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Abstract—Property inference attacks consider an adversary
who has access to a trained ML model and tries to extract
some global statistics of the training data. In this work, we
study property inference in scenarios where the adversary can
maliciously control a part of the training data (poisoning data)
with the goal of increasing the leakage.

Previous works on poisoning attacks focused on trying to
decrease the accuracy of models. Here, for the first time, we
study poisoning attacks where the goal of the adversary is to
increase the information leakage of the model. We show that
poisoning attacks can boost the information leakage significantly
and should be considered as a stronger threat model in sensitive
applications where some of the data sources may be malicious.

We theoretically prove that our attack can always succeed
as long as the learning algorithm used has good generalization
properties. Then we experimentally evaluate our on different
datasets (Census dataset, Enron email dataset, MNIST and
CelebA), properties (that are present in the training data as
features, that are not present as features, and properties that are
uncorrelated with the rest of the training data or classification
task) and model architectures (including Resnet-18 and Resnet-
50). We were able to achieve high attack accuracy with relatively
low poisoning rate, namely, 2 − 3% poisoning in most of our
experiments. We also evaluated our attacks on models trained
with DP and we show that even with very small values for ε, the
attack is still quite successful1.

I. INTRODUCTION

Machine learning is revolutionizing nearly every discipline
from healthcare to finance to manufacturing and marketing.
However, one of the limiting factors in ML is availability of
large quantities of quality data.

This has prompted calls for collaborative learning, where
many parties combine datasets to train a joint model [1, 24].
However, much of this data involves either private data about
individuals or confidential enterprise information. Naturally,
this leads to risks of information leakage of the training data.
We can view the privacy problems of collaborative ML training
from two orthogonal directions:

Information leakage during the training phase This privacy
problem is concerned with leaking information about each
party’s data from the other parties while jointly participating
in training ML models. There has been significant research on
how to use Secure Multi-Party Computation (SMPC), trusted
hardware etc. to avoid this type of information leakage.

Information leakage from the trained model While the
aforementioned information leakage is an important problem, it

1Code is available at https://github.com/smahloujifar/
PropertyInferenceFromPoisoning.git

is orthogonal to the problem of information leakage about the
training data from the ML model itself. Our focus in this paper
is on this second type of leakage. Note that the techniques
mentioned above cannot mitigate this second type of leakage.

For the rest of this paper, we will focus on the second type
of information leakage.
Inference Attacks: Inference attacks consider an adversary
who tries to infer sensitive information about the training set
by inspecting the model that is trained on it. Inference attacks
have come in two main flavors: membership inference [28]
and property inference attacks [2].

In a membership inference attack, an adversary tries to infer
if a special instance was present in the training set that was
used to train a given model. Property inference adversaries try
to infer some aggregate information about the whole training
set. While there are some promising approaches for defending
against membership inference attacks (e.g. differential privacy),
there is no general defense mechanism known against property
inference attacks and how to defend against them is still an
open question. In this work, we focus on property inference
attacks in collaborative learning scenarios and show that these
attacks are more effective than previously thought.

Note that the property being inferred need not be an explicit
feature in the training set, nor does it need to be obviously
correlated with the training set labels. For example, we will
consider a property inference attack on a text based model
(in particular a spam classifier), which attempts to learn the
average sentiment (positive or negative) of the documents in
the training dataset.
Poisoning Attacks In poisoning attacks, some part of training
data (poisoning data) is carefully chosen by an adversary who
wishes to make the trained model behave in his own interest.
A considerable body of works [6, 30, 27, 20, 31, 5, 3] have
shown that poisoning attacks can significantly hurt accuracy
of ML models.
Poisoning Attacks Increasing Information Leakage In this
work we initiate the study of poisoning attacks that aim at
increasing the information leakage in ML models. In particular,
we ask the following question:

Can adversaries boost the performance of property inference
attacks by injecting specially crafted poisoning data in the
training set?

This is a relevant question whenever data is gathered
from multiple sources, some of which may be adversarially
controlled. In particular, it is relevant in collaborative machine

1120

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Saeed Mahloujifar. Under license to IEEE.
DOI 10.1109/SP46214.2022.00140

20
22

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
36

23

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 22,2024 at 12:21:40 UTC from IEEE Xplore.  Restrictions apply. 



learning, where one party might contribute malicious data in
order to learn some property about the rest of the training set.
To follow our above example, if a group of small companies
pool their data to train a spam classifier, one company might
contribute poison data in an attempt to learn about the average
sentiment in the rest of the group. This could give that company
an edge in understanding it’s competitors’ positions.

We note that the above question could also be asked for
membership inference attacks. While that is an interesting
direction, in this paper we only focus on property inference
attacks. We show that poisoning can indeed increase the
property leakage significantly.

Attack Model: In this paper we consider an attacker who is
allowed to first submit a set of “poisoned” data of its choice,
which will be combined with the victim dataset and used
to train a model. The attacker can then make a series of
black box (label-only) queries to the trained model. Note that
by black box queries we mean that the adversary only gets
to learn the predicted label for each query. (It does not, for
example, get the confidence values that the model produces,
or any internal information from the model.) Finally, as in the
property inference attacks of [11, 2], the attacker’s goal is to
infer whether the average of a particular property is above
or below a particular threshold. This is a very natural model
for poisoning in the distributed learning setting where data is
gathered from many sources.

Main Contributions:
• Theoretical Results: We first describe a theoretical attack

that works for any training algorithm outputs (almost)
Bayes-optimal classifiers. The high level idea of our attack
is that the adversary adds poisoning points in a way that
causes the behavior of the Bayes-optimal classifier to
depend on the average of the target property. In particular,
we show that poisoning would change the prediction of
certain instances when the average of property is below
the threshold. But when the average is higher than the
threshold, then the poisoning does not affect the prediction
of those points. See Section V for details of our analysis.
We formalize this intuition by giving a concrete attack
based on our theoretical analysis in this model and
analyzing its effectiveness. Our attack is agnostic to
the architecture of the trained model as it is completely
black box. Note that poisoning is a crucial aspect of our
theoretical analysis and the information leakage does not
necessarily exist if the adversary cannon inject poisons.

• Experimental Results: Real training algorithms do not
always output Bayes-optimal classifiers, so there is a
question about whether the above results hold in practice.
To explore how realistic our attack is we run several exper-
iments on a range of datasets, properties and architectures:
– Datasets: Census dataset, the Enron email dataset and

two image datasets (MNIST, CelebA)
– Properties: We consider three types of target properties:

1) Properties that are explicitly present in the training
dataset, e.g., Gender and Race in Census data.

2) Properties that are not present as a explicit input in
the training data, but which may be derived from
those existing inputs e.g., Negative sentiment in
emails (as determined by sentiment analysis).

3) Properties that are uncorrelated with the rest of the
training data or classification task: for this, we added
an independently chosen random binary feature to
each data entry in both Census and Enron data.

– Target model architecture: We run our experiments for
logistic regression, fully connected neural networks,
and deep architectures such as Resnet-18 and Resnet-
50 (See Section VII).

In most of our experiments, the objective of the attacker
is to distinguish whether or not the target property
appears with high frequency in the dataset. Our attack can
successfully distinguish various ranges of higher vs.lower
frequencies, e.g. (5% from 15%), (30% from 70%). We
were able to achieve above 90% attack accuracy with
about 1−10% poisoning in all of these experiments. Note
that, while the maximum poisoning rate we use in our
attacks, is 10%, most of our experiments succeed with a
much lower rate of poisoning (2− 3%). In fact, the only
two cases where we used a higher poisoning rate 9−10%
(Enron negative sentiment and CelebA gender).
In addition to the attacks above where the goal of the
adversary is to distinguish between two predefined values,
we evaluate how well the attacker can predict the true
ratio without the knowledge of the upper and lower ratios.
Our experiments suggest that by training shadow models
with different ratios, the adversary can train a regression
model (instead of classification) and predict the threshold
with average absolute error of less than 5%.

• Effectiveness of DP as mitigation: We also explore the
effect of Differential Privacy as a way to mitigate our
attack. Differential privacy can be seen as a two-fold
defense as it can mitigate poisoning attacks and it also
reduces information leakage. Our experiments with models
trained with DP-SGD [4] show that Differential Privacy
alone cannot mitigate our attack. For instance at (ε, δ) =
(0.95, 10−5) our attack is still 90% accurate.

Discussion: Is 10% poisoning rate realistic? As we discuss
above, most of our experiments succeed with relatively little
poisoned data (2−3%). However, we believe, in some scenarios,
even a high poisoning rate (9− 10%) is realistic. For example,
if there are less than 10 companies are sharing their data to
train a model. Even in scenarios where more than 10 parties are
participating (e.g., federated learning), the attacker can collude
with other parties to form a large portion of the dataset.

II. RELATED WORK

It is quite well known by now that understanding what ML
models actually memorize from their training data is not trivial.
As discussed above, there is a rich line of work that tries to
investigate privacy leakage from ML models under different
threat models. Here we provide some more detail on the the
works which seem most related to ours. For a comprehensive
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survey on the other privacy attacks on neural networks, please
see [13].

The global property inference attacks of [2, 12] are the most
relevant to us: here the adversary’s goal is to infer sensitive
global properties of the training dataset from the trained model
that the model producer did not intend to share. We have
already described some examples above. Property inference
attacks were first formulated and studied in [2]. However, this
initial approach did not scale well to deep neural networks,
so [12] proposed a modified attack that is more efficient. The
main differences from our attack are in the threat model: 1) our
adversary can poison a portion of the training data and 2) in [2,
12] the adversary has whitebox access to the model meaning
that it is given all of the weights in the neural net, while
our adversary has only blackbox access to the trained model
as described above. We experimentally compare our attack
performance and accuracy with that of [12] in Section VII.

