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�
Neural Cleanse [37]

(Unlearning)
�/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�

Feature Permutation (Ours) �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�
Weight Shifting (Ours) �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�

MODEL EXTRACTION

Knockoff Nets [40] �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� -
Retraining [36] �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�

Smooth Retraining (Ours) - - - - - - - - - - �/�
Cross-Architecture

Retraining
�/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�

Transfer Learning [39] �/� �/� �/� �/� �/� �/� �/� �/� �/� �/� �/�

TABLE V: A summary of the robustness for each watermarking scheme against selected attacks. A checkmark (’�’) indicates

that the scheme is robust, whereas a cross (’�’) indicates that the scheme is not robust to this attack. A dash indicates that the

attack has not performed against the watermarking scheme (e.g., because it is an adaptive attack designed against a subset of

schemes). By two consecutive marks, we indicate the robustness on CIFAR-10 and ImageNet.

The attacker can choose from the set of parameters for a

single attack, whereas the defender can choose from the set

of parameters for all watermarking schemes. We observe that

transfer learning is dominant for CIFAR-10, but there exists

no dominant attack for ImageNet.

Creating Dominant Attacks. We now evaluate whether it is

possible to find combined attacks that are dominant for source

models trained on ImageNet. A combined attack performs

many attacks in sequence. Our empirical results show that

transfer learning combined with label smoothing is a dominant

attack that removes all eleven watermarks on CIFAR-10 and

ImageNet. The threat of combined attacks to the robustness

of watermarking schemes has not yet been explored, and we

show that combined attacks can pose a significant threat.

VII. DISCUSSION

In this section, we discuss the practicality of the evaluated

removal attacks and argue that they are real-world threats to

DNN watermarking. We identify three requirements for the

attacker: (1) computational resources, (2) dataset availability,

and (3) pre-trained models for transfer learning. Then we

present guidelines for designing future watermarking schemes

and discuss the implications of our work for future research.

Computational Resources. Related work often restricts the

availability of computational resources to the attacker in their

threat model [13], [15], [22] and claims robustness against

attackers with limited computational resources. We believe

that this assumption is not realistic and that a motivated

attacker is not limited by computational resources. While it

may be the adversary’s objective to minimize computational

resources, there is no theoretical guarantee that the adversary’s

learning problem will be a hard instance and require infeasible

resources in some security parameters. Quite to the contrary,

for the classification problems considered in this paper, the

adversary’s costs are very feasible. Using shared GPUs in the

cloud, the monetary costs are proportional to the attack’s run-

time. All runtimes in our paper were obtained on (single) Tesla

P100 GPUs, which incur a cost of 0.43$ per on-demand hour

of GPU-time4. Training a ResNet-50 model from scratch on

ImageNet, consisting of 1.28 million images, takes about 100

hours and costs 43$. Transfer learning a model takes only 23

hours and brings down the costs to about 10$. There are even

more optimized implementations [55] than ours, which achieve

lower costs through various optimizations, e.g., by training

on multiple GPUs, utilizing TPUs, or choosing more efficient

model architectures. We conclude that in absolute terms, the

price for computational resources is almost insignificant and

is likely not a deterrent for the attacker.

Dataset Availability. Related work often does not put

restrictions on the dataset available to the attacker, except for

limiting the amount of ground-truth labels. We find that the

attacker’s dataset significantly influences the effectiveness of

the removal attacks. Increasing the amount of (unlabeled) do-

main data is sufficient to perform successful removal attacks,

and predicted labels can substitute ground-truth labels.

We found that using a transfer dataset (labeled data from

a different domain) to train a model from scratch, such as in

the Knockoff attack [40], does not lead to successful removal

attacks. For CIFAR-10, almost all watermarks are retained,

and for ImageNet we could not train a surrogate model with

high test accuracy. We observe that access to domain data is

crucial to perform these attacks.

