
Four Attacks and a Proof for Telegram
Martin R. Albrecht∗, Lenka Mareková∗, Kenneth G. Paterson† and Igors Stepanovs†

∗Information Security Group, Royal Holloway, University of London, {martin.albrecht,lenka.marekova.2018}@rhul.ac.uk
†Applied Cryptography Group, ETH Zurich, {kenny.paterson,istepanovs}@inf.ethz.ch

Abstract—We study the use of symmetric cryptography in
the MTProto 2.0 protocol, Telegram’s equivalent of the TLS
record protocol. We give positive and negative results. On the
one hand, we formally and in detail model a slight variant of
Telegram’s “record protocol” and prove that it achieves security
in a suitable bidirectional secure channel model, albeit under
unstudied assumptions; this model itself advances the state-of-the-
art for secure channels. On the other hand, we first motivate our
modelling deviation from MTProto as deployed by giving two
attacks – one of practical, one of theoretical interest – against
MTProto without our modifications. We then also give a third
attack exploiting timing side channels, of varying strength, in three
official Telegram clients. On its own this attack is thwarted by the
secrecy of salt and id fields that are established by Telegram’s key
exchange protocol. To recover these, we chain the third attack
with a fourth one against the implementation of the key exchange
protocol on Telegram’s servers. In totality, our results provide
the first comprehensive study of MTProto’s use of symmetric
cryptography.

I. Introduction
Telegram is a chat platform that in January 2021 reportedly

had 500M monthly users [1]. It provides a host of multimedia
and chat features, such as one-on-one chats, public and private
group chats for up to 200,000 users as well as public channels
with an unlimited number of subscribers. Prior works establish
the popularity of Telegram with higher-risk users such as
activists [2] and participants of protests [3]. In particular, it
is reported in [2], [3] that these groups of users shun Signal
in favour of Telegram, partly due to the absence of some key
features, but mostly due to Signal’s reliance on phone numbers
as contact handles.

This heavy usage contrasts with the scant attention paid
to Telegram’s bespoke cryptographic design – MTProto – by
the cryptographic community. To date, only four works treat
Telegram. In [4] an attack against the IND-CCA security of
MTProto 1.0 was reported, in response to which the protocol
was updated. In [5] a replay attack based on improper validation
in the Android client was reported. Similarly, [6] reports input
validation bugs in Telegram’s Windows Phone client. Recently,
in [7] MTProto 2.0 (the current version) was proven secure
in a symbolic model, but assuming ideal building blocks and
abstracting away all implementation/primitive details. In short,
the security that Telegram offers is not well understood.

Telegram uses its MTProto “record layer” – offering protec-
tion based on symmetric cryptographic techniques – for two
different types of chats. By default, messages are encrypted
and authenticated between a client and a server, but not end-
to-end encrypted: such chats are referred to as cloud chats.
Here Telegram’s MTProto protocol plays the same role that

TLS plays in e.g. Facebook Messenger. In addition, Telegram
offers optional end-to-end encryption for one-on-one chats
which are referred to as secret chats (these are tunnelled over
cloud chats). So far, the focus in the cryptographic literature
has been on secret chats [4], [6] as opposed to cloud chats.
In contrast, in [3] it is established that the one-on-one chats
played only a minor role for the protest participants interviewed
in the study; significant activity was reportedly coordinated
using group chats secured by the MTProto protocol between
Telegram clients and the Telegram servers. For this reason,
we focus here on cloud chats. Given the similarities between
the cryptography used in secret and cloud chats, our positive
results can be modified to apply to the case of secret chats
(but we omit any detailed analysis).

A. Contributions
We provide an in-depth study of how Telegram uses

symmetric cryptography inside MTProto for cloud chats. We
give four distinctive contributions: our security model for secure
channels, the formal model of our variant of MTProto, our
attacks on the original protocol and our security proofs for the
formal model of MTProto.

Security model: Starting from the observation that MTProto
entangles the keys of the two channel directions, in Section III
we develop a bidirectional security model for two-party secure
channels that allows an adversary full control over generating
and delivering ciphertexts from/to either party (client or server).
The model assumes that the two parties start with a shared key
and use stateful algorithms. Our security definitions come in
two flavours, one capturing confidentiality, the other integrity.
Our formalisation is broad enough to consider a variety of
different styles of secure channels – for example, allowing
channels where messages can be delivered out-of-order within
some bounds, or where messages can be dropped (neither of
which we consider appropriate for secure messaging). This
caters for situations where the secure channel operates over an
unreliable transport protocol, but where the channel is designed
to recover from accidental errors in message delivery as well
as from certain permitted adversarial behaviours.

This is done technically by introducing the concept of
support functions, inspired by the support predicates recently
introduced by [8] but extending them to cater for a wider range
of situations. Here the core idea is that a support function
operates on the transcript of messages and ciphertexts sent and
received (in both directions) and its output is used to decide
whether an adversarial behaviour – say, dropping or reordering
messages – counts as a “win” in the security games. It is also

87

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Martin R. Albrecht. Under license to IEEE.
DOI 10.1109/SP46214.2022.00014

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

66

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

used to define a suitable correctness notion with respect to
expected behaviours of the channel.

As a final feature, our secure channel definitions allow the
adversary complete control over all randomness used by the
two parties, since we can achieve security against such a strong
adversary in the stateful setting. This decision reflects a concern
about Telegram clients expressed by Telegram developers [9].

Formal model of MTProto: In Section IV, we provide a
detailed formal model of Telegram’s symmetric encryption.
Our model is computational and does not abstract away the
building blocks used in Telegram. This in itself is a non-trivial
task as no formal specification exists and behaviour can only
be derived from official (but incomplete) documentation and
from observation; moreover different clients do not have the
same behaviour.

Formally, we define an MTProto-based bidirectional channel
MTP-CH as a composition of multiple cryptographic primitives.
This allows us to recover a variant of the real-world MTProto
protocol by instantiating the primitives with specific construc-
tions, and to study whether each of them satisfies the security
notions that are required in order to achieve the desired security
of MTP-CH. This allows us to work at two different levels of
abstraction, and significantly simplifies the analysis. However,
we emphasise that our goal is to be descriptive, not prescriptive,
i.e. we do not suggest alternative instantiations of MTP-CH.

To arrive at our model, we had to make several decisions
on what behaviour to model and where to draw the line of
abstraction. Notably, there are various behaviours exhibited by
(official) Telegram implementations that lead to attacks.

In particular, we verified in practice that current implementa-
tions allow an attacker on the network to reorder messages from
a client to the server, with the transcript on the client being
updated later to reflect the attacker-altered server’s view. We
stress, though, that this trivial yet practical attack is not inherent
in MTProto and can be avoided by updating the processing of
message metadata in Telegram’s servers.

Further, if a message is not acknowledged within a certain
time in MTProto, it is resent using the same metadata and with
fresh random padding. While this appears to be a useful feature
and a mitigation against message deletion, it would actually
enable an attack in our formal model if such retransmissions
were included. In particular, an adversary who also has control
over the randomness can break stateful IND-CPA security with
2 encryption queries, while an attacker without that control
could do so with about 264 encryption queries. We use these
more theoretical attacks to motivate our decision not to allow
re-encryption with fixed metadata in our formal model of
MTProto, i.e. we insist that the state is evolving.

Proof of security: We then claim in Section V that our slight
variant of MTProto achieves channel confidentiality and integ-
rity in our model, under certain assumptions on the components
used in its construction. As described in Section I-B, Telegram
has implemented our proposed alterations so that there can be

some assurances about MTProto as currently deployed.1

We use code-based game hopping proofs in which the
analysis is modularised into a sequence of small steps that can
be individually verified. As well as providing all details of the
proofs (in the full version), we also give high-level intuitions.
Significant complexity arises in the proofs from two sources:
the entanglement of keys used in the two channel directions,
and the detailed nature of the model of MTProto that we use
(so that our proof rules out as many attacks as possible).

We eschew an asymptotic approach in favour of concrete
security analysis. This results in security theorems that quantit-
atively relate the confidentiality and integrity of MTProto as a
secure channel to the security of its underlying cryptographic
components. Our main security results, Theorems 1 and 2
and Corollaries 1 and 2, provide confidentiality and integrity
bounds containing terms equivalent to ≈ 𝑞/264 where 𝑞 is the
number of queries an attacker makes. We discuss this further
in Section V.

However, our security proofs rely on several assumptions
about cryptographic primitives that, while plausible, have not
been considered in the literature. In more detail, due to the
way Telegram makes use of SHA-256 as a MAC algorithm and
as a KDF, we have to rely on the novel assumption that the
block cipher SHACAL-2 underlying the SHA-256 compression
function is a leakage-resilient PRF under related-key attacks,
where “leakage-resilient” means that the adversary can choose
a part of the key. Our proofs rely on two distinct variants of
such an assumption. These assumptions hold in the ideal cipher
model, but further cryptanalysis is needed to validate them for
SHACAL-2. For similar reasons, we also require a dual-PRF
assumption of SHACAL-2. We stress that such assumptions are
likely necessary for our or any other computational security
proofs for MTProto. This is due to the specifics of how
MTProto uses SHA-256 and how it constructs keys and tags
from public inputs and overlapping key bits of a master secret.
Given the importance of Telegram, these assumptions provide
new, significant cryptanalysis targets as well as motivate further
research on related-key attacks. Our proofs side-step concerns
about length-extension attacks by relying on the MTProto
plaintext encoding format which mandates the presence of
certain metadata in the first block of the encrypted payload.

Attacks: We present further implementation attacks against
Telegram in Section VI and Appendix A. These attacks
highlight the limits of our formal modelling and the fragility
of MTProto implementations. The first of these, a timing
attack against Telegram’s use of IGE mode encryption, can
be avoided by careful implementation, but we found multiple
vulnerable clients.2 The attack takes inspiration from an attack
on SSH [12]. It exploits that Telegram encrypts a length field
and checks integrity of plaintexts rather than ciphertexts. If this
process is not implemented whilst taking care to avoid a timing
side channel, it can be turned into an attack recovering up to 32

1Clients still differ in their implementation of the protocol and in particular
in payload validation, which our model does not capture.

2We note that Telegram’s TDLib [10] library manages to avoid this leak [11].

88

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

bits of plaintext. We give an example from the official Desktop
Telegram client in Section VI and treat the Android and iOS
clients in the full version of this work. However, we stress that
the conditions of this attack are difficult to meet in practice. In
particular, to recover bits from a plaintext message block 𝑚𝑖
we assume knowledge of message block 𝑚𝑖−1 (we consider this
a relatively mild assumption) and, critically, message block 𝑚1
which contains two 64-bit random values negotiated between
client and server. Thus, confidentiality hinges on the secrecy of
two random strings – a salt and an id. Notably, these fields were
not designated for this purpose in the Telegram documentation.

In order to recover 𝑚1 and thereby enable our plaintext-
recovery attack, in Appendix A we chain it with another attack
on the server-side implementation of Telegram’s key exchange
protocol. This attack exploits how Telegram servers process
RSA ciphertexts. While the exploited behaviour was confirmed
by the Telegram developers, we did not verify it with an
experiment.3 This attack actually breaks server authentication –
allowing a MiTM attack – assuming the attack can be completed
before a session times out. But, more germanely, it also allows
us to recover the id field. This essentially reduces the overall
security of Telegram to guessing the 64-bit salt field. We give a
sketch in Appendix A and details in the full version. We stress,
though, that even if all assumptions we make are met, our
exploit chain – while being considerably cheaper than breaking
the underlying AES-256 encryption – is far from practical.
Yet, it demonstrates the fragility of MTProto, which could be
avoided – along with unstudied assumptions – by relying on
standard authenticated encryption or, indeed, just using TLS.

We conclude with a broader discussion of Telegram security
and with our recommendations in Section VII.

B. Disclosure
We notified Telegram’s developers about the vulnerabilities

we found in MTProto on 16 April 2021. They acknowledged
receipt soon after and the behaviours we describe on 8 June
2021. They awarded a bug bounty for the timing side channel
and for the overall analysis. We were informed by the Telegram
developers that they do not do security or bugfix releases
except for immediate post-release crash fixes. The development
team also informed us that they did not wish to issue security
advisories at the time of patching nor commit to release dates
for specific fixes. Therefore, the fixes were rolled out as part of
regular Telegram updates. The Telegram developers informed
us that as of version 7.8.1 for Android, 7.8.3 for iOS and 2.8.8
for Telegram Desktop all vulnerabilities reported here were
addressed. When we write “the current version of MTProto”
or “current implementations”, we refer to the versions prior to
those version numbers, i.e. the versions we analysed.

II. Preliminaries
A. Notational conventions
1) Basic notation: Let N = {1, 2, . . .}. For 𝑖 ∈ N let [𝑖] be
the set {1, . . . , 𝑖}. We denote the empty string by Y, the empty

3Verification would require sending a significant number of requests to the
Telegram servers from a geographically close host.

set by ∅, and the empty tuple by (). We let 𝑥1 ← 𝑥2 ← 𝑣

denote assigning the value 𝑣 to both 𝑥1 and 𝑥2. Let 𝑥 ∈ {0, 1}∗
be any string; then |𝑥 | denotes its bit-length, 𝑥 [𝑖] denotes its
𝑖-th bit for 0 ≤ 𝑖 < |𝑥 |, and 𝑥 [𝑎 : 𝑏] = 𝑥 [𝑎] . . . 𝑥 [𝑏 − 1] for
0 ≤ 𝑎 < 𝑏 ≤ |𝑥 |. For any 𝑥 ∈ {0, 1}∗ and ℓ ∈ N such that
|𝑥 | ≤ ℓ, we write 〈𝑥〉ℓ to denote the bit-string of length ℓ that
is built by padding 𝑥 with leading zeros. For any two strings
𝑥, 𝑦 ∈ {0, 1}∗, 𝑥 ‖ 𝑦 denotes their concatenation. If 𝑋 is a finite
set, we let 𝑥←$ 𝑋 denote picking an element of 𝑋 uniformly
at random and assigning it to 𝑥. If T is a table, T[𝑖] denotes
the element of the table that is indexed by 𝑖. We use int64
as a shorthand for a 64-bit integer data type. We use 0x to
prefix a hexadecimal string in big-endian order. All variables
are represented in big-endian unless specified otherwise. The
symbol ⊥∉ {0, 1}∗ denotes an empty table position or an
error code that indicates rejection, such as invalid input to an
algorithm. Uninitialised integers are assumed to be initialised
to 0, Booleans to false, strings to Y, sets to ∅, tuples to (), and
tables are initially empty.
2) Algorithms and adversaries: Algorithms may be random-
ised unless otherwise indicated. Running time is worst case.
If 𝐴 is an algorithm, 𝑦 ← 𝐴(𝑥1, . . . ; 𝑟) denotes running 𝐴 with
random coins 𝑟 on inputs 𝑥1, . . . and assigning the output to 𝑦.
If any of inputs taken by 𝐴 is ⊥, then all of its outputs are ⊥.
We let 𝑦←$ 𝐴(𝑥1, . . .) be the result of picking 𝑟 at random and
letting 𝑦 ← 𝐴(𝑥1, . . . ; 𝑟). We let [𝐴(𝑥1, . . .)] denote the set
of all possible outputs of 𝐴 when invoked with inputs 𝑥1,
Adversaries are algorithms. We require that adversaries never
pass ⊥ as input to their oracles.
3) Security games and reductions: We use the code-based
game-playing framework of [13]. Pr[G] denotes the probability
that game G returns true. Variables in each game are shared
with its oracles. In the security reductions, we omit specifying
the running times of the constructed adversaries when they are
roughly the same as the running time of the initial adversary.

B. Standard definitions
1) Collision-resistant functions: Let 𝑓 : D 𝑓 → R 𝑓 be a
function. Consider game Gcr of Fig. 1, defined for 𝑓 and an
adversary F . The advantage of F in breaking the CR-security
of 𝑓 is defined as Advcr𝑓 (F) = Pr[Gcr

𝑓 ,F]. To win the game,
adversary F has to find two distinct inputs 𝑥0, 𝑥1 ∈ D 𝑓 such
that 𝑓 (𝑥0) = 𝑓 (𝑥1). Note that 𝑓 is unkeyed, so there exists
a trivial adversary F with Advcr𝑓 (F) = 1 whenever 𝑓 is not
injective. We will use this notion in a constructive way, to build
a specific collision-resistance adversary F (for 𝑓 = SHA-256
with a truncated output) in a security reduction.