Another closely related attack is the more recent subpopu-
lation attack [14]. Here the adversary’s goal is to poison part
of the training data in such a way that only the predictions
on inputs coming from a certain subpopulation in the data are
impacted. To achieve this, the authors poison the data based on
a filter function that specifies the target subpopulation. However,
the goal of these subpopulation attacks is to attack the accuracy
of the model.

In [21] the authors studied property leakage in the federated
learning framework. In federated learning, the process proceeds
through multiple rounds. In each round each of n > 2 parties
takes the intermediate model and uses their own data to locally
compute an update. These updates are all collected by a central
party and used to form the next intermediate model. The threat
model in [21] is the following: n parties participate in a ML
training using federated learning where one of the participant is
the adversary. The adversary uses the model updates revealed in
each round of the federated training and tries to infer properties
of the training data that are true of a subpopulation but not of
the population as a whole. We note that in this threat model,
the adversary gets to see more information than on our model,
so this result is not directly comparable to ours.

III. PROPERTY INFERENCE ATTACKS

There has been a series of work looking at to what extent a
model leaks information about a certain individual record in the
training set, including work on using differential privacy [9] to
define what it means for a training algorithm to preserve privacy
of these individuals and technically how that can be achieved.
However, leaking information on individuals is not the only
concern in this context. In many cases even the aggregate
information is sensitive.

This type of aggregate leakage inspires a line of work started
in [2, 12] that looks at property inference attacks, in which the
attacker is trying to learn aggregate information about a dataset.
In particular, we focus here, as did [12], on an attacker who
is trying to determine the frequency of a particular property
in the dataset used to train the model. Notice that this type of

aggregate leakage is a global property of the training dataset
and is not mitigated by differential-privacy.

Does property inference pose an important threat model?
Property inference attacks could reveal very sensitive infor-
mation about the dataset. To illustrate the importance of the
attack model, we provide some examples of such sensitive
information that could be revealed. For further discussion on
the importance of these attacks we refer the reader to previous
work of [11] and [2].

Example 1. Imagine that a company wants to use its internal
emails to train a spam classifier. Such a model would be
expected to reveal which combination of words commonly
indicate spam, and companies might be comfortable sharing
this information. However, using a property inference attack,
the resulting model could also leak information about the
aggregate sentiment of emails in the company, that could be
potentially sensitive. For example, if the sentiment of emails in
the company turn negative near the financial quarter, it could
mean that the company is performing below expectations.

Example 2. Similarly, a financial company might be willing
to share a model to detect fraud, but might not be willing to
reveal the volume of various types of transactions.

Example 3. Or a number of smaller companies might be
willing to share a model to help target customers for price
reductions etc, however such companies might not be willing
to share specific sales numbers for different types of products.

Property leakage from poisoned datasets One of the ques-
tions that is not addressed in previous work on property
inference attacks is scenarios where adversary can contribute to
the part of the training set. This could occur either because one
of the parties in collaborative training behaves adversarially, or
because an adversary can influence some of the input sources
from which training data is collected (e.g. by injecting malware
on some data collection devices). Specifically, the adversary
can try to craft special poisoning data so that it can infer the
specific property that it has in mind. Note that this is not
prevented by any of the cryptographic or hardware assisted
solutions: in all of these there is no practical way to guarantee
that the data that is entered is actually correct.

This type of poisoning attack has been extensively studied
in the context of security of ML models, i.e., where the goal
of the attacker is to train the model to miss-classify certain
datapoints [6, 27, 20], but to the best of our knowledge ours
is the first work that looks at poisoning attacks that aim to
compromise privacy of the training data.

One natural question that might arise is the following:
if the adversary is already providing parts of the training
data, why does it need to perform the attack to learn the
frequency of the target feature? We argue that this in fact is a
realistic model in certain applications. For example, when
a relatively small number (e.g., 10) of organizations (e.g.
hospitals/enterprises) pool their data to train a joint model,
it is natural to assume that their data sets come from similar

31122

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 22,2024 at 12:21:40 UTC from IEEE Xplore.  Restrictions apply. 



but somewhat different distributions. So the attacker would
not know the mixed distribution. Our attacks may also apply
in the setting where training is performed on data collected
from many user’s devices or from many sensors, and where
the adversary is able to compromise a rather large fraction of
them and cause them to provide incorrect results. In this case,
the adversary may not have access to any of the data.

Black box or white box model access The information
leakage of machine learning models could be studied in both
white-box and black-box setting. In this paper, we consider
the black box model, where the attacker is only allowed to
make a limited number of queries to the trained model. We
show that these attacks can be very successful. "Black box"
attacks is sometimes used to refer to attacks which also have
access to model’s confidence values on each query [25]. We
emphasize here that we use the stricter notion of black box
and our attacker will use only the model predictions. This
type of attack is studied independently in [8] where they study
“label-only” membership inference attacks.

IV. THREAT MODEL

Before going through the threat model, we introduce some
useful notation.

Notation. We use calligraphic letter (e.g T ) to denote sets and
capital letters (e.g. D) to denote distributions. We use (X,Y )
to denote the joint distribution of two random variables (e.g. the
distribution of labeled instances). To indicate the equivalence
of two distributions we use D1 ≡ D2. By x← X we denote
sampling x from X and by Prx←X we denote the probability
over sampling x from X . We use Supp(X) to denote the
support set of distribution X . We use p · D1 + (1 − p) · D2

to denote the weighted mixture of D1 and D2 with weights p
and (1− p).

Property Inference: To analyze property inference, we follow
the model introduced in [11]. Consider a learning algorithm
L : (X × Y)∗ → H that maps datasets in T ∈ (X × Y)∗

to a hypothesis class H. Also consider a Boolean property
f : X → {0, 1}. We consider adversaries who aim at finding
information about the statistics of the property f over dataset
T ∈ (X × Y)∗, that is used to train a hypothesis h ∈ H. In
particular, the goal of the adversary is to learn information
about f̂(T ) which is the fraction of data entries in T that has
the property f over data entries, namely f̂ = E(x,y)←T [f(x)].
More specifically the adversary tries to distinguish between
f̂(T ) = t0 or f̂(T ) = t1 for some t0 < t1 ∈ [0, 1].We are
interested in the black-box setting where the adversary can
only query the trained model on several points to see the output
label. I.e. the adversary does not get the confidence values for
his queries, or any information about the parameters of the
model. This model is also known as label-only attacks and has
been recently explored in the context of membership-inference
attacks [8].

To formalize this, we use distributions D−, D+ to denote
the underlying distribution of the dataset for instances with

f(x) = 0 and f(x) = 1 respectively. Then we consider two
distributions made by mixing D−, D+ at different ratios, i.e.,

Dt ≡ t ·D+ + (1− t) ·D−

Dt is the distribution where t fraction of the points have
f(x) = 1. The adversary’s goal is to distinguish between Dt0

and Dt1 , for some t0 < t1, by querying (in a black box way)
a model M that is trained on one of these distributions. In
this attack, as in previous work [2, 12] we assume that the
adversary can sample from D−, D+.

Property Inference with Poisoning: We consider the poison-
ing model where adversary can contribute pn "poisoned" points
to a n-entry dataset T that is used to train the model. To the
best of our knowledge, this is the first time that poisoning
attacks against privacy of machine learning are modeled and
studied.

In order to measure the power of adversary in this model
we define the following adversarial game between a challenger
C and an adversary A. Our game mimics the classic indistin-
guishability game style used in cryptographic literature. As
described above, L is the learning algorithm, n is the size of the
training dataset of which p fraction are poisoned points selected
by an adversary. D−, D+ are the distributions of elements x
with f(x) = 0, 1 respectively, and the goal of the attacker is
to tell whether the fraction of points in the victim dataset that
are from D+ is t0 or t1. Note that, here we assume that the
attacker knows some bounds on t0, t1, but in Section VII we
show that we can relax this assumption.

Assumptions on the Adversary’s Knowledge The adversary
has access to the following:
• Sample access to conditional distributions: D+, D− and
X+ (formally defined in Def. 8). Note that the adversary
has no knowledge about the distribution of the target
feature. It is also worth noting that this assumption is the
same as what is used in previous property and membership
inference attacks [28, 12, 8, 23, 22, 29].

• Blackbox access to the trained model: The adversary can
query the trained model to get output labels alone and
nothing else.

• Training algorithm and the features: This is completely
reasonable since we are in the collaborative setting,
where the adversary is one of the collaborators and each
collaborator has the right to know how their data will
be processed. It is also worth noting that most practical
techniques for performing collaborative training in a de-
centralized and privacy-preserving way (e.g., secure multi-
party computation, SGX) will require each collaborator
to know the training algorithm and the features. Finally,
it is never a good idea to try to achieve privacy by hiding
the algorithm details as it is rather easy to obtain this
information, e.g. see [32].

Discussion on the Distribution Assumption The knowledge
of adversary about the distributions D+ and D− is adopted
from various threat models including poisoning attacks [27,
19, 30], membership inference attacks [28, 29] and property
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inference attacks [2, 12]. We adopt this assumption in order
to be able to compare fairly with previous works on property
inference attacks. [2, 12]. However, we do explore the more
realistic setting where the attacker has access to another similar
dataset, rather than the exact distributions. In this experiment,
the data for training the target model comes from the ling-Spam
dataset whereas the adversary has access to the Enron dataset
(Section VII). To the best of our knowledge ours is the first work
in property inference that works with this realistic assumption
about the adversary’s knowledge of the distributions.

PIWP(L, n, p,D−, D+, t1, t0):
1) The Challenger (C) selects a bit b ∈ {0, 1} uniformly

at random. then samples a dataset of size (1− p) · n:
Tclean ← D

(1−p)n
tb

2) Given all the parameters in the game, A selects a
poisoning dataset Tpoison of size pn and sends it to
C.

3) C then trains a model M ← L(Tpoison ∪ Tclean).
4) A adaptively queries the model on a

sequence of points x1, . . . , xm and receives
y1 = M(x1), . . . , ym = M(xm).

