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ABSTRACT Predicting whether patients will experience intradialytic hypotension (IDH) during hemodial-
ysis (HD) is not an easy task. IDH is associated with multiple risk factors, meaning that traditional statistical
models are unable to find the relationships that affect it. In this context, the use of models based on machine
learning (ML) can allow the discovery of complex relationships, since they can solve problems without
being explicitly programmed. In this work we developed, evaluated and identified an ML-based model that
is capable of predicting at the beginning of the HD session whether a patient will suffer from IDH during its
prolonged development. To develop the ML models, we used the hold-out and cross-validation methods;
while, to evaluate the performance of the models we used the metrics F1-score, Matthews Correlation
Coefficient, areas under the receiver operating characteristic (AUROC) and precision-recall curve (AUPRC).
In this sense, we selected and used a reduced combination of variables from clinical records and blood
analytics, which have proven to be decisive for the occurrence of IDH. The predictive results obtained
through our work confirmed that the best ML model was based on the XGBoost model, achieving values
of 0.969 and 0.945 for AUROC and AUPRC respectively. Therefore, our study suggests that the XGBoost
model has a very high predictive capacity for the appearance of an IDH in HD patients and presents great
versatility and flexibility in terms of supporting informed decision-making by medical staff.

INDEX TERMS Clinical-analytical data, hemodialysis, intradialytic hypotension, machine learning, pre-
dicting model, XGBoost.

I. INTRODUCTION
Chronic kidney disease (CKD) is the sixth fastest growing
cause of death, affecting approximately 11–13% of the pop-
ulation [1]. It is estimated that 850 million people worldwide
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suffer from kidney disease, and it is responsible for at least
2.4 million deaths per year. Furthermore, the incidence of
CKD is expected to increase due to aging of the population,
since although it can develop at any age, its prevalence is
higher among older adults. One in five men and one in four
women aged 65–74 suffer from CKD, and half of people
aged 75 or older have CKD to some degree. The prevalence
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of CKD in Spain is approximately 15%, whereas in the
United States it is approximately 13%, and it can therefore
be observed that these rates are quite similar [2]. Furthermore,
Spain has one of the highest rates of CKD compared to other
European countries [3].

Dialysis or renal transplantation are treatments for
advanced CKD, which occurs in approximately 1% of people
with CKD. They are also one of the most expensive chronic
disease treatments [2], [4]. In this case, patients may be
treated by hemodialysis (HD).

HD is a treatment that replaces two of the kidney’s main
functions: periodic filtering of the blood and elimination of
excess fluids from the body. To perform HD, artificial filters
called dialyzers are used in which a large amount of blood
is circulated through the filter via vascular access. However,
fluid removal is one of the main causes of hypotension in
patients [5].

Hypotension due to dialysis, known as intradialytic
hypotension (IDH), is one of the most frequent complica-
tions in clinical practice. IDH has a prevalence ranging from
5–40% [6], [7]. This large range of values is because there
is no clear consensus and uniformity in many investigations
on the definition of the onset of IDH [8]–[10]. Nevertheless,
several studies have used one or more of the following criteria
to define IDH; (i) a threshold/nadir in systolic blood pressure
(SBP); (ii) an absolute reduction in SBP; and (iii) a require-
ment for intervention [9], [10]. Furthermore, identifying the
factors that cause the occurrence of IDH is a complex task,
since multiple factors are involved, such as the modality of
dialysis, patient type or medical criteria [7], [11]. Therefore,
identification of the factors that most influence its occurrence
would improve decision-making by clinical staff (doctors,
nurses, and assistants, among others).

HD is usually carried out in sessions that last approxi-
mately four hours and are performed on alternate days. Large
amounts of data are generated during these HD sessions,
often consisting of different records (e.g., demographic data,
laboratory records or medical prescriptions). In this sense, the
use of specialized techniques such as big data and artificial
intelligence (AI) are of great use in the analysis of variabil-
ities and intrinsic relationships in patient registries with and
without IDH.

Recent developments in the field of AI have stimulated
its application in daily clinical practice [12], [13], because
it is useful for processing massive and complex sets of big
data and can facilitate diagnostic and therapeutic decisions,
promote medical innovation, and reduce costs, among its
other advantages. In view of this, AI-based models such as
machine learning (ML) have received increasing interest in
recent years, since they can significantly contribute to disease
detection, early diagnosis, and prediction and/or automatic
classification of diseases [1], [14]. This means that medical
staff have more information for decision-making, which con-
sequently improves medical care and patient outcomes.

Although the application ofMLmodels is relativelymature
in other specialties, this has not been the case in the field

of nephrology, as the lack of evidence and the limited scope
of research in kidney disease have not allowed this specialty
to benefit from these technologies [15], [16]. Therefore, the
development of intelligent ML-based models may support
nephrology medical staff in the context of identifying the
occurrence of IDH in patients receiving HD.

