
Received 28 June 2022, accepted 14 July 2022, date of publication 19 July 2022, date of current version 29 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192441

A Cross Working Condition Multiscale Recursive
Feature Fusion Method for Fault Diagnosis of
Rolling Bearing in Multiple Working Conditions
ZHIQIANG ZHANG , FUNA ZHOU , AND SIJIE LI
School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China

Corresponding authors: Funa Zhou (zhoufn2002@163.com) and Zhiqiang Zhang (zqiang_zhang@foxmail.com)

This work was supported by the National Natural Science Foundation of China under Grant 62073213.

ABSTRACT As a key component of electromechanical equipment in the intelligent manufacturing process,
rolling bearings play an important role to secure a safe, stable, and efficient operation. Deep learning can
be used to guide a data-driven fault diagnosis which requires that all data are independently identically
distribution (i.i.d). When the equipment is operated with multiple working conditions, the collected samples
violates the assumption of i.i.d, which will inevitably make it difficult to extract accurate feature involved in
the data. This paper proposes a deep learning based fault diagnosis model to recursively fuse the multiscale
feature on cross working conditions, such that data without working condition label can also be referred to
train a satisfying deep learning model for fault diagnosis of bearing operated in multiple working conditions.
In the case when only a small number size of training samples for a separated working condition are available,
the proposes fusion mechanism aims to establish a jointly learning mechanism between different working
conditions. To verify the effectiveness of the proposed algorithm, experimental validation was performed
using the CaseWestern Reserve University (CWRU) rolling bearing public data set. The experimental results
show that the proposed method can make full use of a small amount of labeled data with working conditions
and a large amount of labeled data without working conditions. In ten types of fault diagnosis tasks with
different fault sizes, the fault diagnosis accuracy reaches more than 94% for 4 working conditions and more
than 86% for 8 working conditions.

INDEX TERMS Fault diagnosis, feature fusion, multiple working conditions, rolling bearing.

I. INTRODUCTION
With the increasing complexity of large electromechanical
equipment, it has become increasingly difficult to perform
intelligent fault diagnosis for them. Electric motors play an
important role in the power system of electromechanical
equipment and can cause catastrophic losses if they fail.
Rolling bearings are one of the most critical components of
electric motors, serving to support the rotating shaft and shaft
components. Affected by factors such as overload, aging,
and complex working conditions, rolling bearings are prone
to failure. Therefore, the research on the intelligent fault
diagnosis of rolling bearings is of great significance to ensure
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the safe and stable operation of electromechanical equipment
and has received great attention from experts in the field of
fault diagnosis [1]–[4].

Due to the complexity of industrial systems, it is difficult
to establish an accurate physical model of them. On the other
hand, the operation of the equipment generates a huge amount
of monitoring data, and how to use these monitoring data to
meet the high requirements of equipment safety and stability
has likewise become an important issue worth studying. Data-
driven fault diagnosis methods can build end-to-end fault
diagnosis models using massive amounts of monitoring data,
without being limited to precise physical models and expert
knowledge information [5]–[8].

Deep learning is an effective tool for data feature extrac-
tion. Through a deep neural network structure, it can abstract
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data features to more precise feature scales layer by layer,
thus extracting key features that reflect the characteristics of
the data. Some researchers have performed fault diagnosis
by combining deep learning methods with traditional signal
processing methods [9]–[11]. Wang et al. [12] used wavelet
packet analysis to decompose and reconstruct the original
signal to reduce noise and then used support vector machines
to classify the extracted features to improve the accuracy
of fault diagnosis. Akhenia et al. [13] used methods such
as short-time Fourier transform to generate two-dimensional
time-frequency spectrograms from various fault conditions
of bearings and then used deep learning algorithms as
fault diagnosis classifiers to improve the fault diagnosis
accuracy. Zhou et al. [14] used the overall empirical modal
decomposition method to decompose the vibration signal
into multiple intrinsic modal functions and then performed
principal component analysis on them, and finally used
LSTM networks for fault diagnosis to improve the accuracy
of fault diagnosis.

The above researches aim to improve the accuracy of
fault diagnosis by combining signal processing methods
with deep learning methods, but it needs to pre-process
the data using signal processing methods, which will affect
the real-time performance of fault diagnosis. Therefore
Zhou et al. [15] designed a sparse gate structure of Deep
neural network (DNN) to reduce the propagation of useless
information in the feature extraction process of neural
networks and obtained better results in the fault diagnosis of
rolling bearings. Hoang et al. [16] extracted features from
data collected by multiple sensors using DNN, to improve
the effectiveness in bearing fault diagnosis compared to the
results from a single sensor.

The above researches aim to build relatively accurate
fault diagnosis models by traditional deep learning methods,
which do not require pre-processing of data and ensure the
real-time fault diagnosis. However, it does not take into
account the problem of multiple working conditions during
the operation of the equipment. Multiple working conditions
refer to the change of load during equipment operation
which causes the change of motor speed, thus making the
bearings work at different speeds. This problem of multiple
working conditions of bearings destroys the consistency of
data distribution and leads to difficulties in extracting features
for fault diagnosis models.

Traditional fault diagnosis methods based on deep learning
require a large number of labeled samples, but multiple
working conditions lead to difficulties to label data, so the
number of high-quality labeled data is small. If the working
conditions are distinguished in advance and modeled sepa-
rately, it does not guarantee real-time fault diagnosis, and the
small amount of labeled data for each condition affects the
accuracy of fault diagnosis.

