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Abstract— Functional near-infrared spectroscopy
(fNIRS), a non-invasive optical technique, is widely used
to monitor brain activities for disease diagnosis and
brain-computer interfaces (BCIs). Deep learning-based
fNIRS classification faces three major barriers: limited
datasets, confusing evaluation criteria, and domain
barriers. We apply more appropriate evaluation methods to
three open-access datasets to solve the first two barriers.
For domain barriers, we propose a general and scalable
vision fNIRS framework that converts multi-channel fNIRS
signals into multi-channel virtual images using the Gramian
angular difference field (GADF). We use the framework
to train state-of-the-art visual models from computer
vision (CV) within a few minutes, and the classification
performance is competitive with the latest fNIRS models.
In cross-validation experiments, visual models achieve
the highest average classification results of 78.68%
and 73.92% on mental arithmetic and word generation
tasks, respectively. Although visual models are slightly
lower than the fNIRS models on unilateral finger- and
foot-tapping tasks, the F1-score and kappa coefficient
indicate that these differences are insignificant in subject-
independent experiments. Furthermore, we study fNIRS
signal representations and the classification performance
of sequence-to-image methods. We hope to introduce
rich achievements from the CV domain to improve fNIRS
classification research.

Index Terms— Functional near-infrared spectroscopy
(fNIRS), brain–computer interfaces (BCIs), classification,
deep learning, Gramian angular difference field.
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I. INTRODUCTION

FUNCTIONAL near-infrared spectroscopy (fNIRS) is a
new non-invasive neuroimaging technique that mea-

sures brain hemodynamic responses using near-infrared light
between 650 and 950 nm [1]. Neuronal activities consume
oxygen carried by hemoglobin during brain tissue metabolism,
leading to changes in the concentrations of oxygenated
hemoglobin (HbO) and deoxygenated hemoglobin (HbR) in
activated regions [2]. Coyle et al. [3] demonstrated for the
first time that fNIRS can be utilized to develop brain-
computer interfaces (BCIs) that provide non-muscular support
for patients with severe motor impairment. The advantages of
fNIRS, such as its safety, mobility, and low noise level, have
sparked considerable interest in BCIs [2]. As a result, fNIRS
classification has become the focus of research.

Statistical features, such as mean, variance, peak value,
slope, skewness, and kurtosis, are typically computed from
fNIRS signals to train machine learning classifiers [2], [4], [5].
Support vector machine (SVM), linear discriminant analysis
(LDA), and artificial neural network (ANN) are classical algo-
rithms. These classifiers mainly rely on hand-crafted features,
whereas deep learning can achieve superior classification per-
formance due to powerful feature representation capabilities.
Although deep models have made progress in fNIRS classifica-
tion [6]–[9], numerous barriers hinder in-depth research. First,
a large-scale fNIRS signal acquisition may be challenging due
to the high cost of fNIRS equipment. Another important reason
is that subjects must endure burdensome signal acquisition
processes. Additionally, some datasets are protected by privacy
policies, making it difficult to obtain permissions for public
use. Numerous deep networks are trained on a limited dataset
that contains only about ten subjects. Therefore, model gener-
alization performance is not confident enough. Second, differ-
ences in evaluation criteria and experimental settings make fair
comparisons impossible. For instance, Bak et al. [10] used
leave-one-out cross-validation (LOO-CV) to train SVM for
a single subject. Nazeer et al. [11] utilized leave-one-trial-
out cross-validation (LOTO-CV) to evaluate the classification
performance. Although these evaluation methods have been
successfully applied to smaller test sets, they may not be ideal
strategies for deep learning models. Third, it is challenging
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to directly apply the latest deep learning techniques from
computer vision (CV) and natural language processing (NLP)
to fNIRS because fNIRS data is different from these domains.