5) A then outputs a bit b′ and wins the game if b = b′.

We aim to construct an adversary that succeed with proba-
bility significantly above 1/2.

V. ATTACK AGAINST BAYES-OPTIMAL CLASSIFIERS

In this section, we will introduce a theoretical attack with
provable guarantees for Bayes-optimal classifiers. A Bayes-
optimal classifier for a distribution D ≡ (X,Y ) is defined to
be a classifier that provides the best possible accuracy, given
the uncertainty of D. Below, we first define the notion of Risk
for a predictor and then define Bayes error and Bayes-optimal
classifier based on that.

Definition 4 (Risk of predictors). For a distribution D ≡
(X,Y ) over X × {0, 1} and a predictor h : X → {0, 1}, the
risk of h is defined as Risk(h,D) = Pr(x,y)←D[h(x) 6= y].

Definition 5 (Bayes Error and Bayes-optimal classifier). Let
D ≡ (X,Y ) be a distribution over X×{0, 1}. The Bayes error
of D is defined to be the optimal risk for any deterministic
predictor of {0, 1} from X . Namely,

Bayes(D) = inf
h : X→{0,1}

Risk(h,D).

Also the Bayes-optimal classifier for D is defined to be a
hypothesis h∗D that minimizes the error over the distribution.
Such classifier always exists if the support of Y is a finite set
(which is the case here since Supp(Y ) = {0, 1}.) In particular,
the following function is a Bayes-optimal classifier for any
such D

∀x ∈ X : h∗D(x) = argmax
y∈{0,1}

Pr[Y = y | X = x].

The Bayes error is the best error that a classifier can hope
for. High performance learning algorithms try to achieve error
rates close to Bayes error by mimicking the behavior of Bayes-
optimal classifier. Below, we assume a learning algorithm that
can learn the almost Bayes-optimal classifier for a class of
distributions, and will show that even such a high quality
learning algorithm is susceptible to attack. Let us first define
the notion of approximate Bayes optimal learning algorithms.

Definition 6 ((ε, δ)-Bayes optimal learning algorithm). For
two functions ε : N → [0, 1] and δ : N → [0, 1], a learning
algorithm L is called a (ε, δ)-Bayes optimal classifier for a
distribution D ≡ (X,Y ) iff for all n ∈ N, given a dataset
T ← Dn with n samples from D, the learning algorithm
outputs a model h such that

Risk(h,D) ≤ Bayes(D) + ε(n).

with probability at least 1 − δ(n) over the randomness of
samples from the distribution.

Note that ε and δ are usually decreasing functions of n that
can converge to 0. Now, we are ready to state our main theorem.
But before that, we need to define the notion of certainty of a
point which defines the (un)certainty of the response variable
on a particular point x. We use this notion to identify the
points that have a lot of ambiguity. We will see in our theorem
below that if we have enough ambiguous points, we can run
our attack.

Definition 7 (Signed certainty). For a distribution D ≡ (X,Y )
over X × {0, 1}, the (signed) certainty of a point x ∈ X
according to D is defined by

crt(x,D) = 1− 2 Pr[Y = 1 | X = x].

Definition 8 (Class of distributions induced by a property).
Let f : Supp(X)→ {0, 1} be a property and D ≡ (X,Y ) be
a distribution of labeled instances. Let X+ ≡ X | f(X) = 1
and D+ ≡ (X,Y ) | f(X) = 1 and D− ≡ (X,Y ) | f(X) = 0.
We use Df to denote the following class of distributions:

Df = {α1 · (X+, 1) + α2 ·D+ + α3 ·D−

where αi ∈ [0, 1],

3∑
i=1

αi = 1}.

We are now ready to present our main theorem which
describes conditions where an almost Bayes optimal algorithm
is vulnerable to attack. We will prove this theorem in the
following section.

Theorem 9. Let D ≡ (X,Y ) be a distribution over X ×{0, 1}
and f : X → {0, 1} be a property over its instances. Let D+ ≡
(X+, Y+) ≡ (X,Y ) | f(X) = 1 and D− ≡ (X−, Y−) ≡
(X,Y ) | f(X) = 0 be conditional distributions based on
property f . Consider a learning algorithm L that is (ε, δ)-
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Bayes optimal for class Df . For any p, t0 < t1 ∈ [0, 1], if
there exist τ ∈ [0, 1]

Pr
x←X

[p+ 2τ · t1
t1(1− p)

< crt(x,D) ≤ p− 2τ · t0
t0(1− p)

∧ f(x) = 1
]
>

2ε(n)

τ

then there is an adversary A who wins the security game
PIWP(n,L∗, D−, D+, p, t0, t1) with probability at least 1 −
2δ(n).

Theorem 9 states that our attack will be successful in
distinguishing Dt0 from Dt1 if there are enough points in the
distribution with high uncertainty and the learning algorithm
is Bayes-optimal for a large enough class of distributions.

Remark 10. One can instantiate Theorem 9 by replacing f
with 1− f . In this case, instead of t0 and t1 we need to work
with 1− t0 and 1− t1. On the other hand, we can also flip the
labels and use the distribution (X, 1− Y ) instead of (X,Y ).
Using these replacements, we can get four different variants
of the theorem with different conditions for the success of the
attack. In Section VI we will see that in different scenarios we
use different variants as that makes the attack more successful.

A. Attack Description

In this section we prove Theorem 9. We first describe an
attack and then show how it proves Theorem 9.

The rough intuition behind the attack is the following. If an
adversary can produce some poisoning data at the training
phase to introduce correlation of the target property with
the label, then this will change the distribution of training
examples. This will change the resulting classifier as well
because the learning algorithm is almost Bayes optimal and
should adapt to distribution changes. This change will cause
the prediction of the uncertain cases (i.e., those which occur
in the training set almost equally often with label 0 and 1)
to change. The adversary can choose the poisoning points in
a way that the change of prediction is noticeably different
for certain points between the cases when the target property
occurs with frequency t0 vs t1. In the rest of section, we will
show how adversary selects the poisoning points. Then we will
see that the behavior of the resulting model should be different
on points that satisfy the conditions in Theorem 9, depending
on the distribution used during the training. Finally, we argue
that, by querying these points, the adversary can distinguish
between the case of t0 and t1.

Let the original data distribution of clean samples be D ≡
(X,Y ). Our adversary A will pick the poison data by i.i.d.
sampling from a distribution DA ≡ (XA, YA). Note that this
adversary is weak in a sense that it does not control the poison
set but only controls the distribution from which the poison set
is sampled. The resulting training dataset will be equivalent to
one sampled from a distribution D̃ such that D̃ is a weighted
mixture of D and DA. More precisely,

D̃ ≡
{
D, With probability (1− p) [Case I: No poisoning],
DA With probability p [Case II: Poisoning]

Now we describe the distribution DA. To sample poisoning
points, adversary first samples a point from X conditioned
on having the property f . For the label, the adversary always
chooses label 1. So we have DA ≡ (X+, 1). We will see how
this simple poisoning strategy can help the adversary to infer
the property.

B. Evaluating the attack

In this section, we evaluate the effect of the poisoning
strategy above on the Classifiers. We describe the evaluation
steps here and defer proofs to the appendix.
Effect of poisoning on the distribution

Let (X̃, Ỹ ) be the joint distribution of samples from D̃.
First we calculate Pr[Ỹ = 1 | X̃ = x] to see the effect of
poisoning on the distribution. Let E be the event that the
point is selected by adversary, namely, the second case in
the description of D̃ happens. Let t = Pr[f(X) = 1], we
prove the following claim.
Claim 11. For any x ∈ X such that f(x) = 1 we have

Pr[Ỹ = 1 | X̃ = x] =
p

p+ t(1− p)

+
t(1− p)

p+ t(1− p)
· Pr[Y = 1 | X = x].

As a corollary to this claim, we prove that
Corollary 12. For any x such that f(x) = 1 and for any
τ ∈ R we have Pr[Ỹ = 1 | X̃ = x] ≥ 1

2 + τ ·t
p+t(1−p) if

and only if crt(x) ≤ p−2τ ·t
t(1−p)

Claim 11 and Corollary 12 show how the adversary can
change the distribution. We now want to see the effect of
this change on the behavior of the Bayes optimal classifier.

Effect on the Bayes Optimal Classifier
Consider the algorithm L that is (ε, δ)-Bayes optimal
on all linear combinations of distributions D+, D− and
DA (as stated in Theorem 9). Therefore, on a dataset
T̃ ← D̃n, the algorithm L will output a model h̃ = L(T̃ )
that with probability at least 1− δ(n) has error at most
Bayes(D̃) + ε(n). Consider joint distribution (X̃, Ỹ ) such
that D̃ ≡ (X̃, Ỹ ). The following claim shows how the
adversary can exploit the dependence of the probabilities
on t and infer between t0 and t1 by using special points
that have high uncertainty.
Claim 13. Let L be a (ε, δ)-Bayes optimal learning
algorithm for D̃ ≡ (X̃, Ỹ ). Consider an event Cτ defined
on all x ∈ X such that Cτ (x) = 1 iff f(x) = 1 and

p+ 2τ · t1
t1(1− p)

< crt(x) ≤ p− 2τ · t0
t0(1− p)

.

If there exist a τ ∈ [0, 1] and γ ∈ [0, 12 ] such that we have
Pr[Cτ (X) = 1] ≥ ε(n)

τ ·(1−2γ)
then if t = Pr[f(X) = 1] = t0 we have

Pr
S←D̃n
h̃←L(S)

[
Pr

x←X|Cτ (x)=1

[
h̃(x) = 1

]
≥ 0.5 + γ

]
≥ 1− δ(n)

61125

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 22,2024 at 12:21:40 UTC from IEEE Xplore.  Restrictions apply. 



and if t = Pr[f(X) = 1] = t1

Pr
S←D̃n
h̃←L(S)

[
Pr

x←X|Cτ (x)=1

[
h̃(x) = 1

]
≤ 0.5− γ

]
≥ 1− δ(n).