Some researchers have used data processing techniques to
preprocess the collected data for multiple working conditions
and then treat the processed data as a single working
condition for fault diagnosis [17]–[19]. Gu et al. [17]

used directional entropy weighted kernel entropy component
analysis to perform fault diagnosis on reduced dimensional
multiple working conditions data, and the method does
not guarantee real-time fault diagnosis. Zhao et al. [18]
used Batch Normalization (BN) in a Convolutional Neural
Network (CNN) to eliminate the distribution differences of
multiple working conditions data. Wei et al. [19] reduce the
impact of multiple working conditions on fault diagnosis
results by expanding the dimensionality of CNN convolution
kernels.

The above researches reduce the influence of data quality
problems of multiple working conditions on fault diagnosis
results to a certain extent, but the fault diagnosis method
without distinguishing working conditions does not make
full use of data information of different working conditions,
which affects the accuracy of fault diagnosis. Therefore,
Jacobs et al. [20] introduced the idea of ‘‘modularity’’ into
the design of artificial neural networks for the first time,
which improved the generalization ability of neural networks.
Modular neural networks include two stages, module division
and module combination. In terms of module division,
Bo et al. [21] used fuzzy c-means to divide the measurement
space into multiple modules. Geng et al. [22] used wavelet
transform to classify the extracted features to obtain different
modules. Although the modular approach described above
improves the generalization of the network, there is a problem
of information loss during the combination of modules.
Therefore, in terms of module combination. Sabour et al. [23]
proposed a capsule network model based on dynamic routing
rules, which makes each capsule express different features
by forming multiple neurons into an output capsule and
building the location relationship of different features through
a dynamic routing algorithm, which makes the network have
a stronger feature representation capability. Existing dynamic
routing methods use the top layer features with the highest
level of abstraction as the basis for fault diagnosis, without
taking into account the loss of information during the layer-
by-layer extraction of neural network features.

Features on different layers of the neural network represent
multiscale features with different levels of abstraction, and
many shallow scale features containing fault information are
lost in the process of feature extraction, which results in
underutilization of the data. Shao et al. [24] used Local Pre-
serving Projection (LPP) method to fuse multiscale features
of DNN to improve the accuracy of fault diagnosis compared
with the traditional layer-by-layer feature extraction method.
Deep Belief Networks (DBN) and DNN have similar
structure, so Li et al. [25] used LPP to fuse multiscale features
of DBN to improve the feature extraction capability of the
network. However, the use of a separate fusion algorithm will
make the network more complex and cause difficulties in
network convergence. Zhu et al. [26] designed a multiscale
CNN network structure by splicing the convolutional and
pooling layer features in the CNN into a multiscale feature
matrix, which is connected to the fully connected layer
to keep the global and local information synchronized and
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improve the feature extraction capability of the network.
Zhou et al. [27] designed a feature fusion network to fuse
the features on different layers of DNN for fault diagnosis,
which reduces the information loss during feature extraction
and improves the diagnosis accuracy. However, the above
methods would make the useless information at the shallow
scale of the neural network interfere with the subsequent fault
diagnosis, thus affecting the accuracy of the fault diagnosis.

The effect of deep learning neural network fault diagnosis
depends on the quantity and quality of data and the utilization
of data. Traditional neural networks have the problem of
information loss in the process of layer-by-layer feature
extraction, which will make the diagnosis results suffer.
In fact, features represented in shallow scale may also
contain useful information related to fault feature when
system is operated in multiple working conditions. In fact,
features represented in shallow scale may also contain useful
information related to fault feature when system is operated
in multiple working conditions. Therefore, this paper aims
to design a new multiscale feature fusion method to reduce
information loss during feature extraction and to achieve joint
optimization between different working conditions, and thus
improve the accuracy of multiple working condition fault
diagnosis.

The innovations of this paper are as follows:
1) A cross working condition multiscale recursive feature

fusion method is proposed to solve the problem of
multiple working condition fault diagnosis in which
traditional deep learning methods require a large
number of working condition labels.

2) The network is first divided into single working
condition modules and multiple working conditions
modules that do not distinguish between conditions,
and then features at the same scale are fused between
the modules, followed by a recursive strategy designed
to reduce information loss between scales.

3) The problem of multiple working conditions destroys
the consistency of data distribution and makes the
collected data of low quality. The traditional Multi-
ple working condition fault diagnosis method treats
multiple working conditions data as single working
conditions data as the input of the neural network,
which cannot make full use of the fault information
contained in the shallow scale of the neural network.
The proposed method makes full use of a small
amount of data with working condition labels and
a large amount of data without working condition
labels, reduces the information loss in the process
of neural network feature extraction, and can realize
the implementation of accurate multiple working
conditions fault diagnosis.

II. DNN RELATED THEORY
Autoencoder (AE) is a kind of unsupervised network that
extracts features to restructure the input by encoding and
decoding, which can effectively abstract the hidden features

of the input. Since unsupervised AEs alone are weak
in data feature extraction, DNN can be constructed by
stacking multiple AEs. This stacking approach can extract
features from the original input data layer-by-layer, and
utilizes supervised parameter fine-tuning to optimize network
performance. The DNN structure is shown in Fig. 1

III. A CROSS WORKING CONDITION MULTISCALS
RECURSIVE FEATURE FUSION METHOD FOR FAULT
DIAGNOSIS OF ROLLING BEARING IN MULTIPLE
WORKING CONDITIONS
To solve the problems of low quantity of single working con-
dition data, low quality of multiple working conditions data
and information loss in the process of neural network feature
extraction in rolling bearing multiple working condition fault
diagnosis. This section proposes a deep learning-based fault
diagnosis model to recursively fuse the multiscale feature
on cross working conditions, such that data without working
condition label can also be referred to train a satisfying deep
learning model for fault diagnosis of bearing operated in
multiple working conditions.