It is reasonable for the first barrier to conduct experiments
on larger open-access datasets. We also employ more appro-
priate evaluation strategies for the second barrier. K-fold cross-
validation (KFold-CV) is used to evaluate test results, whereas
leave-one-subject-out cross-validation (LOSO-CV) is used to
assess model generalization and individual differences [9],
[12], [13]. For LOSO-CV, one subject’s data serves as a test
set, and the rest serves as a training set. The process is repeated
until all subjects have been tested. We propose a vision
fNIRS framework to address the third barrier. The framework
utilizes the Gramian angular difference field (GADF) [14] to
convert multi-channel fNIRS signals into multi-channel virtual
images. If the signal classification is transformed into an image
classification problem, researchers can quickly apply the latest
visual models from the CV domain. Therefore, we can tune
the hyperparameters of these models in a few minutes, and
the classification results are competitive with the latest fNIRS
classification models. We directly share CV research with
fNIRS classification tasks, which echoes recent NLP-inspired
CV developments such as vision Transformers [15]–[17] and
masked image modeling [18], [19]. We hope that the findings
will inspire more fNIRS studies.

The main contributions are listed as follows:
• We propose a vision fNIRS framework based on GADF

to generate multi-channel virtual images for fNIRS clas-
sification. Existing visual models can be directly used to
train GADF images, and the classification performance is
competitive with the latest fNIRS classification models.
The proposed framework establishes a bridge between
fNIRS and CV.

• We investigate the effects of three different fNIRS signal
representations on classification performance, including
alternate, stacked, and one-dimensional representations.
GADF and Gramian angular summation field (GASF) are
two variants of Gramian angular field (GAF). We com-
pare the classification results of sequence-to-image meth-
ods, such as GASF, GADF, Markov transition field
(MTF), and various combined images. We found that
multi-channel GADF images can better encode context
dependencies of hemodynamic responses and preserve
spatial information.

• Extensive experiments are performed on three open-
access datasets. State-of-the-art visual models based on
Transformers [15], [16], [20] and multi-layer perceptrons
(MLPs) [21], [22] are introduced into comparison experi-
ments. Unlike recent studies [6], [7], [11], [12], our work
is more devoted to demonstrating the generality of the
proposed framework.

The rest of this paper is organized as follows. Related
works are briefly reviewed in Section II. Section III introduces
the proposed vision fNIRS framework. Section IV describes
open-access datasets and experimental setup. Section V
reports the experimental results. Discussion and conclusion
are presented in Sections VI and VII, respectively.

II. RELATED WORKS

A. fNIRS Classification

Enhancing the classification performance of fNIRS-BCI
systems can improve the quality of life for patients who
suffer from stroke, spinal cord injury, and amyotrophic lateral
sclerosis [6]. Table I summarizes the finger- and foot-tapping
tasks. The classification results of these references cannot be
compared fairly due to differences in experimental paradigms,
subjects, and evaluation criteria. The LOO-CV and LOTO-
CV require fewer test samples, which reduces the fidelity and
generalization of deep models. By contrast, KFold-CV and
LOSO-CV are more suitable for deep learning. In addition,
certain experimental results are hardly convincing without
extra or larger datasets because deep models are prone to
overfitting on limited data.

B. Encoding Time Series to Images

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are widely used to process biological sig-
nals, such as electrocardiogram (ECG), electroencephalog-
raphy (EEG), and fNIRS. Multi-channel time-series signals
are reshaped into a two-dimensional matrix that resembles
an image, then the matrix is fed into a CNN model for
classification. Unlike this reshaped signal operation, some
sequence-to-image methods, such as GAF [14], MTF [14],
and recurrence plot (RP) [23], can encode one-dimensional
signals into two-dimensional images. GAF and RP encode
EEG signals into image representations for drowsiness detec-
tion [24]. Xiao et al. [25] extracted features from ECG images
generated by GAF to classify hand movements. A CNN is
developed for ternary fNIRS classification using GASF [26].
Since few studies apply GAF to fNIRS, we conduct more in-
depth studies.

C. Visual Models Based on Transformers and MLPs

Transformer [27], a novel network structure based on the
self-attention mechanism, has achieved success in NLP. The
significant achievements of Transformers have sparked tremen-
dous interest in CV. Vision Transformer (ViT) [15] is the first
image classification model based on pure Transformers and
achieves superior performance on large-scale datasets. It splits
an image x ∈ R

H×W×C into a sequence of flattened patches
x p ∈ R

N×(P2×C), where (H, W ) is the image resolution, C
is the color channel, (P, P) is the patch size, and N = H W

P2 .
After that, x p is projected to the model dimension D by a
linear layer, named patch embeddings. A positional encoding
is added to the embeddings to retain positional information.
Then, a learnable classification token [C LS] is appended at
the beginning of the embeddings. Finally, the embeddings are
fed to Transformer encoders for classification. ViT facilitates
follow-up studies [16], [17], [20].