Game Gcr
𝑓 ,F

(𝑥0, 𝑥1) ←$ F ; Return (𝑥0 ≠ 𝑥1) ∧ (𝑓 (𝑥0) = 𝑓 (𝑥1))
Figure 1: Collision-resistance of function 𝑓 .

2) Function families: A family of functions F specifies a
deterministic algorithm F.Ev, a key set F.Keys, an input set
F.In and an output length F.ol ∈ N. F.Ev takes a function

89

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

key fk ∈ F.Keys and an input 𝑥 ∈ F.In to return an output
𝑦 ∈ {0, 1}F.ol. We write 𝑦 ← F.Ev(fk, 𝑥). The key length of F
is F.kl ∈ N if F.Keys = {0, 1}F.kl.
3) Block ciphers: Let E be a function family. We say that
E is a block cipher if E.In = {0, 1}E.ol, and if E specifies (in
addition to E.Ev) an inverse algorithm E.Inv : {0, 1}E.ol → E.In
such that E.Inv(ek, E.Ev(ek, 𝑥)) = 𝑥 for all ek ∈ E.Keys and all
𝑥 ∈ E.In. We refer to E.ol as the block length of E. Our pictures
and attacks use 𝐸𝐾 and 𝐸−1

𝐾
as a shorthand for E.Ev(ek, ·) and

E.Inv(ek, ·) respectively.
4) One-time PRF-security of function family: Consider
game Gotprf

F,D of Fig. 2, defined for a function family F and an
adversary D. The advantage of D in breaking the OTPRF-
security of F is defined as AdvotprfF (D) = 2 ·Pr[Gotprf

F,D] −1. The
game samples a uniformly random challenge bit 𝑏 and runs
adversary D, providing it with access to oracle RoR. The
oracle takes 𝑥 ∈ F.In as input, and the adversary is allowed
to query the oracle arbitrarily many times. Each time RoR is
queried on any 𝑥, it samples a uniformly random key fk from
F.Keys and returns either F.Ev(fk, 𝑥) (if 𝑏 = 1) or a uniformly
random element from {0, 1}F.ol (if 𝑏 = 0). D wins if it returns
a bit 𝑏′ that is equal to the challenge bit.

Game GotprfF,D

𝑏←$ {0, 1} ; 𝑏′←$DRoR

Return 𝑏′ = 𝑏

RoR(𝑥) // 𝑥 ∈ F.In
fk←$ F.Keys ; 𝑦1 ← F.Ev(fk, 𝑥)
𝑦0←$ {0, 1}F.ol ; Return 𝑦𝑏

Figure 2: One-time PRF-security of function family F.

5) Symmetric encryption schemes: A symmetric encryption
scheme SE specifies algorithms SE.Enc and SE.Dec, where
SE.Dec is deterministic. Associated to SE is a key length
SE.kl ∈ N, a message space SE.MS ⊆ {0, 1}∗ \ {Y}, and a
ciphertext length function SE.cl : N → N. The encryption
algorithm SE.Enc takes a key 𝑘 ∈ {0, 1}SE.kl and a message
𝑚 ∈ SE.MS to return a ciphertext 𝑐 ∈ {0, 1}SE.cl(|𝑚 |) . We
write 𝑐←$ SE.Enc(𝑘, 𝑚). The decryption algorithm SE.Dec
takes 𝑘, 𝑐 to return message 𝑚 ∈ SE.MS ∪ {⊥}, where ⊥
denotes incorrect decryption. We write 𝑚 ← SE.Dec(𝑘, 𝑐).
Decryption correctness requires that SE.Dec(𝑘, 𝑐) = 𝑚 for all
𝑘 ∈ {0, 1}SE.kl, all 𝑚 ∈ SE.MS, and all 𝑐 ∈ [SE.Enc(𝑘, 𝑚)]. We
say that SE is deterministic if SE.Enc is deterministic.
6) One-time indistinguishability of SE: Consider game
Gotind$ of Fig. 3, defined for a deterministic symmetric
encryption scheme SE and an adversary D. We define the
advantage of D in breaking the OTIND$-security of SE as
Advotind$

SE (D) = 2 · Pr[Gotind$
SE,D] − 1. The game proceeds as the

OTPRF game.
7) IGE block cipher mode of operation: Let E be a
block cipher. Define the Infinite Garble Extension (IGE)
mode of operation as SE = IGE[E] as in Fig. 4, where
key length is SE.kl = E.kl + 2 · E.ol, the message space
SE.MS =

⋃
𝑡 ∈N{0, 1}E.ol·𝑡 consists of messages whose lengths

are multiples of the block length, and the ciphertext length
function SE.cl is the identity function. IGE was first defined

Game Gotind$
SE,D

𝑏←$ {0, 1} ; 𝑏′←$DRoR

Return 𝑏′ = 𝑏

RoR(𝑚) // 𝑚 ∈ SE.MS
𝑘←$ {0, 1}SE.kl; 𝑐1 ← SE.Enc(𝑘, 𝑚)
𝑐0←$ {0, 1}SE.cl(|𝑚 |) ; Return 𝑐𝑏

Figure 3: One-time real-or-random indistinguishability of
deterministic symmetric encryption scheme SE.

in [14] without proof of security. Attacks relying on key/IV
reuse were described in [15], [16]. Fig. 4 is somewhat
nonstandard, as it includes the IV (𝑐0, 𝑚0) as part of the key
material. However, in this work, we only require one-time
security of SE, so keys and IVs are generated together and the
IV is not included as part of the ciphertext.

IGE[E] .Enc(𝑘, 𝑚)
For 𝑖 = 1, . . . , 𝑡 do
𝑐𝑖 ← E.Ev(𝐾, 𝑚𝑖 ⊕ 𝑐𝑖−1)

⊕𝑚𝑖−1
Return 𝑐1 ‖ . . . ‖ 𝑐𝑡

IGE[E] .Dec(𝑘, 𝑐)
For 𝑖 = 1, . . . , 𝑡 do
𝑚𝑖 ← E.Inv(𝐾, 𝑐𝑖 ⊕ 𝑚𝑖−1)

⊕𝑐𝑖−1
Return 𝑚1 ‖ . . . ‖ 𝑚𝑡

Figure 4: Construction of IGE[E] as SE from block cipher E. Let
𝑡 be the number of blocks of 𝑚 (or 𝑐), i.e. 𝑚 = 𝑚1 ‖ . . . ‖ 𝑚𝑡 .
Parse 𝐾 ‖ 𝑐0 ‖ 𝑚0 ← 𝑘 where |𝐾 | = E.kl, |𝑐0 | = |𝑚0 | = E.ol.

8) SHA hash functions: Let SHA-1 : {0, 1}∗ → {0, 1}160

and SHA-256 : {0, 1}∗ → {0, 1}256 be the hash functions
of [17] and let ℎ160 : {0, 1}160 × {0, 1}512 → {0, 1}160

and ℎ256 : {0, 1}256 × {0, 1}512 → {0, 1}256 be their com-
pression functions. Let SHACAL-1 [18] be the block cipher
defined by SHACAL-1.kl = 512, SHACAL-1.ol = 160 and
ℎ160 (𝑘, 𝑥) = 𝑘 +̂ SHACAL-1.Ev(𝑥, 𝑘), where +̂ is a modular
addition over 32-bit words. Let SHACAL-2 be the block cipher
defined by SHACAL-2.kl = 512, SHACAL-2.ol = 256 and
ℎ256 (𝑘, 𝑥) = 𝑘 +̂ SHACAL-2.Ev(𝑥, 𝑘).

III. Bidirectional channels
A. Our formal model in context of prior work

We model Telegram’s MTProto protocol as a bidirectional
cryptographic channel. A channel provides a method for two
users to exchange messages, and it is bidirectional [19] when
both users can send and receive messages. There is a significant
body of prior work on primitives that can be thought of as
special cases of a bidirectional channel, building on the early
work of [20] which introduced stateful security notions for
symmetric encryption and used them to analyse SSH. MTProto
uses distinct but related secret keys to send messages in the
opposite directions on the channel, so the simpler primitives
are not sufficient for our analysis.

MTProto cryptographically enforces a complex set of rules
regarding the order in which messages can be decrypted,
allowing out-of-order delivery. Channels are normally required
to satisfy the strongest possible integrity notion, ensuring
strict in-order delivery. But some prior work considers relaxed
integrity requirements, defining security notions that permit
message replay, reordering, or omission [20], [21], [22]. Fine-
grained message delivery rules are captured in [23]. A more

90

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

powerful framework for robust channels is defined in [8]. None
of this work targets bidirectional channels.

We extend the framework of [8], lifting it to the bidirectional
setting. Most notably, our framework uses more information
to make the support decisions. These decisions are based on
per-user communication transcripts. For each sent or received
ciphertext, a user’s transcript includes a plaintext-ciphertext
pair, where one of them can be ⊥ to denote a failure. Keeping
track of failures allows us to capture fine-grained notions of
robustness; keeping track of plaintexts allows to define simpler
security definitions. In the full version of this work we provide
a detailed comparison between our framework and that of [8].
B. Definitions of channels and support functions

We refer to the two users of a channel as I and R. These
will map to client and server in the setting of MTProto. We
use u ∈ {I,R} as a variable to represent an arbitrary user
and u to represent the other user, meaning u denotes the sole
element of {I,R} \ {u}. We use stu to represent the internal
state of user u.

Definition 1. A channel CH specifies algorithms CH.Init,
CH.Send and CH.Recv, where CH.Recv is deterministic. Asso-
ciated to CH is a plaintext space CH.MS and a randomness
space CH.SendRS of CH.Send. The initialisation algorithm
CH.Init returns I’s and R’s initial states stI and stR . The
sending algorithm CH.Send takes stu for some u ∈ {I,R}, a
plaintext 𝑚 ∈ CH.MS, and auxiliary information aux to return
the updated state stu and a ciphertext 𝑐, where 𝑐 =⊥ may be
used to indicate a failure to send. We may surface random
coins 𝑟 ∈ CH.SendRS as an additional input to CH.Send.
The receiving algorithm CH.Recv takes stu, 𝑐 and auxiliary
information aux to return the updated state stu and a plaintext
𝑚 ∈ CH.MS ∪ {⊥}, where ⊥ indicates a failure to recover a
plaintext. The syntax used for the algorithms of CH is given in
Fig. 5.

(stI , stR) ←$ CH.Init()
(stu, 𝑐) ← CH.Send(stu, 𝑚, aux; 𝑟)
(stu, 𝑚) ← CH.Recv(stu, 𝑐, aux)

Figure 5: Syntax of the constituent algorithms of channel CH.

The abstract auxiliary information field aux will be used
to associate timestamps to each sent and received message. It
should not be thought of as an associated data that needs to
be authenticated; we do not model associated data.

We define a support transcript to represent a record of all
messages sent and received by a single user on a channel. Each
transcript entry includes a plaintext 𝑚 and a label (denoted
by label); we use labels to distinguish between exchanged
user messages that encrypt or encode different plaintexts.
Depending on the level of abstraction, for any 𝑚 we will
use the corresponding ciphertext or message encoding as its
label.4 But we will make use only of the equality patterns that

4This will be a ciphertext 𝑐 when channel security notions are considered.
This will be a message encoding 𝑝 when properties of the message encoding
schemes (defined in Section III-D) are considered.

arise between labels, not of the exact values. Transcripts can
include entries with plaintexts 𝑚 = ⊥ to capture that a received
message was rejected. This allows us to model a range of
channel behaviours in the event of an error (from terminating
after the first error to full recovery). Transcript entries can also
include label =⊥, e.g. to indicate that a plaintext could not be
sent over a terminated channel.

Definition 2. A support transcript tru for user u ∈ {I,R} is
a list of entries of the form (op, 𝑚, label, aux), where op ∈
{sent, recv}. An entry with op = sent indicates that user u
attempted to send a message that encrypts or encodes plaintext
𝑚 with auxiliary information aux, associated to label. An
entry with op = recv indicates that user u received a message
associated to label with auxiliary information aux, and used
it to recovered plaintext 𝑚.

We define a support function supp that uses user support
transcripts to determine whether a user u ∈ {I,R} should
accept an incoming message from u that is associated to label.
If the message should be accepted, then supp must return
a plaintext 𝑚∗ to indicate that u is expected to recover 𝑚∗

from the incoming message; otherwise supp must return ⊥ to
indicate that the message is expected to be rejected. We also
let supp take the auxiliary information aux as input so that
timestamps can be captured in our definitions.

Definition 3. A support function supp is a function with syntax
supp(u, tru, tru, label, aux) → 𝑚∗ where u ∈ {I,R}, and tru,
tru are support transcripts for users u and u. It indicates that,
according to the transcripts, user u is expected to recover
plaintext 𝑚∗ from the incoming message that is associated to
label with auxiliary information aux.

A support function does not take a channel’s state informa-
tion as input, so it can only rely on equality patterns between
labels across the transcripts of both users. This is sufficient
to specify message delivery rules that can capture attempted
forgeries, replays, reordering and omissions.5 Thus we will
use support functions to specify the permissible adversarial
behaviour on the network that should be supported by a channel.

In the full version of this work we formalise two correctness
properties of a support function supp, but we do not mandate
that they must always be met. Both properties were also
considered in [8]. The order correctness requires that in-order
delivery is supported in either direction if each message is
assigned a distinct label.6 The integrity of supp requires that
it always returns ⊥ if the queried label does not appear in tru.
C. Correctness and security of channels

For the following properties, consider the games in Fig. 6. We
allow the adversary to control the randomness used by CH.Send.
We show our games to be equivalent to an authenticated
encryption style security notion for channels in the full version
of this work.

5For example, the supp. function in Fig. 23 mandates strict in-order delivery.
6[8] defines this notion as a part of the channel correctness game. We note

that this notion cannot be met by some non-robust channels, e.g. those that
close the connection once a number of errors occur.

91

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

Game GcorrCH,supp,F
win← false ; (stI , stR) ←$ CH.Init()
F Send,Recv (stI , stR) ; Return win
Send(u, 𝑚, aux, 𝑟)
(stu, 𝑐) ← CH.Send(stu, 𝑚, aux; 𝑟)
tru ← tru ‖ (sent, 𝑚, 𝑐, aux) ; Return 𝑐

Recv(u, 𝑐, aux)
𝑚∗ ← supp(u, tru, tru, 𝑐, aux)
If 𝑚∗ = ⊥ then return ⊥
(stu, 𝑚) ← CH.Recv(stu, 𝑐, aux)
tru ← tru ‖ (recv, 𝑚, 𝑐, aux)
If 𝑚∗ ≠ 𝑚 then win← true
Return 𝑚

Game GintCH,supp,F
win← false ; (stI , stR) ←$ CH.Init()
F Send,Recv ; Return win
Send(u, 𝑚, aux, 𝑟)
(stu, 𝑐) ← CH.Send(stu, 𝑚, aux; 𝑟)
tru ← tru ‖ (sent, 𝑚, 𝑐, aux) ; Return 𝑐

Recv(u, 𝑐, aux)
(stu, 𝑚) ← CH.Recv(stu, 𝑐, aux)
𝑚∗ ← supp(u, tru, tru, 𝑐, aux)
tru ← tru ‖ (recv, 𝑚, 𝑐, aux)
If 𝑚 ≠ 𝑚∗ then win← true
Return 𝑚

Game GindCH,D
𝑏←$ {0, 1} ; (stI , stR) ←$ CH.Init()
𝑏′←$DCh,Recv ; Return 𝑏′ = 𝑏

Ch(u, 𝑚0, 𝑚1, aux, 𝑟)
If |𝑚0 | ≠ |𝑚1 | then return ⊥
(stu, 𝑐) ← CH.Send(stu, 𝑚𝑏 , aux; 𝑟)
Return 𝑐

Recv(u, 𝑐, aux)
(stu, 𝑚) ← CH.Recv(stu, 𝑐, aux)
Return ⊥

Figure 6: Correctness of channel CH; integrity of channel CH; indistinguishability of channel CH.