Availability of Pre-Trained Models. Related work has

not used transfer learning to remove watermarks, but transfer

learning is a known method for training models in the visual

domain [39]. We show that transfer learning is highly effective

at removing watermarks; it is computationally efficient, and it

can leverage access to less data than other model extraction

attacks. Related work has shown that access to larger transfer

sets can reduce the amount of domain data required for transfer

4https://cloud.google.com/compute/gpus-pricing

12798

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

learning [56]. Specifically, the authors use models that have

been pre-trained on up to 300 million images and show that

they can transfer learn this model for ImageNet with a test

accuracy of 87.5% using as few as ten examples per class.

We argue that it should not be a problem for an attacker to

obtain access to a pre-trained model from a different domain

in practice. There exist many platforms to share pre-trained

models with various model architectures, such as ONNX5 or

Model Zoo6, without charging the user.

A. Guidelines
In this section, we propose guidelines for evaluating the

robustness of watermarking schemes. These guidelines incor-

porate many of our findings and provide a minimal checklist

to claim robustness for a watermarking scheme.
Attacker’s Dataset. Our experiments have shown that ro-

bustness on CIFAR-10 does not imply robustness on ImageNet

and vice versa. In general, we observed that it is more difficult

to remove watermarks from models trained on ImageNet than

from models trained on CIFAR-10. We believe that is because

(i) the model and task are more complex and (ii) attacks

have a greater impact on the model’s utility (measured by the

test accuracy). Our recommendation for image classification

models is to experiment on (i) a small dataset, (ii) a dataset

with large input image dimensions, and (iii) a dataset with a

large number of classes. We use ImageNet to cover the last two

requirements within one dataset. Furthermore, we recommend

listing the amount of data and ground-truth labels used during

the attack for removal attacks.
Decision Threshold. We noticed that a method to derive

a watermarking scheme’s decision threshold is missing from

many papers in related work. Disproving the robustness claim

of a scheme requires a method of deriving the decision

threshold. This method affects the scheme’s usability. For

example, for the watermarking scheme Adi, we could theoret-

ically derive the decision threshold because the input images

and target labels are drawn randomly. However, Blackmarks

requires an empirical method to derive a decision threshold

because it relies on adversarial examples for which it is

difficult to theoretically quantify the transferability of these

examples to unmarked models. Our work proposes a general

method to empirically determine this decision threshold, which

involves training many unmarked models on CIFAR-10 and

ImageNet (hence the usability is limited).
Parameter Ablation. We recommend stating all parameters

for a removal attack and watermarking scheme that can be

included in an ablation study. In our paper, we manually

selected parameters to include in our ablation study. For

multiple parameters, the robustness should be evaluated at

the Nash equilibrium. This enhances (i) reproducibility of

robustness claims and (ii) allows for a fair evaluation of a

scheme’s robustness and an attack’s effectiveness.
Class Accuracies. For some watermarking schemes, such

as Content or Jia, we observed that the source model might

5https://onnx.ai/
6https://modelzoo.co/

unlearn a single class during the embedding process. On

ImageNet, the test accuracy drops only by about 0.1% when

the model unlearns a single class, but we argue that in such

cases, the impact of the watermark is greater than the drop in

overall test accuracy is suggesting. We recommend to evaluate

the drop in test accuracy for single classes.

Runtime. We suggest that a watermarking scheme or re-

moval attack should show their runtimes for the embedding

or removal procedure in relation to retraining a model from

scratch. While the runtime of all surveyed watermarking

schemes is small, we believe the runtime is still a distinguish-

ing factor for the proposed scheme’s practicality.

B. Implications for Future Research

We show with our systematic, empirical study that a well-

defined attacker can break all surveyed watermarking schemes.

We argue that DNN watermarking robustness needs to be

defined and evaluated more rigorously. Many previous works

evaluate against a relatively weak attacker that does not adapt

their attacks. In other cases, the attacker is limited by their

computational resources or the non-availability of other pre-

trained models. We present a well-defined attacker model and

our Watermark-Robustness-Toolbox7 is publicly available. Au-

thors of future watermarking schemes can evaluate robustness

against the attacker presented in this paper. Our paper does not

imply that DNN watermarking is impossible and there exist

fingerprinting schemes [57] that show promising results.