Tolstikhin et al. [21] proposed a simple and efficient
MLP-Mixer consisting of channel-mixing MLPs and token-
mixing MLPs. The channel-mixing MLPs facilitate communi-
cation between different channels, and the token-mixing MLPs
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TABLE I
SUMMARY OF THE FINGER- AND FOOT-TAPPING TASKS

allow communication between other spatial locations. MLP-
Mixer has aroused interest in modern MLP models [22], [28].

III. METHODS

A. Multi-Channel Virtual Image Generation

The Gramian angular field (GAF) [14] is a novel method to
encode time-series signals into image representations, includ-
ing Gramian angular summation field (GASF) and Gramian
angular difference field (GADF). fNIRS signals contain many
channels, and the number of channels is dependent on acqui-
sition equipment and experimental paradigms. Specifically,
given an fNIRS matrix X ∈ R

2C×S , where C is the number
of channels, S is the number of sampling points, and “2”
means two chromophores (HbO and HbR). The sampling
point is S = f × T , where f is the sampling frequency
and T is the sampling time. Each channel-level HbO or HbR
Xi = {x1, x2, . . . , xS} is scaled to the interval [−1, 1]:

x̃ j =
(
x j − max (Xi )

) + (
x j − min (Xi )

)
max (Xi ) − min (Xi )

, (1)

where x̃ j is the normalized sampling point, i = 1, 2, . . . , C
and j = 1, 2, . . . , S. The rescaled channel-level signal X̃i

is transformed from the Cartesian coordinates to the polar
coordinate system by⎧⎨

⎩
φ j = cos−1 (

x̃ j
)
,−1 ≤ x̃ j ≤ 1, x̃ j ∈ X̃i

r j = t j

N
, t j ∈ N

(2)

where t j is the time stamp and N is a constant factor to
regularize the span of the polar coordinate system. Then,
GASF and GADF are defined as follows:

G ASFi =
⎡
⎢⎣

cos (φ1 + φ1) · · · cos (φ1 + φS)
...

. . .
...

cos (φS + φ1) · · · cos (φS + φS)

⎤
⎥⎦, (3)

G ADFi =
⎡
⎢⎣

sin (φ1 − φ1) · · · sin (φ1 − φS)
...

. . .
...

sin (φS − φ1) · · · sin (φS − φS)

⎤
⎥⎦. (4)

Finally, the G ASFi or G ADFi matrix is stacked along the
depth dimension to generate a multi-channel virtual image X̃ ∈
R

S×S×2C .
In general, S is a larger value that requires huge compu-

tational resources for model training. Piecewise aggregation
approximation (PAA) is used to compress fNIRS signals while
keeping time series trends [29]. For the previously mentioned
channel-level signal Xi = {x1, x2, . . . , xS}, let M be the
dimension of the fNIRS sequence Xi = {x1, x2, . . . , xM }
worked with (1 ≤ M ≤ S). The mth element xm of Xi is
calculated by

xm = M

S

S
M m∑

j= S
M (m−1)+1

x j . (5)

In the vision fNIRS framework, the PAA compression size M
is set to 32 to achieve a trade-off between performance and
speed. Then, Xi is encoded into a multi-channel virtual image.

B. Vision fNIRS Framework

We propose a vision fNIRS framework to overcome domain
barriers between fNIRS and CV. As illustrated in Fig. 1,
the proposed framework consists of three modules: data pre-
processing, image generation, and visual model training.

1) Data Preprocessing: Extracting features directly from
raw signals may impair classification performance due to
the inherent noise in raw fNIRS signals. Typically, data
preprocessing consists of the modified Beer-Lambert law
(MBLL) [30], filtering, segmentation, and baseline correc-
tion. MBLL calculates the concentration changes of HbO
and HbR because the chromophores have different absorption
coefficients at different near-infrared wavelengths. High-pass
and band-pass filters are applied to fNIRS signals to reduce
noise and artifacts, and baseline correction is used to correct
for baseline drift. Finally, fNIRS signals are divided into
sequences of predetermined length for classification. In gen-
eral, the preprocessing for different datasets is inconsistent.
As a result, the specific preprocessing steps should be consis-
tent with the original literature.
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Fig. 1. Overview of vision fNIRS framework. The framework consists of three modules: data preprocessing, image generation, and visual model
training. Data preprocessing is a crucial step for classification due to the inherent noise in raw fNIRS signals. Image generation serves as a bridge
for visual models to train fNIRS signals directly. Finally, advanced training strategies and visual models are used to classify multi-channel virtual
images encoded by GADF.