Some of the ML models that are most used in the different
specialties of medicine are: Logistic Regression, Random
Forest, Multi-layer Perceptron and Extreme Gradient Boost-
ing (XGBoost),

For this reason, the present research focuses on devel-
oping, evaluating and identifying an intelligent ML model
that allows predictions regarding whether a patient will have
IDH during an HD session. In addition, this work aims to
determine the most relevant parameters associated with the
occurrence of IDH based on the massive analysis of data
relating to an HD session, including the clinical parameters
measured at the beginning of the session and the most recent
parameters of the blood analytics available at the time ses-
sion. Data were provided by nephrology staff of the Hospital
Príncipe de Asturias in Madrid, Spain. Different techniques
were applied to this dataset (explained Section III), in order
to obtain a useful dataset for the development of ML models
that are able to determine whether or not the patient will have
IDH at the beginning of HD treatment.

In this research study, different ML models (Logistic
Regression, Random Forest, Multi-layer Perceptron and
eXtreme Gradient Boosting [XGBoost]) were developed and
studied. These ML models are widely used in fields such as
medicine, energy, agriculture, among others [17]–[19] and,
in addition, they are good at performing classification tasks;
therefore, we decided to evaluate their performance in our
case study. The models were developed by applying hold-
out and cross-validation techniques (explained Section III).
The evaluation criteria used to compare these models were
the F1-score,Matthews Correlation Coefficient (MCC), areas
under the receiver operating characteristic (AUROC) and
precision-recall curve (AUPRC) metrics, as these are very
useful when evaluating the performance of dichotomous clas-
sification models [20], [21].

After evaluating the different models, the results showed
that the model based on the XGBoost demonstrated the best
performance, obtaining 0.86 and 0.81 for F1-score and MCC
respectively. In addition, obtaining an area under the curve
(AUC) for the receiver operating characteristic (ROC) of
0.969 and an AUC for precision-recall (PR) of 0.945. Con-
sequently, the results of this study suggest that the XGBoost
model is feasible for its application as a predictor of IDH in
HD sessions, due to its versatility and flexibility in terms of
supporting informed decision-making bymedical staff. It also
provides medical staff with insight into the identification of
themost decisive clinical and analytical parameters that affect
the occurrence of IDH during an HD session.

The article is organized as follows. In Section II, we review
and describe some prior work related to the context of our
study. In Section III, we briefly detail the methodological
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procedure employed in the development of the ML mod-
els. In Section IV, we evaluate and present our results for
several different metrics for each of the models developed.
In Section V, we analyze and discuss the most important
findings. Finally, in Section VI, we highlight our main con-
clusions and suggestions from the study and describe future
research work

II. LITERATURE REVIEW
According to several studies [19], [22]–[25] ML-based mod-
els are widely used for prediction/classification in different
specialties of medicine, such as neurology, cardiology, and
pulmonology; in contrast, the study and development of ML
is in its early stages in the nephrology field [15], [16]. How-
ever, the technological boom and the enormous volume of
stored data can offer great benefits to this medical specialty
[16], [26].

IDH is one of the most common complications in patients
with CKD [7], [27]–[29] It is characterized by hemodynamic
changes during HD treatment, which are due to multiple
factors [7]. The implementation of intelligent models that
are able to predict/classify the occurrence of IDH would
allow health care personnel to provide early and effective
treatments, and to make more informed decisions. Some of
the most relevant work in this context is described below.

In [29], the authors predicted IDH using photoplethys-
mography signal fingerprinting (PPG), and subsequently
employed a genetic algorithm for the extraction of the most
important features and compared it with other algorithms for
automatic IDH classification. They found that using their
proposed method with the Adaboost algorithm showed good
performance in classifying IDH and pre-IDH patients, where
they obtained 90.6%, 86% and 93% accuracy, sensitivity and
specificity respectively. Although these researchers obtained
good results in terms of IDH classification, their work did not
incorporate the analysis with other parameters (such as bio-
chemical or analytical factors) that influence the occurrence
of IDH.

The authors of [30], [31], studied the influence of heart
rate variation and/or decreased oxygen saturation in patients
with a view to predicting IDH. In the first work they reported
satisfactory results, where they achieved an AUC of 0.63.
Additionally, in the second study they indicated good results
when predicting IDH with 80% accuracy. Therefore, they
suggested that these parameters were useful for predicting
IDH during HD; however, these researchers require justifi-
cation of the effectiveness and consistency of these models.

Other researchers conducted a prospective cohort study
[32] in which they analyzed heart rate variability together
with some clinical parameters and patient laboratory results
to predict IDH one month in advance. Their multivariate neg-
ative binomial model showed a significant ability to predict
IDH using these parameters, where the model obtained an
AUC of 0.804.

In [33] the authors proposed an intelligent model that
was capable of alerting about Blood Pressure irregularities

during HD. They posed the need to predict the Systolic
Blood Pressure (SBP) of the following HD sessions, as well
as to improve the quality of life of patients receiving HD.
To do this, they used a dataset with 9,245 records, which
presented 248 registered patients with their clinical variables
(i.e., age, dialysis duration, blood flow, etc.). They com-
pared different ML models (i.e., linear model, random forest,
support vector regression, XGBoost and LASSO regression)
and ensemble method. They noted that the random for-
est model (R2=0.95, RMSE=6.6) and XGBoost (R2=1.0,
RMSE=1.83) obtained comparable performance in the train-
ing phase; however, in the test phase the random forest model
(R2=0.49, RMSE=16.2) performed better. The ensemble
method (R2=0.50, RMSE=16.01) performed best for the
next SBP prediction.