VIII. CONCLUSION

We have proposed taxonomies for DNN watermarking

schemes and removal attacks. The taxonomies define four

categories of watermarking schemes and three categories of

removal attacks. We evaluate eleven watermarking schemes

from related work and empirically determine their decision

thresholds for the CIFAR-10 and ImageNet datasets. Then, we

measured the performance of a large set of removal attacks

against all watermarking schemes and ablate over multiple

parameters for each scheme and removal attack. We use the

Nash equilibrium to evaluate a scheme’s robustness against (i)

all attacks, (ii) categories of attacks, and (iii) single attacks.

Our results show that none of the schemes is robust against

all attacks. We break down these results by analyzing each

attack category’s effectiveness and find that the most effective

removal attack category are model extraction attacks, followed

by model modification attacks. We show that transfer learning

removes all watermarks on CIFAR-10, but there exists no such

dominant attack for ImageNet. We create a combined attack

composed of (1) transfer learning and (2) label smoothing

that removes all eleven watermarks. Finally, we discuss the

practicality of the removal attacks, e.g., their monetary costs

and the dataset availability of the attacker and propose guide-

lines for evaluating the robustness of DNN watermarking. We

hope that our work will improve future evaluations of DNN

watermarking schemes.

7https://github.com/dnn-security/Watermark-Robustness-Toolbox

13799

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
2015.

[2] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
212–220.

[3] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5265–5274.

[4] J. Zhang, Y. Xie, Q. Wu, and Y. Xia, “Medical image classification
using synergic deep learning,” Medical image analysis, vol. 54, pp. 10–
19, 2019.

[5] H. Luo, Y. Yang, B. Tong, F. Wu, and B. Fan, “Traffic sign recognition
using a multi-task convolutional neural network,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 4, pp. 1100–1111, 2017.

[6] G. Press, “Cleaning big data: Most time-consuming,
least enjoyable data science task, survey says,”
2016 (accessed July 5, 2020). [Online]. Available:
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-
most-time-consuming-least-enjoyable-data-science-task-survey-says/

[7] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer,
“Thieves on sesame street! model extraction of bert-based apis,” 2020.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018, pp. 399–414.

[10] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High accuracy and high fidelity extraction of neural networks,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 1345–1362.

[11] N. Carlini, M. Jagielski, and I. Mironov, “Cryptanalytic extraction of
neural network models,” in Annual International Cryptology Conference.
Springer, 2020, pp. 189–218.

[12] B. G. Atli, S. Szyller, M. Juuti, S. Marchal, and N. Asokan, “Extraction
of complex dnn models: Real threat or boogeyman?” in International
Workshop on Engineering Dependable and Secure Machine Learning
Systems. Springer, 2020, pp. 42–57.

[13] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval, 2017, pp. 269–277.

[14] B. D. Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: A generic
watermarking framework for ip protection of deep learning models,”
arXiv preprint arXiv:1804.00750, 2018.

[15] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks
by backdooring,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 1615–1631.

[16] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks
with watermarking,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, 2018, pp. 159–172.

[17] M. Shafieinejad, J. Wang, N. Lukas, X. Li, and F. Kerschbaum, “On
the robustness of the backdoor-based watermarking in deep neural
networks,” arXiv preprint arXiv:1906.07745, 2019.

[18] X. Liu, F. Li, B. Wen, and Q. Li, “Removing backdoor-based watermarks
in neural networks with limited data,” arXiv preprint arXiv:2008.00407,
2020.

[19] T. Wang and F. Kerschbaum, “Attacks on digital watermarks for deep
neural networks,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019,
pp. 2622–2626.

[20] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[22] H. Chen, B. D. Rohani, and F. Koushanfar, “Deepmarks: a digital
fingerprinting framework for deep neural networks,” arXiv preprint
arXiv:1804.03648, 2018.