1) Correctness: Consider adversary F in game Gcorr
CH,supp,F

associated to a channel CH and a support function supp. The
advantage of F in breaking the correctness of CH with respect
to supp is defined as AdvcorrCH,supp (F) = Pr[Gcorr

CH,supp,F]. The
game initialises users I and R. The adversary is given their
initial states and gets access to a sending oracle Send and to
a receiving oracle Recv. Calling Send(u, 𝑚, aux, 𝑟) encrypts
the plaintext 𝑚 with auxiliary data aux and randomness 𝑟 from
user u to the other user u; the resulting tuple (sent, 𝑚, 𝑐, aux)
is added to the sender’s transcript tru. Recv can only be
called on honestly produced ciphertexts, meaning it exits
when supp returns 𝑚∗ ≠⊥. Calling Recv(u, 𝑐, aux) thus
recovers the plaintext 𝑚∗ from the support function, decrypts
the corresponding ciphertext 𝑐 and adds (recv, 𝑚, 𝑐, aux) to
the receiver’s transcript tru; the game verifies that the recovered
plaintext 𝑚 is equal to the originally encrypted plaintext 𝑚∗.
If the adversary can cause the channel to output a different
𝑚, then the adversary wins. This game captures the minimal
requirement one would expect from a communication channel:
honestly sent ciphertexts should decrypt to the correct plaintexts.
It is similar in spirit to the correctness game of [8].

2) Integrity: Consider adversary F in game Gint
CH,supp,F

associated to a channel CH and a support function supp. The
advantage of F in breaking the integrity of CH with respect
to supp is defined as AdvintCH,supp (F) = Pr[Gint

CH,supp,F]. The
adversary gets access to oracles Send and Recv (but not
to the users’ states). Both calls proceed as in the correctness
game except that now Recv does not limit F to querying
only honestly produced ciphertexts. This captures the intuition
that the adversary can manipulate ciphertexts on the network
in an attempt to create a forgery. Take supp(u, tru, tru, 𝑐, aux)
that returns 𝑚∗ iff (sent, 𝑚∗, 𝑐, aux) ∈ tru, and returns ⊥
otherwise. Then integrity with respect to supp mandates that a
conventional ciphertext forgery is impossible, but all ciphertext
replays, reordering, and omissions are permitted by the channel.

3) Confidentiality: Consider adversary D in game Gind
CH,D

associated to a channel CH. The advantage of D in breaking
the IND-security of CH is defined as AdvindCH (D) = 2 ·
Pr[Gind

CH,D] − 1. The adversary can query the challenge oracle

Ch(u, 𝑚0, 𝑚1, aux, 𝑟) as an encryption oracle for user u with
two plaintexts 𝑚0, 𝑚1 of the same size, auxiliary information
aux and randomness 𝑟 , to obtain the ciphertext 𝑐 that encrypts
𝑚𝑏 . The adversary wins if it can guess the challenge bit 𝑏. The
game also contains a Recv oracle. It is needed to model that
each user’s state stu may be updated every time a ciphertext
is processed, potentially influencing subsequent encryption
operations. However, the Recv oracle does not return any
information directly to D.

D. Message encoding schemes
At its core, a channel can be expected to have a mechanism

that handles encoding of plaintexts into payloads, and decoding
of payloads back into plaintexts. Such a mechanism does not
need to provide any security assurances, and can be intended
for use over a communication channel that already guarantees
integrity and confidentiality. We formalise it as a separate
primitive called a message encoding scheme. It can then be
composed with appropriate cryptographic primitives to build a
cryptographic channel.

A modular approach leads to defining a syntax for message
encoding that is similar to that of cryptographic channels. A
message encoding scheme needs to have stateful encoding and
decoding algorithms. Auxiliary information can be used to
relay and verify information such as timestamps. One could
expect all algorithms of a message encoding scheme to be
deterministic; our definition uses randomness purely because
it is necessary when modelling Telegram.

(stI , stR) ←$ ME.Init()
(stu, 𝑝) ← ME.Encode(stu, 𝑚, aux; a)
(stu, 𝑚) ← ME.Decode(stu, 𝑝, aux)

Figure 7: Syntax of message encoding scheme ME.

Definition 4. A message encoding scheme ME specifies
algorithms ME.Init, ME.Encode and ME.Decode, where
ME.Decode is deterministic. Associated to ME is a plaintext
space ME.MS ⊆ {0, 1}∗, a payload space ME.Out, a random-
ness space ME.EncRS of ME.Encode, and a payload length

92

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

function ME.pl : (N∪ {0}) ×ME.EncRS→ N. The initialisation
algorithm ME.Init returns I’s and R’s initial states stI and stR .
The encoding algorithm ME.Encode takes stu for 𝑢 ∈ {I,R}, a
message 𝑚 ∈ ME.MS, and auxiliary information aux to return
the updated state stu and a payload 𝑝 ∈ ME.Out.7 We may
surface random coins a ∈ ME.EncRS as an additional input
to ME.Encode; then a message 𝑚 should be encoded into a
payload of length |𝑝 | = ME.pl(|𝑚 | , a). The decoding algorithm
ME.Decode takes stu, 𝑝, and auxiliary information aux to
return the updated state stu and a message 𝑚 ∈ ME.MS∪ {⊥}.
The syntax used for the algorithms of ME is given in Fig. 7.

A message encoding scheme needs to provide correctness-
style properties and some form of non-cryptographic integrity.
We expect it to arbitrate whether payloads that are sent over
the channel can be silently replayed, reordered or omitted. In
contrast, the cryptographic (non-encoding) parts of the channel
can be expected to enforce that all received payloads were at
some point honestly produced by the opposite user.

We define integrity of a message encoding scheme ME based
on the security game in Fig. 8. The advantage of adversary F
in breaking the EINT-security of ME with respect to supp is
defined as AdveintME,supp (F) = Pr[Geint

ME,supp,F]. The two core dif-
ferences from the corresponding channel notion in Section III-C
are as follows. First, the message encoding scheme is meant
to be run within an authenticated communication channel, so
the Recv oracle now starts by checking that the queried
payload 𝑝 was returned by a prior call to the opposite user’s
Send oracle in response to some message 𝑚 and auxiliary
information aux. Second, the message encoding is not meant
to serve any cryptographic purpose, meaning the initial states
stME,I , stME,R should not contain any secret information and
are both given as inputs to adversary F .

Game GeintME,supp,F
win← false ; (stME,I , stME,R) ←$ ME.Init()
F Send,Recv (stME,I , stME,R) ; Return win
Send(u, 𝑚, aux, 𝑟) // u ∈ {I,R}, 𝑚 ∈ ME.MS, 𝑟 ∈ ME.EncRS
(stME,u, 𝑝) ← ME.Encode(stME,u, 𝑚, aux; 𝑟)
tru ← tru ‖ (sent, 𝑚, 𝑝, aux) ; Return 𝑝

Recv(u, 𝑝, aux) // u ∈ {I,R}, 𝑝 ∈ ME.Out
If �𝑚′, aux ′ : (sent, 𝑚′, 𝑝, aux ′) ∈ tru then return ⊥
(stME,u, 𝑚) ← ME.Decode(stME,u, 𝑝, aux)
𝑚∗ ← supp(u, tru, tru, 𝑝, aux)
tru ← tru ‖ (recv, 𝑚, 𝑝, aux) ; If 𝑚 ≠ 𝑚∗ then win← true
Return 𝑚

Figure 8: Integrity of message encoding scheme ME with respect
to support function supp.

IV. Modelling MTProto 2.0
In this section, we describe our modelling of the MTProto

2.0 record protocol as a bidirectional channel. First, in Sec-

7For full generality, the algorithm ME.Encode could also be allowed to
return 𝑝 =⊥. However, the message encoding schemes we define in this work
can never return ⊥, so for simplicity we do not allow such output.

tion IV-A we give an informal description of MTProto based on
Telegram documentation and client implementations. Next, in
Section IV-B we outline attacks that motivate protocol changes
required to achieve security. We list further modelling issues
and points where we depart from Telegram documentation in
Section IV-C. We conclude with Section IV-D where we give
our formal model for a fixed version of the protocol.

A. Telegram description
We studied MTProto 2.0 as described in the online docu-

mentation [24] and as implemented in the official desktop8

and Android9 clients. We focus on cloud chats. Figures 9 and
10 give a visual summary of the following description.
Key exchange: A Telegram client must first establish a
symmetric 2048-bit auth_key with the server via a version of
the Diffie-Hellman key exchange. We defer the details of the
key exchange to the full version of this work. In practice, this
key exchange first results in a permanent auth_key for each of
the Telegram data centres the client connects to. Thereafter, the
client runs a new key exchange on a daily basis to establish a
temporary auth_key that is used instead of the permanent one.
“Record protocol”: Messages are protected as follows.
1) API calls are expressed as functions in the TL schema [25].
2) The API requests and responses are serialised according to
the type language (TL) [26] and embedded in the msg_data
field of a payload 𝑝, shown in Table I. The first two 128-bit
blocks of 𝑝 have a fixed structure and contain various metadata.
The maximum length of msg_data is 224 bytes.
3) The payload is encrypted using AES-256 in IGE mode.
The ciphertext 𝑐 is a part of an MTProto ciphertext
auth_key_id ‖msg_key ‖ 𝑐, where:

auth_key_id := SHA-1 (auth_key) [96 : 160]
msg_key := SHA-256 (auth_key[704 + 𝑥 : 960 + 𝑥] ‖ 𝑝) [64 : 192]

𝑐 := IGE[AES-256].Enc(key ‖ iv, 𝑝)

The IGE[AES-256] keys and IVs are computed via:

𝐴 := SHA-256 (msg_key ‖ auth_key[𝑥 : 288 + 𝑥])
𝐵 := SHA-256 (auth_key[320 + 𝑥 : 608 + 𝑥] ‖msg_key)

key := 𝐴[0 : 64] ‖ 𝐵 [64 : 192] ‖ 𝐴[192 : 256]
iv := 𝐵 [0 : 64] ‖ 𝐴[64 : 192] ‖ 𝐵 [192 : 256]

In the above steps, 𝑥 = 0 for messages from the client and
𝑥 = 64 from the server. Telegram clients use the BoringSSL
implementation [27] of IGE, which has 2-block IVs.
4) MTProto ciphertexts are encapsulated in a “transport
protocol”. The MTProto documentation defines multiple such
protocols [28], but the default is the abridged format that
begins the stream with a fixed value of 0xefefefef and then
wraps each MTProto ciphertext 𝑐MTP in a transport packet as:
• length ‖ 𝑐MTP where 1-byte length contains the 𝑐MTP length
divided by 4, if the resulting packet length is < 127, or
• 0x7f ‖ length ‖ 𝑐MTP where length is encoded in 3 bytes.
5) All the resulting packets are obfuscated by default using
AES-128 in CTR mode. The key and IV are transmitted at

8https://github.com/telegramdesktop/tdesktop/, versions 2.3.2 to 2.7.1
9https://github.com/DrKLO/Telegram/, versions 6.1.1 to 7.6.0

93

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

the beginning of the stream, so the obfuscation provides no
cryptographic protection and we ignore it henceforth.10

6) Communication is over TCP (port 443) or HTTP. Clients
attempt to choose the best available connection. There is support
for TLS in the client code, but it does not seem to be used.

In combination, these operations mean that MTProto 2.0 at
its core uses a “stateful Encrypt & MAC” construction. Here
the MAC tag msg_key is computed using SHA-256 with a
prepended key derived from (certain bits of) auth_key. The
key and IV for IGE mode are derived on a per-message basis
using a KDF based on SHA-256, using certain bits of auth_key
as the key-deriving key and the msg_key as a diversifier. Note
that the bit ranges of auth_key used by the client and the server
to derive keys in both operations overlap with one another.
Any formal security analysis needs to take this into account.

auth_key
𝑘𝑘 ‖𝑟0‖𝑚𝑘 ‖𝑟1

server_salt session_id msg_id msg_seq_nomsg_length msg_data padding
auth_key

𝑘𝑘

𝑚𝑘

HASH
SHA-1

KDF
SHA-256

MAC
SHA-256

SE
IGE[AES-256]

auth_key_id msg_key encrypted data

Figure 9: Overview of message processing in MTProto 2.0.

32 bits 96 bits 1088 bits

𝑘𝑘I,0 (288 bits) 𝑘𝑘I,1 (288 bits) 𝑚𝑘I (256 bits)

auth_key = raw 𝑔𝑥𝑦 value (2048 bits)

𝑘𝑘R,0 (288 bits) 𝑘𝑘R,1 (288 bits) 𝑚𝑘R (256 bits)

64 bits 32 bits 96 bits 1024 bits

Figure 10: Parsing auth_key in MTProto 2.0. User u ∈ {I,R}
derives a KDF key kku = (kku,0, kku,1) and a MAC key mku.

B. Attacks against MTProto metadata validation
We describe adversarial behaviours that are permitted in

current Telegram implementations and that mostly depend on
how clients and servers validate metadata information in the
payload (especially the second 128-bit block containing msg_id,
msg_seq_no and msg_length).
1) Reordering and deletion: We consider a network attacker
that sits between the client and the Telegram servers, attempting
to manipulate the conversation transcript. By message we mean
any msg_data exchanged via MTProto, but we pay particular
attention to when it contains a chat message.
a) Reordering: By reordering we mean that an adversary can
swap messages sent by one party so that they are processed
in the wrong order by the receiving party. Preventing such
attacks is a basic property that one would expect in a secure

10This feature is meant to prevent ISP blocking. In addition to this, clients
can route their connections through a Telegram proxy. The obfuscation key
is then derived from a shared secret (e.g. from proxy password) between the
client and the proxy.

field type description

server_salt int64 Server-generated random num-
ber valid in a given time period.

session_id int64 Client-generated random identi-
fier of a session under the same
auth_key.

msg_id int64 Time-dependent identifier of a
message within a session.

msg_seq_no int32 Message sequence number.
msg_length int32 Length of msg_data in bytes.

msg_data bytes Actual body of the message.
padding bytes 12-1024B of random padding.

Table I: MTProto payload format.

messaging protocol. The MTProto documentation mentions
reordering attacks as something to protect against in secret chats
but does not discuss it for cloud chats [29]. The implementation
of cloud chats provides some protection, but not fully:

• When the client is the receiver, the order of displayed chat
messages is determined by the date and time values within
the TL message object (which are set by the server), so
adversarial reordering of packets has no effect on the order
of chat messages as seen by the client. Service messages of
MTProto typically do not have such a timestamp so reordering
is theoretically possible, though with unclear impact.
• When the client is the sender, the order of chat messages can
be manipulated because the server sets the date and time value
for the Telegram user to whom the message was addressed
based on when the server itself receives the message, and
because the server will accept a message with a lower msg_id
than that of a previous message as long as its msg_seq_no is
also lower than that of a previous message. The server does
not take the timestamp implicit within msg_id into account
except to check whether it is at most 300s in the past or 30s
in the future, so within this time interval reordering is possible.
A message outside of this time interval is not ignored, but a
request for time synchronisation is triggered, after receipt of
which the client sends the message again with a fresh msg_id.
So an attacker can also simply delay a chosen message to
cause messages to be accepted out of order. In Telegram, the
rotation of the server_salt every 30 to 60 minutes may be an
obstacle to carrying out this attack in longer time intervals.