Putting it together
Using Claim 13, we will finish the proof of Theorem 9.
Intuitively, the adversary wants to calculate the proba-
bility Prx←X|Cτ (x)=1

[
h̃(x) = 1

]
. For doing this we use

standard sampling methods to estimate the probability.
• The adversary first samples m = − log(δ(n))

2γ2 samples
from (X,Y ) | Cτ (X) = 1. In order to do this,
adversary needs to sample roughly m · τ(1−2γ)ε(n) points
from X+.

• the adversary then calls h̃ on all the points and calculates
the average of the prediction as ρ.

In the case where Risk(h, D̃) ≤ ε(u) and t = t0, Using
claim 13 and Chernoff-Hoeffding inequality we have
Pr[ρ < 0.5] ≤ δ(n). Similarly in the case where t = t1,
and Risk(h, D̃) ≤ ε(n), we have Pr[ρ > 0.5] ≤ δ(n).
Therefore, the adversary only checks if ρ > 0.5 and based
on that decides if t = t0 or t = t1. The probability of
this test failing is at most 2δ(n) as there is at most δ(n)
probability of the learning algorithm failing in producing
a good classifier and δ(n) probability of failure because
of Chernoff. Hence, with probability at least (1− 2δ(n))
the adversary can infer whether t = t0 or t = t1.

VI. A CONCRETE ATTACK

Here we describe the concrete attack we use in our experi-
ments. We note that there are many possible variations on this
attack; what we have presented here is just one configuration
that demonstrates that the attack is feasible with high accuracy.

Selecting Poisoning Points Recall that the attacker is assumed
to be able to sample from D− and D+, the distribution of
items with f(x) = 0 and with f(x) = 1.

As in the theoretical attack described in Section V, the
poisoned data is generated by sampling from D+ ≡ (X+, Y+)
and introducing correlation between the target feature f(x)
and the label by injecting poisoning points of form (X+, 1).

Note that the attack described in the Section VI could be
achieved in 4 different forms. Namely, the adversary can use
any of the possible combinations (X−, 1), (X−, 0), (X+, 0)
and (X−, 1) for poison data. In algorithm 3 we show how we
choose between these strategies. In particular, when values of
t0 and t1 are large, we try to attack 1−f instead of f . The logic
behind this choice is that it is easier to impose a correlation
between the property and the label, when the property is rare
in the distribution. As an example, consider a spam detection
scenario where the adversary wants to impose the following
rule on the spam detection: all Emails that contain the word
"security" must be considered spam. It would be much easier
for the adversary to impose this rule when there are very
only a few Emails containing this word in the clean dataset.
In other words, if this rule is added to the spam detector,

the accuracy of the spam detector on the rest of the emails
would not change significantly as there are not many email
containing the word "security". On the other hand, we select
the correlation in the direction that is not dominant in the data.
Namely, if we have Pr(x,y)←(X,Y )[y = 1|f(x) = 1] ≥ 0.5
then we either use (X+, 0) or (X−, 1) based on the values of
t0 and t1. The intuition behind this choice is that we always
select the correlation that happens less often in the training
set so that the poisoning distribution is more distinct from
the actual distribution and hence makes a larger change in
the distribution. Note that we can just stick to one of these
four options and still get successful attacks for most scenarios
but our experiments shows that this is the most effective way
of poisoning. Also, it is important to note that Theorem 9
could be extended to all of these attacks with slightly different
conditions. The details of the poisoning algorithm are described
in Algorithm 1.

Note that we select our poison points exactly the same
way as our theoretical results suggest. These poison points
will make the model leak the average of the target property
if the the adversary can find the right queries that fall into
a certain uncertainty threshold. In the next two steps of the
attack, we show how the adversary can identify the queries
that are important without going through the calculation of the
uncertainty of different points.

Selecting Query points: The next challenge here is in choosing
the query points. As in Section V, we want to find query points
whose certainty falls in a range close to 0. For instance, if the
poisoning rate p = 0.1 and we want to distinguish between
t0 = 0.3 and t1 = 0.7, the Theorem suggests that we should be
querying the points whose certainty falls between [≈ 0.15,≈
0.37]. In order to do this, we need to first calculate the certainty.
Since we only have sampling access to the distribution, we
do not know the exact certainty. Instead we approximate the
certainty by estimating the probability that the label is 0 or 1
through training an ensemble of models and then evaluating
all of them on a point. In particular, for a point x we estimate
Pr[Y = 1 | X = x] using the fraction of models in the
ensemble that predict 1. Then we use this estimate to calculate
the certainty. The way we estimate the certainty is obviously
prone to error. To cope with the error, we actually work with
a larger range than what is suggested by our theoretical result.

In out attack, we fix the range of certainty to [−0.4, 0.4] and
query the points whose certainty falls in this interval. Although
this range might be larger (and sometimes smaller) than what
our Theorem suggests, but we still get good results in our
attack. The reason behind this is that in the next step of the
attack, which is the inference phase, we filter the query points
and only look at the important ones. So if there are queries
that are not relevant, they will be ignored in the inference.
Additionally, we also include the poisoning points in the set
of queries. We find this to slightly help attack’s accuracy.

Guessing the Fraction: At the end, the adversary must use
the results of its queries to come up with the prediction of
whether t = t0 or t = t1. The theoretical attack suggests
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that we should just take the average of all responses and
predict based on whether or not the average is less than 0.5.
However, as we pointed out before, we cannot use the exact
range suggested by the theorem because we do not have access
to exact certainty. To get around this issue, we train a linear
model for the attack to identify the queries that are actually
relevant in predicting whether t = t0 or t = t1. Here we
use a shadow model approach: we sample multiple datasets
T 0
1 , . . . , T 0

k and T 1
1 , . . . , T 1

k where, for each i ∈ [k] we have
Pr(x,y)←T 0

i
[f(x) = 1] = t0 and Pr(x,y)←T 1

i
[f(x) = 1] =

t1. Now we use the poisoning dataset Tpoison and the query
dataset Tq from the previous steps of the attacks as follows:
We first use the poisoning set to poison all the datasets and
train multiple models (M0

1 , . . . ,M
0
k ) and (M1

1 , . . . ,M
1
k ) where

M i
0 = L(T i0 ∪Tp) and M i

0 = L(T i0 ∪Tp). After that we query
each of the models on each of the chosen queries. Finally,
we generate a training set where the query responses are the
features and the label are 0 or 1 depending on whether the
"shadow" model used was from T 0

i or T 1
i , and train a linear

model MA on this set. The attack then queries the target model
using query points and feeds the responses to MA, and outputs
whatever MA produces as it’s final guess for whether t = t0
or t = t1.

Algorithm 1 Choosing poisoning data
Input

f The property being attacked
t0, t1 Possible fractions of instances with property f
p Poisoning ratio
n Size of training set
D+, D− Sampling oracle to distribution of instances with and

without property f
Output
Tpoison Set of poisoning examples

1: if (t0 + t1) < 1 then
2: Sample m = p · n examples from D+,
3:

T = {(x1, y1), . . . , (xm, ym)} ← Dm
+

4: else
5: Sample m examples from D−,
6:

T = {(x1, y1), . . . , (xm, ym)} ← Dm
−

7: α =
∑m
i=1 yi
m

.
8: if α > 0.5 then
9: Tpoison = {(x1, 0), . . . , (xm, 0)}

10: else
11: Tpoison = {(x1, 1), . . . , (xm, 1)}
12: Output Tpoison

VII. EXPERIMENTAL EVALUATION

Here we evaluate the performance and the accuracy of our
attack described in Section VI.

A. Experimental Setup

DataSets We have run our experiments on the following
datasets (details of the datasets are deferred to the Appendix):

Algorithm 2 Choosing the black box queries
Input

r number of models in ensemble
q Number of black-box queries
D+, D− Sampling oracle to distribution of instances with and

without property f
Output
Tq Set of black-box queries

1: Sample a thousand data sets T1, . . . , Tr each composed half of
elements sampled from D− and half of elements sampled from
D+.

2: Train M1, . . . ,Mr using T1, . . . , Tr .
3: Set Tq = ∅.
4: while |Tq| < q do
5: sample x← 1

2
D− + 1

2
D+

6: if
|1− 2

∑r
i=1Mi(x)

r
| ≤ 0.4

Tq = Tq ∪ {x}.
7: Set Tq = Tq ∪ Tpoison
8: Output Tq as the set of black box queries to make.

Algorithm 3 Guessing fraction of samples with property f
Input

f The property being attacked
t0, t1 Possible fractions of instances with property f
p Poisoning ratio
n Size of training set
k Number of shadow models
Tpoison The set of poisoning data
Tq The set of black-box queries
D+, D− Sampling oracle to distribution of instances with and

without property f
Output

b′ A bit that predicts whether t = t0 or t = t1.

1: Sample data sets T 0
1 , . . . , T 0

k with size n from Dt0 and
T 1
1 , . . . , T 1

k with size n from Dt1 . (Note that the adversary can
generate samples from these distributions given sampling access
to D−, D+: e.g. to sample from Dt0 , first choose bit b from a
distribution that is 1 with probability t0, then sample from Db.)

2: Train M0
1 , . . . ,M

0
k using T 0

1 ∪ Tpoison, . . . , T 0
k ∪ Tpoison and

M1
1 , . . . ,M

1
k using T 1

1 ∪ Tpoison, . . . , T 1
k ∪ Tpoison.

3: Query all models on Tq to get labels (only the label and not the
confidence) R1

1, . . . , R
1
k and R0

1, . . . , R
0
k.