A. ANALYSIS OF PROBLEMS WHEN SEPARATE
MODELLING OF DIFFERENT WORKING CONDITIONS IN
MULTIPLE WORKING CONDITION DATA
The single working condition refers to the situation where
the load is stable and the motor speed is stable during the
operation of the equipment. The multiple conditions are
the cases where the load changes during the operation of
the equipment, which results in the collected data containing
multiple speeds.

Since the fault samples collected during the operation
of the equipment contain multiple working conditions,
and the number of data obtained for separated working
condition after distinguishing the working conditions is
small, the accuracy of the fault diagnosis model based
on single working condition data cannot be guaranteed.
Traditional fault diagnosis methods based on deep learning
have been used by some researchers to model multiple
working condition samples as a single working condition
when the number of samples is limited, in order to ensure that
the number of samples is sufficient. Some researchers have
also trained multiple deep neural networks by dividing the
multiple working condition data into multiple single working
condition datasets.

In order to verify the problem of data quality for multiple
conditions on the fault diagnosis results, this section used
DNN to do pre-analysis experiments on single and multiple
working condition data with fault size of 0.007 inches.
Results of the experiments are compared as listed in Table 1.

It can be seen fromTable 1 that the fault diagnosis accuracy
of single working condition diagnosis is 13.75% higher
than that of multiple working condition diagnosis due to
the difference in distribution between the data of different
working conditions when using the same fault diagnosis
method, which would cause difficulties in feature extraction
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FIGURE 1. Structure diagram of DNN.

TABLE 1. Experiments with fault diagnosis using single working condition data and multiple working condition data when the fault diagnosis methods
are the same.

if the difference between suchworking conditions is not taken
into account.

In order to improve the readability of the experimental
results, this section gives the confusion matrix of fault
diagnosis using DNN for single and multiple working
condition data, as shown in Fig. 2. The labels in the confusion
matrix are the fault types in row 4 of Table 1. It can be seen
from Fig. 2 that the subfigure (b) has more misclassified
samples for multiple working condition fault diagnosis.
That is because direct fault diagnosis for multiple working
conditions data without taking into account the diversity of
operating conditions can affect the effectiveness of the fault
diagnosis model.

In order to verify the different distinguishability of faults
in the data for different working conditions. In this section,
fault diagnosis comparison experiments were designed for
four working conditions with fault sizes of 0.007 inches, the
experimental design is listed in Table 2.

Comparing columns 3 and 4 in Table 2 shows that there
is a 40.63% difference in fault diagnosis accuracy between
working condition 2 and working condition 3, which is due
to the different degrees of distinguishability of data faults
for different working conditions. Comparison of column
4 with columns 2 and 5 of Table 2 also shows that there are
significant differences in diagnostic accuracy due to different
degree of fault distinguishability. Fig. 3 shows the different
results of fault diagnosis for different working conditions.

B. A CROSS WORKING CONDITION MULTISCALE
RECURSIVE FEATURE FUSION METHOD FOR FAULT
DIAGNOSIS IN MULTIPLE WORKING CONDITIONS
The existing multiple working condition fault diagnosis
method requires an advance division of the working condi-
tions before fault diagnosis, which will lead to the problem
of small number size of training samples for separated
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FIGURE 2. Confusion matrix for fault diagnosis using DNN for single working condition data and multiple working condition data
(a) Confusion matrix for single working condition fault diagnosis and (b) Confusion matrix for multiple working condition fault diagnosis.

FIGURE 3. Confusion matrix for fault diagnosis of different working conditions (a) Working condition 1 (b) Working
condition 2 (c) Working condition 3 and (d) Working condition 4.

single working condition fault diagnosis model. Therefore,
this section proposes a deep learning based fault diagnosis
model to recursively fuse the multiscale feature on cross
working conditions to reduce information loss during feature
extraction and to achieve joint optimization between different
working conditions, and thus improve the accuracy of
multiple working condition fault diagnosis.

1) DESIGN OF A MULTIPLE WORKING CONDITION FAULT
DIAGNOSIS ALGORITHM WITH CROSS WORKING
CONDITION MULTISCALE RECURSIVE FUSION
In order to fully extract the data features when the number
of samples with working condition labels is limited, so as
to obtain more accurate multiple working condition fault
diagnosis results. This section first fused features at the
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same scale from different working condition modules, then
fused feature with the same scale from multiple working
condition modules, and then feeds the fused features
back to each module for feature extraction at the next
scale. Recursive propagation in this modular comprehen-
sive manner enables joint optimization between different
modules. Finally, a dynamic routing approach is used for
fault diagnosis of the recursively fused features to achieve
accurate multiple working condition fault diagnosis. The
steps of multiple working condition fault diagnosis based on
multiscale recursive fusion cross working conditions are as
follows.

Step1: Module division of multiple working conditions
The multiple working conditions data collected when

the rolling bearing is running in Q working condi-
tions is X =

{
X1,X2, · · · ,Xq, · · · ,XQ,XAll

}
, where

X1,X2, · · · ,Xq, · · · ,XQ are the fault data with working
condition labels, Xq indicates the data of the q-th working
conditions, and XAll is the fault data without working
condition label. Different modules are established according
to the working condition labels, and the data XAll without
working condition labels are divided into multiple working
condition modules as shown in (1).