We have verified that reordering between a sending client
and a receiving server is possible in practice using unmodified
Android clients (v6.2.0) and a malicious WiFi access point
running a TCP proxy [30] with custom rules to suppress and
later release certain packets. Suppose an attacker sits between
Alice and a server, and Alice is in a chat with Bob. The
attacker can reorder messages that Alice is sending, so the
server receives them in the wrong order and forwards them
in the wrong order to Bob. While Alice’s client will initially
display her sent messages in the order she sent them, once it
fetches history from the server it will update to display the

94

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

modified order that will match that of Bob.
b) Deletion: MTProto makes it possible to silently drop a
message both when the client is the sender11 and when it is
the receiver, but it is difficult to exploit in practice. Clients
and the server attempt to resend messages for which did
not get acknowledgements. Such messages have the same
msg_ids but are enclosed in a fresh ciphertext with random
padding so the attacker must be able to distinguish the repeated
encryptions to continue dropping the same payload. This is
possible e.g. with the desktop client as sender, since padding
length is predictable based on the message length [31]. When
the client is a receiver, other message delivery mechanisms
such as batching of messages inside a container or API calls
like messages.getHistory make it hard for an attacker to
identify repeated encryptions. So although MTProto does not
prevent deletion in the latter case, there is likely no practical
attack.
2) Re-encryption: If a message is not acknowledged within
a certain time in MTProto, it is re-encrypted using the same
msg_id and with fresh random padding. While this appears to
be a useful feature and a mitigation against message deletion,
it enables attacks in the IND-CPA setting, as we explain next.

As a motivation, consider a local passive adversary that
tries to establish whether R responded to I when looking
at a transcript of three ciphertexts (𝑐I,0, 𝑐R , 𝑐I,1), where 𝑐u
represents a ciphertext sent from u. In particular, it aims
to establish whether 𝑐R encrypts an automatically generated
acknowledgement, denoted by “X”, or a new message from R.
If 𝑐I,1 is a re-encryption of the same message as 𝑐I,0, re-using
the state, this leaks that bit of information about 𝑐R .12

Suppose we have a channel CH that models the MTProto pro-
tocol as described in Section IV-A and uses the payload format
given in Table I.13 To sketch a model for acknowledgement
messages for the purpose of explaining this attack, we define
a special plaintext symbol X that, when received, indicates
acknowledgement for the last sent message. As in Telegram,
X messages are encrypted. Further, we model re-encryptions
by insisting that if the CH.Send algorithm is queried again on
an unacknowledged message 𝑚 then CH.Send will produce
another ciphertext 𝑐′ for 𝑚 using the same headers, including
msg_id and msg_seq_no, as previously used. Critically, this
means the same state in the form of msg_id and msg_seq_no
is used for two different encryptions.

11There are scenarios where deletion can be impactful. Telegram offers its
users the ability to delete chat history for the other party (or all members
of a group) – if such a request is dropped, severing the connection, the chat
history will appear to be cleared in the user’s app even though the request
never made it to the Telegram servers (cf. [3] for the significance of history
deletion in some settings).

12Note that here we are breaking the confidentiality of the ciphertext carrying
“X”. In addition to these encrypted acknowledgement messages, the underlying
transport layer, e.g. TCP, may also issue unencrypted ACK messages or may
resend ciphertexts as is. The difference between these two cases is that in the
former case the acknowledgement message is encrypted, in the latter it is not.
For completeness, note that Telegram clients do not resend cached ciphertext
blobs when unacknowledged, but re-encrypt the underlying message under the
same state but with fresh random padding.

13We give a formal definition of the channel in Section IV-D, but it is not
necessary to outline the attack.

We use this behaviour to break the indistinguishability of an
encrypted X. Consider the adversary given in Fig. 11. If 𝑏 = 0,
𝑐R,𝑖 encrypts an X and so 𝑐I,𝑖+1 will not be a re-encryption
of 𝑚0 under the same msg_id and msg_seq_no that were
used for 𝑐I,𝑖 . In contrast, if 𝑏 = 1, then we have 𝑐 (2)I, 𝑗 = 𝑐

(2)
I,𝑘

for some 𝑗 , 𝑘 , where 𝑐 (𝑖) denotes the 𝑖-th block of 𝑐, with
probability 1 whenever msg_key 𝑗 = msg_key𝑘 . This is true
because the payloads of 𝑐I, 𝑗 and 𝑐I,𝑘 share the same header
fields, in particular including the msg_id and msg_seq_no
in the second block, encrypted under the same key. In the
setting where the adversary controls the randomness of the
padding, the condition msg_key 𝑗 = msg_key𝑘 can be made
to always hold and thus 𝑐 (2)I, 𝑗 = 𝑐

(2)
I,𝑘 holds with probability 1.

As a consequence two queries to the oracle suffice. When the
adversary does not control the randomness, we can use the
fact that msg_key is computed via SHA-256 truncated to 128
bits and the birthday bound applies for finding collisions. Thus
after 264 queries we expect a collision with constant probability
(note that the adversary can check when a collision is found).
Finally, in either setting, when 𝑏 = 0 we have 𝑐 (2)I, 𝑗 = 𝑐

(2)
I,𝑘 with

probability 0 since the underlying payloads differ, the key is
the same and AES is a permutation for a fixed key.

Adversary DCh,Recv
IND,𝑞

Let aux = Y. Choose any 𝑚0, 𝑚1 ∈ CH.MS \ {X}.
Require ∀𝑖 ∈ N : 𝑟I,𝑖 , 𝑟R,𝑖 ∈ CH.SendRS.
For 𝑖 = 1, . . . , 𝑞 do
𝑐I,𝑖 ← Ch(I, 𝑚0, 𝑚0, aux, 𝑟I,𝑖)
𝑐R,𝑖 ← Ch(R,X, 𝑚1, aux, 𝑟R,𝑖) ; Recv(I, 𝑐R,𝑖 , aux)

If ∃ 𝑗 ≠ 𝑘 : msg_key 𝑗 = msg_key𝑘 then

If 𝑐 (2)I, 𝑗 = 𝑐
(2)
I,𝑘 then return 1 else return 0

Else return ⊥
Figure 11: Adversary against the IND-security of MTProto
(modelled as channel CH) when permitting re-encryption under
reused msg_id and msg_seq_no. If the adversary controls the
randomness, then set 𝑞 = 2 and choose 𝑟I,0 = 𝑟I,1. Otherwise
(i.e. all 𝑟I,𝑖 , 𝑟R,𝑖 values are uniformly random) set 𝑞 = 264. In
this figure, let msg_key𝑖 be the msg_key for 𝑐I,𝑖 and let 𝑐 (𝑖)

be the 𝑖-th block of ciphertext 𝑐.

C. Modelling differences
In general, we would like our formal model of MTProto 2.0

to stay as close as possible to the real protocol, so that when
we prove statements about the model, we obtain meaningful
assurances about the security of the real protocol. However,
as the previous section demonstrates, the current protocol has
flaws. These prevent meaningful security analysis and can be
removed by making small changes to the protocol’s handling
of metadata. Further, the protocol has certain features that
make it less amenable to formal analysis. Here we describe
the modelling decisions we have taken that depart from the
current version of MTProto 2.0 and justify each change.

1) Inconsistency: There is no authoritative specification of the
protocol. The Telegram documentation often differs from the

95

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

implementations and the clients are not consistent with each
other.14 Where possible, we chose a sensible “default” choice
from the observed set of possibilities, but we stress that it is in
general impossible to create a formal specification of MTProto
that would be valid for all current implementations. For instance,
the documentation defines server_salt as “A (random) 64-bit
number periodically (say, every 24 hours) changed (separately
for each session) at the request of the server” [32]. In practice
the clients receive salts that change every hour and which
overlap with each other.15 For client differences, consider
padding generation: on desktop [31], a given message length
will always result in the same padding length, whereas on
Android [33], the padding length is randomised.
2) Application layer: Similarly, there is no clear separation
between the cryptographic protocol of MTProto and the applica-
tion data processing (expressed using the TL schema). However,
to reason succinctly about the protocol we require a certain level
of abstraction. In concrete terms, this means that we consider
the msg_data field as “the message”, without interpreting its
contents and in particular without modelling TL constructors.
However, this separation does not exist in implementations of
MTProto – for instance, message encoding behaves differently
for some constructors (e.g. container messages) – and so our
model does not capture these details.
3) Client/server roles: The client and the server are not
considered equal in MTProto. For instance, the server is trusted
to timestamp TL messages for history, while the clients are
not, which is why our reordering attacks only work in the
client to server direction. The client chooses the session_id,
the server generates the server_salt. The server accepts any
session_id given in the first message and then expects that
value, while the client checks the session_id but may accept any
server_salt given.16 Clients do not check the msg_seq_no field.
The protocol implements elaborate measures to synchronise
“bad” client time with server time, which includes: checks on
the timestamp within msg_id as well as the salt, special service
messages [35] and the resending of messages with regenerated
headers. Since much of this behaviour is not critical for security,
we model both parties of the protocol as equals. Expanding our
model with this behaviour should be possible without affecting
most of the proofs.
4) Key exchange: We are concerned with the symmetric part
of the protocol, and thus assume that the shared auth_key is
a uniformly random string rather than of the form 𝑔𝑎𝑏 mod 𝑝
resulting from the actual key exchange.
5) Bit mixing: MTProto uses specific bit ranges of auth_key
as KDF and MAC inputs. These ranges do not overlap for
different primitives (i.e. the KDF key inputs are wholly distinct
from the MAC key inputs), and we model auth_key as a

14Since the server code was not available, we inferred its behaviour from
observing the communication.

15The documentation was updated in response to our paper.
16The Android client accepts any value in the place of server_salt, and

the desktop client [34] compares it with a previously saved value and resends
the message if they do not match and if the timestamp within msg_id differs
from the acceptable time window.

random value, so without loss of generality our model generates
the KDF and MAC key inputs as separate random values. The
key input ranges for the client and the server do overlap for
KDF and MAC separately, however, so we model this in the
form of related-key-deriving functions.

Further, the KDF intermixes specific bit ranges of the outputs
of two SHA-256 calls to derive the encryption keys and IVs. We
argue that this is unnecessary – the intermixed KDF output is
indistinguishable from random (the usual security requirement
of a key derivation function) if and only if the concatenation
of the two SHA-256 outputs is indistinguishable from random.
Hence in our model the KDF just returns the concatenation.
6) Order: Given that MTProto operates over reliable transport
channels, it is not necessary to allow messages arriving out
of order. Our model imposes stricter validation on metadata
upon decryption via a single sequence number that is checked
by both sides and only the next expected value is accepted.
Enforcing strict ordering also automatically rules out replay
and deletion attacks, which the implementation of MTProto
as studied avoided in some cases only due to application-level
processing.17

7) Re-encryption: Because of the attacks in Section IV-B2,
we insist in our formalisation that all sent messages include a
fresh value in the header. This is achieved via a stateful secure
channel definition in which either a client or server sequence
number is incremented on each call to the CH.Send oracle.
8) Message encoding: Some of the previous points outline
changes to message encoding. We simplify the scheme, keeping
to the format of Table I but not modelling diverging behaviours
upon decoding. The implemented MTProto message encoding
scheme behaves differently depending on whether the user is a
client or a server, but each of them checks a 64-bit value in the
first plaintext block, session_id and server_salt respectively.
To prove security of the channel, it is enough that there is
a single such value that both parties check, and it does not
need to be randomised, so we model a constant session_id
and we leave the salt as an empty field. We also merge the
msg_id and msg_seq_no fields into a single sequence number
field of corresponding size, reflecting that a simple counter
suffices in place of the original fields. Note that though we
only prove security with respect to this particular message
encoding scheme, our modelling approach is flexible and can
accommodate more complex message encoding schemes.

D. MTProto-based channel
Our model of the MTProto channel is given in Definition 5

and Fig. 12. We abstract the individual keyed primitives into
function families.18

CH.Init generates the keys for both users and initialises the
message encoding scheme. Note that auth_key as described

17Secret chats implement more elaborate measures against replay/reorder-
ing [29], however this complexity is not required when in-order delivery is
required for each direction separately.

18While the definition itself could admit many different implementations of
the primitives, we are interested in modelling MTProto and thus do not define
our channel in a fully general way, e.g. we fix some key sizes.

96

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

CH.Init()
hk←$ {0, 1}HASH.kl
kk←$ {0, 1}672 ; mk←$ {0, 1}320

auth_key_id← HASH.Ev(hk, kk ‖mk)
(kkI , kkR) ← 𝜙KDF (kk)
(mkI ,mkR) ← 𝜙MAC (mk)
keyI ← (kkI ,mkI)
keyR ← (kkR ,mkR)
(stME,I , stME,R) ←$ ME.Init()
stI ← (auth_key_id, keyI , keyR , stME,I)
stR ← (auth_key_id, keyR , keyI , stME,R)
Return (stI , stR)

CH.Send(stu, 𝑚, aux; 𝑟)
(auth_key_id, keyu, keyu, stME) ← stu
(kku,mku) ← keyu
(stME, 𝑝) ← ME.Encode(stME, 𝑚, aux; 𝑟)
msg_key← MAC.Ev(mku, 𝑝)
𝑘 ← KDF.Ev(kku,msg_key)
𝑐se ← SE.Enc(𝑘, 𝑝)
𝑐 ← (auth_key_id,msg_key, 𝑐se)
stu ← (auth_key_id, keyu, keyu, stME)
Return (stu, 𝑐)

CH.Recv(stu, 𝑐, aux)
(auth_key_id, keyu, keyu, stME) ← stu
(kku,mku) ← keyu
(auth_key_id′,msg_key, 𝑐se) ← 𝑐

If auth_key_id ≠ auth_key_id′ then
Return (stu,⊥)

𝑘 ← KDF.Ev(kku,msg_key)
𝑝 ← SE.Dec(𝑘, 𝑐se)
msg_key′ ← MAC.Ev(mku, 𝑝)
If msg_key′ ≠ msg_key then return (stu,⊥)
(stME, 𝑚) ← ME.Decode(stME, 𝑝, aux)
stu ← (auth_key_id, keyu, keyu, stME)
Return (stu, 𝑚)

Figure 12: Construction of MTProto-based channel CH = MTP-CH[ME,HASH,MAC, KDF, 𝜙MAC, 𝜙KDF, SE] from message encoding
scheme ME, function families HASH, MAC and KDF, related-key-deriving functions 𝜙MAC and 𝜙KDF, and from deterministic
symmetric encryption scheme SE.

in Section IV-A does not appear in the code in Fig. 12, since
each part of auth_key that is used for keying the primitives
can be generated independently. These parts are denoted by
hk, kk and mk. The function 𝜙KDF (resp. 𝜙MAC) is then used
to derive the (related) keys for each user from kk (resp. mk).
CH.Send proceeds by first using ME to encode a message

𝑚 into a payload 𝑝. The MAC is computed on this payload to
produce a msg_key, and the KDF is called on the msg_key to
compute the key and IV for symmetric encryption SE, here
abstracted as 𝑘 . The payload is encrypted with SE using this
key material, and the resulting ciphertext is called 𝑐se . The
CH ciphertext 𝑐 consists of auth_key_id, msg_key and the
symmetric ciphertext 𝑐se .
CH.Recv reverses the steps by first computing 𝑘 from the

msg_key parsed from 𝑐, then decrypting 𝑐se to the payload
𝑝, and recomputing the MAC of 𝑝 to check whether it equals
msg_key. If not, it returns ⊥ (without changing the state) to
signify failure. If the check passes, it uses ME to decode the
payload into a message 𝑚. It is important the MAC check is
performed before ME.Decode is called, otherwise this opens
the channel to attacks – as we show later in Section VI.

Definition 5. Let ME be a message encoding scheme. Let
HASH be a function family such that {0, 1}992 ⊆ HASH.In.
Let MAC be a function family such that ME.Out ⊆ MAC.In.
Let KDF be a function family such that {0, 1}MAC.ol ⊆
KDF.In. Let 𝜙MAC : {0, 1}320 → MAC.Keys × MAC.Keys and
𝜙KDF : {0, 1}672 → KDF.Keys × KDF.Keys. Let SE be a de-
terministic symmetric encryption scheme with SE.kl = KDF.ol
and SE.MS = ME.Out. Then CH = MTP-CH[ME,HASH,MAC,
KDF, 𝜙MAC, 𝜙KDF, SE] is the channel as defined in Fig. 12, with
CH.MS = ME.MS and CH.SendRS = ME.EncRS.

