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Abstract—The intermittency of renewable energy sources
makes the use of energy storage systems (ESSs) indispensable
in modern power grids for supply-demand balancing and relia-
bility enhancement. Besides pumped-storage hydroelectric power
stations, energy storage deployment worldwide is still quite low.
However, the status quo might rapidly change as the energy stor-
age technologies are growing and facilitating market regulations
are being ratified. Battery energy storage systems (BESSs), Li-ion
batteries in particular, possess attractive properties and are tak-
ing over other types of storage technologies. Thus, in this article,
we review and evaluate the current state of the art in managing
grid-connected Li-ion BESSs and their participation in electric-
ity markets. The review mainly includes battery modeling, the
architecture of battery management systems (BMSs), the incorpo-
ration of BESSs for electricity market services, global utility-scale
battery storage facilities, and challenges in implementing and
managing grid-connected BESSs.
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I. INTRODUCTION

ENEWABLE energy resources, which as of now account

for 22% of the total electricity supply worldwide, are
widely seen indispensable when it comes to the globe’s
energy future, as they are abundant and avoid greenhouse
gas emissions produced by conventional fossil fuel energy
resources. Twenty-nine states in the U.S. have issued renew-
able portfolio standards that mandate 15-30% renewable
electricity sales by 2025 [1]. Solar and wind power gener-
ation systems are thus moving to the forefront as the primary
sources of electricity generation. Although various forecast-
ing tools have been developed to deal with the intermittency
of solar and wind energy resources, the forecasting error
still remains high [2]. Therefore, energy storage is neces-
sary to integrate these renewable energy sources into the
power grid. Moreover, the need for supply-demand balanc-
ing, fast responsive frequency regulation, peak shaving and
load shifting, photovoltaic (PV)/Wind smoothing, Duck curve
mitigating, reliability enhancement, system restoration, energy
arbitrage, and providing inertia, have also greatly prompted
grid applications of energy storage [3].

There are three major storage technologies, namely,
pumped-hydro, compressed air, and battery, which have been
more sought after than other storage types in power systems.
At present, pumped-hydro dominates the storage landscape
by occupying 96% of the total installed storage capacity
worldwide [4]. However, it is site-constrained and has a round-
trip efficiency of about 75% if modern technology is used [5].
The compressed air, which has an efficiency of 40-52%, is geo-
logically restricted as pumped-hydro. On the contrary, BESSs
can be flexible in design and deployed almost anywhere. The
battery technology and penetration are increasingly growing.
The global battery stationary energy storage market is antic-
ipated to grow exponentially, from a modest 9 GW/17 GWh
deployed as of 2018 to 1,095 GW/2,850 GWh by 2040,
according to the recent forecasts [6]. It is reported that the per-
kWh battery cost is going to decrease to half of the 2020 price
by 2030 as demand is increasing in both stationary storage
and electric vehicle (EV) applications [7]. Wind and solar are
anticipated to increase the current 7% share of the world’s
electricity supply to 40% by 2040, as wind, solar, and battery
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systems costs continue to decline [6]. More importantly, the
percentage of passenger EVs, which is now around 2% of the
global market, could increase to 33% by 2040 [6]. This growth
would add a huge scale to the battery manufacturing sector.

Due to its attractive features, i.e., high efficiency and energy
density, low self-discharge rate, and rapid response (within
20 ms [8]), the BESS seems to have already emerged as a clear
winner among the aforementioned storage devices [9]. The Li-
ion battery has attracted the most commercial and research
interest among the various kinds of battery technologies due to
its higher energy density, fast charging, high reliability, porta-
bility, suitable lifespan, compact size, flexible application, and
lightness. As stated by the U.S. Department of Energy (DOE),
Li-ion batteries used for frequency regulation applications are
among the fastest-growing energy storage markets [10]. Two-
thirds of today’s global battery market is dominated by Li-ion
batteries [4].

Despite the above-mentioned desirable properties, Li-ion
batteries have the shortcoming that they need perpetual mon-
itoring and special control to achieve high performance
and prevent early battery deterioration and potential haz-
ards [11]-[12]. Thus, a BMS, which includes both hardware
and software, is required to control the battery’s operational
conditions to prolong the cycle life, maintain safety, and accu-
rately estimate the different states of the battery for energy
management purposes [12].

There are some review papers in the literature that dis-
cuss battery systems. For instance, [13] presents a review
over power electronics topologies for utility-scale BESS con-
nected to medium-voltage grid. Reference [14] comprehen-
sively reviewed commercially available battery technologies
and then studied the integration of BESSs into distribution
networks. The paper also reviewed power electronic convert-
ers for battery systems. Reference [15] is mainly focused on
data acquisitions from battery data sheets and the estimations
of battery states. In [16], the authors enumerate the differ-
ent functions and corresponding control strategies of BESS in
power supply, transmission and distribution sectors of power
systems. There also exist other review papers in the liter-
ature that are mainly focused on particular topics such as
battery state estimation and balancing [11], [17]-[20] or tech-
nologies and materials [4]. Thus, there is still a lack of analysis
on the relationship between the characterization, modeling,
management, and applications of grid-tied BESSs.

Many of the existing review papers investigate a specific
aspect of batteries, whereas battery storage is a multidisci-
plinary area, which is of great interest and is being studied
by different communities. For electrical power professionals
who are interested in this important topic but do not have
sufficient background, it is not an easy and trivial task to go
through the “literature jungle” without being overwhelmed or
even lost. This review paper is to address this challenge by
reviewing the core background issues as well as the indis-
pensable literature surrounding the essential topics of material
fundamentals, modeling, characterization, management, appli-
cations, and market participation of Li-ion batteries to lay out
an overarching theme of the management of grid-connected
battery systems, serving readers and researchers as a gateway
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Fig. 1. The structure of the paper.

into the relevant literature. To this end, this paper is artic-
ulated, as shown in Fig. 1, in order to encapsulate all the
essential topics this review is concerned with. The study also
aims to outline a number of underlying challenges and poten-
tial research directions associated with grid-connected battery
storage systems that the authors believe would be worthy of
investigation.

The remainder of this paper is organized as follows. Li-
ion battery fundamentals and modeling are discussed and
introduced in Section II. BMSs are extensively studied in
Section III. Section IV discusses the participation of BESSs
in electricity markets. Global battery energy storage projects
are statistically discussed in Section V. In Section VI, the
challenges in the implementation and management of grid-
connected BESSs are reviewed. Finally, Section VII concludes
the paper.

II. BATTERY FUNDAMENTALS OVERVIEW AND
APPLICATION ORIENTED MODELING APPROACHES

In this section, an overview of Li-ion battery materi-
als is given first to provide researchers and engineers in
electrical and power engineering with a glance of battery
materials fundamentals. Circuit-based battery modeling is then
reviewed for circuit simulation and power converter design
purposes. Economic dispatch models of battery systems are
also introduced for grid-connected battery storage applications.

A. An Overview of Li-lIon Battery Fundamentals

In this subsection, a brief review is conducted on the differ-
ent existing and potential developments in the materials used
for the anode, cathode, and electrolyte of Li-ion batteries.
Determining the state of charge (SOC) of a battery through
voltage measurement seems to be simple, but it can be impre-
cise because the terminal voltage is affected by cell materials,
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charge/discharge current, and temperature. Thus, it is useful
to understand how cell materials may complicate the battery’s
electric and thermal management.