X →
{
DNN1,DNN2, · · · ,DNNq, · · · ,DNNQ,DNNAll

}
(1)

where DNN1,DNN2, · · · ,DNNq, · · · ,DNNQ denotes the
network in the different working condition modules and
DNNAll denotes the DNN network in the indistinguishable
working condition modules.

Step2: Design of algorithms for fusion of single scale
features cross working conditions

Firstly, the multiple working conditions data X1, X2, · · · ,
Xq, · · · , XQ are used as the input of different modules, and
the first hidden layer features h1,1, h1,2, · · · , h1,q, · · · , h1,Q
of Q conditions are extracted using the DNN network in
the module, and the different hidden layer features of the
neural network are multiscale features with different degrees
of abstraction. For the multiple working conditions data
XQ without condition labels, the first scale features h1,All
are extracted using DNNQ. The feature fusion of the first
scale features of the different working conditions is shown
in (2)-(5).

Featurefu,1 = σ
(
Wfu,1DimL,1 + bfu,1

)
(2)

DimL,1 = Gfu
(
Featureg,1, h1,All

)
(3)

Featureg,1 = σ
(
Wg,1DimL,1,Q + bg,1

)
(4)

DimL,1,Q = Gfu
(
h1,1, h1,2, · · · , h1,Q

)
(5)

where Featurefu,1 denotes the first scale cross-condition
fusion feature, σ denotes the nonlinear activation function,
Wfu,1, bfu,1 denotes the weight and bias, DimL,1 denotes the
expanded dimensional features of the first scale of multiple
working conditions data, and Gfu is the feature combination
strategy, which is directly spliced in this algorithm to reduce
the computational effort. Featureg,1 is a feature of the

first scale containing information on the different working
conditions, DimL,1,Q denotes the expanded dimensional
features of the first scale of different working conditions.
Step3: Design of a recursive method cross working

conditions between different scales.
In order to use the features with a higher level of fault

distinguishability for optimal fault diagnosis in other working
conditions and to reduce the problem of information loss in
the neural network feature extraction process kind, a recursive
method cross working conditions between different scales is
designed. For the first and second scales, the fusion features
Featurefu,1 are first fed back into the different working
conditions module and the multiple working conditions
module as shown in (6)-(7).

Featurefb2,q = Gfu
(
Featurefu,1, h1,q

)
=


Gfu

(
Featurefu,1, h1,1

)
, · · · ,

Gfu
(
Featurefu,2, h1,1

)
, · · · ,

Gfu
(
Featurefu,q, h1,1

)
, · · · ,

Gfu
(
Featurefu,1, h1,Q

)
 (6)

Featurefb2,All = Gfu
(
Featurefu,1, h1,All

)
(7)

where q ∈ (0,Q]. The feature Featurefb1,Q,Featurefb1,All is
used to optimize the feature extraction at the second scale of
each module, as shown in (8)-(9).

h2,q = σ
(
W2,qFeaturefb,2 + bfd,2

)
(8)

h2,All = σ
(
Wfb2,AllFeaturefb2,All + bfb2,All

)
(9)

where h2,q =
[
h2,1, h2,2, · · · , h2,Q

]
, W2,q,W2,All and

b2,q, b2,All are the coding weight parameters and bias param-
eters for the second scale feature extraction, respectively.
As the second scale feature extraction process for each
network adds the fusion feature Featurefu,1 feedback, the
second scale features extracted are better than those extracted
using only single working condition data.

The second scale features of the different modules are then
fused cross the working conditions as shown in (10).

Featurefu,2 = SinglescaleFu
(
h2,q, h2,All

)
(10)

where SinglescaleFu [·] denotes the single scale cross
working condition feature fusion algorithm designed in
Step2. h2,1, h2,2, · · · , h2,q, · · · , h2,Q denotes the second-
scale features of the different modules and Featurefu,2
denotes the fusion features of the second-scale features. The
Featurefu,2 is then fed back to each module for third-scale
feature extraction and the third-scale features from each
module are fused cross the working conditions. As shown
in (11).

Featurefu,3
= SinglescaleFu

(
g
(
Gfu

(
Featurefu,2, h2,q, h2,All

)))
(11)

where g (·) denotes the feature extraction function using AE.
The multiscale features of different modules are recursively
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TABLE 2. Experiments with fault diagnosis using different working conditions data when the fault diagnosis methods are the same.

fused n times in the same feature fusion method to obtain the
n-th scale fusion feature Featurefu,n as shown in (12).

Featurefu,n
= SinglescaleFu

(
g
(
Gfu

(
Featurefu,n−1, hn−1,q, hn−1,All

)))
(12)

where Featurefu,n−1 denotes the features after the (n− 1)-
th recursive fusion, hn−1,q =

[
hn−1,1, hn−1,2, · · · , hn−1,q

]
denotes the features at the (n− 1)-th scale extracted by the
different working condition modules. hn−1,All denotes the
features at the (n− 1)-th scale extracted by the multiple
working condition modules that do not distinguish between
working conditions.

The fusion features Featurefu,1,Featurefu,2, · · · ,Featurefu,n
at different scales are then combined into a FeatureFU input
classifier. The structure of the across working conditions
multiscale recursive fusion network proposed in this paper
is shown in Fig. 4.

Step4: Design of fault diagnosis classifier based on
fusion features.

The feature extraction process is optimized by feature
fusion for each modular network for multiple working
conditions data. The combined features FeatureFU of the
fusion features Featurefu,1,Featurefu,2, · · · ,Featurefu,n at
different scales are then used as input to the fault diagnosis
classifier. The feature combination process is shown in (13).