The message encoding scheme MTP-ME is specified in
Definition 6 and Fig. 13. It is a simplified scheme for strict
in-order delivery without replays (see the full version of this
work for the actual MTProto scheme that permits reordering).
As justified in Section IV-C, MTP-ME follows the header format
of Table I, but it does not use the server_salt field (we define
salt as filled with zeros to preserve the field order) and we

merge the 64-bit msg_id and 32-bit msg_seq_no fields into
a single 96-bit seq_no field. Note that the internal counters
of MTP-ME wrap around when seq_no “overflows” modulo
296, so MTP-ME can only provide encoding integrity against
adversaries that make at most 296 oracle Send queries.

Definition 6. Let session_id ∈ {0, 1}64 and pb, bl ∈ N.
Then ME = MTP-ME[session_id, pb, bl] is the message-
encoding scheme given in Fig. 13, with ME.MS =

⋃224

𝑖=1{0, 1}8·𝑖 ,
ME.Out =

⋃
𝑖∈N{0, 1}bl·𝑖 and ME.pl(ℓ, a) = 256 + ℓ +

|GenPadding(ℓ; a) |.19

The following SHA-1 and SHA-256-based function famil-
ies capture the MTProto primitives that are used to derive
auth_key_id, the message key msg_key and the symmetric
encryption key 𝑘 .

Definition 7. MTP-HASH is the function family with
MTP-HASH.Keys = {0, 1}1056, MTP-HASH.In = {0, 1}992,
MTP-HASH.ol = 128 and MTP-HASH.Ev(hk, 𝑥) = SHA-1(𝑥 [0 :
672] ‖ hk [0 : 32] ‖ 𝑥 [672 : 992] ‖ hk [32 : 1056]) [96 : 160].

Definition 8. MTP-MAC is the function family with
MTP-MAC.Keys = {0, 1}256, MTP-MAC.In = {0, 1}∗,
MTP-MAC.ol = 128 and MTP-MAC.Ev(mku, 𝑝) =

SHA-256(mku ‖ 𝑝) [64 : 192]. We refer to its output as
msg_key.

Definition 9. MTP-KDF is the function family with
MTP-KDF.Keys = {0, 1}288×{0, 1}288, MTP-KDF.In = {0, 1}128,
MTP-KDF.ol = 2·SHA-256.ol and MTP-KDF.Ev given in Fig. 14.

Since the keys for KDF and MAC in MTProto are not
independent for the two users, we have to work in a related-key
setting. We are inspired by the RKA framework of [36], but
define our related-key-deriving function 𝜙KDF (resp. 𝜙MAC) to
output both keys at once, as a function of kk (resp. mk). See
Fig. 15 for precise details of 𝜙KDF and 𝜙MAC.

We now define the symmetric encryption scheme.

19The definition of ME.pl assumes that GenPadding is invoked with the
random coins of the corresponding ME.Encode call. For simplicity, we chose
to not surface these coins in Fig. 13 and instead handle this implicitly.

97

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

ME.Init()
𝑁sent ← 0 ; 𝑁recv ← 0
stME,I ← (session_id, 𝑁sent, 𝑁recv)
stME,R ← (session_id, 𝑁sent, 𝑁recv)
Return (stME,I , stME,R)

GenPadding(ℓ) // ℓ ∈ ⋃224

𝑖=1{0, 1}
8·𝑖

ℓ′ ← bl − ℓ mod bl
bn←$ {1, · · · , pb}
padding←$ {0, 1}ℓ′+bn∗bl

Return padding

ME.Encode(stME,u, 𝑚, aux)
(session_id, 𝑁sent, 𝑁recv) ← stME,u
salt← 〈0〉64 ; seq_no← 〈𝑁sent〉96
length← 〈|𝑚 |/8〉32
padding←$ GenPadding(|𝑚 |)
𝑝0 ← salt ‖ session_id
𝑝1 ← seq_no ‖ length
𝑝2 ← 𝑚 ‖ padding ; 𝑝 ← 𝑝0 ‖ 𝑝1 ‖ 𝑝2
𝑁sent ← (𝑁sent + 1) mod 296

stME,u ← (session_id, 𝑁sent, 𝑁recv)
Return (stME,u, 𝑝)

ME.Decode(stME,u, 𝑝, aux)
If |𝑝 | < 256 then return (stME,u,⊥)
(session_id, 𝑁sent, 𝑁recv) ← stME,u ; ℓ ← |𝑝 | − 256
salt← 𝑝 [0 : 64] ; session_id′ ← 𝑝 [64 : 128]
seq_no← 𝑝 [128 : 224] ; length← 𝑝 [224 : 256]
If (session_id′ ≠ session_id)∨
(seq_no ≠ 𝑁recv)∨
¬(0 < length ≤ |ℓ | /8) then return (stME,u,⊥)

𝑚 ← 𝑝 [256 : 256 + length · 8]
𝑁recv ← (𝑁recv + 1) mod 296

stME,u ← (session_id, 𝑁sent, 𝑁recv) ; Return (stME,u, 𝑚)

Figure 13: Construction of a simplified message encoding scheme for strict in-order delivery ME = MTP-ME[session_id, pb, bl]
for session identifier session_id, maximum padding length (in full blocks) pb, and output block length bl.

MTP-KDF.Ev(kku,msg_key) // |msg_key| = 128
(kk0, kk1) ← kku ; 𝑘0 ← SHA-256(msg_key ‖ kk0)
𝑘1 ← SHA-256(kk1 ‖msg_key) ; 𝑘 ← 𝑘0 ‖ 𝑘1 ; Return 𝑘

Figure 14: Construction of function family MTP-KDF.

𝜙KDF (kk) // |kk | = 672
kkI,0 ← kk [0 : 288]
kkR,0 ← kk [64 : 352]
kkI,1 ← kk [320 : 608]
kkR,1 ← kk [384 : 672]
kkI ← (kkI,0, kkI,1)
kkR ← (kkR,0, kkR,1)
Return (kkI , kkR)

𝜙MAC (mk) // |mk | = 320
mkI ← mk [0 : 256]
mkR ← mk [64 : 320]
Return (mkI ,mkR)

Figure 15: Related-key-deriving functions 𝜙KDF : {0, 1}672 →
MTP-KDF.Keys × MTP-KDF.Keys and 𝜙MAC : {0, 1}320 →
MTP-MAC.Keys × MTP-MAC.Keys.

Definition 10. Let AES-256 be the standard AES block cipher
with AES-256.kl = 256 and AES-256.ol = 128, and let IGE be
the block cipher mode in Fig. 4. Let MTP-SE = IGE[AES-256].

V. Formal security analysis

We first define the central security notions required from
each of the primitives used in MTP-CH. Then, we state that
MTP-CH satisfies correctness, indistinguishability and integrity.

A. Security requirements on standard primitives
1) MTP-HASH is a one-time indistinguishable function
family: We require that MTP-HASH meets the one-time weak
indistinguishability notion (OTWIND) defined in Fig. 16. The
security game Gotwind

HASH,D in Fig. 16 evaluates the function family
HASH on a challenge input 𝑥𝑏 using a secret uniformly random
function key hk. Adversary D is given 𝑥0, 𝑥1 and the output of
HASH; it is required to guess the challenge bit 𝑏 ∈ {0, 1}. The
game samples inputs 𝑥0, 𝑥1 uniformly at random rather than
allowing D to choose them, so this security notion requires
HASH to provide only a weak form of one-time indistinguishab-
ility. The advantage of D in breaking the OTWIND-security
of HASH is defined as AdvotwindHASH (D) = 2 ·Pr[Gotwind

HASH,D] −1. The
full version of this work provides a formal reduction from the

OTWIND-security of MTP-HASH to the one-time PRF-security
of SHACAL-1 (as defined in Section II-B).

Game GotwindHASH,D

𝑏←$ {0, 1} ; hk←$ {0, 1}HASH.kl ; 𝑥0←$ HASH.In
𝑥1←$ HASH.In ; auth_key_id← HASH.Ev(hk, 𝑥𝑏)
𝑏′←$D(𝑥0, 𝑥1, auth_key_id) ; Return 𝑏′ = 𝑏

Figure 16: One-time weak indistinguishability of function
family HASH.

2) MTP-KDF is a PRF under related-key attacks: We require
that MTP-KDF behaves like a pseudorandom function in the
RKA setting (RKPRF) as defined in Fig. 17. The security game
Grkprf
KDF,𝜙KDF ,D in Fig. 17 defines a variant of the standard PRF

notion allowing the adversary D to use its RoR oracle to
evaluate the function family KDF on either of the two secret,
related function keys kkI , kkR (both computed using related-
key-deriving function 𝜙KDF). The advantage of D in breaking
the RKPRF-security of KDF with respect to 𝜙KDF is defined as
AdvrkprfKDF,𝜙KDF (D) = 2 · Pr[Grkprf

KDF,𝜙KDF ,D] − 1.

Game GrkprfKDF,𝜙KDF ,D

𝑏←$ {0, 1} ; kk←$ {0, 1}672

(kkI , kkR) ← 𝜙KDF (kk)
𝑏′←$DRoR ; Return 𝑏′ = 𝑏

RoR(u,msg_key)
𝑘1 ← KDF.Ev(kku,msg_key)
If T[u,msg_key] =⊥ then
T[u,msg_key] ←$ {0, 1}KDF.ol

𝑘0 ← T[u,msg_key] ; Return 𝑘𝑏

Figure 17: Related-key PRF-security of function family KDF
with respect to related-key-deriving function 𝜙KDF.

In Section V-B1 we define a novel security notion for
SHACAL-2 that roughly requires it to be a leakage-resilient
PRF under related-key attacks; in the full version of this
work we provide a formal reduction from the RKPRF-security
of MTP-KDF to the new security notion. In this context,
“leakage resilience” means that the adversary can adaptively
choose a part of the SHACAL-2 key. However, we limit the
adversary to being able to evaluate SHACAL-2 only on a
single known, constant input (which is IV256, the initial state
of SHA-256). The new security notion is formalised as the
LRKPRF-security of SHACAL-2 with respect to a pair of related-

98

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

key-deriving functions 𝜙KDF and 𝜙SHACAL-2 (the latter is defined
in Section V-B1).
3) MTP-MAC is collision-resistant under RKA: We require
that collisions in the outputs of MTP-MAC under related
keys are hard to find (RKCR), as defined in Fig. 18. The
security game Grkcr

MAC,𝜙MAC ,F in Fig. 18 gives the adversary
F two related function keys mkI ,mkR (created by the
related-key-deriving function 𝜙MAC), and requires it to produce
two payloads 𝑝0, 𝑝1 (for either user u) such that there is a
collision in the corresponding outputs msg_key0,msg_key1
of the function family MAC. The advantage of F in break-
ing the RKCR-security of MAC with respect to 𝜙MAC is
defined as AdvrkcrMAC,𝜙MAC (F) = Pr[Grkcr

MAC,𝜙MAC ,F]. It is clear by
inspection that the RKCR-security of MTP-MAC.Ev(mku, 𝑝) =
SHA-256(mku ‖ 𝑝) [64 : 192] (with respect to 𝜙MAC from
Fig. 15) reduces to the collision resistance of truncated-output
SHA-256.

Game GrkcrMAC,𝜙MAC ,F

mk←$ {0, 1}320 ; (mkI ,mkR) ← 𝜙MAC (mk)
(u, 𝑝0, 𝑝1) ←$ F (mkI ,mkR) ; msg_key0 ← MAC.Ev(mku, 𝑝0)
msg_key1 ← MAC.Ev(mku, 𝑝1) ; dist_inp← (𝑝0 ≠ 𝑝1)
eq_out← (msg_key0 = msg_key1) ; Return dist_inp ∧ eq_out

Figure 18: Related-key collision resistance of function family
MAC with respect to related-key-deriving function 𝜙MAC.

4) MTP-MAC is a PRF under RKA for unique-prefix inputs:
We require that MTP-MAC behaves like a pseudorandom
function in the RKA setting when it is evaluated on a set of
inputs that have unique 256-bit prefixes (UPRKPRF), as defined
in Fig. 19. The security game Guprkprf

MAC,𝜙MAC ,D in Fig. 19 extends the
standard PRF notion to use two related 𝜙MAC-derived function
keys mkI ,mkR for the function family MAC (similar to the
RKPRF-security notion we defined above); but it also enforces
that the adversary D cannot query its oracle RoR on two
inputs (u, 𝑝0) and (u, 𝑝1) for any u ∈ {I,R} such that 𝑝0, 𝑝1
share the same 256-bit prefix. The unique-prefix condition
means that the game does not need to maintain a PRF table to
achieve output consistency. Note that this security game only
allows to call the oracle RoR with inputs of length |𝑝 | ≥ 256;
this is sufficient for our purposes, because in MTP-CH the
function family MTP-MAC is only used with payloads that are
longer than 256 bits. The advantage of D in breaking the
UPRKPRF-security of MAC with respect to 𝜙MAC is defined as
AdvuprkprfMAC,𝜙MAC (D) = 2 · Pr[Guprkprf

MAC,𝜙MAC ,D] − 1.
In Section V-B2 we define a novel security notion that

requires SHACAL-2 to be a leakage-resilient, related-key PRF
when evaluated on a fixed input; in the full version of this work
we show that the UPRKPRF-security of MTP-MAC reduces to
this security notion and to the one-time PRF-security (OTPRF)
of the SHA-256 compression function ℎ256. The new security
notion is similar to the notion discussed in Section V-A2 and
defined in Section V-B1, in that it only allows the adversary
to evaluate SHACAL-2 on the fixed input IV256. However, the
underlying security game derives the related SHACAL-2 keys

Game GuprkprfMAC,𝜙MAC ,D
𝑏←$ {0, 1}
mk←$ {0, 1}320

(mkI ,mkR) ← 𝜙MAC (mk)
𝑋I ← 𝑋R ← ∅
𝑏′←$DRoR

Return 𝑏′ = 𝑏

RoR(u, 𝑝) // 𝑝 ∈ {0, 1}∗

If |𝑝 | < 256 then return ⊥
𝑝0 ← 𝑝 [0 : 256]
If 𝑝0 ∈ 𝑋u then return ⊥
𝑋u ← 𝑋u ∪ {𝑝0}
msg_key1 ← MAC.Ev(mku, 𝑝)
msg_key0←$ {0, 1}MAC.ol
Return msg_key𝑏

Figure 19: Related-key PRF-security of function family MAC
for inputs with unique 256-bit prefixes, with respect to key
derivation function 𝜙MAC.

differently, partially based on the function 𝜙MAC defined in
Fig. 15 (as opposed to 𝜙KDF). The new notion is formalised as
the HRKPRF-security of SHACAL-2 with respect to 𝜙MAC.

5) MTP-SE is a one-time indistinguishable SE scheme:
For any block cipher E, the full version of this work shows
that IGE[E] as used in MTProto is OTIND$-secure (defined in
Fig. 3) if CBC[E] is OTIND$-secure. This enables us to use
standard results [37], [38] on CBC in our analysis of MTProto.

B. Novel assumptions about SHACAL-2
In this section we define two novel assumptions about

SHACAL-2. Both assumptions require SHACAL-2 to be a related-
key PRF when evaluated on the fixed input IV256 (i.e. on the
initial state of SHA-256), meaning that the adversary can obtain
the values of SHACAL-2.Ev(·, IV256) for a number of different
but related keys. We formalise the two assumptions as security
notions, called LRKPRF and HRKPRF, each defined with
respect to different related-key-deriving functions; this reflects
the fact that these security notions allow the adversary to
choose the keys in substantially different ways. The notion of
LRKPRF-security derives the SHACAL-2 keys partially based
on the function 𝜙KDF, whereas the notion of HRKPRF-security
derives SHACAL-2 keys partially based on the function 𝜙MAC
(both functions are defined in Fig. 15). Both security notions
also have different flavours of leakage resilience: (1) the security
game defining LRKPRF allows the adversary to directly choose
128 bits of the 512-bit long SHACAL-2 key, with another 96
bits of this key fixed and known (due to being chosen by the
SHA padding function SHA-pad), and (2) the security game
defining HRKPRF allows the adversary to directly choose 256
bits of the 512-bit long SHACAL-2 key.