Lithium batteries are appealing because, in the periodic
table, Lithium is a very electropositive element, which also
happens to be the lightest metal, half as dense as water [21].
A battery, in general, consists of in-series/parallel connected
electrochemical cells. Each of the cells contains a negative
electrode (anode when discharging) and a positive elec-
trode (cathode when discharging) separated by an electrolyte
layer [22]. There also exists a separator, which functions as a
barrier between the cathode and anode.

Currently, carbon (graphite) is the most widely used
anode material, while silicon, metal oxides, and alloyed
metals are also being explored as high-capacity carbon
alternatives [4], [22]-[23]. New developments have led to
altered artificial graphite and altered natural graphite for
anode [23]. Lithium Titanium Oxide is one of the commercial-
ized Lithium transition metal oxides for Li-ion batteries [22].
Among the most-referred-to Li-alloy anodes is Li-Al (lithium
aluminum). In addition to the aforementioned commercial-
ized ones, the candidate materials under development for
the anode would be nanostructured host materials such as
Si-nanowire [4], [22].

More recent research efforts have been focused on the pos-
itive electrode, which is known as the critical component of
a battery that affects its performance the most [4]. The most
common cathode materials in a Li-ion battery include LiCoO»,
Li-Mn-O, LiFePO4, and lithium layered metal oxide [24].
Lithium Manganese spinels (Li-Mn-O), whose use is still
widespread, was one of the early research attempts for obtain-
ing cathode material. Despite the reduced capacity of Li-Mn
batteries due to frequent cycling, the toxicity of lithium
cobalt-based materials (Li-Co-O) and costly production of
lithium-nickel based (Li-Ni-O) materials are the reasons why
Lithium Manganese (Li-Mn) is still popular. Lithium iron
phosphate (LiFePOy4) batteries are of flat discharge plateau
and moderate capacity ranging from 150 to 160 mAbh/g.
Other than being non-toxic and showing little capacity decline
through the battery life, they are also safer than the Li-cobalt
one, thereby making them favorable for higher power level
applications [22].

The discharge voltage curves of Li-Mn and Li-phosphate are
very flat. Nearly 80% of the energy stored in such batteries
falls under the flat part of the voltage profile. This charac-
teristic is desirable because it means that the voltage remains
nearly constant as the battery is discharged, which simplifies
the application design. However, a flat curve causes a chal-
lenge for voltage-based SOC measurement. The cell voltage
measurement is less challenging with other Li-ion chemistry
batteries, such as Li-Polymer and Li>TiO3 [1]. This shows how
a material that works well for one purpose might compromise
another. Taking Cobalt as an example, which is commonly
used as the cathode in lithium-ion batteries, provides a high
energy density, but has a limited temperature range [25].

While the anode and cathode materials govern the basic
performance of a battery, electrolyte and separator are tightly
associated with safety. Solid-state electrolyte is an emerging
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TABLE I
L1-ION BATTERIES WITH THREE DIFFERENT CATHODE MATERIALS [25]

Specifications Lithium Lithium Lithium
Cobalt Manganese | Phosphate
Specific energy density (Wh/kg) 150-190 100-135 90-120
Internal resistance (m{}) 150-300 25-75 25-50
Cycle life (80% discharge) 500-1000 : 500-1000 : 1000-2000
Fast charge time 2-4h lhorless : 1horless
Cell voltage (nominal) 3.6V 38V 33V
Thermal runaway 150° C 250° C 270° C

technology, which according to [26] promises lower price,
rapid charging/discharging, and improved safety. When the
electrolyte is polymer-based, there are only a few options
from which the electrolyte can be chosen to provide the
required high ion conduction due to the electrochemical sta-
bility concerns of the polymer [27]. However, the options
are more diverse when the electrolyte is liquid, which can
have different solvents with specific dielectric and viscosity
constants [22], [28].

Table I shows how the characteristics of a Li-ion battery
are influenced by its cathode material. As it is shown, battery
materials should be considered carefully when choosing a bat-
tery for a specific application. There is a tradeoff as different
cathode, anode, and electrolyte combinations may improve one
quality of the battery, but weaken another.

Ternary Lithium batteries have been developed to partly
overcome the above-mentioned tradeoff. In ternary technology,
the cathode is composed of a few (often three) different sub-
stances. The ratio of the constituent materials can be adjusted
to reach the desired levels of cost, safety, and cell voltage.
Lithium Nickel Cobalt Aluminum Oxide (NCA) and Lithium
Nickel Manganese Cobalt Oxide (NMC) are two ternary tech-
nologies that are being widely used. EV application is targeted
by NCA, while the use of NMC is more diverse and includes
grid applications.

It is essential to note that there exist other types of electro-
chemical systems, such as Redox Flow Battery (RFB) [29],
NaS battery [30], fuel cell-electrolyzer with hydrogen
storage [31], etc., which are also suitable for grid-scale energy
storage applications. RFB, for example, is a rechargeable
battery whose operation is similar to fuel cells. Unlike con-
ventional batteries, RFB does not store chemical energy at
the electrodes, but in the electrolyte solutions. An important
feature of flow batteries is that their power rating is a func-
tion of the geometry and size of the electrodes, whereas their
energy storage capacity depends on the size of the tanks in
which the electrolyte solutions are stored, thereby making the
power rating and energy storage capacity of RFBs independent
of one another. This feature as well as limited self-discharge
characteristics cause flow batteries to be particularly useful
for large-scale stationary applications, e.g., for use with sus-
tainable but non-dispatchable wind and solar farms and for
the stability (demand leveling) of the power grid. Because of
the bulkiness of the electrolyte tanks of flow batteries, their
application is currently limited to stationary cases. However,
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TABLE 11
EVALUATION OF DIFFERENT BATTERY MODELING METHODS

Advantages Disadvantages Applications

.g e High computational
burden .

o -
§ e High accuracy e High nonlinearity E,:;l]l design [33]-{34],
£ e Excessive
2 parameters
m
= e Estimation of battery
§ e Balance between state [40]
’ E accuracy and e Energy management of
§ complexity e Limited accuracy new energy vehicles
";‘ e Ease of online [41]
=3 implementation e Grid-connected energy
= storage [38]
E ’ ES:V ts (;ir?lgzﬁ?tlty Low accuracy Grid-connected ener;
g, E £ onli Y Lack of insight of . 35 &y
g o Easeofonline battery dynamics storage [35]
= implementation

another feature of the flow battery is its quick charging capa-
bility. This feature, which is currently under research, makes
flow batteries suitable for frequency regulation of electric grid
and even for EV applications.

B. Circuit-Based Battery Modeling

Accurate battery models are required to design, implement,
and manage grid-connected BESSs. Basically, the battery
models from the literature can be divided into electrochem-
ical, equivalent-circuit, and empirical models [32]. The focus
is given to electrical circuit models while the other two
approaches are also briefly reviewed.

The relevant advantages and disadvantages of the afore-
mentioned modeling approaches are shown in Table II.
Electrochemical models give a deep insight into battery
dynamics inside a cell during charging and discharging. The
internal mass transfer processes are depicted by a series of
highly nonlinear differential equations. Thus, electrochemi-
cal models can achieve very high accuracy. However, due to
the high nonlinearity, high coupling and numerous parame-
ters, it suffers from high computational burden, which makes
the electrochemical models not suitable for online implemen-
tations (i.e., in energy management systems) [33]-[34]. As a
black box model, empirical models mainly depict the input
and output of battery energy [35]. They are often linear func-
tions of charging and discharging power. The lower complexity
makes the empirical models easy to be implemented online and
contributes to the most applications in grid-connected energy
storage. However, due to lack of insight of the internal battery
dynamics, empirical models have the worst accuracy [36]. In
the equivalent-circuit models (ECMs), a lumped-element cir-
cuit comprising resistors and capacitors represents the battery’s
behavior [37]. ECMs are able to maintain a balance between
model complexity and accuracy so that the battery model can
be embedded in microprocessors for real-time applications.
ECMs are commonly adopted as they have only a few param-
eters to tune. They are fast to execute, simple and intuitive
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Fig. 2. The n'"-order ECM for a Li-ion battery.

to analyze, and, more importantly, straightforward to be inte-
grated with other electrical models (i.e., power converters) in
the system for grid-level simulations [38].