FeatureFU = Gfu
(
Featurefu,1,Featurefu,2, · · · Featurefu,n

)
(13)

where Gfu is the combined strategy of fusion features at
different scales, and the multiscale fusion features FeatureFU
are batch normalized as shown in (14).

Featurenorm = γ
FeatureFU − E[FeatureFU]
√
Var[FeatureFU]+ ε

+ β (14)

where E(·) and Var(·) are the mean and standard deviation of
the input FeatureFU, γ and β are trainable, and ε is a very
small number to ensure that the denominator is not 0.

Dividing Featurenorm into different vector neurons and
adding the Squashing function after each vector neuron scales
the length of the vector neuron to between 0 and 1 and does
not change the direction of the vector. The various vector

neurons are combined through a dynamic routing strategy,
as in (15)-(17).

vm =
∑

m
cnm ˆtm|n (15)

ˆtm|n = Wnmtn (16)

cnm =
exp(tnm)∑
m exp(tnm)

(17)

where m is the number of classes of faults, Wnm is the
weight matrix, and the product of the two is used to calculate
the prediction ˆtm|n,

∑
m cnm = 1, and cnm is updated by

a dynamic routing algorithm with tnm = 0 at the initial
iteration.

The predicted output vc is obtained by adding the
Squashing function after the fused vm, as shown in (18).

vc = fs(vm) =
||vm||2

1+ ||vm||2
vm
||vm||

(18)

where vc denotes the predicted fault type, and the global
network is optimized by setting the minimization loss
function in the network training to achieve fault diagnosis.
The structure diagram of the fault diagnosis classifier is
shown in Fig. 5.

Step5: Design global optimization strategy to fine-tune
each network parameters

The relatively small amount of data for single working
conditions after dividing the working conditions leads to dif-
ficulties in feature extraction using neural network. By using
a multiscale recursive fusion method to extract features cross
working conditions and using a global optimization strategy
to fine-tune parameters in reverse, joint optimization of
samples with and without working conditions labels can be
achieved. The global optimization strategy designed in this
paper is shown in Fig. 6.

The loss function is constructed via the predicted value vc
of the recursive fusion network, as shown in (19).

Jdr = Tcmax(0,m+ − ||vc||)2

+ λ(1− Tc) max(0, ||vc|| − m−)2 (19)

where T is the target class of the current fault.
m+ = 0.9 and m− = 0.1. λ is the loss weight to reduce the
failure to occur, and in this paper, λ is set to 0.6. In order to
adjust the parameters of the multi working conditions module
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FIGURE 4. Structure diagram of cross working conditions multiscale recursive fusion neural network.

network simultaneously, so the Softmax layer is added to the
loss function to update the parameters of the multi working
conditions module network simultaneously while ensuring
the update of the global feature extraction for the purpose of
global optimization, and the loss function JS is constructed
by comparing the output label of Softmax with the real label
as shown in (20).

JS = −
1
K

∑
labelrealln(labeloutput)

+ (1− labelreal) ln(1-labeloutput) (20)

The local network of each module can be optimized
simultaneously by minimizing the global error loss function,
and the global loss function is shown in (21).

J (θ ) = Jdr + JS (21)

The global error Eglobal is calculated from the global error
loss function J (θ ) and when Eglobal is fed back into the fusion

network, the error feedback is shown in (22).

Eglobal = Efu + Emodel,1 + Emodel,2 + · · ·

+Emodel,q + · · · + Emodel,Q + Emodel,All

= Efu +
(
EDNN,1 + Efu,1

)
+
(
EDNN,2 + Efu,2

)
+ · · ·

+
(
EDNN,q + Efu,q

)
+
(
EDNN,Q + Efu,Q

)
+
(
EDNN,All + Efu,All

)
(22)

where Efu denotes the error of the fusion network. Emodel,q
denotes the error of the q-th module. Emodel,q consists of the
error EDNN,q generated by the DNN network for that module
and the error Efu,q returned by the fusion network to the
q-th network. And for the DNN network in the q-th working
conditionmodule, the errorEDNN,q is obtained byminimizing
the loss function, which is shown in (23).

JDNN,q = −
1
K

∑
labelreal,q ln(labeloutput,q)

+ (1− labelreal,q) ln(1− labeloutput,q) (23)
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FIGURE 5. Structure diagram of the fault classifier based on fusion features.

Through global parameter fine-tuning, joint optimization
between different modules can be achieved to obtain the
trained network parameters as shown in (24).

Trglobal = Train(NetDNN,1,NetDNN,2, . . . ,

NetDNN,Q,NetFedration; J (θ ); X ) (24)

where Trglobal = {θDNN,1; θDNN,2; . . . ; θDNN,Q; θDNN,All;

θfed; θSoftmax; θdr} is the trained parameters for each network.

2) MULTIPLE WORKING CONDITION FAULT DIAGNOSIS
BASED ON CROSS WORKING CONDITION MULTISCALE
RECURSIVE FUSION NEURAL NETWORKS.
When online data X (k) are collected at time k , the data
X (k) without working condition labels are fed into a trained
cross working conditions multiscale recursive fusion neural
network with global fine-tuning (G-CMRFNN) for feature
extraction, as shown in (25).