Similarly, the study in [34] presented an intelligent early
warning system that was able to predict IDH by checking
the next Blood Pressure (BP) reading. They used a database
of 653 patients, of whom underwent 55,516 HD sessions,
leaving 285,705 valid BP records. The authors applied time-
dependent logistic regression analysis to build predictive
models, using 13 different patient clinical variables (i.e.,
age, genre, dry weight, dialysis duration, etc.). Their mod-
els obtained favorable results of 86% and 81% in terms of
sensitivity and specificity for both nadir systolic BP (SBP)
of <90 mmHg and <100 mmHg. In addition, their model
obtained results of 64% and 64% in terms of sensitivity and
specificity for SBP of ≥20 mmHg.

In [35], a deep neural network (DNN) model was proposed
with the potential to determine the clinical factors that are
related to the occurrence of IDH during an HD session. The
researchers collected demographic data, HD clinical vari-
ables and laboratory data to identify factors associated with
IDH. They tested different ML models (i.e., support vector
machine, artificial neural network, random forest, decision
tree, k-nearest neighbor, naïve Bayes) and showed that the
proposed DNN-model was superior to the alternative models.
They found that the 4-factor locus achieved great perfor-
mance in the evaluation metrics (accuracy of 64.97% and
sensitivity of 87.97%). However, the results obtained were
not sufficiently satisfactory for this method to be employed
in a medical setting during an HD session.

Likewise, in [36], a model based on a recurrent neural
network (RNN) was developed to give real-time predictions
of the risk of a patient presenting with IDH. The authors used
different datasets where defined intradialytic hypotension
when nadir systolic blood pressure (SBP) was <90 mmHg
(IDH-1) or when a decrease in SBP ≥20 mmHg and/or a
decrease in mean arterial pressure ≥10 mmHg on the basis
of the initial SBPs (IDH-2) or prediction time SBPs (IDH-3)
occurredwithin 1 hour. They compared the evaluationmetrics
resulting from the RNN model and other ML models (i.e.,
logistic regression, multi-layer perceptron and LightGBM),
and they found that the RNN model had the best values in
the different datasets. The RNN model achieved AUROCs of
0.94, 0.87 and 0.79 for IDH-1, IDH-2 and IDH-3 respectively.
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In [37], ML algorithms were applied to develop mod-
els predicting hypotension after initiating continuous renal
replacement therapy (CRRT). The authors defined hypoten-
sion as a reduction in mean arterial pressure of 20 mmHg
from baseline within six hours. They tested different
ML models including a support vector machine (SVM),
a deep neural network (DNN), a light gradient boosting
machine (LightGBM) and an extreme gradient boosting
machine (XGBoost). Of these, the XGBoost model presented
the best performance with an AUROC of 0.828. The authors
noted that the use of ML algorithms could improve the pre-
dictability of hypotension after initiating CRRT.

The study in [38], used time-series differencing to extract
the characteristics that most influenced the occurrence of
IDH. This was called the time-relevant difference and was
calculated based on the current time and the previous three
IDH occurrence values. The researchers tested the generated
features with non-time-series algorithms and showed that
there was an improvement in the performance of the different
algorithms when using this type of approach. For example,
the LightGBM model achieved a performance of 86%, 66%,
88.9%, 85.1% and 0.946 for accuracy, precision, sensitivity,
specificity and AUROC respectively. Therefore, they consid-
ered that this approach would be useful in small hospitals or
settings where data were collected in a shorter time, as it gave
acceptable values.

The aforementioned studies presented several models to
predict or classify the occurrence of IDH in patients receiv-
ing HD. Each of these studies used a different approach or
methods to treat the data arising from HD sessions. However,
most of the related studies have sought to predict IDH while
the patient is receivingHD,meaning thatmedical staff need to
constantly monitor or receive alerts on the likelihood of IDH
occurring in the patient. This can cause stress to nephrology
staff, which may cause them to provide erroneous treatments
to the patient.

Moreover, it is well known that the datasets in the nephro-
logical domain are massive and heterogeneous, since they
include a large number of variables (such as demographic
data, laboratory results, analytical variables, etc.) and are
collected during or after each patient’s HD session, which
means that the datasets have a high degree of dimensionality.
In this sense, it would not be feasible to develop ML-based
models with this large number of variables, as it would affect
the performance and efficiency of each of these models [39].

For these reasons, our aim in this study is to provide new
insight in predicting the occurrence of IDH in patients receiv-
ing HD.We developed and evaluated an intelligent ML-based
model that will work at the start of the HD session, and it will
allow medical staff to know whether the patient will have or
will not have IDH during the HD session. To achieve this,
we consider a combination of known clinical and analytical
variables at the beginning of the HD session that can be
associated with the occurrence of IDH through massive data
analysis, which is described in the next section.

FIGURE 1. Model to predict IDH at the beginning of the HD session.

In the future, our proposed model will be implemented and
deployed as a service in a real second-generation microser-
vices ecosystem.