It should be noted that apart from the above-mentioned
modeling methods, there also is the dynamic Kinetic Battery
Model (KiBaM) for a battery, which was proposed by Manwell
and McGowan [42]. KiBaM considers the battery as a two-
tank system including directly available charge and bound
charge to describe the charge/discharge processes. The main
advantage is its capability to model the recovery and the
rate-capacity effects [43]. However, KiBaM includes five sub-
models (capacity, voltage, charge transfer, battery losses, and
battery life sub-models) and requires the identification of a sig-
nificant number of parameters [44]-[45]. Consequently, ECM
will be mainly discussed in this paper due to its simplicity,
effectiveness, and ease of application.

Even though Li-ion batteries are the most popular form
of BESSs, a perfect Li-ion ECM is yet to be proposed to
best represent its three main areas of operation that include
charging, discharging, and idle modes [10]. The so-called Dual
Polarization model or the Two-Time Constant (TTC) repre-
sentation of the resistor-capacitor ladder circuital model (also
known as Battery n'"-order Randle Circuit) is the most popu-
lar battery model in the literature [38], [46]-[47]. In general,
the more RC circuits are used, the better the model can
capture the transients of the battery. Fig. 2 shows such a
multi-time-constant ladder network; where V,. is a dependent
voltage source representing the open-circuit voltage (OCV),
which is the battery’s terminal voltage after the battery is
fully relaxed and reached an equilibrium state [48]; i} is the
terminal current; Vj is the terminal voltage; and R, is the
ohmic resistance.R, is responsible for the instantaneous volt-
age drop/rise in the battery response [49]. R; to R, are the
leakage [50] or transient resistances, and C; to C, are the
corresponding dynamic capacitances.

In a TTC model, the elements R; (Charge-Transfer
Resistance), C; (Double-Layer Capacitance), R, (Diffusion
Resistance), and C, (Diffusion Capacitance) [32] would
represent two RC branches that model the corresponding
long and short time constants of a battery’s step response,
respectively [51]. The duration of the slow transient response
is in the order of hours [38]. Ry to R, and R, strongly
depend on temperature [52]. Ryejf—discharge denotes the self-
discharge energy loss when batteries are stored for a long
time. It can be considered to be a large resistor or even
ignored [53]. As seen from Fig. 2, besides Ryejf—discharge all
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the other circuit parameters are non-linear and functions of
the battery’s SOC and operating temperature. It is notable
that the purpose of using ideal diodes shown in Fig. 2 is to
make the model possess different parameters during the charge
and discharge operations, which would provide further free-
dom degrees when estimating the ECM parameters. In addition
to the circuit shown in Fig. 2, there also exists the ADVISOR
model. Further details on this model can be found in [54].

The circuit parameters of Fig. 2 are, in general, non-
linear multivariable functions of the SOC and temperature (as
well as aging, current direction, and charge rate [32]). Since
these detailed data are not given in the battery’s datasheets,
these parameters have to be estimated [55]. The parameteri-
zation of a single-RC equivalent circuit would be straightfor-
ward. However, the lack of systematic parameter identification
methods for multiple-RC equivalent circuits has led to the
use of ad hoc methods and iterative numerical optimization
techniques [32]. These parameter identification approaches
can be split into two main categories: the frequency domain
(impedance spectroscopy) and the time domain method, both
to minimize the difference between the actual voltage mea-
sured at the battery terminals and the one estimated by the
equivalent circuit [37]. In the former, the battery is excited
with a small voltage/current signal over a range of frequencies
(from Hz to kHz). The impedance of the battery is then ana-
lyzed over that frequency range. The simple principle used in
this method is that at low frequencies, the impedance is the
sum of the resistors, and at high frequencies the impedance
corresponds to R, [37] (see Fig. 2). Although the tech-
nique can accurately represent the battery characteristics, this
method’s online implementation is considered cumbersome,
as it involves additional and complex circuitry [56]. Unlike
the former method, the time domain method is attractive, as it
requires no impedance measurements [57]. In the time domain
method, the battery is excited with a discharge (or charge)
impulse current, as shown in Fig. 3, to detect the internal
resistance as well as the time constants of the charge transfer
and diffusion phenomena [37].

The main challenge in both the two aforementioned methods
is the fact that resistance and capacitance parameters are not
constant but vary as the operating conditions, such as tempera-
ture and SOC, change [56]. Both SOC detection and parameter
identification of the equivalent circuit still remain two ongoing
discussions [32]. Another research question that is not fully
investigated yet is the effect of temperature on the equivalent
circuit parameters [48]. It is essential to note that the inac-
curacies of the ECM pop up when the battery is cycled with
C-rates different from the ones used to infer the equivalent
circuit parameters [48].

In addition to the battery model we discussed above, which
is known as the integer-order model (IOM), there is the
fractional-order model (FOM) proposed to better capture the
dynamics of a battery. An IOM may capture a battery’s behav-
ior to a moderate degree of accuracy within a limited range of
operating conditions [58]. IOMs are commonly incapable of
predicting a battery’s dynamics in both the time and frequency
domains over the entire operating range. In IOMs, the more
RC branches are added, the greater the accuracy would be.
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However, this not only complicates the model mathemati-
cal structure associated with computational burden, but also
increases the effort required for system calibration as well as
the risk of over-fitting. The impedance spectrum of a Li-ion
cell can be divided into three parts: the low-frequency straight
line, the mid-frequency semi-circle, and the high-frequency
tail. The impedance spectrum of a Li-ion cell is commonly
plotted using the Nyquist plot, and the phase shift decides
the slope of the straight line and the shape of the semicircle.
In FOM, there is a fractional element that possesses a phase
shift of am/2 (0 < o < 1), and it is used to replace the
pure capacitor in IOM. Using the FOM, the mid-frequency
response that reflects the lithium diffusion within electrodes
can be captured more accurately. In other words, FOM pro-
vides an infinite-dimensional model for Li-ion cells [59]-[60].
Therefore, the accuracy of FOM is higher than IOM.

C. Modeling a Battery System for Economic Dispatch

The cost function of battery storage systems is not as readily
available as the generation cost curve of conventional genera-
tors. The main cost of a battery system is its investment cost.
Levelized cost of energy (LCOE in $/kWh) is commonly used
to account for a battery’s operation cost [61]. In addition to the
energy cost, there is battery degradation that may be added to
the aforesaid operation cost of a battery [61]. A precise bat-
tery economic dispatch model not only updates the cost of
stored energy by keeping track of the charge/discharge his-
tory but also takes into account the impact of the age and
charge/discharge on the battery capacity [62]. Thus, there is
a big motivation to develop a model to estimate the capacity
fade for one dispatch period as a function of exchanged power,
dispatch time interval, and SOC change [61]. Clearly, finding
a model analogous to the fuel cost function of thermal gen-
erators is appealing. Such a sought-after battery operational
cost model is divided into an electrical and a degradation
model. Most of the research efforts in the literature have been
focused on the degradation model as the electrical part (i.e., the
equivalent circuit) is relatively well known. The initial SOC
and the power to be dispatched are given to the electrical
model to receive the updated SOC. The data is then given
to the battery degradation model to get the per-unit-energy
degradation cost. The degradation models introduced in the
literature [60]—-[61] depend on the application and chemistry
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of the battery. For example, [63] proposed (1) as the degra-
dation model of LiFePOy4 batteries when used for secondary
reserve provision.