[23] H. Chen, B. D. Rouhani, and F. Koushanfar, “Blackmarks: Black-
box multibit watermarking for deep neural networks,” arXiv preprint
arXiv:1904.00344, 2019.

[24] H. Jia, C. A. Choquette-Choo, and N. Papernot, “Entangled watermarks
as a defense against model extraction,” 30th {USENIX} Security Sym-
posium ({USENIX} Security 21) (to appear), 2021.

[25] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching
for remote neural network watermarking,” Neural Computing and Ap-
plications, vol. 32, no. 13, pp. 9233–9244, 2020.

[26] S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “Dawn: Dy-
namic adversarial watermarking of neural networks,” arXiv preprint
arXiv:1906.00830, 2019.

[27] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
∼kriz/cifar.html

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[29] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” Image, vol. 2, p. T2.

[30] N. Lukas, E. Jiang, X. Li, and F. Kerschbaum, “Sok: How robust is deep
neural network image classification watermarking? (extended version),”
in IEEE Symposium on Security and Privacy, 2022.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[33] H. Li, E. Wenger, B. Y. Zhao, and H. Zheng, “Piracy resistant wa-
termarks for deep neural networks,” arXiv preprint arXiv:1910.01226,
2019.

[34] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[35] W. Aiken, H. Kim, and S. Woo, “Neural network laundering: Removing
black-box backdoor watermarks from deep neural networks,” arXiv
preprint arXiv:2004.11368, 2020.

[36] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601–618.

[37] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[38] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses. Springer, 2018,
pp. 273–294.

[39] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research
on machine learning applications and trends: algorithms, methods, and
techniques. IGI global, 2010, pp. 242–264.

[40] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing func-
tionality of black-box models,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4954–4963.

[41] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[42] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency
meets robustness,” arXiv preprint arXiv:1904.08444, 2019.

[43] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv preprint arXiv:1704.01155,
2017.

[44] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the
effect of jpg compression on adversarial images,” arXiv preprint
arXiv:1608.00853, 2016.

[45] V. Zantedeschi, M.-I. Nicolae, and A. Rawat, “Efficient defenses against
adversarial attacks,” in Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, 2017, pp. 39–49.

[46] W.-A. Lin, Y. Balaji, P. Samangouei, and R. Chellappa, “Invert and
defend: Model-based approximate inversion of generative adversarial
networks for secure inference,” arXiv preprint arXiv:1911.10291, 2019.

[47] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-

14800

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[48] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[49] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, A. Kolesnikov et al., “The open
images dataset v4: Unified image classification, object detection, and
visual relationship detection at scale,” arXiv preprint arXiv:1811.00982,
2018.

[50] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“The space of transferable adversarial examples,” arXiv preprint
arXiv:1704.03453, 2017.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[52] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[54] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[55] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-
to-end deep learning benchmark and competition,” Training, vol. 100,
no. 101, p. 102, 2017.

[56] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big transfer (bit): General visual representation learning,”
arXiv preprint arXiv:1912.11370, vol. 6, no. 2, p. 8, 2019.

[57] N. Lukas, Y. Zhang, and F. Kerschbaum, “Deep neural network finger-
printing by conferrable adversarial examples,” International Conference
on Learning Representations, 2021.

[58] Z. Cataltepe, Y. S. Abu-Mostafa, and M. Magdon-Ismail, “No free lunch
for early stopping,” Neural computation, vol. 11, no. 4, pp. 995–1009,
1999.

[59] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[60] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no.
2011, pp. 1–19, 2011.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016,
pp. 630–645.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[63] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[64] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[65] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[66] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

IX. APPENDIX

The Appendix is organized as follows. Section XII describes

the datasets used in our experiments. Section X describes all

surveyed watermarking schemes and the parameters we used in

our ablation study. Section XI describes all surveyed removal

attacks including novel attacks such as weight shifting and

contains a description of the parameters we used in the ablation

study. We refer to our technical report [30] for a survey-style

description of the watermarking schemes and removal attacks.

A detailed description of each approach can be found in the

author’s papers. Section IV provides further details on the

computation of the decision thresholds (see Section V-A).