We use the notion of LRKPRF-security to justify the RKPRF-
security of MTP-KDF with respect to 𝜙KDF (as explained in
Section V-A2), which is needed in both the IND-security
and the INT-security proofs of MTP-CH. We use the notion
of HRKPRF-security to justify the UPRKPRF-security of
MTP-MAC with respect to 𝜙MAC (as explained in Section V-A4),
which is needed in the IND-security proof of MTP-CH.

We stress that we have to assume properties of SHACAL-2 that
have not been studied in the literature. Related-key attacks on
reduced-round SHACAL-2 have been considered [39], [40], but
they ordinarily work with a known difference relation between
unknown keys. In contrast, our LRKPRF-security notion uses

99

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

keys that differ by random, unknown parts. Both of our security
notions consider keys that are partially chosen or known by the
adversary. It is straightforward to show that both the LRKPRF-
security and the HRKPRF-security of SHACAL-2 hold in the
ideal cipher model (i.e. when SHACAL-2 is modelled as the
ideal cipher). However, we cannot rule out the possibility of
attacks on SHACAL-2 due to its internal structure in the setting
of related-key attacks combined with key leakage. We leave
this as an open question.
1) SHACAL-2 is a PRF with 𝜙KDF-based related keys:
Our LRKPRF-security notion for SHACAL-2 is defined with
respect to related-key-deriving functions 𝜙KDF (from Fig. 15)
and 𝜙SHACAL-2 from Fig. 20. The latter mirrors the design
of MTP-KDF that (in Definition 9) is defined to return
SHA-256(msg_key ‖ kk0) ‖ SHA-256(kk1 ‖msg_key) for the
target key kku = (kk0, kk1), except 𝜙SHACAL-2 only needs to
produce the corresponding SHA-padded inputs.

𝜙SHACAL-2 (kku,msg_key) // |msg_key| = 128
(kk0, kk1) ← kku ; sk0 ← SHA-pad(msg_key ‖ kk0)
sk1 ← SHA-pad(kk1 ‖msg_key) ; Return (sk0, sk1)

Figure 20: Related-key-deriving function 𝜙SHACAL-2 :
(MTP-KDF.Keys × MTP-KDF.Keys) × {0, 1}128 → {0, 1}512.

Consider the game Glrkprf
SHACAL-2,𝜙KDF ,𝜙SHACAL-2 ,D in Fig. 21. Ad-

versary D is given access to the RoR oracle that takes
u, 𝑖,msg_key as input; all inputs to the oracle serve as
parameters for the SHACAL-2 key derivation, used to determine
the challenge key sk𝑖 . The adversary gets back either the output
of SHACAL-2.Ev(sk𝑖 , IV256) (if 𝑏 = 1), or a uniformly random
value (if 𝑏 = 0), and is required to guess the challenge bit.
The PRF table T is used to ensure consistency, so that a single
random value is sampled and remembered for each set of used
key derivation parameters u, 𝑖,msg_key. The advantage of D
in breaking the LRKPRF-security of SHACAL-2 with respect to
𝜙KDF and 𝜙SHACAL-2 is defined as AdvlrkprfSHACAL-2,𝜙KDF ,𝜙SHACAL-2 (D) =
2 · Pr[Glrkprf

SHACAL-2,𝜙KDF ,𝜙SHACAL-2 ,D] − 1.

Game GlrkprfSHACAL-2,𝜙KDF ,𝜙SHACAL-2 ,D

𝑏←$ {0, 1} ; kk←$ {0, 1}672 ; (kkI , kkR) ← 𝜙KDF (kk)
𝑏′←$DRoR ; Return 𝑏′ = 𝑏

RoR(u, 𝑖,msg_key) // u ∈ {I,R}, 𝑖 ∈ {0, 1}, |msg_key| = 128
(sk0, sk1) ← 𝜙SHACAL-2 (kku,msg_key)
𝑦1 ← SHACAL-2.Ev(sk𝑖 , IV256)
If T[u, 𝑖,msg_key] =⊥ then
T[u, 𝑖,msg_key] ←$ {0, 1}SHACAL-2.ol

𝑦0 ← T[u, 𝑖,msg_key] ; Return 𝑦𝑏

Figure 21: Leakage-resilient, related-key PRF-security of
function family SHACAL-2 on fixed input IV256 with respect to
related-key-deriving functions 𝜙KDF and 𝜙SHACAL-2.

2) SHACAL-2 is a PRF with 𝜙MAC-based related keys:
Consider the game Ghrkprf

SHACAL-2,𝜙MAC ,D in Fig. 22. Adversary D
is given access to RoR oracle, and is required to choose

Game GhrkprfSHACAL-2,𝜙MAC ,D
𝑏←$ {0, 1}
mk←$ {0, 1}320

(mkI ,mkR) ← 𝜙MAC (mk)
𝑏′←$DRoR

Return 𝑏′ = 𝑏

RoR(u, 𝑝) // u ∈ {I,R}, |𝑝 | = 256
𝑦1 ← SHACAL-2.Ev(mku ‖ 𝑝, IV256)
If T[u, 𝑝] = ⊥ then
T[u, 𝑝] ←$ {0, 1}SHACAL-2.ol

𝑦0 ← T[u, 𝑝]
Return 𝑦𝑏

Figure 22: Leakage-resilient, related-key PRF-security of
function family SHACAL-2 on fixed input IV256 with respect to
related-key-deriving function 𝜙MAC.

the 256-bit suffix 𝑝 of each challenge key used for evaluating
SHACAL-2.Ev(·, IV256). The value of mku is then used to set the
256-bit prefix of the challenge key, where u is also chosen by
the adversary, but the mkI ,mkR values themselves are related
secrets that are not known to D. The advantage of D in break-
ing the HRKPRF-security of SHACAL-2 with respect to 𝜙MAC is
defined as AdvhrkprfSHACAL-2,𝜙MAC (D) = 2 · Pr[Ghrkprf

SHACAL-2,𝜙MAC ,D] − 1.

C. Security requirements on message encoding
1) MTP-ME ensures in-order delivery: We require that
MTP-ME is EINT-secure (Fig. 8) with respect to the support
function SUPP defined in Fig. 23. SUPP enforces in-order
delivery for each user’s sent messages, thus preventing uni-
directional reordering attacks, replays and message deletion. It
is formalised using a function find(op, tr, label) that searches
a given transcript for a sent or recv entry that corresponds to
label, and also counts the number of valid entries encountered
prior to finding the target. For any label that corresponds to the
𝑁sent-th valid sent-type entry in tru, the support function SUPP
checks that tru contains 𝑁recv = 𝑁sent−1 valid recv-type entries,
and that none of them contains the label itself. Here we rely
on each label being unique, which is true for MTP-ME as long
as it encodes at most 296 messages.20 Replays are prevented
by the search of entries received by u. The count from both
searches is used to ensure that there are no gaps between
the number of sent and received ciphertexts, thus preventing
deletion and reordering.21 As outlined in Section IV-B1, the
MTProto implementation of ME we studied allowed reordering
so it was not EINT-secure with respect to SUPP. The full
version of this work shows that AdveintMTP-ME,SUPP (F) = 0 for any
F making at most 296 queries to Send.
2) Prefix uniqueness of MTP-ME: We require that payloads
produced by MTP-ME have distinct prefixes of size 256 bits
(independently for each user u ∈ {I,R}), as defined by the
security game in Fig. 24. The advantage of an adversary F in
breaking the UPREF-security of a message encoding scheme
ME is defined as AdvuprefME (F) = Pr[Gupref

ME,F]. Given the fixed
prefix size, this notion cannot be satisfied against unbounded
adversaries. Our MTP-ME scheme ensures unique prefixes using
the 96-bit counter seq_no that contains the number of messages

20A limitation on number of queries is inherent as long as fixed-length
sequence numbers are used.

21Note that aux is not used in SUPP or MTP-ME. It would be possible to
add time synchronisation using the timestamp captured in the msg_id field
just as the current MTProto ME implementation does.

100

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

SUPP(u, tru, tru, label, aux)
(𝑁recv, 𝑚recv) ←
find(recv, tru, label)

If 𝑚recv ≠⊥ then return ⊥
(𝑁sent, 𝑚sent) ←
find(sent, tru, label)

If 𝑁sent ≠ 𝑁recv + 1 then
Return ⊥

Return 𝑚sent

find(op, tr, label)
𝑁op ← 0
For (op, 𝑚, label′, aux) ∈ tr do

If (op = recv ∧ 𝑚 ≠⊥)∨
(op = sent ∧ label′ ≠⊥) then
𝑁op ← 𝑁op + 1
If label′ = label then

Return (𝑁op, 𝑚)
Return (𝑁op,⊥)

Figure 23: Support function SUPP for strict in-order delivery.

sent by user u, so we have AdvuprefMTP-ME (F) = 0 for any F making
at most 296 queries, and otherwise there exists an adversary
F such that AdvuprefMTP-ME (F) = 1. Note that MTP-ME always has
payloads larger than 256 bits. The MTProto implementation
of message encoding we analysed was not UPREF-secure as
it allowed repeated msg_id (cf. Section IV-B2).

Game GuprefME,F
win← false
(stME,I , stME,R)
←$ ME.Init()

𝑋I ← 𝑋R ← ∅
F Send; Return win

Send(u, 𝑚, aux, 𝑟)
(stME,u, 𝑝) ← ME.Encode(stME,u, 𝑚, aux; 𝑟)
If |𝑝 | < 256 then return ⊥
𝑝0 ← 𝑝 [0 : 256]
If 𝑝0 ∈ 𝑋u then win← true
𝑋u ← 𝑋u ∪ {𝑝0} ; Return 𝑝

Figure 24: Prefix uniqueness of message encoding scheme ME.

3) Encoding robustness of MTP-ME: We require that decoding
in MTP-ME should not affect its state in such a way that
would be visible in future encoded payloads, as defined by
the security game in Fig. 25. The advantage of an adversary
D in breaking the ENCROB-security of a message encoding
scheme ME is defined as AdvencrobME (D) = 2 · Pr[Gencrob

ME,D] −
1. This advantage is trivially zero both for MTP-ME and the
original MTProto message encoding scheme (modelled in the
full version). Note, however, that this property is incompatible
with stronger notions of resistance against reordering attacks
such as causality preservation.

Game GencrobME,D
𝑏←$ {0, 1} ; (stME,I , stME,R) ←$ ME.Init()
𝑏′←$DSend,Recv ; Return 𝑏′ = 𝑏

Send(u, 𝑚, aux, 𝑟)
(stME,u, 𝑝) ← ME.Encode(stME,u, 𝑚, aux; 𝑟) ; Return 𝑝

Recv(u, 𝑝, aux)
If 𝑏 = 1 then (stME,u, 𝑚) ← ME.Decode(stME,u, 𝑝, aux)
Return ⊥

Figure 25: Encoding robustness of message encoding scheme
ME.

4) Combined security of MTP-SE and MTP-ME: We require
that decryption in MTP-SE with uniformly random keys has
unpredictable outputs with respect to MTP-ME, as defined in
Fig. 26. The security game Gunpred

SE,ME,F in Fig. 26 gives adversary

F access to two oracles. For any user u ∈ {I,R} and
message key msg_key, oracle Ch decrypts a given ciphertext
𝑐se of deterministic symmetric encryption scheme SE under
a uniformly random key 𝑘 ∈ {0, 1}SE.kl, and then decodes
it using the given message encoding state stME of message
encoding scheme ME, returning no output. The adversary is
allowed to choose arbitrary values of 𝑐se and stME; it is allowed
to repeatedly query oracle Ch on inputs that contain the same
values for u,msg_key in order to reuse a fixed, secret SE key 𝑘
with different choices of 𝑐se . Oracle Expose lets F learn the
SE key corresponding to the given u and msg_key; the table S
is then used to disallow the adversary from querying Ch with
this pair of u and msg_key values again. F wins if it can cause
ME.Decode to output a valid 𝑚 ≠ ⊥. Note that msg_key in
this game merely serves as a label for the tables, so we allow it
to be an arbitrary string msg_key ∈ {0, 1}∗. The advantage of
F in breaking the UNPRED-security of SE with respect to ME
is defined as AdvunpredSE,ME (F) = Pr[Gunpred

SE,ME,F]. In the full version
of this work we show that AdvunpredMTP-SE,MTP-ME (F) ≤ 𝑞Ch/264 for
any F making 𝑞Ch queries.

Game GunpredSE,ME,F

win← false ; FExpose,Ch ; Return win
Expose(u,msg_key) // msg_key ∈ {0, 1}∗

S[u,msg_key] ← true ; Return T[u,msg_key]
Ch(u,msg_key, 𝑐se , stME, aux) // msg_key ∈ {0, 1}∗

If ¬S[u,msg_key] then
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0, 1}SE.kl
𝑘 ← T[u,msg_key] ; 𝑝 ← SE.Dec(𝑘, 𝑐se)
(stME, 𝑚) ← ME.Decode(stME, 𝑝, aux)
If 𝑚 ≠ ⊥ then win← true

Return ⊥
Figure 26: Unpredictability of deterministic symmetric encryp-
tion scheme SE with respect to message encoding scheme ME.

D. Correctness of MTP-CH

We claim that our MTProto-based channel satisfies our
correctness definition. Consider any adversary F playing
in the correctness game Gcorr

CH,supp,F (Fig. 6) for channel
CH = MTP-CH (Fig. 12) and support function supp = SUPP
(Fig. 23). Due to the definition of SUPP, the Recv oracle in
game Gcorr

MTP-CH,SUPP,F rejects all CH ciphertexts that were not
previously returned by Send. The encryption and decryption
algorithms of channel MTP-CH rely in a modular way on
the message encoding scheme MTP-ME, deterministic function
families MTP-KDF,MTP-MAC, and deterministic symmetric
encryption scheme MTP-SE; the latter provides decryption
correctness, so any valid ciphertext processed by oracle
Recv correctly recovers the originally encrypted payload
𝑝. Thus we need to show that MTP-ME always recovers the
expected plaintext 𝑚 from payload 𝑝, meaning 𝑚 matches the
corresponding output of SUPP. This is implied by the EINT-
security of MTP-ME with respect to SUPP; we prove the latter

101

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

in the full version of this work for adversaries that make at
most 296 queries.22

E. IND-security of MTP-CH
Due to lack of space, here we provide only a very high-level

overview of how we prove IND-security of MTP-CH and a
theorem statement. We begin our IND-security reduction by
considering an arbitrary adversary DIND playing in the IND-
security game against channel CH = MTP-CH (i.e. Gind

CH,DIND
in Fig. 6), and we gradually change this game until we can
show that DIND can no longer win. To this end, we make three
key observations. (1) Recall that oracle Recv always returns
⊥, and the only functionality of this oracle is to update the
state of receiver’s channel by calling CH.Recv. We assume
that calls to CH.Recv never affect the ciphertexts that are
returned by future calls to CH.Send (more precisely, we use the
ENCROB property of ME that reasons about payloads rather
than ciphertexts). This allows us to completely disregard the
Recv oracle, making it immediately return ⊥ without calling
CH.Recv. (2) We use the UPRKPRF-security of MAC to show
that the ciphertexts returned by oracle Ch contain msg_key
values that look uniformly random and are independent of
each other. Roughly, this security notion requires that MAC
can only be evaluated on a set of inputs with unique prefixes.
To ensure this, we assume that the payloads produced by ME
meet this requirement (as formalised by the UPREF property
of ME). (3) In order to prove that oracle Ch does not leak
the challenge bit, it remains to show that ciphertexts returned
by Ch contain 𝑐se values that look uniformly random and
independent of each other. This follows from the OTIND$-
security of SE. We invoke the OTWIND-security of HASH to
show that auth_key_id does not leak any information about
the KDF keys; we then use the RKPRF-security of KDF to show
that the keys used for SE are uniformly random. Finally, we
use the birthday bound to argue that the uniformly random
values of msg_key are unlikely to collide, and hence the keys
used for SE are also one-time. Formally, we have:

Theorem 1. Let ME, HASH, MAC, KDF, 𝜙MAC, 𝜙KDF, SE be any
primitives that meet the requirements stated in Definition 5
of channel MTP-CH. Let CH = MTP-CH[ME,HASH,MAC, KDF,
𝜙MAC, 𝜙KDF, SE]. Let DIND be any adversary against the IND-
security of CH, making 𝑞Ch queries to its Ch oracle. Then
there exist adversaries DOTWIND, DRKPRF, DENCROB, FUPREF,
DUPRKPRF, DOTIND$ such that

AdvindCH (DIND) ≤ 2 ·
(
AdvotwindHASH (DOTWIND) + Adv

rkprf
KDF,𝜙KDF (DRKPRF)

+ AdvencrobME (DENCROB) + Adv
upref
ME (FUPREF)

+ AdvuprkprfMAC,𝜙MAC (DUPRKPRF) +
𝑞Ch · (𝑞Ch − 1)

2 · 2MAC.ol

+ Advotind$
SE (DOTIND$)

)
.