QrF(d, T, SOC) = (B1.SOCP> + B3).(B+.T% . + Bo).d”" (1)

where, Or denotes capacity fade in percentage, 1 to B7 are
fitting parameters, 7T is the temperature, and d is the time dura-
tion in months. Equation (2), which is a quadratic relationship
between the depth of discharge (DOD) and degradation, was
proposed by [64] for distribution-sited Li-ion batteries.

AQp = k x DOD? )

where AQF is the capacity degradation per cycle. The coeffi-
cient k is set at a value such that (2) best fits the experimental
measurements. The implementation of (2) is less challenging
than (1) as it maintains compatibility with larger economic
dispatch models, which often are quadratic. Additionally, (2)
can be more easily linearized using mixed-integer techniques
if needed.

In addition to [63]-[61], [64]-[62] and [65]-[68] also
aimed to propose a dispatch model for batteries. A battery
economic dispatch with time-coupling constraints was given
in [65], and a generic dispatch model was suggested in [66].
The study sees the storage as an energy reservoir, but it does
not account for the degradation. Reference [67] investigated
the opportunity costs hidden in the dispatching of battery stor-
age systems when accompanied by controllable generators.
The use of Model Predictive Control (MPC) for optimal bat-
tery dispatch has also been attempted [63]. Because power
system operation models are often linear, efforts have been
made to come up with a linearized battery cost model [69].
Further battery cost models can be found in [70]-[72].

It should be mentioned that the development of a com-
prehensive battery cost function that captures all the factors
involved in the degradation is still under debate, which stems
from the lack of an all-inclusive definition for the state of
health (SOH) of a battery. The topics of degradation and SOH
are tightly dependent and will be extensively discussed in
Section III.

III. MANAGEMENT OF GRID-CONNECTED BESSs

Utility engineers will soon need to be familiar with the
BMS, shown in Fig. 4. A BMS is required to perform
SOC/SOH estimation, thermal management, balancing, moni-
toring, and control at the cell, module, and pack levels. These
features are available if the BMS is well designed in cir-
cuit and possesses accurate algorithms to measure/estimate the
functional status of the battery. A BMS consists of numerous
embedded sensors, actuators, controllers, and signal lines. The
major motivation of a BMS is to maintain the safe operation
of a battery pack and prolong the battery pack’s useful life.
Achieving such a BMS would significantly escalate the growth
of grid-connected BESSs [1]. The features expected from a
BMS are discussed as follows.

A. Cell Balancing

The mismatch of voltage and capacity among the cells in
a battery pack introduces challenges in battery management,
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Fig. 4. Block diagram of BMS.

reduces storage capacity utilization, and may accelerate battery
degradation if not well managed. In most used battery power
electronic architectures, the BMS entirely stops the discharge
once the very first cell reaches its cutoff voltage, thereby mak-
ing the energy in the rest of the cells inaccessible. Likewise,
the BMS may stop charging once the cell with the highest
SOC is fully charged, whereas other cells have not been fully
charged yet. Thus, after several charge/discharge cycles, the
battery strings tend to go out of balance. Such a mismatch
stems from an inconsistency in either the cells’ capacities or
the cells’ SOCs due to manufacturing tolerances (intrinsic) and
varying ambient conditions (extrinsic) [73]-[74]. Therefore,
it is important that a BMS be equipped with cell balancing
capability. Cell balancing techniques are divided into passive
and active. The passive cell balancing is easy to implement
as it requires only a control switch and a shunt resistor in
each cell to dissipate the extra charge in heat. Whereas active
cell balancing moves the extra charge to the less charged
cells using dc-dc converters [75] or bypassing [76] the over-
charged (undercharged) cells during the charging (discharging)
process, respectively. Unlike the passive technique that suffers
from high losses and thermal issues, the active approach is
more efficient. The active balancing techniques vary in the
strategy used to redistribute the extra energy among the cells.
However, a compromise between the complexity of the active
balancing circuit and the achievable efficiency must be made to
make active balancing competitive against the passive one. The
active balancing circuits are split into switch-cap-based [77]
and inductor-based topologies [75]. Although relatively slow,
the capacitive topology is of simple control algorithm, high
power density, less electromagnetic interference (EMI), and
is well-suited for on-board integration. However, the short-
coming is that the switch-cap-based topology becomes less
efficient when it comes to batteries with a considerable num-
ber of series-connected cells as the balancing charge would
have to travel through the long cell strings. That is why it
is occasionally preferred to use the counterpart (i.e., inductive
topology), which is subcategorized into non-isolated [78]-[79]
and isolated balancing circuits [75]-[77], each of which has
its own pertaining pros and cons.

High energy transfer is an issue when SOC balancing is
performed at the module level. An ideal solution to the issue



ROUHOLAMINI et al.: GRID-CONNECTED Li-ION BATTERY STORAGE SYSTEMS

is to charge low SOC modules with an external energy source
such as a PV panel (solar harvesting) [80]. In such a solar-
assisted battery balancing system, the SOC/voltage of the
battery modules is monitored, and then the module with the
lowest SOC/voltage is connected to the PV. When all the bat-
tery modules are equalized, the whole battery pack can be
charged by the PV via a buck-boost converter.

It is worth noting although passive balancing is less effi-
cient, it is often preferred as it is less costly and easier to
implement [81]. Hybrid passive-active techniques and smart
batteries have also been suggested as solutions to the present
struggles in cell balancing [19], [82].

B. Thermal Management

Li-ion batteries best perform when kept at a specific temper-
ature range (for example, 15-35 °C [83]). If overheated (for
example, above 100 °C [84]) due to short circuit or fast charg-
ing/discharging, a Li-ion battery may undergo a catastrophic
cascaded thermal runaway or even an explosion. The IEEE
standard [85] defines this thermal runaway as: “A condition
that is caused by a battery charging current or another process
that produces more internal heat than the battery can dissipate.”
Most of the present challenges in a Li-ion battery are some-
how associated with thermal issues [86]. Thermal and SOC
imbalances are the two well-known causes of early battery
aging [87]. Thermal imbalances are sourced by the manufac-
turing variations and temperature gradient in the coolant [88].
Therefore, a thermal management model, which can be easily
integrated into the BMS, is required to identify the temperature
spatiotemporal distribution in the battery and choose a proper
heat-dissipating strategy. In [86], Bernardi mathematically for-
mulated the thermal behavior of batteries and introduced a heat
generation formula that can be defined by (3).

é]:l(U—V—Ta—U> 3)

aT

where ¢ is the heat generation rate, / and T represent the
current and temperature, respectively. U is the open circuit
potential, and V is known as the working voltage. The use
of (3) to estimate battery heat generation is quite widespread.
However, the equation assumes that the current is uniformly
distributed throughout the battery, which is not true for large
batteries. Thus, Pals and Newman, [86], proposed a one-
dimensional lumped model to predict the thermal behavior
of a Lithium battery cell. The lumped thermal model is very
simple, and thus, convenient to be used in BMS applications.