X. WATERMARKING SCHEMES

In this section, we present the surveyed watermarking

schemes and the parameters used for our ablation study. For

simplicity, we refer to a watermarking scheme by the first

author’s name unless it is known under a different name.

A. Model Independent

Adi [15]. We embed the same 100 watermarking keys used

by the authors8. Images are resized along their shortest side

to the dimensions of the training data, followed by center

cropping. For ImageNet, we embed using early stopping [58]

on the watermarking loss with a patience of five, evaluated

at the end of every 200th batch. The watermarking loss is the

cross-entropy loss of the model computed on the watermarking

key. We ablate over the learning rate lr ∈ {10−3, 10−4}. To

speed up the embedding, we repeat the watermarking keys

1000 times for ImageNet and 100 times for CIFAR-10.

Zhang [16]. The authors propose three different schemes,

referred to as Content, Noise and Unrelated.

• Content: We use a white square embedded at the top left

corner of the image. The square’s size is s ∈ {32, 128}
for ImageNet and s ∈ {8, 16} for CIFAR-10.

• Noise: We add the noise across the entire image and clip

the resulting values into the range [0, 1]. We ablate over

the standard deviation σ ∈ {0.4, 1.0} for both ImageNet

and CIFAR-10. For CIFAR-10, we ablate over the learn-

ing rate during the embedding lr ∈ {10−3, 10−4}.
• Unrelated: We sample watermarking images from the

Omniglot dataset [59] for both CIFAR-10 and ImageNet.

We ablate over the learning rate lr ∈ {10−3, 10−4}.
For CIFAR-10, we randomly sample the source-target class

pair ’cat’ and ’dog’ and for ImageNet, we sample ’tiger shark’

and ’stingray’. We use early stopping on the watermarking loss

during the embedding and repeat the watermarking keys 1000

times for ImageNet and 100 times for CIFAR-10.

B. Model Dependent

Frontier-Stitching [25]. We use FGM [31] to generate

adversarial examples and ablate over the perturbation threshold

perturbation threshold 0.1 ≤ ε ≤ 0.25.

8https://github.com/adiyoss/WatermarkNN

15801

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Blackmarks [23]. We ablate over the loss term that mini-

mizes the bit error rate between the predicted cluster and the

assigned cluster 0.01 ≤ λ ≤ 100.
Jia [24]. We sample the watermarking key from the training

data and use a square as the secret trigger pattern (same as

the authors). For CIFAR-10, we compute the source class 4

(’deer’) and target class 6 (’frog’). We use SNNL weights

w ∈ {0.25, 1, 4} and a rate of r = 2, i.e., every second batch

consists of watermark data. The trigger has a size of 3 × 3
pixels and resets values to zero in the image across all three

channels. For ImageNet, we compute source class 3 (’tiger

shark, Galeocerdo cuvieri’) and target class 4 (’hammerhead,

hammerhead shark’). We use an SNNL weight w = 64
and a ratio of ten during the embedding using a square

trigger with 5× 5 pixels. We compute the SNNL on a single

layer, as mentioned by the authors, due to GPU memory

restrictions when computing the SNNL on all layers. When

embedding 100 elements with a batch size of 64, we observe

the convergence of the SNNL and cross-entropy losses after

about 100k images are shown to the source model.

C. Parameter Encoding
Uchida [13]. We embed the Uchida watermark with early

stopping on the loss during training and a patience of five,

whereby we evaluate the condition at the end of every epoch

for CIFAR-10 and after every 200 batches for ImageNet. The

target layer has 9 408 weights for the ImageNet models and

432 for CIFAR-10 models. For CIFAR-10, we ablate over the

constant weight factor of the embedding loss λ ∈ {0.1, 1, 10}
and for ImageNet, we ablate over λ ∈ {1, 10}.