III. METHODOLOGY
In this section, the methodological process performed in the
study is described and the data source is discussed.

A. IDH PREDICTIVE MODEL CONCEPT
The objective of the model (classifier) is to detect at the
beginning of an HD session whether a patient is susceptible
to IDH. For this purpose, a model built from data correspond-
ing to multiple HD patients’ sessions has been developed,
including a set of analytical variables, from laboratory tests,
close to the date of the HD session and the values of another
set of clinical variables recorded at the beginning of the HD
session in the so-called ‘‘hour 0’’ and of the detection of a
drop in SBP throughout the dialysis session as indicated in
the following Subsection. In this way, the predictive model
will be fed at the beginning of the HD session by the data
of the analytical variables available for the patient and the
clinical values recorded at the beginning of said session at
the so-called hour 0 (see Fig. 1).

B. DATA SOURCE
The dataset was obtained from the Hospital Príncipe de
Asturias in Madrid, Spain, and contained records relating to
clinical variables of patients who had received HD treatment
between January 2016 and October 2019. These records had
ethical approval from the hospital and the database was com-
pletely anonymized. We used as a starting point, the dataset
of clinical variables that was analyzed and transformed in our
previous study [40].

Unlike the previous dataset, in this work we defined IDH
as a decrease in systolic blood pressure (SBP) of 20 mmHg
or more if any of the SBPs measured at ‘‘Hour 1’’, ‘‘Hour 2’’,
‘‘Hour 3’’, and ‘‘Hour 4’’ was less than the SBP measured at
‘‘Hour 0’’ [41] that is illustrated in Fig. 2. Additionally, as a
novel contribution, this work has incorporated new data on
analytical variables extracted from the hospital laboratory.

In view of the above, the dataset used for this study was
obtained by merging two different databases, as shown in
Fig. 3. The first was drawn from the records of dialysis
sessions and the variables were automatically recorded by the
dialyzer itself in the HD sessions, while the second was based
on the variables arising from a blood analysis performed on
the patient. The two databases were merged in such a way that
each HD session was linked to both the data from that HD
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FIGURE 2. Identification and coding of an IDH during an HD session.

FIGURE 3. Procedure performed to merge the clinical and analytical databases.

session and the blood test carried out closest to that session.
For example, if the patient underwent a quarterly blood test
in an HD session, the quarterly blood test closest in time to
that session was linked.

1) VARIABLE SELECTION
Once merged, the dataset contained more than 200 variables
reflecting the clinical and analytical data related to the HD
session. However, it is necessary to reduce this number of
variables (parameter optimization), since the development
of clinical models with a large number of variables is not
advisable or practical. In fact, the selection of variables is an
important and costly process in the development of clinical
prediction models, so, if these variables are excessive or
insignificant and do not improve the model, the medical staff,

under their experience and clinical knowledge, determine
which are the most important and influential variables for the
development of the model [42], [43].

In this sense, we perform a second optimization process
by reducing the dimensionality of the parameters. For this,
we use ensemble trees [44] as a data mining technique and
we consider the criteria and domain knowledge of the expert
medical staff to identify the relevance of clinical and analyt-
ical variables. This left 20 variables (13 clinical and seven
analytical), which are shown in Table 1 in the following
subsection.

2) STUDY POPULATION
The generated dataset contained information from 22,234
sessions with 299 patients, in which 80% (17,793) of the
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TABLE 1. Clinical and analytical variables from patients’ hemodialysis sessions.

patient sessions did not involve IDH and 20% (4,441) did
report the occurrence of IDH during the HD session.

All of the clinical and analytical variables used in this study
are detailed in Table 1. It should be noted that categorical vari-
ables are presented as a quantity (percentage), and numerical
variables are presented as amean (±standard deviation (SD)).

C. DATA PRE-PROCESSING
Data pre-processing was performed in three phases, to deter-
mine how well the model performed in terms of predicting
the occurrence or non-occurrence of IDH in patients’ HD
sessions. These three pre-processing phases are described
below:

1) DATA CLEANING
Some variables with null values and several outliers were
found in the records of the patient sessions, which were
eliminated based on the domain knowledge provided by the
expert medical staff involved in this study.

TABLE 2. Encoding categorial variables of the dataset.

2) ENCODING AND STANDARDIZATION OF DATA
Once the dataset was cleaned, we proceeded to encode the
categorical variables in the dataset. Since our goal in this
process was to avoid unnecessarily increasing the dimen-
sionality of the dataset, we limited the number of dummy
variables created from the categorical values [45]. Therefore,
we applied the Label Encoding approach, since it allows us
to identify the existing values of the categorical variables and
replace them with a numerical value. An example of these
encoded categorical variables is shown in Table 2.

We then developed a neural network-based model, specif-
ically a multi-layer perceptron (MLP), for the prediction of
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IDH and non-IDH patients. It is well-known that it is not
recommended to train this type of model on raw data, so we
applied standard normalization to the numerical variables of
the dataset for the MLP.