4: Construct a dataset

{(R1
1, 1), . . . , (R

1
k, 1), (R

0
1, 0), . . . , (R

0
k, 0)}

and train a linear model with appropriate regularization on it to
get MA (We use `2 regulizer with weight 2 ·

√
1/k)

5: Query the target model on Tq to get Rq , evaluate MA(Rq), and
output the result.

81127

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 22,2024 at 12:21:40 UTC from IEEE Xplore.  Restrictions apply. 



US Census Income Dataset [10], Enron email dataset [15],
MNIST [16] and CelebA [18].

Target Property In Table I, we summarize the features we
experimented with. In all these experiments, the attacker’s
objective is to distinguish between two possible values for the
frequency of the target feature. Below is a summary list of all
these properties.

DataSet Target Feature Distinguish between
Census Random binary .05 vs .15
Census Gender .6 vs .4 female
Census Race .1 vs .25 black
Enron Random binary .7 vs .3
Enron Negative sentiment .10 vs .05

MNIST Jitter noise .0 vs .1
CelebA Gender .4 vs .6

TABLE I: Target Features. For each feature we use two different
ratios close to the actual ratios in the dataset (except for random
features which are not present in the dataset).

• Random: To understand the power of this attack on a
feature that is completely uncorrelated to the classification
task (which one might naturally think should not be leaked
by an ideal model), we did a set of experiments where we
added a random binary feature to both Census and Enron
datasets and set that as the target feature that the adversary
wants to attack. Note that this feature is not correlated
with any other feature in the dataset and the model should
not depend on it to make its decision. This is backed up
by our experiments in that, as we will see, the attack of
[12], which uses no poisoning does not perform better
than random guessing on this property.

• Gender: Gender is a boolean feature in Census data which
takes values "Male" and "Female". We also attack this
feature in the CelebA experiments where the attack tries to
identify the fraction of female photos used in the training
set. This feature was used in the work of [11, 12], so it
allows us to compare our work with theirs.

• Race: Another feature that we attack in the Census dataset
is Race. We try to infer between two different ratios of
"Black" race in the dataset. Again, we chose this for
purposes of comparison with previous work.

• Negative Sentiment: In one of our target properties, we
try to infer the fraction of emails in the Enron email
dataset that have negative sentiment. To do this, we use
the sentiment analysis tool in python nltk to identify emails
with positive and negative sentiment. Note that unlike all
the other target properties, the negative sentiment feature
is not present as a feature in the dataset which makes it
intuitively seem harder for the attacker to infer. However,
as we will see in our experiments, the attacker can still
attack this property.

• Jitter Noise: This target property is defined on the MNIST
dataset where the adversary tries to identify if all images in
the dataset replaced with a noisy version (with brightness
jitter noise) or they are all intact. We use this property to
replicate the setting of [12].

B. Black-box queries

As mentioned before, we are interested in the information
leakage caused by black-box access to the model. Namely,
the adversary can query the model on a number of points
and infer information about the target property using the label
prediction of the model on those queries (See Section IV for
more details). In a concurrent work [8], also explored this kind
of black-box access in the context of membership inference
attacks. Our model does not require any other information
other than predicted label (e.g. no confidence score, derivative
of the model, etc). The query points are selected according to
algorithm 2 in such a way that they have low certainty.

For Enron experiments, we use 500 query points and for
census data experiments we use 1000 query points. The reason
that we use different numbers for the Enron and census
experiment is that Enron dataset contains fewer of “uncertain”
points; we used almost all the points that fall into our range.

C. Target model architectures

Most of our experiments use logistic regression as the model
architecture for training. The main reason we picked logistic
regression was because it is much faster to train compare to
Neural Networks. However, we also have a few experiments
on the more complex models. In particular, we test our attack
on fully connected neural networks with up to 6 hidden layers
(See Table VI) and Resnet-18 and Resnet-50 (Table VII). We
note that since our attack is black-box, we do not need any
assumption over the target model architecture other than the
fact that it will have high accuracy (we still need the adversary
to know the architecture for the attack to work.). This is again in
contrast with the previous work of [12] that only works on fully
connected neural networks. This is an important distinction as it
shows that the attacker is not relying on extensive memorization
due to large number of parameters.

D. Shadow model training

Our shadow model training step is quite simple. As described
in Section VI, we train a series of shadow models with a fixed
poisoning set. We hold out around 1

3 of the dataset (For both
Enron and Census datasets) training the shadow models. This
held out part will not effect any of the models that we test
our attacker’s accuracy on. After training the shadow models,
we query them and train a simple linear attack model over the
predictions on the queries. We use a linear model to train the
attack model since our theoretical results suggest a simple linear
model (which just takes the uniform average) over the queries
would be enough to make a correct prediction. We use `2
regularization for our linear models to get better generalization
and also reduce the number of effective queries as much as
possible. Note that this choice of simple linear models is
contrast with the attack of [11] and [12] that use complex
models (e.g. set neural networks) to train the attack model;
this is one of the reasons that our attack is faster.
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Fig. 1: Poison rate vs attack accuracy. We change the poisoning budget
from 0% of the training size to 20%. Note that in most experiments,
property inference without poisoning is not effective, but with less
than 10% poisoning all of the experiments get accuracy above 90%.
The curve marked as Census Random MLP shows the performance
of our attack against MLP classifier on census dataset with random
target feature. Also, observe that for one of the experiments (marked
as Enron Negative), the accuracy of the attack starts decreasing after
a certain level of poisoning, we discuss this phenomenon below.

E. Performance of our attack

In the following experiments, we evaluate the performance of
our attack and compare it with the attack of [12]. In the rest of
the manuscript, we denote the attack of [12] as WBAttack. We
first evaluate how the different parameters, namely, poisoning
rate, training set size, number of shadow models (defined in
Sec IV) and the complexity of the target model affect its
accuracy. To understand the effect of each parameter, for each
set of experiments, we fix a set of parameters and vary one.
Unless otherwise stated, all of our experiments are repeated 5
times and the number reported is the average on all repetitions.

Poisoning Rate In Fig. 1, we have 6 experiments where we fix
the model to be logistic regression for all of them except one
(Census random MLP) which uses a 5 layer perceptron with
hidden layers sizes 32, 16 and 8. In all the experiments we set
the number of shadow models to be 500 for census experiments
and 1000 for Enron experiments. The training set size is 1000
for Census experiments and 2000 for Enron experiments. We
vary the poisoning rate from 0% to 20%. The number of black-
box queries is set to 500 for experiments on Enron and 1000
for experiments on Census. The attack accuracy for all the
target features is quite low when there is no poisoning. But
with increase in poisoning rate, the attack accuracy dramatically
improves and for all features, the accuracy reaches around .9
with less than 10% poisoning. Table II provides a baseline
without poisoning. Comparing this table with Figure 1 shows
the importance of poisoning in the success of the attack.

The Enron negative sentiment experiment seems like an
anomaly in Figure 1. However, the drop of accuracy with more
poison points could be anticipated. We posit that for all features

Task Black-box White-box
Enron Negative Sentiment 5% v.s. 10% 63% 78%

Enron Random 30% v.s. 70% 50% 51%
Census Random MLP 30% v.s. 70% 50% 54%

Census Random 5% v.s. 15% 50% 53%
Census Race Black 10% v.s. 25% 52% 86%

Census Gender 40% v.s. 60% 56% 91%

TABLE II: Baseline black-box and white-box attacks without
poisoning. The White-box baseline uses the sorting based attack
of [12]. The Black-box attacks uses 10000 random queries from the
distribution and uses the results as a representation of the model.

there is some point where adding more poisoning points will
cause the accuracy to decrease. To understand this, one can
think about the extreme case where 100% of the distribution is
the poison data, which means there is no information about the
clean distribution in the trained model and we would expect
the attack to fail.

This effect is especially pronounced for properties that have
very weak signal in the behavior of the final model. The Enron
negative sentiment property produces the weakest signal among
all the experiments because (1) the feature does not exist in
the dataset and (2) it has the smallest difference in percentage
(t1 − t0) among all the other experiments (5% vs 10%). We
believe this is why it happens faster for the Sentiment property
compared to other features. However, our insight suggests that
this phenomenon should happen for any property for some
poisoning ratio. To test this insight, we tried various poisoning
rates on the Enron dataset with random target feature. Figure 7
(In Appendix D shows the result of this experiment where the
accuracy of the attack starts to drop at poisoning rates around
30%. Interestingly, this phenomenon could be also explained
using our Theorem as both ends of the range of certainty in
the condition of our Theorem 9 will converge to ∞ when p
approaches 1.

Number of Shadow Models The next set of experiments (See
Fig 2) are to see the effect of the number of shadow models
on the accuracy of the attack. For these experiments, we vary
the number of shadow models from 50 to 2000. We notice that
increasing the number of shadow models increases the attack
accuracy and about 500 shadow models are sufficient to get
close to maximum accuracy. Note that in this experiment we set
the poisoning ratio to small values so that we can see the trend
better. If larger poison ratio were chosen, in most experiments
the attack reaches the maximum of 1 with very few shadow
models and it is hard to see the trend. For instance, with 10%
percent poisoning, the experiments with random feature (both
census and Enron) would reach 100% accuracy with only 50
shadow models. This small number of shadow models makes
the running time of the attack lower. In all of the experiments
in this figure, the dataset size is set to 1000 except for the
Enron negative sentiment experiment where the size is 2000.

Training Set size In Fig. 3, we wanted to see the effect of
training size on the effectiveness of the attack. Note that our
theoretical attack suggests that larger training size should
actually improve the attack because the models trained on
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Fig. 2: Number of shadow models v.s. attack accuracy. Our attack
used shadow model training to find important queries. This figure
shows that in all experiments, less than 500 shadow models is enough
to get the maximum accuracy. Note that in this experiment we also
attack MLP classifier on Enron dataset for the random feature.