DeepMarks9 [22]. We ablate over the embedding strength

γ ∈ {0.1, 10} and use the same target layer as in Uchida.
DeepSigns [14]. In the author’s paper, clusters are modelled

using a Gaussian Mixture Model, whereby each feature cluster

ci is described by a mean μi and a standard deviation σi. In

our experiments, we had difficulties embedding the watermark

in ImageNet models using more than m = 1 Gaussian

distributions because of instabilities during training.
Even after extensive parameter search, we observe that for

m > 1 (i) the test accuracy drops significantly over time, and

(ii) the regularization loss does not converge. The authors do

not provide source code, nor did they validate their scheme

for ImageNet. We solve the issue for ImageNet by modifying

two elements of the embedding procedure.

• Single Gaussian: We use m = 1 Gaussian and n = 100
bits to embed the message on ImageNet. We observe that

the regularization loss converges.

• Alternating Training: We train on the whole dataset

without the regularization loss for two batches. Then, we

fine-tune with the embedding loss on samples from the

source class for one batch. We observe that this stabilizes

training and maintains a high test accuracy.

We can replicate the author’s result on CIFAR-10 by using

m = 10 Gaussian distributions (one for each class) and

9DeepMarks is labeled as a fingerprint by the authors, but since it modifies
the model by embedding a message, it is a watermark as per our definition.

embedding n = 10 bits per Gaussian. On ImageNet, we embed

the watermark into a layer with 25 088 features and 24 576
features for CIFAR-10.

D. Active Schemes

DAWN [26]. We ablate over the expected rate r ∈
{0.01, 0.02} at which a false label is returned.

XI. WATERMARK REMOVAL ATTACKS

In this section, we describe the parameters used in our

ablation study for all removal attacks surveyed in this paper,

sorted by their attack category. We make configuration files

that show the parameter ablations for all removal attacks pub-

licly available as part of our Watermark-Robustness-Toolbox

(WRT). A summary of the adversary model for each attack

(see Section IV) is listed in Table III.

A. Input Preprocessing

Input Reconstruction [46]. uses an autoencoder10 [60] to

compress and reconstruct images before passing them to the

surrogate model. We ablate over the size of its bottleneck layer

64 ≤ h ≤ 512. We do not perform Input Reconstruction on

ImageNet because, to the best of our knowledge, no high-

fidelity autoencoder for ImageNet is available.

Input Noising [45]. We ablate over the standard deviation

0.01 ≤ σ ≤ 0.2 for Gaussian noise with zero mean.

Input Quantization [42]. For a given number of bits b
we discretize the input space into 2b evenly spaced intervals,

referred to as quanta. We project every value of the input

image to the mean of its quantum and ablate over the number

of bits b ∈ {3, 4, 5}.
Input Smoothing [43]. We use a mean, median, and

Gaussian kernel. For the mean and median kernels, we use

a filter size of three, and for the Gaussian kernel, we ablate

over the standard deviation 0.1 ≤ σ ≤ 0.3.

Input Flipping. We flip an image along its horizontal axis.

JPEG Compression [44]. We ablate over a parameter 5 ≤
q ≤ 95 that controls the quality of the compression.

Feature Squeezing [43]. The quanta values are chosen to

be multiples of 0.5k for some 1 ≤ k ≤ 6.

B. Model Modification

Adversarial Training [41]. We inject about 10% of the

training dataset’s size with adversarial examples generated us-

ing Projected Gradient Descent [41] for ε ∈ {0.01, 0.1, 0.25},
a step size of 0.01 and a maximum number of 40 iterations.

Each adversarial example is repeated twice, and we fine-tune

the surrogate model for five epochs.

Feature Permutation. DNNs are invariant to feature per-

mutations, meaning that neurons in a hidden layer can be

permuted without affecting the model’s functionality. We use

(random) feature permutation as an adaptive attack designed

specifically against Deepsigns [14], which encodes the mes-

sage into the activations of hidden layers.

10https://github.com/foamliu/Autoencoder

16802

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

Fine-Pruning [38]. We ablate over the sparsity 0.8 ≤ ρ ≤
0.95 and fine-tune for ten epochs on CIFAR-10 and five epochs

on ImageNet.
Fine-Tuning [13]. Fine-Tuning as a model stealing attack

refers to a set of attacks that first apply a transformation to

the model, followed by fine-tuning.