Fig. 2. Three different fNIRS signal representations. The vision fNIRS framework adopts the alternate representation by default.

2) Image Generation: Image generation is the foundation
of the vision fNIRS framework. The size of fNIRS signals
may be variable due to acquisition equipment and experi-
mental paradigms. PAA can compress fNIRS signals to a
predetermined length and keep signal trends. In the framework,
each channel signal is compressed to 32 by PAA, and GADF
encodes the temporal correlation of hemodynamic responses
to a 32 × 32 × 1 image. Each GADF image is stacked along
the depth dimension to form a multi-channel virtual image
to preserve spatial information. Finally, visual models extract
GADF image features through convolutions or 4 × 4 patches.
Note that the framework only uses GADF instead of GASF
because GADF is more effective in our experiments. The size
(32 × 32 × 1) of GADF images is consistent with CIFAR [31]
(except for color channels). Therefore, we can transplant a
series of visual networks from CV to fNIRS, including the
popular ResNet and the latest ViT- and MLP-like architectures.

3) Visual Model Training: A simple training strategy
that incorporates AdamW optimizer [32], cosine learning
rates [33], and flooding regularization [38] is developed. Over-
fitting degrades classification performance and model gener-
alization due to the limited amount of fNIRS data. Although
many fNIRS classification models address this problem by

fine-tuning dropout rates and weight decay, the test loss keeps
increasing as the training loss tends to zero. Owing to these
methods cannot solve overfitting directly, a simple and efficient
flooding regularization is used for our framework. Flooding
directly limits the training loss around a small constant value
called flooding level rather than a zero loss [34]. Given the
cross-entropy loss function L (yi , ŷi ) :

L (yi , ŷi ) = − 1

N

N∑
i=1

yi log ŷi + (1 − yi ) log (1 − ŷi), (6)

the modified L (yi , ŷi ) with flooding is

L̃ (yi , ŷi ) = |L (yi , ŷi ) − b| + b, (7)

where yi is the true label, ŷi is the predicted output, and b is
the flooding level.

C. fNIRS Signal Representations

We are interested in whether different fNIRS signal rep-
resentations affect the classification performance of visual
models under the vision fNIRS framework. To the best of
our knowledge, this is the first study on the question. Fig. 2
illustrates three typical representations. The alternate represen-
tation is described as an alternating combination of HbO and
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HbR for each channel. The stacked representation combines
the same chromophores (HbO and HbR). The one-dimensional
representation reshapes fNIRS signals into a one-dimensional
vector before generating a single-channel GADF image. The
alternate and stacked representations can reflect the effects of
the spatial location of HbO and HbR on classification per-
formance. The one-dimensional representation can determine
whether a single-channel image has an advantage over a multi-
channel image. In Section V, we compare the performance of
these representations. The vision fNIRS framework adopts the
alternate representation by default unless otherwise specified.

IV. EXPERIMENTS

A. Open-Access Datasets

1) MA: In the mental arithmetic (MA) experiment, 29 sub-
jects (14 males and 15 females, average age 28.5 ± 3.7 years)
participated in the study [35]. For MA tasks, the subjects
were asked to remember an initial subtraction that appeared
on the screen. They repeatedly performed to subtract the
one-digit number from the previous subtraction during the
10 s task period. For the baseline (BL) task, they were
instructed to take a rest. They were asked to rest dur-
ing the 15–17 s rest period. The dataset is available at
http://doc.ml.tu-berlin.de/hBCI.