Depending on what coolant is used in the battery, the
thermal management is grouped into: 1) air cooling, 2) lig-
uid cooling, 3) phase change materials (PCM), and 4) heat
pipe [89]. The air cooling is simple and inexpensive. Liquid
cooling is split into indirect and direct (immersion) cooling.
In the indirect, the coolant is in a looped circulation and not
directly in contact with the cells. Many EV manufacturers,
such as GM and Tesla, use indirect cooling. In direct cool-
ing, the entire surface of the cell is immersed in a liquid
of high enough dielectric strength [83]. Compared to the air,
direct-contact liquids are of a much better heat transfer rate.
Indirect-contact liquids (i.e., water or water/glycol solutions)
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might perform three times better than that of air cooling [89].
The heat pipe, which is used widely in electronic devices and
scarcely in commercially-available battery packs, is a heat-
transfer device that takes advantage of thermal conductivity
and phase transition and gives a highly-efficient heat transfer
between two solid interfaces [89]. PCM is a material of great
potential for heat absorption with minimum volume change
but has low thermal conductivity (0.17 — 0.35 W/mK at room
temperature [90]).

PCMs store the battery’s heat rather than transfer it outside
the battery pack [90]. The use of PCM eliminates the need
for any additional cooling system, whereas the heat pipe will
have to be accompanied by air or liquid cooling [89]. Despite
the aforementioned advantages of liquid, heat pipe, and PCM
cooling, compelled air circulation remains the most functional
cooling system for battery packs because of its low cost and
weight [91]. Air cooling is also essential for battery packs that
may produce dangerous gasses [91].

As thermal and cell balancing are two tightly interdependent
objectives, [92] proposes a simultaneous thermal and SOC
balancing approach through non-uniform use of cells. The
approach adopts active balancing as it is more thermo-friendly
than passive balancing. The design of a cooling system
is remarkably impacted by the geometry (shape and size)
of battery cells [93]. Fluid dynamics have been extensively
studied to optimize cooling systems [89]. Proactive thermal
management for early warning and timely detection of ther-
mal runaway by using prediction techniques has also been
tried [89]. Discharging the stored energy often is a proper
protection tactic to avoid a thermal runaway [89]. Graphene-
enhanced PCM for conductivity improvement as well as a
model development for online spatiotemporal temperature esti-
mation with few measuring sensors have also been investigated
in the literature [90].

C. SOC Estimation

SOC is indicative of the actual charge stored in a battery
relative to its full capacity charge. Precisely knowing the SOC
is imperative for the management and control of battery packs
because SOC is involved in various functions offered by a
BMS. However, this parameter cannot be directly measured
at the battery terminals. Algorithms are needed to accurately
estimate the SOC of the battery pack and the individual cells
based on the measured data of each one. Different algorithms
and approaches have been proposed in the literature to esti-
mate the SOC from the battery’s obtainable measurements.
Coulomb counting is probably the most classical one in which
the battery’s terminal current is integrated over time to com-
pute the battery’s incumbent charge [94]. Since the current is
integrated over time to compute the residual charge, the cur-
rent sensor has to be of no offset over the temperature and
time. In this method, the SOC is calculated by (4) [95], in
which 7 is the Coulomb efficiency, Qpqy is the battery’s rated
capacity in Ampere-hour (Ah), I, is the battery’s discharge
current in Ampere, and SOC(tp) is the battery initial SOC.

t
SOC(1) = SOC(to) — / Mparr(7)

——dt 4
1o 3600Qpan
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The unknown initial SOC, the need for perpetual current
acquisition, and the current sensor error, which adds up over
time because of the integration process, are the three major
challenges in this method though it is straightforward to imple-
ment. Therefore, measuring the OCV has been suggested as
an alternate method to compute the SOC given the static
relationship (i.e., a lookup table) between the OCV and the
SOC. But, the measurement of the OCV requires the battery
to be at rest. That is, the battery needs to be fully discon-
nected from the system. Due to the very slow dynamics in
a battery, measuring the OCV can be time-consuming up to
even eight hours, making this method impossible for online
applications though it still can be used for laboratory tests and
calibrating. Thus, some research efforts have investigated fast
OCYV predictions [47] without waiting for the battery to reach
a steady state. The study proposes a fast approach based on
exponential recovery voltage. In this approach, only three volt-
age measurements are required during the recovery process.
The OCV is then predicted from a quadratic equation.

Electrochemical impedance spectroscopy (EIS) can be con-
sidered as another lookup table method by establishing the
relationship between the SOC and battery electrochemical
impedance spectrum [96]. Although EIS is a proper testing
method for SOC, it is difficult to be used in practical battery
management systems.

Reference [97] showed that some of the battery model
parameters might change as much as 800% when the SOC
changes from 0 to 100% while the temperature and charge
rate are kept constant. To overcome this issue, parameters-SOC
co-estimation was proposed in [1], [97]-[98]. Reference [99]
proposes a joint battery model and SOC estimation method
based on the sigma point Kalman filter (SPKF). In [100], a
single-parameter tuning approach within an extended Kalman
filter (EKF) was used to find an observer with straightforward
tuning for simultaneous estimation of the battery’s parame-
ters and SOC. The use of H-infinity filters for joint estimation
under uncertainty has been also tried [20]. The study estimates
the battery parameters online using the H-infinity filter, and the
SOC is then estimated using the unscented Kalman filter.

More recent research efforts have moved toward non-
linear observers (NLOs) and machine learning based
algorithms [101]-[102]. In addition to Kalman filter (KF)
based methods, NLOs have also been extensively studied
for SOC estimation, such as SOC-dependent gain matrix
based nonlinear observer [103], the statistical filter algo-
rithm (SFA) [104], sliding mode observer (SMO) [105]-[107],
Luenberger observation [108], etc. Compared with Kalman
filter based algorithms, nonlinear observers have strong robust-
ness to nonlinear features with less computation cost. Various
intelligent learning and/or data-driven approaches [109], such
as neural network (NN) [110]-[111], fuzzy logic [112],
fuzzy-neuro [113], and supporting vector machine (SVM)
[114]-[115], have been proposed for improving the accuracy
of SOC estimation. In this category, the battery system is nor-
mally treated as a black or gray box. The learning algorithm
will learn the relationship between the input data (battery volt-
age, current, charge/discharge rate, temperature, etc.) and the
output quantity (e.g., the SOC).
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TABLE III
BATTERY SOC ESTIMATION METHODS

Coulomb Simple but with accumulation errors and
counting dependent on initial SOC value
. Look . . L
Direct ta%(l)e up OCV: Simple but with long testing time to
Methods measure OCV and hysteresis effect;
e OCV . .
. EIS EIS: High accuracy but not suitable for
online battery management
KF
Kalman EKF Good accuracy with the capability of
Filter SPKF handling nonlinearity for KF variants;
Based Other KF Dependency on the battery model accuracy
Methods based and having issues of robustness
methods
Improved accuracy and converge speed with
. NLO reduced computation cost;
Nonlinear . . . .
Observers SFA Issues in finding a proper gain matrix to
SMO reduce the error and in tuning the switching
gain to control sliding regime for SMO
. NN No need for battery models. High capability
Intelligent Fuzzy . . X . .
¢ . in handling nonlinearity with good accuracy
Learning Logic . L .S .
Algorithms | SVM in SOC estimation. Good training data is
required, and the computation cost is high.