• Fine-Tune All Layers (FTAL). All weights are fine-tuned.

• Fine-Tune Last Layer (FTLL). All but the last layer’s

weights are frozen while the model is fine-tuned.

• Retrain All Layers (RTAL). The last layer’s weights are

re-initialized, and all weights are fine-tuned.

• Retrain Last Layer (RTLL). The last layer’s weights are

re-initialized, and only that layer’s weights are fine-tuned.

RTAL and RTLL use predicted labels, whereas FTAL and

FTLL use ground-truth labels (otherwise, gradients are zero).
Label Smoothing [48]. We use a weight of ε = 0.3 for the

weighted sum between the prediction and a uniform vector.
Regularization [17]. We L2-regularize for five epochs on

CIFAR-10 and one epoch on ImageNet using a weight decay

of 0.1 (two orders of magnitudes higher than during training).
Neural Cleanse [37]. We implement both unlearning and

pruning methods proposed by the authors and ablate over the

learning rate 10−3 ≤ α ≤ 10−2 for unlearning and the sparsity

0.8 ≤ ρ ≤ 0.99 for pruning.
Neural Laundering [35]. We ablate over the activation

threshold to prune convolutional layer neurons 0.03 ≤ c ≤ 3
and the learning rate for fine-tuning 10−4 ≤ α ≤ 10−2.

Weight Pruning [20]. We ablate over the sparsity 0.1 ≤
ρ ≤ 0.95 for the trainable weights of each layer.

Weight Shifting. Weight shifting is a novel, adapted attack

against parameter encoding watermarking schemes. The idea is

to apply a small perturbation to all filters of each convolutional

layer in the network, followed by fine-tuning the model to

regain the loss in test accuracy. We design weight shifting

as an efficient and effective model stealing attack specifically

against Uchida [13] and Deepmarks [22].
We explain the attack’s idea at the example of Uchida, but

a similar intuition holds for Deepmarks where the extraction

is highly similar. Let W ∈ R
n×c×w× be the convolutional

filters of a target layer, where n is the number of filters, c are

the number of channels, and w, h are the width and height of

each filter. A weakness of Uchida exploited by weight shifting

is that the attacker knows that if all convolutional filters were

inverted, i.e. W ′
i = −Wi, then the watermark accuracy would

be zero. We cannot directly invert all filters, as the model

experiences a significant drop in test accuracy. Hence, we

construct a ’softer’ version of the attack that only moves each

filter in the direction of the inverse mean multiplied by some

constant weight parameter λ1 ∈ R. We additionally add small

random Gaussian noise to each filter to encourage the network

to find slightly different filters in the fine-tuning phase.
Our attack can be formalized by the function S(W ;λ1, λ2),

which takes as input a set of filters W and outputs a shifted set

of filters W ′. The parameter λ1, λ2 trade off the attack’s effi-

ciency with its effectiveness. Let A be a random normal matrix

of the same shape as each filter Wi with a variance equivalent

to the variance over all filters for a convolutional layer and

a mean of zero. Shifted weights for each convolutional layer

can be computed by applying the following function.

S(W ;λ1, λ2)i = Wi − λ1

n

∑

j=1..n

Wj − λ2A (5)

In our experiments, we use λ1 = 1.5, λ2 = 1.0 for CIFAR-10

and λ1 = 1.3, λ2 = 0 for Imagenet. We fine-tune the model

for ten epochs on CIFAR-10 and for five epochs on ImageNet.

Weight Quantization [47]. We ablate over the bit-size b ∈
{4, 5} (i.e., there are 2b discrete states) for CIFAR-10 and

ImageNet and fine-tune the model for one epoch.

C. Model Extraction

Retraining [36]. We use the same parameters for the

surrogate model that were used to train the source model.