3) DATA BALANCING
The dataset was unbalanced with respect to the IDH and
non-IDH classes. To remedy this situation and improve
the classification performance of the ML models, we bal-
anced the data by applying the synthetic minority over-
sampling technique (SMOTE) and edited nearest neighbors
(ENN) [46]–[49]. Using this method, we performed multiple
tests to greatly reduce the non-IDH class while maintaining
sufficiently high consistency between the proportions of data
in both classes.

After applying SMOTE-ENN, the dataset was reduced to
14,803 sessions, of which 10,294 (70%) belonged to the
non-IDH class and approximately 4,509 (30%) to the IHD
class, meaning that the dataset was better distributed for
classification. Although, the generated dataset does not show
an optimal balance in the classes, this will not affect the
performance of the ML models, since both classes are well
represented and do not overlap, therefore, theMLmodels will
be able to correctly classify the studied classes [50]. All ML
models developed in this study were trained, evaluated and
validated on this dataset.

D. MACHINE LEARNING MODELS
In this work, we developed and evaluated different ML
models (classifiers) to predict the occurrence of IDH or
non-IDH at the beginning of the HD session. In the following,
we briefly describe each of these classifiers.

1) LOGISTIC REGRESSION
Logistic Regression (LR) is one of the most common ML
models studied in the literature. Thismodel employs a logistic
function to predict the probability of a variable being classi-
fied in a two-class or target problem. This resulting variable
is considered dichotomous [51]. Although, LR is easy to
implement, interpret and efficient to train, it has difficulties
in dealing with nonlinear problems and, moreover, the major
limitation of LR is the assumption of linearity between the
dependent variable and the independent variables [52].

2) RANDOM FOREST
Random forest (RF) is an ML algorithm, which is based on
the ensemble method and is usually trained with the bagging
(bootstrapping + aggregation) method. The idea behind the
bagging method is that it combines multiple decision trees
and each of them are individually trained with a different
subset of the dataset features, thus generating a more accurate
and stable prediction or classification [53], [54]. Some of the
goodness of RF is that it performs well for nonlinear prob-
lems, is robust to outliers, has good accuracy in classification
tasks. However, it is slow to train with large datasets, it is not

easy to interpret and has biases when dealing with categorical
variables.

3) MULTI-LAYER PERCEPTRON
The Multi-Layer Perceptron (MLP) is a type of artificial neu-
ral network, which consists of a series of neurons (nodes) that
are fully connected. MLP networks are generally composed
of three layers; an input layer, one or more hidden layers and
an output layer. In addition, they employ nonlinear functions,
called activation function, at the nodes of the hidden and
output layers [54], [55]. This type of network allows distin-
guishing data that are not linearly separable, the prediction
is very fast when the model is trained, it has the ability to
learn in real time. On the contrary, MLP networks require the
adjustment of several hyperparameters, it is not easy to know
the influence of the independent variables on the dependent
one, because they are a black-box and, in addition, they are
sensitive to the scaling of the variables.

4) EXTREME GRADIENT BOOSTING
The eXtreme Gradient Boosting (XGBoost) model is an
ensemble method based on decision trees, that uses a gradient
boosting framework [33], [56]. The XGBoost incorporates
techniques (i.e., regularization, sampling, pruning) as a mea-
sure to avoid the overfitting problem present in the gradient
boosting (GB) algorithm. It can be run in parallel and using
multiple cores and can therefore make use of the high compu-
tational power available in graphics cards and can even be run
on server clusters. Another of the advantages of XGBoost is
that it does not require scaling or normalization the data and it
also has the ability to efficiently handle missing values [55].

5) HYPERPARAMETERS OF MODELS
Hyperparameter optimization or hyperparameter tuning con-
sists of objectively search different values for model hyper-
parameters and choose a subset that results in a model that
achieves the best performance on a given dataset. In this
sense, the hyperparameters were tuned to each model using
random search cross-validate algorithm, which allows testing
different ranges of hyperparameter values and thus generating
models with reliable and stable performance. It should be
noted that each model has its own set of hyperparameters,
therefore, we selected those hyperparameters that most influ-
ence the performance and accuracy of the model [54]. The
best values of the hyperparameters of the different models are
shown in Table 3.

E. MODEL DEVELOPMENT
In this work, each of themodels studied were developed using
the Python programming language (v3.6). The focus of the
classifier models is to predict whether a patient will have
IDH or non-IDH at the beginning of the HD session. We con-
sidered combining hold-out and cross-validation methods,
as they allow to evaluate the predictive ability of the model,
prevent overfitting and generate robust and reliable perfor-
mances [57]–[60].
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TABLE 3. Hyperparameter values obtained in the models.

Within this framework, we first applied the hold-out
method [61], where we divided the data into an 80% training-
set and a 20% testing-set. With the training-set, the different
ML models were evaluated by applying the Stratified K-fold
cross validation method [62]–[64], which allows us to eval-
uate the performance and robustness of the models handling
this data set. Subsequently, testing-set was used to evaluate
the actual ability of the models to generalize from this unseen
data, as well as to avoid introducing biases in the model
training phase [65], [66]. The performance of the models was
calculated using different metrics described in the following
subsection. The entire development process is detailed in the
pseudocode shown in Algorithm 1.