A summary of various SOC estimation methods is given
in Table III. For a detailed comparison of SOC estimation
methods, readers are referred to [101]-[102].

D. SOH Estimation

Unlike SOC, whose definition is well agreed upon, there
is not a precise definition for SOH [116], which is dif-
ficult to determine and impacted by various factors [117].
Equation (5) [117] represents the estimation of SOH based on
capacity degradation (i.e., Qr). Qpas 1s the battery capacity at
the beginning of its life.

SOH = Qbatt - QF ~

batt

100 (5)

As seen from (5), it is the battery degradation that needs
to be defined first. In order to select cells of equal capac-
ity for battery pack assembly or to tell if an aged battery
pack is worth being reused, it is important to know the
actual capacity of battery units. The capacity of a Li-ion bat-
tery degrades as it ages. The loss of active material at the
anode and cathode, the loss of lithium inventory, and the
increment of total polarization potential are among the main
causes of the degradation [118]. From the perspective of bat-
tery management, the degradation is divided into two types,
calendric and cyclic aging. Calendar aging is often reported
as a function of storage conditions [119] (e.g., temperature
and SOC), whereas the latter depends on the depth and
frequency of charge/discharge cycles [120]. The battery mate-
rials also play a key role in the degradation [119]. Although
the self-discharge of Li-ion batteries is relatively low, the
impact of calendric aging is often more significant than cyclic
aging for stationary applications [121]. However, the calen-
dric degradation is minimal when short-term operation is
considered.

A basic equation to represent the capacity fade due to cal-
endric aging would be as defined in (6) [122]. The model
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formulates the degradation as a function of time, SOC, and
temperature.

OF cal(t, SOC, T) = ae™ P+ 4y 41 (6)

where QF .4 represents capacity fade, ¢ is time, and T is the
temperature. «, 8, and y are fitting parameters whose values
depend on SOC and temperature.

As the dependence of calendric aging on the battery’s
internal resistance increase has been well studied and quanti-
fied, [123] suggested (7) for computing the resistance increase
of lithium iron phosphate batteries.

Ri(t, SOC, T) = k.e©@T) (:50C) s (7

where, R; is the internal resistance increase expressed in per-
cent, t is time expressed in months, and T is the temperature
in Kelvin. The values of a, b, and ¢, which are positive, are
given in [123]. In general, calendric capacity fade is larger at
higher SOC and temperature as also seen from (7). Further
calendric aging models can be found in [124].
The capacity fade due to cyclic aging can be calculated by
using (8) [125].
Eq
QF,cyc = ADoD-e(ﬁ> -NZ

®)

where QF ¢yc is the capacity loss due to cycling. Apop, Eq,
R, T, N are pre-exponential factors, activation energy, gas
constant, operation temperature, and number of cycles, respec-
tively. Apop, Eq4, and Z (cycle exponent) depend on the battery
characteristics, and need to be obtained from the battery’s
datasheet using curve fitting techniques [125].

It is notable that, in addition to the aforementioned causes
for degradation, the current ripple caused by batteries’ power
electronics converters, depending on their switching frequency,
may contribute to the battery degradation as well [126]. To
evaluate the cumulative impact from all the cycles, a rainflow
counting algorithm is often used. The rainflow algorithm has
been extensively used in the analysis of fatigue data, including
battery life assessment [127]-[128].

As mentioned earlier, there is not a well-agreed-upon quan-
titative index to compute SOH, and thus, different methods
have been suggested. For instance, [129] suggests (9), which
is based on the change rate of the battery’s internal resistance.

Rena — R
SOH = end
Rend —R

current

x 100 9

new

Reference [130] suggests computing both (5) and (9) and
then choosing the smaller one to stay conservative about
SOH. According to [117], the end of life (EOL) of batter-
ies is denoted as 20% capacity degradation or doubling of the
internal resistance though there is no strong proof to verify
these claims.

According to [131], the methods for estimating SOH can
be grouped into: 1) physicochemical aging model, 2) event-
oriented aging model, and 3) weighted Ah throughput aging
model. The third one estimates SOH with better precision and
computational complexity than (5) and (9), and has been used
for reliability evaluation of battery systems. Under constant
operating conditions, the model assumes that a battery can
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provide a certain amount of energy throughput, equivalent to a
number of charge/discharge cycles, before its EOL is reached.
This model suggests (10) to calculate the SOH of a battery
module (cell) in the i operating condition [131]:

o |PB.i(0)].dz
2Nequ,i-Qbatt

where SOH (0) represents the initial SOH of the battery mod-
ule (cell); SOH(0) is 1 for a brand new battery module (cell).
Opar 1s the initial battery module capacity in kWh; Pp ; is the
battery module power during the i charge/discharge cycle
(or operating condition); Negy,; is the equivalent number of
charge/discharge cycles before EOL under the i operating
condition and is not a constant number but a variable as
defined by (11).

SOH; = SOH(0) — (10)

Up.Ah; (Crate, i)
Obart

th

Nequ,i(crate,i) = (11)
where Cjg,; is the C-rate under the i/ operation condition;
Up is the OCV of the battery module (cell); and Ah;(Crare,i) is
the total charge throughput under the i operating condition.
Assuming the capacity fade (i.e., Qf) is available, Ah;(Crype,;)
can be found using (12).

370.3% Cpyge.i—31700
RT

) (A (G
where AQp is the percentage capacity loss with respect to
the initial capacity. B is the pre-exponential factor and can
be found in [132]. R is the gas constant, which is equal to
8.31 J/mol.K; T is the absolute temperature; and z is a constant
factor, which is equal to 0.55 for lithium-ion batteries.

Experimental measurement has revealed that capacity deliv-
ery is enhanced by connecting cells with similar SOH in series.
This has recently led to developing algorithms for SOH-aware
reconfiguration of battery cells and also manufacturing fully
reconfigurable batteries [133]. State of function (SOF) [117]
and remaining useful life (RUL) [12] are two other indices
that function similarly to SOH. The SOF of a battery repre-
sents the ability of a battery to support a specific application in
its present state [117]. RUL is usually defined as the number
of charge/discharge cycles remaining until a failure thresh-
old is met [134]. It has been claimed that these indices (i.e.,
SOC, SOH, SOF, and RUL) should be co-estimated as they
are tightly correlated [134].

An experimental study [119] over the grid-connected
250 kW/500 kWh Li-ion battery storage facility in Qatar
showed that the residual capacity of the system was around
93% of its initial capacity after three years of storage at
high SOC.

Similar to SOC estimation, machine learning methods have
also been investigated for battery SOH estimation [135].
Machine learning (or data-driven) approaches do not require
a sophisticated battery degradation model. Real battery test-
ing data are used for training the algorithm to predict battery
degradation level and SOH. A variety of learning algorithms
have been reported for SOH estimation, including NN based
methods [136], fuzzy logic [137]-[138], extreme learning
machine (ELM) [139], support vector regression (SVR)/SVM

AQp = Bl (12)
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TABLE IV
BATTERY SOH ESTIMATION METHODS

Direct and simple with reasonable
. Internal R
Experimental EIS accuracy.
Methods . Not suitable for actual battery
Energy/capacity
management.
Degradation Physicochemical Fas't and accurate if the model is
. validated.
Model Based Event-oriented | validation i lengi
Methods Ah throughput Model validation is challenging.
Historical data is needed.
Kalman Filter Reasonably accurate with error bound
. KF and KF L )
and Nonlinear variants estimation. Improved KF variants can
Observer SMO handle nonlinearity but with increased
Based Methods computation complexity.
No need for battery degradation
models. High capability in handling
Intelligent . nonlinearity with good accuracy in
b Fuzzy Logic L . . ..
Learning SVR/SYM SOH estimation. High quality training
Algorithms data in diversity and quantity is
required, and the computation cost is
high.

based algorithms [140], and semi-supervised transfer learning
method [141].