Fig. 3: Training set size v.s. attack accuracy. As was observed in
our theoretical analysis , the size of the training set can impact the
performance of our attack (because it affects the generalization error).

larger training sets would have smaller generalization error
and hence would be closer to a Bayes-optimal classifier. In
Theorem 9 as the training set size increases, ε(n) and δ(n) will
decrease which makes the attack more successful. In fact, our
experiments verify this theoretical insight. In our experiments,
we vary the training set size from 100 to 1500 and the upward
trend is quite easy to observe. In this experiment we use 500
shadow models. Again, we have selected the poisoning rate
and the number of shadow models in a way that the attack does
not get accuracy 1.0 for small training sizes. In all experiments
in this figure, the number of shadow models is set to 200. Also,
the number of repetitions for this experiment is 2.

Relaxing the knowledge of distribution assumption: We
perform experiments where we do not give the adversary the
knowledge of the actual distribution (As descibed in Section V),
but a proxy distribution. Specifically, we run a modified version
of our attack against spam classification, In this experiment,
the data for training the target model comes from ling-Spam 2

2https://www.kaggle.com/sohelranaccselab/lingspam-classification

dataset and the adversary has access to Enron dataset (which
it also uses for shadow model training). The goal of adversary
is to find what fraction of emails in the trained model have a
random feature. Table III shows the success of our algorithm
in different scenarios. The attack that we use for the case that

Attack accuracy ratios Model architecture Poisoning Ratio
82% .3 vs .7 Logistic Regression 5%
84% .3 vs .7 Logistic Regression 10%
84% .2 vs .8 Logistic Regression 5%
92% .2 vs .8 Logistic Regression 10%
88% .3 vs .7 3 hidden layer MLP 10%
93% .2 vs .8 3 hidden layer MLP 10%

TABLE III: The success of attack when attack uses a different data
distribution for shadow model training. The 3 hidden layer MLP
models have layer sizes 32, 16 and 8. The number of shadow models
is 1000 and the size of the dataset is 2000 and the target feature is
"random" in all experiments.

distributions are different is slightly different from the attack
we describe in Section VI. We use techniques that makes the
model robust to distribution shift. For example, we normalize
the training data in the shadow dataset and also add noise
to them so that the trained models are more robust to small
changes. Also, when trying to find borderline queries, we
only use queries that are not extremely uncertain (e.g. with
uncertainty between .45 and .55). The reason behind this is
that the shadow models trained could have shifted decision
boundaries compared to actual models and this affects the result
of the model on borderline queries which causes the attack that
uses the result of extremely borderline queries to be ineffective.
We outline the exact modified algorithm in Appendix C.

We believe the right way to model the security of property
inference is by giving the adversary the knowledge of the
conditional distribution of training set. This experiments are
designed to show that the knowledge of distribution is not a
strong assumption and adversaries can find proxy distributions
and run the attack based on them. This shows that defending the
models by hiding the distribution of samples is not advisable
and the models should be secure even if the adversary knows
the exact conditional distributions.

Relaxing the knowledge of ratios assumption: To test the
effectiveness of the attack for when the adversary does not
know the ratios t0 and t1, we run our attack with ratios t0 = .3
and t1 = .7 and tested the attack on other ratios. Table IV
shows the effectiveness of the attack on ratios other than those
used by the adversary to train the attack. As we expect from
the theoretical analysis in Section V, as long as t0 < 0.3 and
t1 > 0.7, the attacks performs almost as good as the case of
t0 = 0.3 and t1 = 0.7. The experiments for the rest of the
cases where either t0 > 0.3 or t1 < 0.7 show that even in
these settings our attack is fairly successful. Note that in these
experiments we use the modified version of the attack that is
designed to be robust to distribution shift (See Section C).

To show the effectiveness of attack in inferring the ratio with-
out knowing t0 and t1, we also ran another experiment where
instead of training a distinguisher, we train a regression model.
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t0\t1 .1 .2 .3 .4 .5 .6 .7 .8 .9
.1 50% 54% 67% 74% 86% 99% 100% 100% 100%
.2 − 50% 57% 65% 84% 98% 100% 100% 100%
.3 − − 50% 68% 90% 95% 98% 97% 99%
.4 − − − 50% 69% 84%% 85% 88% 91%
.5 − − − − 50% 57% 62% 71% 88%
.6 − − − − − 50% 59% 60% 78%
.7 − − − − − − 50% 60% 60%
.8 − − − − − − − 50% 55%
.9 − − − − − − − − 50%

TABLE IV: The success of attack when the ratios used to train the
attack is different than actual ratios. The attack is trained against
Logistic Regression with training set size 1000, 1000 shadow models,
poisoning ratio 0.1. The distribution used here is Enron data and the
target feature is "random".

In the shadow model training phase, we select random ratios
t uniformly at random from the set {1%, 2%, 3%, . . . , 100%}.
Then, we label the shadow models with these ratios. Then we
train a linear regressor (Ridge regressor) that tries to predicts
the average of target feature based on the result of the queries.
Our experiments suggest that the attack is able to find the
average of target feature with absolute error of < 5% when
the target features average is selected uniformly at random in
[0, 1]. To train this attack, we trained 20000 shadow models
with training set size of 2000 on the Enron dataset. The target
of the attack is to find out the average of a random feature that
is not correlated with any other feature. Note that the absolute
error of .25 means that the regressor is not doing anything as
a trivial regressor that always outputs .5 will achieve the same
average absolute error.

Average Absolute Error poisoning ratio
0.254% 0%
0.066% 5%
0.046% 10%

TABLE V: The success of the regression attack.

Complexity of Target Models While in most of our experi-
ments we fix the target model to be logistic regression (except
for few experiments named Census MLP and Enron MLP in the
figures), here we experiment with more complex architectures
to see how our attack performs. We summarize the results in
Table VI. Based on our theoretical analysis, the effectiveness
of the attack should depend on the model’s performance in
generalization to the training data distribution. Therefore, we
expect the effectiveness of the attack to drop with more complex
networks as the generalization error would increase when the
number of parameters in the model increases. This might sound
counter intuitive as the privacy problems are usually tied with
over fitting and unintended memorization[7]. However, our
experiments verify our theoretical intuition. We observe that as
we add we more layers, the accuracy of the attack tends to drop.
However, we would expect this to change with larger training
set sizes as the larger training size could compensate for the
generalization error caused by higher numbers of parameters
and overfitting. For instance, in the last row of Table VI the
accuracy increases significantly when we set the training size
to 10000 and use more shadow models.

Architecture Performance
Layers Layer sizes Train Size Acc. Shadow Models

1 [2] 1000 1.0 600
2 [4 2] 1000 0.97 600
3 [8 4 2] 1000 0.94 600
4 [16 8 4 2] 1000 0.88 600
5 [32 16 8 4 2] 1000 0.81 600
5 [32 16 8 4 2] 1000 0.83 1000
5 [32 16 8 4 2] 10000 0.92 1000

TABLE VI: Complexity of target models vs attack accuracy.
F. Experiments on Resnet

We also studied the effect of our attack on the Resnet-18
and Resnet-50 Architectures for smile detection on CelebA
dataset. Table VII shows the performance of the attack on
CelebA dataset. As the experiments suggest, the white-box
attack does not perform well for these architectures. We believe
there are two reasons for this (1) The architecture is large with
lots of parameters and the attack cannot find the right patterns
with only 500 shadow models. (2) The sorting and set-based
techniques used in [12] cannot be used for these architectures
because it is not a fully connected neural network.

In these experiments, the goal of the adversary is to infer
the ratio of Males in the training set that is either 30% or 70%.
We train 500 shadow models trained on the datasets of size
10000. We use pytorch library to train our models. We train
each model for 15 epoch with exponential decaying learning
rate schedule with starting learning rate of 0.001 and decay
rate of 0.5 that is applied at the end of every third epoch. We
use a batch size of 500.

Architecture Performance
- White-box 0% poison 5% poison 10% poison

Resnet-18 58% 73% 92% 97%
Resnet-50 52% 64% 87% 89%

TABLE VII: Experiments with Resnet Architecture and comparison
with white-box baseline.

G. Comparison with WBAttack [12]

Since the work closest to ours is WBAttack, even though it is
a white-box attack, we experimentally compare the performance
of WBAttack to ours. WBAttack is an improved version of
property inference attack of [11], where instead of a simple
white-box shadow model training on the parameters of neural
networks (which is done in [2]), they first try to decrease
the entropy of the model parameters by sorting the neural
network neurons according to the size of their input and output.
They show that this reduction in randomness of the shadow
models can increase the accuracy of attack, for the same
number of shadow models. This attack is called the vector
attack in [12]. In Table VIII, we see how our black-box attack
performance compares with WBAttack. Notice that black-
box with no poisoning (first 3 rows of the table) performs
much worse that WBAttack on race and gender. However,
WBAttack performs poorly on the random feature. In fact, the
strength of our attack is to find a way to infer information about
features similar to random that do not have high correlation
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Experiment parameters White-box[12] Black-box
Feature TS SM Acc. # SM Poison Acc.