2) WG: A total of 26 volunteers (9 males and 17 females,
average age 26.1 ± 3.5 years) participated in word genera-
tion (WG) tasks [36]. During the 10 s period of WG tasks,
the participants were instructed to continue thinking about the
first letter of the word shown on the preceding screen as soon
as possible. For the BL task, they were required to relax and
gaze at the fixation cross to maintain a low cognitive load.
The participants were asked to relax to avoid excessive eye
movements during the rest period. The dataset is available at
http://doc.ml.tu-berlin.de/simultaneous_EEG_NIRS/.

3) UFFT: A total of 30 volunteers (17 males and 13 females,
23.4 ± 2.5 years old) participated in motor execution tasks,
including right-hand finger-tapping (RHT), left-hand finger-
tapping (LHT), and foot-tapping (FT) [10]. During the task,
they conducted a specific movement according to the instruc-
tion randomly displayed on the screen. The dataset is available
at https://doi.org/10.6084/m9.figshare.9783755.v1.

MA and WG are two-class classification tasks (MA vs.
BL and WG vs. BL, respectively), and UFFT is a three-class
classification task (RHT vs. LHT vs. FT). The data pre-
processing is consistent with the original literature. Finally,
considering delayed hemodynamic responses [37], [38], the
segmented sample point windows for MA, WG, and UFFT
are 80–320, 80–300, and 20–320, respectively.

B. Experimental Setup

The CNN [39], CNN-3b [40], RNN [39], fNIRS-T [9],
and fNIRS-PreT [9] are used as baseline networks. A three-
branch CNN network decodes consumers’ preference levels
from viewing commercial advertisement videos of differ-
ent durations (15, 30, and 60 s) [40]. We use the sub-
network (CNN-3b) developed for a 15 s video branch because

TABLE II
CONFIGURATION OF VISUAL MODELS. THE MLP SIZE OF MLP-MIXER

AND RESMLP IS HIDDEN SIZE × EXPANSION FACTOR (4 BY DEFAULT)

TABLE III
FLOODING LEVEL FOR DIFFERENT MODELS

TABLE IV
AVERAGE ACCURACY (%) OF KFOLD-CV FOR THE ALTERNATE

REPRESENTATION. BOLD VALUES HIGHLIGHT THE BEST RESULTS FOR

EACH DATASET

the 15 s video is close to the task time of the open-
access datasets. ResNet-18 [41], ViT [15], EarlyConvViT [20],
PVTv2-B0 [16], MLP-Mixer [21], and ResMLP [22] are
chosen for comparison experiments. These visual models are
trained by AdamW (default parameters) with a batch size of
128 for 150 epochs. The maximum number of iterations Tmax

for cosine learning rates is set to 30. The configuration of
the visual models is listed in Table II. The piecewise decay
flooding [9] requires more empirical tuning, so a fixed flooding
level is used for simplicity. The flooding level is reported in
Table III. We conduct 5 × 5-fold cross-validation (KFold-CV)
experiments to evaluate the accuracy (mean ± std). In subject-
independent experiments, LOSO-CV is used to evaluate model
generalization and individual differences. The accuracy, pre-
cision, recall, F1-score, and kappa coefficient are used as
overall performance metrics (macro-average for UFFT). The
vision fNIRS framework is implemented by PyTorch [42]
and trained on NVIDIA GeForce GTX 1080 and Tesla
V100 GPUs.



WANG et al.: A GENERAL AND SCALABLE VISION FRAMEWORK FOR FUNCTIONAL NEAR-INFRARED SPECTROSCOPY CLASSIFICATION 1987

TABLE V
RESULTS OF LOSO-CV FOR THE ALTERNATE REPRESENTATION. BOLD VALUES HIGHLIGHT THE BEST RESULTS FOR EACH EVALUATION METRIC

V. RESULTS

A. Classification Results

We compared many models from fNIRS and CV. Table IV
presents the average accuracy of KFold-CV for the alter-
nate representation. Among the baseline models, Transformer-
based fNIRS-T and fNIRS-PreT outperform CNN, CNN-3b,
and RNN. It is widely accepted that RNNs are suitable
for sequence modeling, while our experiments demonstrate
that the classification performance is worse than other net-
works (Wilcoxon signed-rank test, p < 0.001). The RNN
achieved just about 60% classification accuracy on three
datasets. The possible reason is that hemodynamic responses
lack distinct sequence patterns in the inactive area, prevent-
ing RNN from capturing vital contextual information. For
MA tasks, ResNet-18 and PVTv2-B0 are competitive with
fNIRS-PreT and significantly outperform the other baseline
models (Wilcoxon signed-rank test, p < 0.001). Although
visual models perform marginally worse than fNIRS-T on
UFFT, the average accuracy of the five visual models exceeds
fNIRS-T on WG. MLP-Mixer achieved the highest classifi-
cation results of 73.92%. Experimental results validate the
effectiveness of the proposed framework.