Table IV gives a quick summary of different SOH estima-
tion methods. More detailed comparison and reviews of SOH
estimation can be found in [18] and [142].

E. Charge/Discharge Regime

Different batteries have different restrictions on the rate
at which they can be charged and discharged. The BMS on
the battery pack needs to have a built-in feature to manage,
optimize, and protect the charge/charging regime. In the fol-
lowing, conventional battery charge/discharge procedures are
briefly presented, and then, it is discussed what constraints
must be met when operating a grid-connected battery system.

Any charge controller involves a charging algorithm and
the circuit to implement the algorithm. There are two com-
mon algorithms for battery charging: pulse charging and
constant-current constant-voltage (CCCV) algorithms [143].
The former is more popular as it is simple and cheap. However,
it has a major issue: the current pulse is quite high and often
causes spikes in the battery voltage, which can be seriously
hazardous in Li-ion batteries [144]. The latter charging strat-
egy is done over three phases. In the first phase, known as the
trickle-charge phase, the battery is tested to see if it is healthy
and operating properly. This is done by observing the battery
voltage slope while the battery is being injected with a con-
stant charging current (often limited to 10 percent of the full
charging current) for a preset time interval. After it is known
that the battery is working properly, the second charging phase
kicks in. Otherwise, the charging process is terminated. In the
second phase, known as the constant-current phase, the mag-
nitude of the charging current already applied to the battery is
raised up to the full charging current and then is kept constant.
The process goes on until the voltage of the battery comes to
the rated value, which often corresponds to nearly 70% of the
battery capacity. In this case, if the constant-current injection
continued, the battery voltage would go beyond its rated level,
which would damage the battery. Thus, the constant-current
phase terminates at this point, and the next phase initiates. In
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the third phase, known as the constant-voltage phase, a cer-
tain voltage is applied to the battery, which equals the rated
maximum voltage of the battery. In this phase, the charging
current changes and becomes smaller and smaller as the bat-
tery voltage approaches the preset value. In other words, the
battery’s current gradually declines as the battery receives fur-
ther charges. When the current reduces to the trickle-charging
value, the constant-voltage phase ends as the battery is now
fully charged [144].

The discharge procedure, which is basically current or
power-based control, is often simpler than the charge proce-
dure. The discharge is allowed as long as the battery SOC
is above a certain limit and the discharge power, which is
demanded by the grid, does not violate the limitations of the
battery or its power electronic converter.

The overall formulation of a battery in grid-connected
operation can be presented as below [145].

—ul P < PP <1 P (13)
|P? = PP o] < APjg, (14)
EP A, = BuER + uPP A +uf PEAt/m?  (15)
Ey, < By < Efy,, (16)
u +ud < 1u,ul €{0,1) (17)

where I_’f and 1‘35 are positive values denoting the maximum
permissible charge and discharge powers of the battery, respec-
tively. Constraint (13) causes the power flowing to the battery
(i.e., PB) to remain within its permissible bounds as stated by
the battery manufacturer. The power variation of the battery
is contained by (14) to avoid possible damages. Equation (15)
gives the battery’s updated energy level. In (15), the parameters
Bsd, n¢, and nd are the battery self-discharge, charge, and dis-
charge efficiencies, respectively [145]. Constraint (16) ensures
that the battery energy level remains within the desired range.
uf and ufl are auxiliary binary variables for charging and dis-
charging at time ¢. As seen, the binary variables will lead to a
mixed-integer (i.e., non-convex) model, which is computation-
ally challenging to be solved. This challenge, as well as the
motivation for real-time control of power systems, has recently
led to research efforts to sidestep the non-convex constraints
and propose integer-free battery operation models [146].

FE. Power Electronics

Regardless of their applications and auxiliary functions,
grid-connected power converters (GCPCs) need to have a
few basic functions, including grid synchronization (AC volt-
age, frequency, and phase angle control), DC voltage control,
and grid current control. The secondary level of capabilities
comprises the application-oriented functions such as maxi-
mum power point tracking in PV systems, the anti-islanding,
switching between grid-forming and grid-feeding modes, the
fault ride through (FRT) function (the capability of staying
connected during a grid disturbance event), and the grid sup-
port functions (e.g., power quality control) [147]-[151]. When
it comes to BESSs, the GCPC has to be capable of some
additional functions such as bidirectional power flow con-
trol, charging/discharging in voltage or current control mode,
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Fig. 5. A typical BESS with power electronic converters.

dynamic reactive power control, virtual generator control,
frequency regulation, integrating renewable energy sources,
smoothing intermittency, ramping and load following, time
shifting, and blackstart function. Fault-tolerant operation of
battery storage systems is also of great importance. In a
fault-tolerant GCPC, a faulty module can be bypassed [147].

A conventional GCPC for BESS applications may just
consist of a simple two-level (2L) converter with a line
frequency transformer, as shown in Fig. 5. Topologies to sub-
stitute the 2L converter are the three-level (3L) neutral-point
clamped (NPC) converter [149]-[150], the active NPC con-
verter, and the 3L flying capacitor converter. A few four- and
five-level converters have also been suggested [151]-[152].
Although the control design and modulation techniques for
4L and 5L converters are more sophisticated than for the
conventional 2L converter, they provide an extra degree of
freedom to increase the converter’s output voltage magnitude
and reduce harmonic distortion. There is a compromise for
different types of multi-level monolithic converters between
the increased power rating, mechanical complexity, and har-
monic performance. The line-frequency transformer used in
the above-mentioned multi-level converters is bulky, dissipa-
tive, and expensive. Thus, directly tied GCPCs have been
proposed to avoid using a line-frequency transformer. They are
divided into: 1) series-connected semiconductors and 2) series-
connected sub-modules (SMs). The SMs gain from cascaded
modular converters made of a basic power converter block
(known as a bridge). The series-connected SMs are subcatego-
rized into Cascaded H-Bridge Converter (CHB) and Modular
Multilevel Converter (MMC). The overall control block dia-
gram of a typical grid-connected BESS is shown in Fig. 6. The
dual loop control is done in the dg-frame via the abc/dg and
its inverse transformation. The battery information data such
as SOC and SOH and the grid service signals are used to gen-
erate the reference real and reactive powers (P and Qper),
which can be positive (discharging) or negative (charging), to
control the battery pack via the interface inverter.

In conventional power converter configurations, the con-
verter’s dc-link voltage is the voltage of the battery string
whose magnitude varies depending on the SOC. Thereby, the
converter is subjected to voltage variations. Thus, the design,
from the perspective of semiconductor selection, may not be
best optimized because the voltage rating of semiconduc-
tor elements would have to be chosen a bit over-designed.
Therefore, a dc-dc converter between the battery string and
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Fig. 6. Control of a grid-connected BESS via an inverter.