FeatureFU (k) = Gfu
(
NetG-CMRFN,Trglobal,Xonline (k)

)
(25)

The feature FeatureFU (k) is fed into the classifier for fault
diagnosis as shown in (26) and (27).

hθ,G-CMRFN(k) =


p(label = 1) |FeatureFU (k) ; θfusion)
p(label = 2)|FeatureFU (k) ; θfusion)

...

p(label = L)|FeatureFU (k) ; θfusion)



=
1

L∑
l=1
θTfl FeatureFU (k)


eθ

T
f1
FeatureFU(k)

eθ
T
f2
FeatureFU(k)

...

eθ
T
fL
FeatureFU(k)


(26)

lable(k) = argmax
k=1,2, L, K

{hθfusion,G-CMRFN(k)|Xonline(k);

θfusion)} (27)

where θfusion is the parameter of the multiscale recursive
fusion network and lable(k) is the online fault diagnosis result
at time k . The flowchart of G-CMRFNN algorithm is shown
in Fig. 7.

IV. EXPERIMENT AND ANALYSIS
In the actual fault diagnosis application, the historical
data collected during the operation of the equipment are
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FIGURE 6. Global optimization strategy.

used to train the model, and then real-time fault diagnosis
is performed on the online data. In order to verify the
effectiveness of the algorithm, samples from different time
periods of the experimental platform are considered as
historical data and online data in the simulation experiments.
This section verifies the effectiveness of the algorithm by
using CWRU rolling bearing data [28].

A. EXPERIMENTAL DATA DESCRIPTION
The CWRU experimental platform is shown in Fig. 8.
A single point of failure is introduced to the bearing by
Electrical Discharge Machining (EDM). The vibration data
is measured by an accelerometer placed on the drive side
of the motor. CWRU data provides a wealth of available
experimental data, for the outer race failure data at the
6 o’clock position, CWRU provides failure data for three
sizes (0.007, 0.014, and 0.021 inch) at different loads.
For the outer race faults at the 3 o’clock and 12 o’clock
positions, CWRU provides fault data for two sizes (0.007 and
0.021 inch) under different loads. To verify the performance
of the proposed method at different fault sizes, this section
chose to use the fault data for the outer race at the 6 o’clock
position. The sampling frequency of the data is 12 KHz, and
the sampling time of the data is about 10s. In this section,
the signals of the first 5s are considered as historical data. the
signals of 5s-10 s are considered as online data.

The basis of the neural network training decision is the
requirement that the training samples are independently and

identically distributed. This section uses the common sliding
window method to obtain samples with a window size of
900 and a sliding step size of 20. If the window is too small,
the similarity between different samples is too strong and it
will not have the meaning of independent samples, and if the
window is too long, the similarity between samples will be
weakened and the meaning of identical distribution will be
lost.

There are 4 fault types with 3 fault size, as listed in
Table 3. It can be seen that there are total of 10 fault
types to be diagnosed. The load for different working
conditions is 0-3HP, respectively. When the fault occurred
in rolling bearings, the underlying statistical characteristics
such as mean and variance of the vibration signals are
different. Although these differences can support anomaly
detection, they are not sufficient to distinguish different types
of faults, so neural networks are needed to transform the
vibration signals into a higher dimensional andmore complex
nonlinear space, thus making the different types of faults
more distinguishable.

B. EXPERIMENTAL DETAIL
A neural network usually contains training set, validation set
and test set, where the training set is used to train the neural
network. The validation set is used to verify the model effect
during the training process and helps to select the optimal
model parameters. The test set is used to evaluate the accuracy
of the model. However, the validation set is not mandatory,
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FIGURE 7. Flowchart of cross working conditions multiscale recursive fusion neural network.

this section use the training set to train the neural network
model, end the training when the loss of the model reaches a
threshold, and then use the test set to evaluate the accuracy of
the model.

In order to verify the effectiveness of the algorithm the
fault diagnosis experiments with multiple working conditions
are designed as listed in Table 4. In Experiments 1-3, for
different fault sizes, the ratio of the number of samples
with and without working condition labels in the training
set is 1:40. In order to verify the influence of the number
of samples with working condition labels on the diagnosis

results, Experiments 4-6 are designed, keeping the number
of samples without working condition labels unchanged, and
setting the ratio of the number of samples with and without
working condition labels to 1:50. In order to verify the
influence of the number of samples with working condition
labels on the diagnosis results, Experiment 7 is designed.
Experiments 7-9 were designed to verify the effect of the
sample size without the working label on the diagnosis
results, keeping the sample size with the working label
unchanged and setting the ratios as 1:40, 1:50 and 1:60
respectively. In order to verify the effectiveness of the
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FIGURE 8. Experimental platform for the rolling bearing to obtain
vibration signal [28].

TABLE 3. Detail of the experiment data.

algorithm when there are more working conditions, the data
at the fan end of different loads are designed as different
working conditions for experiments 10-12. For the test set,
400 samples were set for each type of fault.

Most of the current neural network models normalize the
data before the sample data is input to the neural network,
and normalization can make the neural network converge
more easily. This section uses the maximum-minimum
normalizationmethod to normalize the data, as shown in (28).

x∗ =
x − xmin

xmax − xmin
(28)

where x denotes the sample data and x∗ denotes the
normalized sample data. xmax and xmin denote the maximum
and minimum values of the signal in the sample.

The experiment design is listed in Table 4. The relevant
experimental model is listed in Table 5. The network
hyperparameters for each networkmodel are listed in Table 6.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In this paper, the running environment of the experiment is
Python 3.7.11. Tensorflow 2.3.0 GPU. Computer configura-
tion is 11th Gen Intel(R) Core(TM) i9-11900K 3.50 GHz,
GPU is NVIDIA GeForce RTX3090. The operating system
is Windows 10 Home. The experimental results are listed in
Table 7.