We explain why GADF images improve classification per-
formance in terms of temporal-spatial features, amount of
information, and inductive biases. GADF encodes both local
temporal correlation and long-term context dependencies into

an image, and multi-channel spatial information is transformed
to the channel dimension of virtual images. Visual models
can easily extract temporal and spatial features from the
multi-channel GADF images. The input data types for clas-
sification mainly include hand-crafted features, preprocessed
signals, and virtual images. For example, if there are 20 chan-
nels and each channel contains 200 sampling points, then the
number of input data is 20 × 2 × 6 = 240 (2 chromophores
and 6 statistical features), 20 × 2 × 200 = 8000, and 20 × 2 ×
32 × 32 = 40960, respectively. Compared with signal-based
inputs, virtual images increase the amount of information by
a factor of 5. The GADF images can increase information
density from original signals, which helps to train deep models
adequately. It is commonly understood that Transformer-based
models lack convolutional inductive biases and require more
data to perform better [15], [20]. However, we do not observe
this phenomenon in the experiments. This suggests the GADF
images compensate for inductive biases to some extent rather
than directly extracting features from fNIRS signals.

B. Subject-Independent Experiments

Individual differences exist among subjects because of
life background, task collaboration, and response sensitivity.
Subject-independent experiments can verify model generaliza-
tion that evaluates the performance of a model on other sce-
narios or subjects. Table V reports the LOSO-CV results for
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TABLE VI
AVERAGE ACCURACY (%) OF KFOLD-CV FOR THE STACKED

REPRESENTATION. THE NUMBER IN PARENTHESIS MEANS THE

p-VALUE (WILCOXON SIGNED-RANK TEST) BETWEEN THE ALTERNATE

AND STACKED REPRESENTATIONS

TABLE VII
AVERAGE ACCURACY (%) OF KFOLD-CV FOR THE ONE-DIMENSIONAL

REPRESENTATION ON MA

the alternate representation. The visual models achieve better
average classification accuracy and generalization ability on
MA. The accuracy and F1-score of ResNet-18 both exceeded
81%. PVTv2-B0 and MLP-Mixer outperform fNIRS-T and
fNIRS-PreT in all evaluation metrics on the WG task. Visual
models achieve the highest F1-score on MA and WG. For
UFFT, visual models obtain competitive results with fNIRS-T
and fNIRS-PreT. Although fNIRS-T achieves higher average
accuracy, the F1-score obtained by most visual models is
competitive with fNIRS-T. It means that the performance
gap may not be significant. In addition, the higher kappa
coefficients demonstrate the superiority of the vision fNIRS
framework.

C. Results of Signal Representations

In this section, we investigate the effects of signal repre-
sentations on classification performance. Table VI shows the
average accuracy of KFold-CV for the stacked representation.
The classification results of the alternate and stacked represen-
tations are not significantly different. The representations can
increase information density and allow convolutional layers
and self-attention to extract temporal and spatial features
efficiently. However, the one-dimensional representation is
worse than the previous representations. PAA substantially
compresses multi-channel long-range contextual information
into a one-dimensional vector, such as activation patterns

and hemodynamic responses. More importantly, it is hard
for one-dimensional representation to preserve the spatial
information of fNIRS signals from a one-dimensional vector.
Table VII summarizes the quantitative results of KFold-CV for
EarlyConvViT and PVTv2-B0 on MA. While increasing the
image size from 32 to 256 may reduce information missing,
it dramatically increases computational costs and gradually
saturates the classification results. When the image size of
PVTv2-B0 is set to 128, the one-dimensional representation
is 5.35% and 5.01% lower than the alternate (78.68%) and
stacked (78.34%) representations, respectively. EarlyConvViT
with an input size of 256 is 1.95% lower than the alternate
and stacked representations and increases FLOPs by 55 times.
Therefore, the alternate and stacked representations are more
practical.