C-Random 1000 1000 .52 1000 0 .5
C-Gender 1000 1000 .96 1000 0 .61
C-Race 1000 1000 .95 1000 0 .55

C-Random 1000 1000 .52 100 0.05 1.0
C-Gender 1000 1000 .96 100 0.03 .99
C-Race 1000 1000 .95 100 0.05 .97

C-Random 1000 1000 .52 50 0.1 1.0
C-Gender 1000 1000 .96 50 0.1 1.0
C-Race 1000 1000 .95 50 0.1 .98

M-Jitter 10000 4096 .85 1000 0.1 0.94
Cel-Gender 10000 4096 1.0 1000 0.1 0.91

TABLE VIII: Comparison with the white-box attack of [12]. Here
C- denotes Census, M- MNIST, Cel- CelebA; TS denotes size of
Training Size, SM denotes number of Shadow Models. The first 9
rows compare our attack with the sorting-based white box attack of
[12] using our own implementation of their attack. For the last two
rows which are experiments on image datasets, we compare with the
set-based attack of [12] and we use the numbers reported in the paper.

with the label (and this is exactly what WBAttack is unable to
attack), and do it in a fully black-box way. As we see in the
columns below, with very small ratio of poisoning our attack
get accuracy 1.0 on the random target property. It also beats the
performance of WBAttack on other experiments with a very
small number of poisoning points. Note that our attack also
requires many fewer shadow models. For example with 10%
poisoning, only 50 shadow models in our attack would beat
the accuracy of WBAttack which uses 1000 shadow models.
The small number of shadow models would be important in
scenarios where the adversary does not have access to a lot
of similar data. So in summary, our attack can improve on
the performance WBAttack both in accuracy and number of
shadow models, and of course in the access model which is
black box. The cost of these improvements is allowing the
adversary to choose a fraction of training set which is not an
uncommon scenario in multi-party learning applications. To
compare the running time of the attacks, for the Census-Gender
experiment in Table VIII, WBAttack ran in 1533s compared to
our black-box attack that only took 161s on the same platform
and execution environment. Note that we used the exact same
size of held-out data for shadow models in both black-box and
white-box experiments.

Image datasets We also replicated the setting of [12] on
MNIST [16] and CelebA [18] datasets in the last two rows of
Table VIII. In the MNIST experiment,The goal of adversary
is to find out if whether the images have jitter noise added to
them before training. The adversary uses 10% poisoning to
associate Jitter with one of the digits (9 in our experiments)
and then query the model on 200 images with high uncertainty
(We use a slightly different notion of uncertainty for multi-label
cases). We use MLP classifier with three hidden layers of size
128, 32 and 16 for the MNIST classifier (similar to [12]). In
the CelebA experiment, the goal of the classifier is to tell if the
face in the image is smiling. The goal of attacker is to find out
whether 40% or 60% of images in the dataset used for training

the model are male. Our attack add 10% poison examples
and then queries the model with 500 uncertain queries. The
classifier uses FaceNET [26] which is a pre-trained feature
extractor to maps the images to 512 features and then a MLP
classifier with 2 hidden layers of 64 and 16 is trained those
features. This setup is exactly similar to the setup of [12].

VIII. (IM)POSSIBILITY OF DEFENSES

Theoretical Analysis First, note that our theoretical analysis
suggests that, as long as the learning algorithm (which could
include a poisoning defense) preserves its generalization
properties, our attack should succeed. In other words, a
poisoning defense would either hurt the performance of the
learning algorithm or it will be unsuccessful in defending our
attack. Our second argument is about the input-space nature of
existing poisoning defenses in the literature [30]. In particular,
the poisoning defenses often use a filter function F that is
applied on the inputs (without looking at the label) and filters
outliers from the training set. Our poisoning attack uses real
samples from the distribution without changing the input. This
means that no filter function cannot defend against our attack.
The reason that poisoning defenses often do not look into the
label is that the learner supposedly does not have information
about the labels and removing examples based on their labels
create a bias that hurts the performance of the algorithm.
Differential Privacy (DP) mitigation We wanted to empiri-
cally see how effective DP can be, in mitigating our attacks.
We tested our attack on models trained with DP in Table IX.
DP could be seen as a two-fold defense against our attack.
First, DP is designed to make the dataset more private and one
could expect to see reduction of leakage when DP is applied.
Second, DP is one of the few provable defenses proposed
against poisoning attacks [17] and one could expect that our
attack would perform worse when DP is deployed because of
the poisoning step in the attack. However, our results show that
even with small values for ε, the attack is still successful. Even
with ε values less than 1, the attack still achieves accuracy of
90%. DP will start to mitigate the attack when the value of ε
goes less than 0.5. We believe this is the effect of reducing
the utility of models and is predicted by our theory.

Noise multiplier ε Attack accuracy Classification Accuracy
0.6 4.09 0.95% 92.3%
0.7 2.56 0.97% 92.5%
0.8 1.68 0.92% 91.6%
0.9 1.22 0.93% 91.7%
1.0 0.95 0.90% 91.07%
2 0.29 0.76% 84.05%

TABLE IX: Experiments with differential privacy on Enron dataset
and random target feature. The details of this experiment could be
found in Appendix F.

IX. CONCLUSION

Poisoning attacks attacks are usually studied in machine
learning security where the goal of the adversary is to increase
the error or inject backdoors to the model. In this work, we
initiated the study of poisoning adversaries that instead seek
to the increase information leakage of trained models.
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APPENDIX A
OMITTED PROOFS

In this section we prove the tools we used to prove our main
Theorem. Specifically, We prove Claim 11, Corollary 12 and
Claim 13.

Proof of Claim 11. We have

Pr[Ỹ = 1 | X̃ = x]

= Pr[Ỹ = 1 | X̃ = x ∧ E] · Pr[E | X̃ = x]

+ Pr[Ỹ = 1 | X̃ = x ∧ Ē] · Pr[Ē | X̃ = x]

= Pr[E | X̃ = x] + Pr[Y = 1 | X = x] · Pr[Ē | X̃ = x]
(1)

Now we should calculate the probability Pr[E | X̃ = x] to
get the exact probabilities. We have

Pr[E | X̃ = x]

=
Pr[X̃ = x | E] · Pr[E]

Pr[X̃ = x | E] · Pr[E] + Pr[X̃ = x | Ē] · Pr[Ē]

=
Pr[X+ = x] · p

Pr[X+ = x] · p+ Pr[X = x] · (1− p)
(2)

Now for all x ∈ X such that f(x) = 1 we have

Pr[X = x] = t · Pr[X+ = x]. (3)

and for all x ∈ X such that f(x) = 0 we have
Now combining Equations 2 and 3, for all x ∈ X such that
f(x) = 1 we have

Pr[E | X̃ = x] =
p

p+ t · (1− p)
. (4)

Combining equations 1 and 4 we get

Pr[Ỹ = 1 | X̃ = x] =
p

p+ t(1− p)

+
t(1− p)

p+ t(1− p)
· Pr[Y = 1 | X = x]

which finishes the proof.

Proof of Corollary 12. if crt(x) ≤ p−2τ ·t
t(1−p) then by Claim 11

we have

Pr[Ỹ = 1 | X̃ = x]

=
p

p+ t(1− p)
+

t(1− p)
p+ t(1− p)

· Pr[Y = 1 | X = x]

=
p

p+ t(1− p)
+

t(1− p)
p+ t(1− p)

· (1− crt(x)

2
)

≥ p

p+ t(1− p)
+

t(1− p)
p+ t(1− p)

· ( t(1− p)− p+ 2tτ

2t(1− p)
)

=
t(1− p) + p+ 2τt

2(p+ t(1− p))

=
1

2
+

τt

p+ t(1− p)
.

To show the other direction, we can follow the exact same
steps in the opposite order.

Proof of Claim 13. For all x ∈ X such that Cτ (x) = 1,
using Corollary 12, if t = t1 then we have

Pr[Ỹ = 1 | X̃ = x] < 0.5− τ · t1
p+ (1− p) · t1

(5)

and if t = t0 then

Pr[Ỹ = 1 | X̃ = x] ≥ 0.5 +
τ · t0

p+ (1− p) · t0
(6)

This implies that for both cases of t = t0 and t = t1 we have

|crt(x, D̃)| ≥ 2τt

p+ (1− p) · t
(7)

And it also implies that for case of t = t0 we have

h∗(x, D̃) = 1 (8)

and for t = t1 we have

h∗(x, D̃) = 0. (9)

Now we state a lemma that will be used in the rest of the
proof:

Lemma 14. For any distribution D ≡ (X,Y ) where
Supp(Y ) = {0, 1} and any classifier h : Supp(X)→ {0, 1}
we have:

Risk(h,D) = Bayes(D)+ E
x←X

[
|h̃x)− h∗(x,D)| · |crt(x,D)|

]
where h∗ is the Bayes-Optimal classifier as defined in
Definition 5.
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Proof. For simplicity, in this proof we use h∗(x) instead of
h∗(x,D). We have

Risk(h,D)

= E
(x,y)←(X,Y )

[h̃(x) 6= y]

= E
(x,y)←(X,Y )

[h∗(x) 6= y | h̃(x) = h∗(x)] Pr[h̃(X) = h∗(X)]

+ E
(x,y)←(X,Y )

[h∗(x) = y | h̃(x) 6= h∗(x)] Pr[h̃(X) 6= h∗(X)]

= Bayes(D)

− E
(x,y)←(X,Y )

[h∗(x) 6= y | h̃(x) 6= h∗(x)] Pr[h̃(X) 6= h∗(X)]

+ E
(x,y)←(X,Y )

[h∗(x) = y | h̃(x) 6= h∗(x)] Pr[h̃(X) 6= h∗(X)]

= Bayes(D)

− E
(x,y)←(X,Y )

[|y − h∗(x)||h̃(x)− h∗(x)|]

+ E
(x,y)←(X,Y )

[(1− |y − h∗(x)|)|h̃(x)− h∗(x)|]

= Bayes(D) + E
(x,y)←(X,Y )

[(1− 2|y − h∗(x)|)|h̃(x)− h∗(x)|]

= Bayes(D) + E
x←X

[|h̃(x)− h∗(x)| E
y←Y |X=x

[1− 2|y − h∗(x)|]]

Now we show that Ey←Y |X=x[1− 2|y − h∗(x)|] = |crt(x)|.
The reason is that, if Pr[Y = 1|X = x] ≥ 0.5 then h∗(x) = 1
and we have
Ey←Y |X=x[1−2|y−h∗(x)|] = 2Ey←Y |X=x[y]−1 = |crt(x)|.
And if Pr[Y = 1|X = x] < 0.5 then h∗(x) = 0 and we have
Ey←Y |X=x[1−2|y−h∗(x)|] = 1−2Ey←Y |X=x[y] = |crt(x)|.
Therefore, the proof is complete.