The proof can be found in the full version of this work.

22There are other ways to handle counters which could imply correctness
for unbounded adversaries – MTP-ME wraps its counters to stay close to the
actual MTProto implementations.

F. INT-security of MTP-CH
Due to lack of space, here we provide only a very high-level

overview of how we prove integrity of MTP-CH and a theorem
statement. Details are in the full version. The first half of
our integrity proof shows that it is hard to forge ciphertexts;
in order to justify this, we rely on security properties of the
cryptographic primitives that are used to build the channel
MTP-CH (i.e. HASH, KDF, SE, and MAC). Once ciphertext
forgery is ruled out, we are guaranteed that MTP-CH broadly
matches an intuition of an authenticated channel: it prevents
an attacker from modifying or creating its own ciphertexts but
still allows it to intercept and subsequently drop, reorder or
replay honestly produced ciphertexts. So it remains to show
that the message encoding scheme ME appropriately resolves
all of the possible adversarial interaction with an authenticated
channel; formally, we require that it behaves according to the
requirements that are specified by some support function supp.
Our main result is then:

Theorem 2. Let session_id ∈ {0, 1}64, pb ∈ N, and bl = 128.
Let ME = MTP-ME[session_id, pb, bl] be the message encoding
scheme as defined in Definition 6. Let SE = MTP-SE be the
deterministic symmetric encryption scheme as defined in Defin-
ition 10. Let HASH, MAC, KDF, 𝜙MAC, 𝜙KDF be any primitives
that, together with ME and SE, meet the requirements stated in
Definition 5 of channel MTP-CH. Let CH = MTP-CH[ME,HASH,
MAC, KDF, 𝜙MAC, 𝜙KDF, SE]. Let supp = SUPP be the support
function as defined in Fig. 23. Let FINT be any adversary
against the INT-security of CH with respect to supp. Then
there exist adversaries DOTWIND, DRKPRF, FUNPRED, FRKCR,
FEINT such that

AdvintCH,supp (FINT) ≤ AdvotwindHASH (DOTWIND) + Adv
rkprf
KDF,𝜙KDF (DRKPRF)

+ AdvunpredSE,ME (FUNPRED) + AdvrkcrMAC,𝜙MAC (FRKCR)

+ AdveintME,supp (FEINT).

The proof can be found in the full version of this work.

G. Instantiation and Interpretation
We are now ready to combine the theorems from the previous

two sections with the notions defined in Section V-A and
Section V-C and the proofs in the full version of this work. This
is meant to allow interpretation of our main results: qualitatively
(what security assumptions are made) and quantitatively (what
security level is achieved). Note that in both of the following
corollaries, the adversary is limited to making 296 queries.
This is due to the wrapping of counters in MTP-ME, since
beyond this limit the advantage in breaking UPREF-security
and EINT-security of MTP-ME becomes 1.

Corollary 1. Let session_id ∈ {0, 1}64, pb ∈ N and bl = 128.
Let ME = MTP-ME[session_id, pb, bl], MTP-HASH, MTP-MAC,
MTP-KDF, 𝜙MAC, 𝜙KDF, MTP-SE be the primitives of MTProto
defined in Section IV-D. Let CH = MTP-CH[ME,MTP-HASH,
MTP-MAC,MTP-KDF, 𝜙MAC, 𝜙KDF,MTP-SE]. Let 𝜙SHACAL-2 be
the related-key-deriving function defined in Fig. 20. Let ℎ256
be the SHA-256 compression function, and let H be the corres-
ponding function family with H.Ev = ℎ256, H.kl = H.ol = 256
and H.In = {0, 1}512. Let ℓ ∈ N. Let DIND be any adversary
against the IND-security of CH, making 𝑞Ch ≤ 296 queries
to its Ch oracle, each query made for a message of length

102

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

at most ℓ ≤ 227 bits.23 Then there exist adversaries Dshacal
OTPRF,

DLRKPRF, DHRKPRF, Dcompr
OTPRF, DOTIND$ such that

AdvindCH (DIND) ≤ 4 ·
(
AdvotprfSHACAL-1 (D

shacal
OTPRF)

+ AdvlrkprfSHACAL-2,𝜙KDF ,𝜙SHACAL-2 (DLRKPRF)

+ AdvhrkprfSHACAL-2,𝜙MAC (DHRKPRF)

+
⌊
ℓ + 256

512
+ pb + 1

4

⌋
· AdvotprfH (Dcompr

OTPRF)
)

+ 𝑞Ch · (𝑞Ch − 1)
2128

+ 2 · Advotind$
CBC[AES-256] (DOTIND$).

Qualitatively, Corollary 1 shows that the confidentiality of
the MTProto-based channel depends on whether SHACAL-1
and SHACAL-2 can be considered as pseudorandom functions
in a variety of modes: with keys used only once, related keys,
partially chosen-keys when evaluated on fixed inputs and when
the key and input switch positions. Especially the related-key
assumptions (LRKPRF and HRKPRF given in Section V-B) are
highly unusual; both assumptions hold in the ideal cipher model,
but require further study in the standard model. Quantitatively,
a limiting term in the advantage, which implies security only
if 𝑞Ch < 264, is a result of the birthday bound on the MAC
output, though we note that we do not have a corresponding
attack in this setting and thus the bound may not be tight.

Corollary 2. Let session_id ∈ {0, 1}64, pb ∈ N and bl = 128.
Let ME = MTP-ME[session_id, pb, bl], MTP-HASH, MTP-MAC,
MTP-KDF, 𝜙MAC, 𝜙KDF, MTP-SE be the primitives of MTProto
defined in Section IV-D. Let CH = MTP-CH[ME,MTP-HASH,
MTP-MAC,MTP-KDF, 𝜙MAC, 𝜙KDF,MTP-SE]. Let 𝜙SHACAL-2 be
the related-key-deriving function defined in Fig. 20. Let
SHA-256′ be SHA-256 with its output truncated to the middle
128 bits. Let supp = SUPP be the support function as defined
in Fig. 23. Let FINT be any adversary against the INT-security
of CH with respect to supp, making 𝑞Send ≤ 296 queries to its
Send oracle. Then there exist adversaries DOTPRF, DLRKPRF,
FCR such that

AdvintCH,supp (FINT) ≤ 2 ·
(
AdvotprfSHACAL-1 (DOTPRF)

+ AdvlrkprfSHACAL-2,𝜙KDF ,𝜙SHACAL-2 (DLRKPRF)
)

+ 𝑞Send
264 + AdvcrSHA-256′ (FCR).

Qualitatively, Corollary 2 shows that also the integrity of the
MTProto-based channel depends on SHACAL-1 and SHACAL-2
behaving as PRFs. Due to the way MTP-MAC is constructed,
the result also depends on the collision resistance of truncated-
output SHA-256 (as discussed in Section V-A3). Quantitatively,
the advantage is again bounded by 𝑞Send < 264. This bound
follows from the fact that the first block of payload contains a
64-bit constant session_id which has to match upon decoding.
If the MTProto message encoding scheme consistently checked

23The length of plaintext 𝑚 in MTProto is ℓ := |𝑚 | ≤ 227 bits. To build a
payload 𝑝, algorithm ME.Encode prepends a 256-bit header, and appends at
most bl · (pb + 1)-bit padding. Further evaluation of MAC on 𝑝 might append
at most 512 additional bits of SHA padding.

more fields during decoding (especially in the first block), the
bound could be improved.

VI. Timing side-channel attack
The formal model and proof we gave in the previous sections

do not provide full guarantees about the security of MTProto,
which we illustrate in this section. Going beyond the model, we
present a timing side-channel attack against implementations
of MTProto. The attack arises from MTProto’s reliance on
an Encrypt & MAC construction, the malleability of IGE
mode, and specific weaknesses in implementations. The attack
proceeds in the spirit of [12]: move a target ciphertext block
to a position where the underlying plaintext will be interpreted
as a length field and use the resulting behaviour to learn
some information. The attack is complicated by Telegram
using IGE mode instead of CBC mode analysed in [12]. We
begin by describing a generic way to overcome this obstacle in
Section VI-1. We describe a side channel found in the Telegram
desktop client in Section VI-2 (we treat the iOS and Android
clients in the full version) and experimentally demonstrate the
existence of a timing side channel in that client in Section VI-4.

1) Manipulating IGE: Suppose we intercept an IGE cipher-
text 𝑐 consisting of 𝑡 blocks (for any block cipher 𝐸):
𝑐1 | 𝑐2 | . . . | 𝑐𝑡 where | denotes a block boundary. Further,
suppose we have a side channel that enables us to learn some
bits of 𝑚2, the second plaintext block.24 In IGE mode, we have
𝑐𝑖 = 𝐸𝐾 (𝑚𝑖 ⊕ 𝑐𝑖−1) ⊕ 𝑚𝑖−1 for 𝑖 = 1, 2, . . . , 𝑡 (see Section II).
Fix a target block number 𝑖 for which we are interested in
learning a portion of 𝑚𝑖 that is encrypted in 𝑐𝑖 . Assume we
know the plaintext blocks 𝑚1 and 𝑚𝑖−1.

We construct a ciphertext 𝑐1 | 𝑐★ where 𝑐★ := 𝑐𝑖 ⊕𝑚𝑖−1⊕𝑚1.
This is decrypted in IGE mode as follows:

𝑚1 = 𝐸−1
𝐾 (𝑐1 ⊕ IV𝑚) ⊕ IV𝑐

𝑚★ = 𝐸−1
𝐾 (𝑐★ ⊕ 𝑚1) ⊕ 𝑐1 = 𝐸−1

𝐾 (𝑐𝑖 ⊕ 𝑚𝑖−1) ⊕ 𝑐1

= 𝑚𝑖 ⊕ 𝑐𝑖−1 ⊕ 𝑐1

Since we know 𝑐1 and 𝑐𝑖−1, we can recover some bits of 𝑚𝑖
if we can obtain the corresponding bits of 𝑚★ (e.g. through a
side channel leak).

To motivate our known plaintext assumption, consider a
message where 𝑚𝑖−1 = “Today’s password” and 𝑚𝑖 = “is
SECRET”. Here 𝑚𝑖−1 is known, while learning bytes of 𝑚𝑖 is
valuable. On another hand, the requirement of knowing 𝑚1 may
not be easy to fulfil in MTProto. The first plaintext block of
an MTProto payload always contains server_salt ‖ session_id,
both of which are random values. It is unclear whether they
were intended to be secret, but in effect they are, limiting
the applicability of this attack. Appendix A gives an attack to
recover these values. Note that these values are the same for all
ciphertexts within a single session, so if they were recovered,
then we could carry out the attack on each of the ciphertexts
in turn. This allows the basic attack above to be iterated when
the target 𝑚𝑖 is fixed across all the ciphertexts, e.g. in order to

24The attack is easy to adapt to a different block.

103

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

amplify the total information learned about 𝑚𝑖 when a single
ciphertext allows to infer only a partial or noisy information
about it (cf. [12]).

2) Leaky length field: The preceding attack assumes we have
a side channel that enables us to learn part of 𝑚2. We now
show how such side channels arise in implementations.

The msg_length field occupies the last four bytes of the
second block of every MTProto cloud message plaintext (see
Section IV-A). After decryption, the field is checked for validity
in Telegram clients. Crucially, in several implementations this
check is performed before the MAC check, i.e. before msg_key
is recomputed from the decrypted plaintext. If either of those
checks fails, the client closes the connection without outputting
a specific error message. However, if an implementation is not
constant time, an attacker who submits modified ciphertexts of
the form described above may be able to distinguish between
an error arising from validity checking of msg_length and a
MAC error, and thus learn something about the bits of plaintext
in the position of the msg_length field.

Since different Telegram clients implement different checks
on the msg_length field, the full version proceeds to a case-by-
case analysis for the Android, Desktop and iOS clients. Due
to space restrictions we only treat the Desktop client here.

Here the length check is performed in the method
handleReceived of session_private.cpp [41], which com-
pares the messageLength field with a fixed value of
kMaxMessageLength = 224. When this check fails, the con-
nection is closed and no MAC check is performed, providing
a potentially large timing difference. Because of the fixed
value 224, this check would leak the 8 most significant bits of
the target block 𝑚𝑖 with probability 2−8, i.e. the eight most
significant bits of the 32-bit length field, allowing those bits
to be recovered after about 28 attempts on average.25

if (messageLength > kMaxMessageLength) {
LOG(("TCP Error: bad messageLength %1").arg(

messageLength));
TCP_LOG (("TCP Error: bad message %1").arg(

Logs::mb(ints ,
intsCount * kIntSize).str ()));

return restart ();
}
// ...
// MAC computation and check follow

3) Discussion: Note that all three of the Desktop, Android
and iOS clients were in violation of Telegram’s own security
guidelines [42] which state: “If an error is encountered before
this check could be performed, the client must perform the
msg_key check anyway before returning any result. Note that
the response to any error encountered before the msg_key
check must be the same as the response to a failed msg_key
check.” In contrast, TDLib [11], the cross-platform library for
building Telegram clients, does avoid timing leaks by running
the MAC check first.

4) Practical experiments: We ran experiments to verify
whether the side channel present in the desktop client code

25Note that this beats random guessing as the correct value can be recognised.

is exploitable. We measured the time difference between
processing a message with a wrong msg_length and processing
a message with a correct msg_length but a wrong MAC. This
was done using the Linux desktop client, modified to process
messages generated on the client side without engaging the
network. We collected data for 108 trials for each case under
ideal conditions, i.e. with hyper-threading, Turbo Boost etc.
disabled. After removing outliers, the difference in means was
about 3 microseconds, see Fig. 27. This should be sufficiently
large for a remote attacker to detect, even with network and
other noise sources (cf. [43], where sub-microsecond timing
differences were successfully resolved over a LAN).

Figure 27: Processing time of SessionPrivate::
handleReceived in microseconds.

29 30 31 32 33 34 35

0
20

00
00

0
40

00
00

0

length
MAC

VII. Discussion
The central result of this work is that the use of sym-

metric encryption in Telegram’s MTProto 2.0 can provide
the basic security expected from a bidirectional channel if
small modifications are made. The Telegram developers have
indicated that they implemented most of these changes. Thus,
our work can give some assurance to those reliant on Telegram
providing confidential and integrity-protected cloud chats – at
a comparable level to chat protocols that run over TLS’s record
protocol. However, our work comes with a host of caveats.
Attacks: Our work also presents attacks against the symmetric
encryption in Telegram. These highlight the gap between
the variant of MTProto 2.0 that we model and Telegram’s
implementations. While the reordering attack in Section IV-B1
and the attack on IND-CPA security in Section IV-B2 were
possible against implementations that we studied, they can
easily be avoided without making changes to the on-the-wire
format of MTProto, i.e. by only changing processing in clients
and servers. After disclosing our findings, Telegram informed
us that they have changed this processing accordingly.