Comparing column 2 and column 3 of row 8 in Table 7.
Since MDNN fused features from the last two scales of

traditional DNN, which reduced the problem of information
loss during feature extraction to a certain extent, therefore the
accuracy of multiple working condition fault diagnosis was
6.08% higher than that of traditional DNN. However, only
the last two scale features are fused by MDNN. Actually,
different conditions features may be represented on different
layers of the deep neural network, so only the last two scales
are used and the information is still not fully utilized.

From column 4 of Table 7, it can be seen that the multiple
working condition fault diagnosis accuracy of MCNN is
higher than that of DNN and MDNN. this is because MCNN
utilizes multiscale information with different degrees of
abstraction by splicing and fusing the convolutional and
pooling layers. therefore, in row 8 of Table 7, the fault
diagnosis accuracy of MCNN is 9.95% higher than that of
DNN and 4.27% higher than that of MDNN. MCNN only
uses to the last layer of convolution and pooling features,
and if all the shallow-scale features are spliced and fused,
the useless information in the shallow scale will affect
the subsequent fault diagnosis results. In contrast, using
recursive fusion to utilize multiscale features can avoid the
loss of useful information and the propagation of useless
information. Therefore, it can be seen from column 5 of
Table 7 that the fault diagnosis accuracy of MRFDNN is
higher than that of MCNN.

It can be seen by comparing column 3 and column 5 of
row 8 in Table 7. Due to the utilization of the multiscale
recursive feature fusion method, MRFNN can fuse multiscale
features on different layers of the DNN, thus achieving
16.78% higher accuracy than MDNN for multiple working
condition fault diagnosis. Although MRFNN reduces the
information loss during traditional DNN feature extraction
by recursive fusion, and makes full use of multiscale features
with different levels of abstraction. However, it does not take
into account the different degree of distinguishability of faults
between different working conditions. It can be seen from
columns 5 and 6 in row 8 of Table 7 that, due to the use
of the cross-condition multiscale recursive fusion method,
CMRFNN can obtain more comprehensive fault features as
it is fused with multiscale features from different condition
modules, which makes CMRFNN 1.7% more accurate than
MRFNN for multiple working conditions fault diagnosis.
However, CMRFNN does not use a global optimization
strategy to fine-tune the parameters of all module networks
and therefore cannot achieve joint optimization between
different working conditions. Comparing columns 6 and 7 in
row 8 of Table 7, it is shown that the multiple working
condition fault diagnosis accuracy achieves 94.85%. This is
due to the global optimization strategy used by G-CMRFNN,
which can realize the joint optimization of different working
conditions and multiple working conditions.

Comparing column 2 and column 7 of row 8 in Table 7,
it is shown that due to use of the cross-condition multiscale
recursive fusion method, fusion of multiscale features on
different working condition modules and multiple working
condition modules, reduced information loss in the process
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TABLE 4. Experiment design Related experimental models.

TABLE 5. Related experimental models.

of DNN feature extraction, and joint optimization between
different modules through the global optimization strategy,
G-CMRFNN has a higher accuracy of multiple working
condition fault diagnosis than DNN by 21.17%, which proves
the effectiveness of the method proposed in this paper.

Comparing rows 2 and 4 in Table 7 shows that for multiple
working condition fault diagnosis with a fault size of 0.
007 inches, the number of samples with condition labels

decreases, the lower the fault diagnosis accuracy, which is
due to the fact that as the number of samples with condition
labels decreases, fewer features of individual conditions are
used for joint optimization. This indicates the effectiveness of
joint optimization cross conditions. The same conclusion can
be obtained from rows 3 and 6 and rows 4 and 7 in Table 7.
Comparing rows 2-4 with rows 5-7 of Table 7 shows that in
the four types of fault diagnosis with the same fault type and
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TABLE 6. Network structure design.

TABLE 7. Fault diagnosis results when the number of samples with working condition labels is small.

different fault sizes, the fault distinguishability increases as
the fault size increases and therefore the diagnosis accuracy
of each fault diagnosis network improves.

Comparing row 8 and row 11 of Table 7, it can be seen
that the more complex the working condition is, the lower the
fault diagnosis accuracy is. This is because multiple working
conditions destroy the distribution of data and lead to low data
quality. The more complex the working conditions, the lower
the data quality of the samples. And the effectiveness of deep
learning depends on the quality of training samples, so the
diagnostic accuracy of row 11 is lower than that of row 8.
The same conclusion can be drawn by comparing row 8 with
row 12 and row 9 with row 13. To improve the readability of
the experimental results, the confusionmatrix for the different
network fault diagnosis results from Experiment 7 is given in
Fig.9. The types of faults indicated by the labels in the figure
are listed in Table3.

It can be seen from the subfigures in Fig.9 that for ball
faults with a fault size of 0.014 inches in column 4, there
are fewer samples correctly diagnosed for this type of fault
compared to the other fault types in the multiple working
condition fault diagnosis with different network models,
which indicates a lower level of fault distinguishability.