D. Comparison With Other Virtual Images

We further compare other virtual images, including GASF,
MTF, GASF-MTF, GADF-MTF, and GADF-GASF. The
results on UFFT are shown in Table VIII. The vision fNIRS
framework uses GADF instead of GASF. The main difference
between (3) and (4) is the encoding function. Surprisingly,
this little distinction leads to a considerable performance
discrepancy. Compared with GADF images (see Table IV),
the average accuracy of these visual models has dropped
significantly. Some studies also found that GADF can obtain
more accurate classification results than GASF [25], [43].
Xiao et al. [25] found that GASF images perform somewhat
worse in detail compared to GADF images. We attempt to
explain reason from the perspective of fNIRS signal charac-
teristics. In the Euclidean space, the inner product measures
the similarity of two vectors u and v, and it is defined as

〈u, v〉 = ‖u‖ · ‖v‖ · cos(θ). (8)

In (3), GASF encodes the cosine similarity of each pair of
time intervals [44]. The main characteristic of fNIRS signals
is the delayed hemodynamic response [37], [38] that causes
no significant changes in several adjacent sampling points
of HbO and HbR. GASF may not efficiently encode the
local information of hemodynamic responses. In contrast,
GADF considers the trigonometric difference of a pair of
time intervals that can better capture the change in adjacent
hemoglobin concentration. It is essential for convolutions and
self-attention to extract local features and global dependencies.
For MA tasks, the GADF and GASF images for Subject 1 are
shown in Fig. 3. Many low-brightness areas appear in the
GASF images compared to the GADF images, which indicates
that the feature information richness of the GASF images may
be lower than the GADF images.

MTF encodes time-series information by representing the
first-order Markov transition probability [14]. Compared with
GADF (see Table IV), MTF performs poorly in classification
tasks. In addition, MTF is more prone to overfitting than
GADF due to the uncertainty in MTF inverted image [14].
Therefore, it seems that the MTF images are unsuitable for
classification tasks.

We assess the effects of combined images on classifica-
tion, including GASF-MTF, GADF-MTF, and GADF-GASF.
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TABLE VIII
AVERAGE ACCURACY (%) OF KFOLD-CV ON UFFT. THE NUMBER IN PARENTHESIS INDICATES DECREASED ACCURACY OVER THE GADF

IMAGES

Fig. 3. For the MA task of Subject 1, the fNIRS signals at Channels (Ch) 1 and 31 are encoded as virtual images by GADF (top row) and GASF
(bottom row). Many low-brightness areas appear in the GASF images compared to the GADF images.

TABLE IX
DIFFERENT PATCH SIZES FOR VIT AND MLP-MIXER ON MA. THE

PATCH SIZE MUST BE DIVISIBLE BY A 32 × 32 GADF IMAGE

An obvious disadvantage for these combined images is the
ever-increasing computational costs as the number of image
channels increases from 40 to 80. Since MTF and GASF
have a lower classification performance than GADF, MTF
and GASF may interfere with models to extract meaningful
features from GADF images. It may be the reason for the
performance degradation of combined images.

E. Patch Size

The patch size is a crucial hyperparameter that affects model
performance and training costs. ViT and MLP-Mixer are

TABLE X
ABLATION STUDY ON THE UFFT DATASET

trained with different patch sizes to illustrate these problems.
The results of KFold-CV on MA are shown in Table IX.
As the patch size of ViT is reduced from 16 × 16 to 2 × 2,
the classification accuracy keeps improving, but huge FLOPs
require more computational resources and training time. The
patch operation for input images fails to preserve the important
local information among neighboring patches. A smaller patch
can alleviate local information loss but significantly increases
computational costs. We also observe a similar situation on
MLP-Mixer. Therefore, the 4 × 4 patch size is more in line
with the trade-off between performance and speed.