Algorithm 1 Pseudo-Code for the Development and Evalua-
tion of Models
1. Begin
2. Load data source (Clinical-Analytical Data)
3. Apply pre-processing methods in the Clinical-Analytical

Data.
4. Data splitting in training and testing
5. Apply Stratified K-fold for each ML model using training

data
6. Validate each ML model using testing data
7. Calculate performance metrics
8. End

F. MODEL EVALUATION AND VALIDATION
We used Stratified K-fold cross-validation to evaluate mod-
els [62]–[64]. This consisted of dividing the training-set into
k folds while maintaining the ratio between the classes (IDH
and non-IDH). We applied five folds to each model due to the
number of samples in the training-set [57]; at each iteration,
a different fold was selected to train the model, and it was
tested on the rest of the folds.

Although, the Stratified K-fold cross-validation allowed us
to have a first evaluation of the performance of the models,
these were validated with the testing-set, since this is a data
set not used by themodels and, therefore, allows us to validate
the robustness and reliability of each one.

1) PERFORMANCE METRICS
Because there are a wide variety of metrics to evaluate mod-
els, we consider combining several metrics and interpreting
their results in a holistic manner. [66]. For this reason, for

each of the models, we evaluated several performance met-
rics, which include accuracy, precision, recall, F1-score and
Matthews Correlation Coefficient (MCC) [20], [67], [68].
Equations for each of these metrics are (1)–(5), as shown
at the bottom of the next page, where TP, TN, FP and FN
represent true positives, true negatives, false positives and
false negatives, respectively.

We also generated other evaluation and validation mea-
sures that are important to our study and in the medical
context are of great importance [69]. These are Receiver
Operating Characteristic curve (ROC) and Precision-Recall
curve (PRC), since they allow determining the predictive
performance of the model, provide readers with a general
understanding of the utility of the model, and also allow eval-
uating the performance of the model when the data present
some imbalance [21], [60], [70]. Likewise, for ROC and
PRC, the areas under the curve (AUC) of both metrics were
calculated and denoted as AUROC and AUPRC respectively.

To interpret and calculate the AUROC and AUPRC curves,
we used the DeLong test [71]. This involved comparing
the values obtained by the ML models, where the p-values
were bilateral and those less than 0.05 were considered to
be statistically significant. All comparisons were performed
using the testing-set.

2) RECEIVER OPERATING CHARACTERISTIC CURVE (ROC)
This is one of the most widely used evaluation criteria and
information on the ability of a model to distinguish between
classes (in this case, IDH and non-IDH patients) [54], [67].
It does this by comparing the true positive rate (TPR) with
the false positive rate (FPR). As TPR (recall or sensitivity)
has already been defined above, the FPR can be defined as
shown below:

FPR =
FP

FP+ TN
(6)

3) PRECISION-RECALL CURVE (PRC)
The PRC represents the performance of each of the different
ML models against different thresholds, rather than a single
metric (such as accuracy or F1-score). A classifier will show
good performance if it has high accuracy and high recall.
The equations for this curve were previously defined in (2)
and (3).

It is important to note that, for our study we consider
the F1-score, AUROC, AUPRC and MCC metrics as the
main measures of comparison of the studied models, since
they are useful to evaluate the performance of dichotomous
classification models and to validate the robustness of the
models with respect to a dataset with some imbalance as the
one studied here [21].

IV. RESULTS
MLmodels have been developed in the Python programming
language (v3.6) and implemented on a machine with an
NVIDIA Jetson Nano Developer Kit [72]. To avoid biases
in the comparison of the results obtained, all models studied
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FIGURE 4. Receiver operation characteristic curve (ROC) and the area
under the curve (AUC) for the different classification models developed
here: LR, logistic regression; RF, random forest; MLP, multi-layer
perceptron; XGB, XGBoost.

in this work were also implemented using the same hardware
and language resources as the model finally proposed.

To evaluate the performance of the models, we first used
the training-set with the Stratified K-fold cross-validation
method (Section III-E). During the model training process,
the different metrics described in Section III-F were cal-
culated. The results obtained by each model in predicting
whether the patient will have a class (IDH or non-IDH) are
shown in Table 4. Importantly, the values were calculated as
the mean (±SD) for the metrics of accuracy, precision, recall,
F1-score and MCC for both classes (in this case, IDH and
non-IDH patients).

As a follow-up of this activity, we applied on the trained
models the data remaining from applying the hold-out
method (testing-set), as these were never seen or used by the
models. Therefore, the results obtained by the models on the
metrics applied in this work are shown in Table 5.

Once the models were trained and evaluated, we proceeded
to perform a more exhaustive analysis of the models using the
test-sets. In this sense, we plotted the ROC and PRC curves
shown in Figs. 4 and 5. These plots visualize the ability of

FIGURE 5. Precision-recall curve and area under the curve for the
different classification models developed here. LR, logistic regression; RF,
random forest; MLP, multi-layer perceptron; XGB, XGBoost.

the models to predict whether the patient will have IDH or
non-IDH at the beginning of the HD session.