Now we are ready to complete the proof. Assume that we
have t = t0 and

Pr
x←X|Cτ (x)=1

[h̃(x) = 1] < 0.5 + γ (10)

let α = Risk(h̃, D)− Bayes(D). By Lemma 14 we have

α (11)

= E
x←X̃

[
|h̃(x)− h∗(x, D̃)| · |crt(x, D̃)|

]
≥ E
x←X̃

[
|h̃x)− h∗(x, D̃)| · |crt(x, D̃)| | Cτ (x) = 1

]
· Pr[Cτ (X̃) = 1]

≥ E
x←X̃|Cτ (X̃)=1

[1− h̃(x)]) · 2τt0
p+ (1− p) · t0

· Pr[Cτ (X̃) = 1].

(12)

Note that the last line above is derived by combining
Equations 7 and 8.
Now using our assumption in Equation 10 we have

α >
2(0.5− γ)τ · t0
(p+ (1− p)t0)

· Pr[Cτ (X̃) = 1]

Now we note that for any x such that f(x) = 1 we have

Pr[X̃ = x] =
p+ (1− p)t

t
· Pr[X = x])

because of the way poisoning is done 3. Therefore we have

Pr[Cτ (X̃) = 1] =
p+ (1− p)t

t
· Pr[Cτ (X) = 1]) (13)

and we get

α >
2(0.5− γ)τ · t0
(p+ (1− p)t0)

· p+ (1− p)t0
t0

· Pr[Cτ (X) = 1])

= (1− 2γ) · τ · Pr[Cτ (X) = 1])

≥ (1− 2γ) · τ ε(n)

τ(1− 2γ)
= ε(n).

This means that if the assumption of Equation 10 holds then
the error would be larger than ε(n) + Bayes(D̃) which means
the probability of 10 happening is at most δ(n) by
Bayes-optimality of the learning algorithm. Namely,

Pr
S←D̃n
h̃←L(S)

[
Pr

x←X|Cτ (x)=1

[
h̃(x) = 1

]
≥ 0.5 + γ

]
≥ 1− δ(n).

In case of t = t1, the proof is similar. We first assume

Pr
x←X|Cτ (x)=1

[h̃(x) = 0] > 0.5− γ (14)

Using Equations 7 and 9 we get the following (similar to
Inequality 12 for t = t0)

α > ( E
x←X̃|Cτ (X̃)=1

[h̃(x)]) · 2τt1
p+ (1− p) · t1

·Pr[Cτ (X̃) = 1].

(15)
Therefore, using Equations 13 and 14 we get α > ε(n) which
implies

Pr
S←D̃n
h̃←L(S)

[
Pr

x←X|Cτ (x)=1

[
h̃(x) = 1

]
≤ 0.5− γ

]
≥ 1− δ(n).

APPENDIX B
COMPARING DIFFERENT STRATEGIES FOR POISONING.

Remark 10 explains that the adversary can choose amongst 4
different strategies. Here we explore the effect of this choice
on the accuracy of the attack. We refer to different strategies
using notations 0-0, 1-0, 1-1 and 0-1. b-b′ means that the
attack samples points with target feature equal to b and sets
the label for those examples to be b′. For the ratios of the
attack, we use 0.5 v.s x, where we change x from .1 to .9 in
the table below. It is important to note that in the Census
dataset there are more positive labels for Males (b = 1)
compared to Females (b = 0). In the experiments, we use 5%
poisoning and 500 shadow models.
As it could be observed, 0-0 and 1-1 are never the best choice.
We conjecture that poisoning would be most effective if it is
in the opposite direction of the dominant rule in the
distribution. Also, these results suggest that the best result
would be obtained by male poisons, if the number of males
are less than number of females and vice versa.

3For simplicity we are assuming the support of distribution is discrete.
Otherwise, we have to have the same argument for measurable subsets instead
of individual instances.
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Strategy .1 .2 .3 .4 .5 .6 .7 .8 .9
0-0 83% 81% 75% 69% 50% 72% 78% 88% 92%
0-1 86% 85% 83% 81% 50% 88% 94% 98% 98%
1-0 99% 98% 96% 92% 50% 85% 87% 91% 93%
1-1 91% 89% 84% 78% 50% 74%% 77% 82% 85%

TABLE X: The success of attack when using different strategies.

APPENDIX C
THE ROBUSTIFIED ALGORITHM

In this sections we present our modified attack for the
experiments where the shadow distribution is different from
the target distribution. The selection of poison data is same as
Algorithm 1 but the selection of queries and shadow model
training step is different. Here we show the modified steps
only. These modifications are inspired by techniques used in
machine learning for making algorithm robust to distribution
shift.

Choosing the robust black box queries This algorithm is
the same as Algorithm 2 with the modification of Step 6:
if 0.2 ≤ |1− 2

∑r
i=1Mi(x)

r | ≤ 0.4 then Tq = Tq ∪ {x}.
Guessing fraction of samples with property f This
algorithm is the same as Algorithm 3 with the modification of
Step 4.
Construct a dataset
{(R̂1

1, 1), . . . , (R̂1
k, 1), (R̂0

1, 0), . . . , (R̂0
k, 0)} where

R̂bk =
Rbk ⊕W b

k

|Rbk ⊕W b
k |1

and W b
k is a noise vector sampled from a Bernoulli noise

distribution of size q and probability of 1 being 0.4. and train
a linear model with appropriate regularization on it to get MA

(We use `2 regulizer with weight 2 ·
√

1/k).

APPENDIX D
OMITTED FIGURES

In this section, we have three figures that are omitted from
the main body of the paper due to space constraints.

Undetectablilty of the Attack Recall that in our threat
model, the adversary is able to poison a fraction of the
training data. If the target model quality degrades significantly
due to this poisoning, then it becomes easily detectable.
Therefore, for the effectiveness of this attack, it is important
that the quality of the model does not degrade4. We
experimentally confirm that this is somewhat true with our
poisoning strategy. See Fig 4 for the F score for the model
Logistic Regression where the poisoning rate varies from 0%
to 20% for training set size of 1000. In general, the
experiments show that the precision tends to decrease with a
rather low slope and recall tend to increase by adding more
poison data. The drop of precision and rise of recall can be
explained by the fact that the poisoned model tends to predict
label 1 more often than the non-poisoned model, because the

4Note that we are only considering undetectability via black box access. In
a eyes-on setting where the training data can be looked at, it is possible to
have countermeasures that would detect poisoning by looking at the training
data
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Fig. 4: F score vs poison rate. Note that there is an imbalance in
the distribution of the labels in our experiments and this is why some
times the score is smaller than 50%.

Fig. 5: Recall v.s. poison rate. We change the poison rate and capture
the recall of resulting models in different experiments. Note that we
did not use balanced label fractions in our experiments.

poisoned data we add all has label 1. However, it also worth
mentioning that for all experiments in Census data, 4-5%
poisoning is sufficient to get attack accuracy more than 90%.
This means that, if one considers the drop in precision versus
the attack accuracy, the census data is not much worse than
enron. In our experiments, the size of the training set for
Census experiments is set to 1000 and for Enron experiments
the training set size is 2000.

APPENDIX E
DATASETS

We have run our experiments on the following datasets:
• Census: The primary dataset that we use for our

experiments is the US Census Income Dataset [10]. The
US Census Income Dataset contains census data
extracted from the 1994 and 1995 population surveys
conducted by the U.S. Census Bureau. This dataset
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Fig. 6: precision v.s. poison rate. Note that there is an imbalance in
the distribution of the labels in our experiments and this is why some
times the precision is smaller than 50%.

Fig. 7: Poison rate vs attack accuracy. This experiment shows that
more poisoning becomes ineffective after a certain point and actually
decreases the performance of the attack. The optimal poisoning ratio
could be different across different experiments. This drop of attack
accuracy was also observed in one of the experiments of Figure 1.
Note that adversary can optimize the poisoning ratio during the shadow
model training phase. Specifically, adversary can choose to use fewer
poisoning points than what it is allowed to, to ensure that the attack
is optimal. In this experiment, the number of shadow models is 400
and the training set size is 1000.

includes 299,285 records with 41 demographic and
employment related attributes such as race, gender,
education, occupation, marital status and citizenship. The
classification task is to predict whether a person earns
over $50,000 a year based on the census attributes.5

• Enron: The second dataset that we use to validate our
attack is the Enron email dataset [15]. This dataset

5We used the census dataset as is, as compared to [12, 11] where they
preprocess the census dataset and run their experiments with balanced labels
(50% low income and 50% high income). We notice that in the original dataset,
the labels are not balanced (around 90% low income and 10% high income).

contains 33717 emails. The classification task here was
to classify an email as "Spam" or "Ham" based on the
words used in the email.

• Image Data Sets: We also MNIST [16] and CelebA
[18] image datasets to verify the success of our attack.
This dataset contains 70000 images labeled with the digit
each hand-writing represents. Each image is represented
using 28× 28 gray-scale pixels. The classification task is
then to predict the correct digit that each image is
representing.
CelebA dataset is photos of celebrity faces containing
200000 images. Each image is represented by 178× 218
RGB pixels and is also annotated with other features
such as skin color and gender. The goal of classifiers we
train on these datasets is to predict whether a face is
smiling.

APPENDIX F
DETAILS OF DP EXPERIMENTS.

For training the differentially private logistic regression
models, we used the Pytorch implementation of DP-SGD [4].
We used training set size of 8000, and trained 500 shadow
models, the batch size was chosen to be 20 we trained the
models for 5 epochs. The clipping threshold was chosen to be
0.3 and δ (for differential privacy) was chosen to be 10−5.
We used a exponentially decaying learning rate with starting
rate of 3 and decay rate of 0.5 that was applied every epoch.
We used α ∈ [2, 3, . . . , 32] for the calculation of composition
of Renyi differential privacy.
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