VI. DISCUSSION

The primary motivation of our study is to improve fNIRS
classification tasks by leveraging rich achievements from
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the CV domain. We propose a GADF-based vision fNIRS
framework to transform multi-channel fNIRS signals into
multi-channel virtual images. GADF encodes the short-term
and long-term dependencies of fNIRS signals, corresponding
to the changes in hemoglobin concentration and hemodynamic
responses, respectively. Multi-channel GADF images keep the
temporal correlation and spatial relationships. Considering two
distinct types of chromophores (HbO and HbR), alternate,
stacked, and one-dimensional representations are discussed.
Visual models from the CV domain can be directly used for
fNIRS classification. Many studies [6]–[8], [12] use simple
reshaping operations to stack multi-channel fNIRS signals into
a two-dimensional matrix, but the essence of the matrix is
still time-series data. The main purpose of this operation is to
match the input form of CNNs rather than the properties of
fNIRS signals. Therefore, multi-channel virtual image gener-
ation is a more advanced and effective method.

Extensive experiments demonstrate the superiority of the
framework. In Table IV, visual models perform slightly
worse than fNIRS-T on UFFT, whereas most visual models
achieve higher average classification accuracy. PVTv2-B0 and
MLP-Mixer achieved the highest classification accuracy of
78.68% and 73.92% on MA and WG, respectively. Compared
with other models, the average accuracy of RNN was about
60% on the three datasets. The RNN may be inefficient in
capturing features of hemodynamic responses from fNIRS sig-
nals. In Table V, more comprehensive evaluation metrics, F1-
score and Kappa coefficient, show that the visual models are
competitive with fNIRS-T on UFFT. Then, the effectiveness of
three fNIRS signal representations is evaluated. In Table VI,
the stacked representation is competitive with the alternate
representation. However, the one-dimensional representation
is worse than the other representations. The reason mainly
comes from two aspects. PAA over-compresses the long-range
contextual information because multi-channel fNIRS signals
are compressed into a one-dimensional vector that is difficult
to preserve spatial information. Although increasing the size
from 32 to 256 can improve the classification performance,
computational costs increase dramatically and the performance
exhibits a saturated state. Furthermore, we carefully study the
effects of diverse virtual images and their combinations on
classification tasks. Table VIII indicates that the GADF images
have better classification performance and training efficiency.
The poor performance of GASF and MTF also confirms
previous studies [14], [25], [43]. Besides, the combination
of different virtual images, such as GASF-MTF, GADF-MTF,
and GADF-GASF, do not show advantages in our experiments.
The patch size is a vital hyperparameter. A smaller patch
can alleviate information lost among neighboring patches. The
average accuracy of ViT improved from 77.49% to 79.29%
when the patch size decreased from 4 × 4 to 2 × 2, but FLOPs
increased from 189.5M to 1125.8M. Therefore, the 2 × 2
patch size can achieve better performance under sufficient
computing resources; otherwise, the 4 × 4 patch size is more
practical.

Ablation experiments were conducted on the UFFT dataset.
Since the number of patches generated by fNIRS signals is
much more than GADF images, input fNIRS signals require

huge computational resources when they are fed directly to
ViT- and MLP-like models. Some experiments exceed the
capabilities of our experimental platform, so only partial
ablation results are reported in Table X. We can draw two
important conclusions:

• The visual models using GADF images can acquire
higher average classification accuracy. The ablation
results prove that GADF images are more efficient than
fNIRS signals.

• Training visual models using fNIRS signals requires huge
FLOPs, whereas our framework is more affordable and
practical. Existing visual models can be efficiently trained
under the framework. Therefore, the proposed framework
bridges the gap between fNIRS and CV.

Even though the study is encouraging, our framework still
has some limitations. Since these visual models are initially
designed for ImageNet [45], we simply modify some hyper-
parameters without fine-tuning. The true classification perfor-
mance of these models may be underestimated. Apart from
that, we do not design a specialized classification model for
the vision fNIRS framework. Our study aims to demonstrate
the generality and scalability of the proposed framework rather
than a special model architecture.

VII. CONCLUSION

This paper proposes a general and scalable vision fNIRS
framework that uses GADF to encode multi-channel fNIRS
signals into multi-channel images. The framework transforms
sequence classification into an image classification problem
effectively. Existing visual models can be directly used to
train multi-channel images and achieve competitive classi-
fication performance. Extensive experiments based on three
open-access datasets confirm the effectiveness of the proposed
framework. Furthermore, the effects of different signal repre-
sentations on classification performance are discussed. We also
analyze the reason that the classification results of GADF are
superior to other virtual images. We hope to introduce CV
research to improve fNIRS classification studies and inspire
future work.
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