As a complement, we calculated and compared the
AUROC and AUPRC metrics using the DeLong test of the
pRoc library [73]. The results of comparing these metrics
in the models allowed us to interpret the ability, robustness
and reliability of each of the models to discriminate between
IDH and non-IDH classes. The results for the ROC and
PRC curves for each model are shown in Table 6, with the
AUC (AUROC and AUPRC) values for each model and their
95% confidence intervals (CI). Similarly, the p-value was
obtained when comparing the ROC curve of the XGBoost
model using the DeLong test, since this model showed the
best performance.

Comparing the data in Tables 4, 5 and 6, it can be seen that
the XGBoost model has the best predictive capacity when
determining whether the patient will have IDH or non-IDH
at the start of the HD session. However, it is important to
verify that this resulting model has the capacity to generalize
with records of future HD patients and, in addition, to ver-
ify that the model does not present overfitting. Therefore,
Fig. 6 shows the learning curve of the XGBoost model, where

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1− score =
2 ∗ (Precision ∗ Recall)
Precision+ Recall

(4)

MCC =
(TP× TN )− (FP× FN )

√
(TP+ FP)× (TP+ FN )× (TN + FP)× (TN + FN )

(5)
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TABLE 4. Classification results of models using Stratified k-fold cross-validation method (training-set).

TABLE 5. Classification results of models using testing-set.

TABLE 6. Results of areas under the curve (AUCs) to classify intradialytic
hypotension of ML models.

TABLE 7. Comparison of our obtained model (XGBoost) with other
studies.

the graph shows the learning curve of the LogLoss error
metric. This metric is based on probability and is used to
measure the performance of the model.

Additionally, we compared the results of the XGBoost
model obtained with the most recent works related
to our research (Section II and III-B). In this sense,
Table 7 shows the different studies and their respective results
for the Accuracy (Acc.), F1-score (F1), MCC, AUROC
and AUPRC.

Finally, we plotted the importance of each of the features
according to theXGBoostmodel obtained in this study. In this
way, the feature importance plot allowed us to determine the
utility or value of each of the features (variables) involved
in the construction of the model [74]. The calculation of the
score for each feature was determined by its impact (gain)
on the performance measure: the higher the value, the greater
the impact of the feature (variable) on the performance of the
model. Fig. 7 shows the importance of each feature according
to the XGBoost model.

FIGURE 6. XGBoost model learning curve.

V. DISCUSSION
The purpose of this research was to develop and evaluate
several ML models (classifiers) that would allow us to pre-
dict whether a patient will suffer from IDH or be non-IDH
during an HD session based on a combination of clinical and
analytical variables. Another objective of this research was
to identify the model that has the best ability to discriminate
between these classes.

Based on the performance analysis carried out here, we can
observe from Table 4 that the results were acceptable in terms
of the metrics evaluated (Section III-F). The XGBoost model
achieved higher values by classifying both classes (IDH and
non-IDH patients) compared to the MLP, RF and LR models.
To use this predictive model in clinical practice, the results
for predicting whether the patient will suffer from IDH were
the most important. The XGBoost model obtained values of
0.92, 0.90, 0.82, 0.86 and 0.81 for the accuracy, precision,
recall, F1-score and MCC, respectively, followed by MLP
with 0.87, 0.82, 0.74, 0.78 and 0.70 and RF with 0.85, 0.87,
0.61, 0.71 and 0.63, respectively. The worst performer was
LR, with values of 0.80, 0.72, 0.56, 0.63 and 0.49.

In the same way, we performed a validation of the dif-
ferent models by applying the testing-set, with the objective
of validating the performance of the models with data that
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FIGURE 7. Importance of each feature as determined using the XGBoost model.

were not used for training. In this sense, it is evident in
Table 5 that the XGBoost model also maintains a better
performance over the other models when using these records
and, in addition, the MCC metric is superior to the rest
of the models; therefore, the model has a robustness when
classifying patients (IDH or non-IDH). These results present
an encouraging view of the XGBoost model in terms of
identifying the occurrence of IDH or non-IDH in patients and
may contribute to providing additional information in clinical
practice. Furthermore, the degree of significance obtained
from the different clinical and analytical variables opens
possibilities for nephrology clinicians to study the complex
task of determining the multiple factors associated with the
occurrence of IDH [7], [11].

However, we also considered evaluating the different mod-
els by analyzing their ROC and PRC curves, as well as
their areas under the AUROC and AUPRC curves. With
these considerations in mind, it is evident from the graphs
in Figs. 4 and 5, that the XGBoost model presents a good
predictive ability when determining whether the patient will
suffer IDH or non-IDH at the beginning of the HD session
compared to the rest of the models studied. Furthermore, the
DeLong test was used to compare and interpret these graphs.
The results for the areas under the curves (AUROC and
AUPRC) observed in Table 6 show a very good performance
of the XGBoost model compared to other developed models.

Additionally, there was a statistically significant difference
(p < 0.0001) in the AUROC, meaning that this model was
able to correctly identify and distinguish between the two
classes (IDH and non-IDH) [75]–[77].

In addition, it is worth noting that the XGBoost model
has excelled in each of the main metrics of this study
(Section III-F). Within this context, we observe in Fig. 6 that
the model has shown favorable performance for both
training-set and testing-set and, furthermore, it is apparent
from the LogLoss error curves that themodel does not overfit,
as the XGBoost model itself employs mechanisms to avoid
this [55], [56], [78]. Therefore, this model would be able to
generalize over records of future patients receiving HD.