Comparing subfigure (a) and subfigure (b) of Fig. 9,
it can be seen that the 5th column of DNN diagnoses
35 more samples than the 5th column of MDNN, which
is because the shallow scale contains useful information
for fault diagnosis, and MDNN only uses the features of
the latter two scales for splicing and fusion, which will

have the problem of useful information loss, so although
the overall accuracy of MDNN is higher than that of
DNN, the diagnosis accuracy of individual faults may be
reduced. The same problem exists in columns 1 and 2 of
subfigure (b) and subfigure (c). The reason is that the
information useful for fault diagnosis is lost during feature
extraction. Using multiscale recursive approach can reduce
the loss of useful information during feature extraction, and
comparing subfigure d and column 5 of subfigure (a) shows
that MRFNN diagnoses 49 more fault samples than DNN.
Comparing column 5 of subfigure (e) and subfigure (f), it can
be seen that MRFNN diagnoses 33 more fault samples than
CMRFNN, which is due to the fact that CMRFNN does
not fully utilize the information with and without working
condition labeled data by global fine-tuning. Therefore,
comparing column 5 of subfigure (g) and subfigure (e), it can
be seen that G-CMRFNN can diagnose 8 more fault samples
than MRFNN due to the use of global fine-tuning, which can
make full use of the fault information in a small amount of
working condition labeled data and a large amount of non-
working condition labeled data, and can reduce the loss of
useful information in the feature extraction process.

Comparing column 4 of subfigure (f) with subfigure (a),
it can be seen that the G-CMRFNN proposed in this paper
can correctly diagnose 341 fault samples when performing
multiple working condition fault diagnosis due to the joint
optimization using data without working condition labels and
data withworking condition labels, while the traditional DNN
can only extract features of single working condition, so it
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FIGURE 9. Fault diagnosis confusion matrix for different fault types with different fault sizes when the number of samples with working condition
labels is 160 and the number of samples without working condition labels is 6000 (a) DNN (b) MDNN (c) MRFNN (d) CMRFNN and (e) G-CMRFNN.

TABLE 8. Offline training time and online diagnosis time for each model.

is less effective in multiple working condition data, and the
number of samples correctly diagnosed is 180 less than that
of G-CMRFNN. Comparing column 4 of subfigure (f) and
subfigure (b) shows that the MDNN only fused features from
the last two scales and did not take into account the difficulty
of feature extraction caused by multiple working conditions
data. Therefore, it can diagnose 187 correct samples, 154
less than the G- CMRFNN. Comparing column 4 of
subfigure (f) and subfigure (d) shows that although MRFNN
reduces the information loss in the traditional DNN feature
extraction process by recursive fusion, it makes full use
of multiscale features with different degrees of abstraction.
However, the multiscale features of other working conditions
are not taken into account, which can affect the fault diagnosis
results ofmultiple working conditions, and therefore 51 fewer
fault samples are diagnosed than G-CMRFNN. Comparing
column 4 of subfigure (f) and subfigure (e), it can be seen
that CMRFNN utilizes the multiscale features in the different
working condition modules due to the use of a multiscale
recursive fusion scheme cross working conditions, but does
not use global optimization to adjust the network parameters
and cannot achieve joint optimization between different

modules. However, G-CMRFNN achieves joint optimization
cross different working conditions via global optimiza-
tion, and therefore G-CMRFNN diagnoses 8 fault samples
more than CMRFNN, which illustrates the effectiveness
of G-CMRFNN.

To reflect the training complexity of the network, this
section counts the average offline training time and online
diagnosis time for each model, as listed in Table 8.

Comparing column 3, column 4 and column 5 in
Table 8 shows that although both usemultiscale feature fusion
methods, recursive fusion utilizes information from all scales,
so the offline training time and online diagnosis time are
higher than the feature fusion methods that use only the
last two scales. Comparing columns 6 and 7 shows that the
diagnosis time is longer for the training time of G-CMRFNN
than that of m through the adjustment of global optimization.
Combined with the fault diagnosis accuracy in Table 7, when
faced with fewer fault failure types, the existing methods
can achieve more than 90% diagnosis accuracy, and perhaps
there is no need to use the more advanced G. In the case
of more fault types and complex working conditions, this
paper argues that it is worthwhile to use the more advanced
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FIGURE 10. Histogram of experimental results.

G-CMRFNN and increase the computational complexity to
obtain higher fault diagnosis accuracy. Fig.10 is a histogram
of all experimental results.

V. CONCLUSION AND FUTURE WORK
Rolling bearings are one of the key components of elec-
tromechanical equipment, but the collected bearing data
contains multiple working conditions. The multiple working
conditions data destroys the assumption of i.i.d of data desired
for the effectiveness of deep learning, which makes data
feature extraction difficult. The traditional fault diagnosis
method for multiple working conditions requires a large
number of labeled samples, but existence of multiple working
conditions makes it difficult to label the data. Therefore, this
paper proposes a deep learning based fault diagnosis model
to recursively fuse the multiscale feature on cross working
conditions, such that data without working condition label
can also be referred to train a satisfying deep learning model
for fault diagnosis of bearing operated in multiple working
conditions. Through designed cross working conditions mul-
tiscale recursive fusion strategy between different working
condition modules, which can achieve the joint optimization
of a large number of samples without working condition
labels and a small number of samples with working condition
labels, and achieve the full utilization of information. This
method can improve the accuracy of multiple working
condition fault diagnosis in the low quantity of single working
condition data and the low quality of multiple working
condition data, more fully utilize the limited quantity of
labeled data, and achieve real-time accurate multiple working
condition fault diagnosis.

The experimental results show that the proposed method
outperforms the existing multiscale feature fusion method by
more than 10% when the ratio of the number of data with
and without condition labels is 1:40 for a large number of
fault types. It is exciting that the diagnosis accuracy can be
improved to more than 96% by increasing the number of
samples without working labels when the number of samples
with working labels is small and the fault types are complex.

This research has limitations when facing new working
conditions that have not appeared in historical data, which
may be contained in historical data from other companies, but
data from different companies often cannot be shared directly.
Therefore, multiple working condition fault diagnosis based
on federated learning is a potential direction for future work.
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