Our attacks in Section VI are attacks on the implementation.
As such, they can be considered outside the model: our
model only shows that there can be secure instantiations of
MTProto but does not cover the actual implementations; in
particular, we do not model timing differences. That said,
protocol design has a significant impact on the ease with which
secure implementations can be achieved. Here, the decision

104

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

in MTProto to adopt Encrypt & MAC results in the potential
for a leak that we can exploit in specific implementations.
This “brittleness” of MTProto is of particular relevance due
to the surfeit of implementations of the protocol, and the
fact that security advice may not be heeded by all authors.26

Here Telegram’s apparent ambition to provide TDLib as a one-
stop solution for clients across platforms will allow security
researchers to focus their efforts. We thus recommend that
Telegram replaces the low-level cryptographic processing in
all official clients with a carefully vetted library.
Tightness: On the other hand, our proofs are not necessarily
tight. That is, our theorem statements contain terms bounding
the advantage by ≈ 𝑞/264 where 𝑞 is the number of queries
sent by the adversary. Yet, we have no attacks matching these
bounds (our attacks with complexity 264 are outside the model).
Thus, it is possible that a refined analysis would yield tighter
bounds.
Future work: Our attack in Appendix A is against the
implementation of Telegram’s key exchange and is thus outside
of our model for two reasons: as before, we do not consider
timing side channels in our model and, critically, we only
model the symmetric part of MTProto. This highlights a second
significant caveat for our results that large parts of Telegram’s
design remain unstudied: multi-user security, the key exchange,
the higher-level message processing, secret chats, forward
secrecy, control messages, bot APIs, CDNs, cloud storage,
the Passport feature, to name but a few. These are pressing
topics for future work.
Assumptions: In our proofs we are forced to rely on unstudied
assumptions about the underlying primitives used in MTProto.
In particular, we have to make related-key assumptions about
the compression function of SHA-256 which could be easily
avoided by tweaking the use of these primitives in MTProto. In
the meantime, these assumptions represent interesting targets
for symmetric cryptography research. Similarly, the complexity
of our proofs and assumptions largely derives from MTProto
deploying hash functions in place of (domain-separated) PRFs
such as HMAC. We recommend that Telegram either adopts
well-studied primitives for future versions of MTProto to ease
analysis and thus to increase confidence in the design, or adopts
TLS.
Telegram: While we prove security of the symmetric part
of MTProto at a protocol level, we recall that by default
communication via Telegram must trust the Telegram servers,
i.e. end-to-end encryption is optional and not available for
group chats. We thus, on the one hand, (a) recommend that
Telegram open-sources the cryptographic processing on their
servers and (b) recommend to avoid referencing Telegram as
an “encrypted messenger” which – post-Snowden – has come

26Indeed, the Telegram developers rule out length-extension attacks in [44]
because the MAC is computed on the plaintext and because any change in
the MAC affects the decryption key and thus the decrypted plaintext, which
makes it unlikely that the integrity check passes. This is largely correct but
only under the assumption that msg_id is actually unique and re-encryption of
messages with the same msg_id is not allowed. That is, the condition given
by the developers in the FAQ was violated by several official Telegram clients.

to mean end-to-end encryption. On the other hand, discussions
about end-to-end encryption aside, echoing [2], [3] we note
that many higher-risk users do rely on MTProto and Telegram
and shun Signal. This emphasises the need to study these
technologies and how they serve those who rely on them.

Acknowledgements
We thank Mihir Bellare for discussions and insights. The

research of Mareková was supported by the EPSRC and the
UK Government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London
(EP/P009301/1). The research of Paterson was supported in
part by a gift from VMware.

References
[1] Telegram, “500 million users,” https://t.me/durov/147, Feb 2021.
[2] K. Ermoshina, H. Halpin, and F. Musiani, “Can Johnny build a protocol?

co-ordinating developer and user intentions for privacy-enhanced secure
messaging protocols,” in European Workshop on Usable Security, 2017.

[3] M. R. Albrecht, J. Blasco, R. B. Jensen, and L. Mareková, “Collective
information security in large-scale urban protests: the case of Hong Kong,”
to appear at USENIX’21, pre-print at https://arxiv.org/abs/2105.14869,
2021.

[4] J. Jakobsen and C. Orlandi, “On the CCA (in)security of MTProto,”
Proceedings of the 6th Workshop on Security and Privacy in
Smartphones and Mobile Devices - SPSM’16, 2016. [Online]. Available:
http://dx.doi.org/10.1145/2994459.2994468

[5] T. Sušánka and J. Kokeš, “Security analysis of the Telegram IM,”
in Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium, 2017, pp. 1–8.

[6] N. Kobeissi, “Formal Verification for Real-World Cryptographic Protocols
and Implementations,” Theses, INRIA Paris ; Ecole Normale Supérieure
de Paris - ENS Paris, Dec. 2018, https://hal.inria.fr/tel-01950884.

[7] M. Miculan and N. Vitacolonna, “Automated symbolic verification of
Telegram’s MTProto 2.0,” in Proceedings of the 18th International Con-
ference on Security and Cryptography, SECRYPT 2021, S. De Capitani di
Vimercati and P. Samarati, Eds. SciTePress, 2021, pp. 185–197.

[8] M. Fischlin, F. Günther, and C. Janson, “Robust channels: Handling unre-
liable networks in the record layers of QUIC and DTLS 1.3,” Cryptology
ePrint Archive, Report 2020/718, 2020, https://eprint.iacr.org/2020/718.

[9] Telegram, “End-to-end encryption, secret chats – sending a re-
quest,” http://web.archive.org/web/20210126013030/https://core.telegram.
org/api/end-to-end#sending-a-request, Feb 2021.

[10] ——, “tdlib,” https://github.com/tdlib/td, Sep 2020.
[11] ——, “tdlib – Transport.cpp,” https://github.com/tdlib/td/blob/v1.7.0/td/

mtproto/Transport.cpp#L272, Apr 2021.
[12] M. R. Albrecht, K. G. Paterson, and G. J. Watson, “Plaintext recovery

attacks against SSH,” in 2009 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2009, pp. 16–26.

[13] M. Bellare and P. Rogaway, “The security of triple encryption and a
framework for code-based game-playing proofs,” in EUROCRYPT 2006,
ser. LNCS, S. Vaudenay, Ed., vol. 4004. Springer, Heidelberg, May / Jun.
2006, pp. 409–426.

[14] C. Campbell, “Design and specification of cryptographic capabilities,”
IEEE Communications Society Magazine, vol. 16, no. 6, pp. 15–19, 1978.

[15] C. Jutla, “Attack on free-mac, sci.crypt,” https://groups.google.com/forum/
#!topic/sci.crypt/4bkzm_n7UGA, Sep 2000.

[16] M. Bellare, A. Boldyreva, L. R. Knudsen, and C. Namprempre, “On-line
ciphers and the hash-CBC constructions,” Journal of Cryptology, vol. 25,
no. 4, pp. 640–679, Oct. 2012.

[17] NIST, “FIPS 180-4: Secure Hash Standard,” 2015, http://dx.doi.org/10.
6028/NIST.FIPS.180-4.

[18] H. Handschuh and D. Naccache, “SHACAL (-submission to NESSIE-),”
Proceedings of First Open NESSIE Workshop, 2000, http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.3.4066&rep=rep1&type=pdf.

[19] G. A. Marson and B. Poettering, “Security notions for bidirectional
channels,” IACR Trans. Symm. Cryptol., vol. 2017, no. 1, pp. 405–426,
2017.

105

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

[20] M. Bellare, T. Kohno, and C. Namprempre, “Authenticated encryption
in SSH: Provably fixing the SSH binary packet protocol,” in ACM CCS
2002, V. Atluri, Ed. ACM Press, Nov. 2002, pp. 1–11.

[21] T. Kohno, A. Palacio, and J. Black, “Building secure cryptographic
transforms, or how to encrypt and MAC,” Cryptology ePrint Archive,
Report 2003/177, 2003, http://eprint.iacr.org/2003/177.

[22] C. Boyd, B. Hale, S. F. Mjølsnes, and D. Stebila, “From stateless to
stateful: Generic authentication and authenticated encryption construc-
tions with application to TLS,” in CT-RSA 2016, ser. LNCS, K. Sako,
Ed., vol. 9610. Springer, Heidelberg, Feb. / Mar. 2016, pp. 55–71.

[23] P. Rogaway and Y. Zhang, “Simplifying game-based definitions -
indistinguishability up to correctness and its application to stateful AE,”
in CRYPTO 2018, Part II, ser. LNCS, H. Shacham and A. Boldyreva,
Eds., vol. 10992. Springer, Heidelberg, Aug. 2018, pp. 3–32.

[24] Telegram, “Mobile protocol: Detailed description,” http://web.archive.org/
web/20210126200309/https://core.telegram.org/mtproto/description, Jan
2021.

[25] ——, “Schema,” https://core.telegram.org/schema, Sep 2020.
[26] ——, “TL language,” https://core.telegram.org/mtproto/TL, Sep 2020.
[27] Google, “BoringSSL AES IGE implementation,” https://github.com/

DrKLO/Telegram/blob/d073b80063c568f31d81cc88c927b47c01a1dbf4/
TMessagesProj/jni/boringssl/crypto/fipsmodule/aes/aes_ige.c, Jul 2018.

[28] Telegram, “MTProto transports,” http://web.archive.org/web/
20200527124125/https://core.telegram.org/mtproto/mtproto-transports,
May 2020.

[29] ——, “Sequence numbers in secret chats,” http://web.archive.org/web/
20201031115541/https://core.telegram.org/api/end-to-end/seq_no, Jan
2021.

[30] K. Ludwig, “Trudy - Transparent TCP proxy,” 2017, https://github.com/
praetorian-inc/trudy.

[31] Telegram, “Telegram Desktop – mtproto_serialized_request.cpp,”
https://github.com/telegramdesktop/tdesktop/blob/v2.5.8/Telegram/
SourceFiles/mtproto/details/mtproto_serialized_request.cpp#L15, Feb
2021.

[32] ——, “Mobile protocol: Detailed description – server salt,”
http://web.archive.org/web/20210221134408/https://core.telegram.
org/mtproto/description#server-salt, Feb 2021.

[33] ——, “Telegram Android – Datacenter.cpp,” https://github.com/DrKLO/
Telegram/blob/release-7.4.0_2223/TMessagesProj/jni/tgnet/Datacenter.
cpp#L1171, Feb 2021.

[34] ——, “Telegram Desktop – session_private.cpp,” https:
//github.com/telegramdesktop/tdesktop/blob/v2.6.1/Telegram/
SourceFiles/mtproto/session_private.cpp#L1338, Mar 2021.

[35] ——, “Notice of ignored error message,” http://web.archive.org/web/
20200527121939/https://core.telegram.org/mtproto/service_messages_
about_messages#notice-of-ignored-error-message, May 2020.

[36] M. Bellare and T. Kohno, “A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications,” in EUROCRYPT 2003, ser.
LNCS, E. Biham, Ed., vol. 2656. Springer, Heidelberg, May 2003, pp.
491–506.

[37] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” in 38th FOCS. IEEE Computer
Society Press, Oct. 1997, pp. 394–403.

[38] P. Rogaway, “Nonce-based symmetric encryption,” in FSE 2004, ser.
LNCS, B. K. Roy and W. Meier, Eds., vol. 3017. Springer, Heidelberg,
Feb. 2004, pp. 348–359.

[39] J. Kim, G. Kim, S. Lee, J. Lim, and J. H. Song, “Related-key attacks
on reduced rounds of SHACAL-2,” in INDOCRYPT 2004, ser. LNCS,
A. Canteaut and K. Viswanathan, Eds., vol. 3348. Springer, Heidelberg,
Dec. 2004, pp. 175–190.

[40] J. Lu, J. Kim, N. Keller, and O. Dunkelman, “Related-key rectangle
attack on 42-round SHACAL-2,” in ISC 2006, ser. LNCS, S. K. Katsikas,
J. Lopez, M. Backes, S. Gritzalis, and B. Preneel, Eds., vol. 4176.
Springer, Heidelberg, Aug. / Sep. 2006, pp. 85–100.

[41] Telegram, “Telegram Desktop – session_private.cpp,”
https://github.com/telegramdesktop/tdesktop/blob/v2.7.1/Telegram/
SourceFiles/mtproto/session_private.cpp#L1258, Apr 2021.

[42] ——, “Security guidelines for client developers,” http:
//web.archive.org/web/20210203134436/https://core.telegram.org/
mtproto/security_guidelines#mtproto-encrypted-messages, Feb 2021.

[43] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS
and DTLS record protocols,” in 2013 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2013, pp. 526–540.

[44] Telegram, “FAQ for the Technically Inclined – length extension at-
tacks,” http://web.archive.org/web/20210203134422/https://core.telegram.
org/techfaq#length-extension-attacks, Feb 2021.

[45] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1,” in CRYPTO’98, ser. LNCS,
H. Krawczyk, Ed., vol. 1462. Springer, Heidelberg, Aug. 1998, pp.
1–12.

[46] G. D. Micheli and N. Heninger, “Recovering cryptographic keys from
partial information, by example,” Cryptology ePrint Archive, Report
2020/1506, 2020, https://eprint.iacr.org/2020/1506.

[47] M. R. Albrecht and N. Heninger, “On Bounded Distance Decoding
with predicate: Breaking the "lattice barrier" for the Hidden Number
Problem,” Cryptology ePrint Archive, Report 2020/1540, 2020, https:
//eprint.iacr.org/2020/1540.

Appendix
A. Attacking the key exchange

During the key exchange, a client sends an RSA-encrypted
message 𝑚 B (ℎ𝑟 , 𝛾, 𝑛′, 𝑝𝑟) to the server with ℎ𝑟 B
SHA-1(𝛾 ‖ 𝑛′), 𝛾 a known constant, 𝑛′ ∈ {0, 1}256 and 𝑝𝑟 some
unknown padding. The tag ℎ𝑟 is meant to provide integrity.
Our target secret is 𝑛′. Note that the SHA-1(·) does not include
the padding but that 𝛾 has a variable bit-length (known to the
attacker). Thus, the payload must be parsed after decryption
before verifying its integrity, which enables a potential timing
side channel. While we were unable to establish the parsing
order of the Telegram servers or if they defend against such
leaks, the Telegram developers confirmed to us the existence
of vulnerable behaviour on the server during the disclosure
process.

If we assume that server-side parsing proceeds analogously
to similar parsing in TDlib then a 32-bit header value Z (part
of 𝛾) is checked first and the parsing function terminates early
when it does not match. Assuming further that this event is
detectable through a time difference, this instantiates an oracle
leaking when certain 32 bits match a known value. Our attack
then proceeds in the style of Bleichenbacher’s attack [45].
Writing 𝑐 B 𝑚𝑒 mod 𝑁 ′ for the ciphertext observed by the
attacker – where 𝑒, 𝑁 ′ is the server’s public RSA key – we
submit 𝑠𝑒

𝑖
· 𝑐 – for carefully sampled 𝑠𝑖 – to our oracle to

learn whether 𝑠𝑖 · 𝑚 is such that the target 32 bits match the
expected header value. Collecting several such answers we can
then recover 𝑚 and thus 𝑛′.

A complication is that Bleichenbacher’s adaptive recovery
method – iteratively restricting the interval – is not available
to us since we learn the value of some middle bits rather than
the most significant bits. Writing 𝑦 for the bit position of Z ,
we observe that (𝑠𝑖 · 𝑚 mod 𝑁 ′) − 2𝑦 · Z mod 2𝑦+32 � 2𝑦+32,
i.e. that the correct value 𝑚 produces an unusually short value
modulo 2𝑦+32. This enables us to use lattice reduction to find
𝑚 using known techniques [46], [47].

Knowing 𝑛′ implies knowing server_salt. To recover
session_id we can then run a guess and verify attack using
the techniques from Section VI. Alternatively, we observe that
𝑛′ is later used in the key exchange to protect the integrity
of Diffie-Hellman shares 𝑔𝑎 and 𝑔𝑏. Thus, our attack would
also enable an attacker-in-the-middle (MitM) attack on the key
exchange. The full version contains the details and a proof of
concept implementation of the lattice reduction part.

106

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 18,2024 at 03:27:32 UTC from IEEE Xplore. Restrictions apply.