We can highlight some important findings from these
results. First, the XGBoost model achieved more accurate
results than the rest of the ML models. This model also
achieved better results for all metrics compared to previous
work [40], where only the clinical variables of the patient HD
were used, and presented better results than other studies [33],
[35]–[37]. A possible explanation for these good results may
lie in the novel incorporation of the clinical and analytical
variables that were most influential, according to the applied
ensemble-trees and the domain knowledge of nephrology
experts in the creation of the ML predictor model. Reducing
the dimensionality of the variables (clinical and analytical)
provided a significant improvement and increased robustness
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in the model’s ability to classify the data into classes (IDH
and non-IDH). The developed predictor will be able to help
medical staff to treat a patient at the beginning of the HD
session to avoid the probable occurrence of IDH.

The second finding was that the XGBoost model demon-
strated superior and favorable performance compared to other
works using more complex models [33], [35], [36]. Although
DNN-based models have a complex and abstract structure,
which gives them the ability to learn/capture the different
hidden patterns in the information provided. However, they
have certain disadvantages compared to models such as the
one based on the XGBoost, as they are sensitive to the scale
of the data, dependent on the structure and size of the data,
require a large computational load to adjust the large num-
ber of parameters of the model, and in the case of binary
classification, require well balanced data [79]. Furthermore,
DNN-based models are currently considered to be black-
box models, meaning that their internal behavior is unknown
and it is not possible to identify which variables or features
contribute most to a given decision [35], [36].

In the third finding, Table 7 shows that our obtained model
(XGBoost) achieves a formidable performance compared to
the methods applied in other recent studies. It is important to
note that the different works used a greater number of vari-
ables (clinical and/or analytical) compared to ours; therefore,
not necessarily dealing with more variables generates better
performance. In addition, using a smaller set of variables
allows to obtain a more useful model, the medical staff to
better identify the influence of the variables and, in addition,
the collection of patient records is more agile.

Another significant finding can be observed from Fig. 7,
which shows the variables or features, according to the
XGBoost model, that most influenced the classification
between patients who did or did not suffer from IDH during
an HD session. As discussed above, the ability of this model
to determine the patient features that contribute most to a
potential case of IDH is important for decision-making by
medical staff [80], [81].

Although the results obtained here are encouraging, there
are some limitations to this study. This was a retrospective
cohort study, and the ability of themodel to classify IDH from
new patient records would need to be validated, meaning that
prospective validation is required. It would also be desirable
to test the model’ s capability with patient records from
other hospital centers and therefore significantly expand the
number of HD sessions. Finally, it is important to emphasize
that the model obtained may be more robust when applying
other optimization techniques.

VI. CONCLUSION AND FUTURE WORKS
In this study, we developed and evaluatedMLmodels with the
ability to predict whether a patient will suffer from IDH dur-
ing an HD session from the available analytical and clinical
values recorded at the beginning of the HD session. In partic-
ular, we have focused on data provided by the nephrology
staff at the Hospital Príncipe de Asturias, Madrid, Spain.

Our aim was to develop a flexible, robust model to support
decision-making by hospital medical staff, to anticipate and
treat the occurrence of IDH in patients receiving HD in a
timely manner. We based the approach on a combination of
variables (clinical and analytical) that were strongly determi-
nant for the occurrence of IDH during an HD session.

From this predictive point of view, the XGBoost model
achieved the best performance compared to the rest of the
MLmodels, obtaining very reliable results of 0.92, 0.90, 0.82,
0.86 and 0.81 for accuracy, precision, recall, F1-score and
MCC respectively. It also showed a favorable performance
in the area under the curve (AUC) of receiver operating char-
acteristic of 0.969 (95% confidence intervals [CI], 0.963 to
0.975), which was the highest compared to the other ML
models (p < 0.0001). Similarly, the AUC of precision-recall
was 0.945 (95% CI, 0.929 to 0.958). This suggests that mod-
els based on the XGBoost may be useful for application in
medical specialties such as nephrology due to their ability to
be implemented and deployed within different computational
paradigms (such as the cloud, fog or edge) [82] and their
versatility in terms of utilizing the high computational power
offered by graphics cards. In addition, this model provides
information on the way in which the importance of features
can influence the occurrence of IDH during the HD session;
therefore, this is a key advantage over other black-boxmodels
such as DNNs [79].

Finally, in future work, we will improve the performance
of the model obtained after applying other optimization tech-
niques. Also, wewill implement and deploy this model within
a second-generation microservices ecosystem that focuses on
the telemonitoring of patients receiving HD, to take advan-
tage of all the benefits and opportunities offered by this
novel software architecture [83]. We will also build different
models from another point of view, with the aim of classifying
the occurrence of IDH and the range of SBP decrease that
is encountered (e.g., mild, moderate or severe). This could
provide improvements in the actions taken by nephrology
staff in reference to the treatment that needs to be applied
to HD patients. As a consequence, personalized methods or
mechanisms of patient care could be developed.
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