Smooth Retraining. Smooth Retraining trains a surrogate

model on smoothed labels obtained from querying the source

model for multiple variations of the same image. For each

query, a random, affine transformation (e.g., random cropping)

is applied to the image, and the mean of all received labels

is computed as the final label. We design smooth retraining

as an adaptive attack against the active watermarking scheme

DAWN. The intuition is that if DAWN responds with a false

label for one image, variations of the same image have a

high probability of receiving the label predicted by the source

model. In our experiments, we use n = 3 queries.

Knockoff Nets [40]. We implement the random selection

approach on the Open Images [49] dataset.

Transfer Learning [39]. Transfer Learning is an established

method from related work, where a pre-trained model from a

different domain is fine-tuned for a new domain. We propose

using transfer learning as a novel method to remove DNN

watermarks. We use a pre-trained ResNet-101 model11 for

Open Images (v2) [49] that was published by Google in 2017.

The model defines an output layer with 5k output classes,

which we replace by a layer with ten output classes for CIFAR-

10 and 1k output classes for ImageNet. We transfer-learn the

model using stochastic gradient descent (SGD) and freeze

all but the last layer for the first 300 batches. We proceed

by training the entire model for five epochs and reduce the

learning rate by a factor of ten in epochs three and four.

Adversarial Training (from scratch) [41]. This method is

equivalent to adversarial training described earlier, except that

the attacker trains the surrogate model from scratch.

XII. DATASETS

We now describe the datasets used in our experiments.

• CIFAR-10 [27] contains 50k training images and 10k

testing images from 10 classes. All images have a reso-

lution of 32× 32 pixels.

• ImageNet [28] contains 1.28 million training images and

150k testing images from 1k classes. We resize and center

crop all images to 224× 224 pixels.

11https://storage.googleapis.com/openimages/2017 07/oidv2-
resnet v1 101.ckpt.tar.gz

17803

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

• Open Images [49] defines 19.794 classes and contains in

total 8.85 million training images, out of which we use a

subset of 1.7 million images due to storage constraints on

our machines. Images can be labeled by multiple classes.

We resize and center-crop all images to 224×224 pixels.

All source models are trained on either CIFAR-10 or Ima-

geNet. The Open Images dataset is only used in the transfer

learning attack. We use standard training procedures and data

augmentation, such as horizontal flipping, to train models

for CIFAR-10 and ImageNet from scratch. On CIFAR-10

and ImageNet, the source models achieve a test accuracy of

94.20% and 75.48% respectively.

A. Dataset Splitting

We split the whole training dataset into thirds and assign

two-thirds to the defender for embedding the watermark. For

the attacker’s training data, we recall from Section IV-B that

we distinguish between the availability of the following three

datasets to the attacker.

1) Labeled: Data from the same distribution where a subset

of at most a third of the data is labeled.

2) Domain: Unlabeled data from the same distribution.

3) Transfer: Labeled data from a different distribution.

In the first two cases, we assign the remaining third of the

training dataset to the attacker. We make an exception for

model extraction attacks, where the attacker has access to the

whole training dataset without labels. Such an exception is

necessary because model extraction attacks require a substan-

tial amount of data to output well-trained surrogate models. We

underpin this argument by an ablation study in Section VI-E.

Otherwise, if the attacker is given domain data, we replace all

labels with the predictions of the source model.

XIII. ESTIMATING THE DECISION THRESHOLD

For model independent, model dependent and active water-

marking schemes, we use 20 publicly available, pre-trained

models from the torchvision12 package that do not necessarily

share the source model’s architecture (ResNet-50). We use the

following model architectures.

ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-

152 [61], Wide ResNet-50, Wide ResNet-101 [52], VGG11,

VGG13, VGG16, VGG19 [62], SqueezeNet [63], DenseNet-

121, DenseNet-161 [54], GoogleNet [64], Alexnet, Alexnet-

50 [65], InceptionNet [48], MobileNetV2 [66]

12https://pytorch.org/vision/stable/models.html

18804

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 29,2024 at 08:29:47 UTC from IEEE Xplore. Restrictions apply.