TABLE V
POWER ELECTRONIC CONVERTERS IN BESS APPLICATIONS

2-level converters
3-level converters:
Neutral-point clamped (NPC)
converters
Active NPC (ANPC) converters
Flying capacitor converters
4-level and higher level converters
4L-NPC
4L-Nested neutral point clamped
(4L-NNPC) converter
4L- hybrid neutral point clamped
(4L-HNPC)
Modular Multilevel Converter (MMC)
Cascaded H-Bridge Converter (CHB)
Hierarchical cascaded multilevel
converter (HCMC)
Boost converter
Dual-active bridge (DAB )
Interleaved dc-dc converters

Transformer
connected
Bi-directional dc/ac
converters

Transformerless

Bi-directional dc/dc Controllable
converters dc-link

the dc-link of the grid-connected converter can be added to
build a controllable dc-link [13].

Typical converters used for BESSs are given in Table V.
DC-DC converters are also listed in the table when a control-
lable dc-link is needed. It should be noted that, for the sake
of brevity, only representative power electronic converters for
BESSs are reviewed. More details and comprehensive reviews
on power converters can be found in [13] and [153].

IV. PARTICIPATION OF BESSS IN ELECTRICITY MARKETS

BESSs need to actively participate in electricity markets to
not only realize various functions and services such as capacity
reserve and frequency/voltage regulation that they can pro-
vide but also to compensate for their relatively high initial
investment costs.

A. Incorporation of BESS for Electricity Market Services

For primary frequency regulation, the system frequency
signal is necessary. In 2009, PIM developed RegD signal asso-
ciated with the frequency deviation component of area control
error (ACE) specifically for energy storage systems [154].
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With this signal, a BESS can respond to the signal and pro-
vide frequency support. If an entity has multiple BESSs,
coordination is necessary. This usually involves solving an
optimization problem to maximize the benefit while consid-
ering the BESS constraints, including SOC limit and aging
as previously discussed. For example, optimization strategies
have been proposed [128], [155] to find battery dispatch over
multiple horizons (each horizon is an hour) while consider-
ing the temporal constraints of battery’s energy capacity. The
BESS participant submits a regulation offer to the system oper-
ator. The system operator settles the market, and the participant
receives the instruction to change battery dispatch. The BESS
then changes the dispatch command, to which the inverter
control will respond. This interaction is shown in Fig. 7.
The frequency response to a supply-demand imbalance in
a system with incorporated BESSs is governed as defined

by (18) [95].
APy
R

dr Hprss + ZZH,,

where, Pg is the generated power, P; is the load power
demand, AP, is the change in power demand, )  H, is the
total system inertia from all rotating machines, Hpgss is the
battery system inertia constant [95], and fys is the nominal
frequency.

The most common frequency and voltage control schemes
have been based on the droop principle in which generation
active and reactive power outputs are adjusted proportionally
to the local frequency and voltage deviations [156]. Unlike
conventional reserve, a BESS is energy constrained, and
may fail to provide regulation service if its SOC thresh-
old is reached. Thus, BESSs must restore their SOCs to
a desired level during idle time (e.g., when the system
frequency is within the dead band) to be prepared for the next
upcoming event [157]. There have been attempts to devise
SOC-feedback and SOC-adaptive droop control strategies
for BESSs [95], [158]-[159]. For distributed energy storage
systems at the distribution level or in microgrids, decentral-
ized control methods have been proposed for frequency and
voltage regulation [160]-[161].

At the inverter level for fast control, BESS usually adopts
grid forming control. Most recently, pilot projects of large size
BESS relying on grid-forming control have been conducted
by GE (30 MW/22 MWh BESS for blackstart, 2017), Hitachi
ABB (Dalrymple BESS in South Australia, 30 MW/8 MWh,
2018), and Tesla (Hornsdale BESS in South Australia, two

(18)
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BESS: 100 MW/129 MWh and 150MW/195 MWh) [162].
In those projects, a BESS is able to generate its own volt-
age and frequency references. It can operate in a microgrid
serving as the sole energy source. For example, GE’s 30 MW
BESS used for black starting large gas turbines has the capa-
bilities of direct start of large asynchronous machines, large
transformer energizing [163]. In both cases, large current and
reactive power are needed. BESS’s voltage can be controlled to
gradually increase to achieve soft energizing and reduce inrush
current. Similarly, Hitachi ABB’s 30 MW BESS, with the
capability to black start a local 33 kV distribution network with
8 MW demand, also adopts a soft energizing method [164].

B. Electricity Market Regulations on Energy Storage

Wholesale market rules were established around legacy
assets. These rules restrict the full potential of modern storage
sources. Thus, different countries have started to revise and
upgrade their market regulations to facilitate the participation
of ESSs in energy and ancillary markets.

In the U.S., as an example, the FERC Order 755 lays
out the regulation requirements of new pay-for-performance
markets for frequency regulation services. The regulation
intends to reward the fast and accurate performance of energy
storage [165]. In the past, there have been pumped-hydro ESSs
providing energy and ancillary services in some RTO/ISO
markets. However, these ESSs had to use whatever participa-
tion model existed then. Such a model was initially designed
to accommodate traditional generation/demand resources and
would not treat electric storage resources as they are. Thus,
the capabilities of ESSs in providing capacity, energy, and
ancillary services to the RTO/ISO markets would be left
unrecognized. Later, it was also noted that the RTO/ISO
tariffs, which existed then, would limit smaller electric stor-
age resources in participating in the RTO/ISO markets as
demand response resources, which would restrict the elec-
tric storage resources’ ability to employ their full operational
range, prohibit them from injecting power into the grid,
and would preclude them from providing certain services
that they were technically capable of (such as operating
reserves) [166].

The aforementioned shortcomings caused the need for
a proper regulatory design as a key factor in allowing
for the efficient deployment of storage technology to be
recognized [167]. The order [166] requires that the partic-
ipation model must: 1) ensure that a resource using the
participation model is eligible to provide all capacity, energy,
and ancillary services that the resource is technically capa-
ble of providing in the RTO/ISO markets as participating
in multiple market opportunities will improve the economic
feasibility of storage projects; 2) ensure that a participating
storage resource is dispatchable and can set the wholesale
market clearing price as both a wholesale seller and wholesale
buyer consistent with existing market rules that govern when a
resource can set the wholesale price; 3) account for the physi-
cal and operational characteristics of electric storage resources
through bidding parameters or other means; and 4) establish
a minimum size requirement for participation in the RTO/ISO
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markets that does not exceed 100 kW [165], [168]. Also, each
RTO/ISO must specify that the sale of electric energy from
the RTO/ISO markets to an ESS that the ESS then resells
back to those markets must be at the wholesale locational
marginal price.

The order also redefined an ESS as “a resource capable of
receiving electric energy from the grid and storing it for later
injection of electricity back to the grid regardless of where
the resource is located on the electrical system” to broaden its
application [166]. Also, it would not be important whether the
resource is located on the bulk grid or on a distribution system.
Additionally, it was clarified that even behind-the-meter stor-
age resources fall under this definition [166].

The order also suggested that electric storage resources
should be eligible, as a part of the participation model, to
provide services that are not procured by the RTOs/ISOs
through a market mechanism, such as black-start service, pri-
mary frequency regulation reserve, and reactive power service
provided they possess the required technical capability to pro-
vide the aforesaid services. Furthermore, the order clearly says
that separate participation models are not necessary for differ-
ent kinds of ESSs (e.g., slower, faster, or aggregated) because
the technical differences between ESSs may be represented
by complying with the requirements for bidding parameters,
meaning a single participation model can be designed to be
flexible enough to accommodate any type of ESS.

C. Applications in Different Markets

In PJM, batteries used to participate in the regulation market
by submitting two-part offers (capability and performance);
while in the energy market they could only submit posi-
tive MW offers (discharging offers) with a $0 offer price
[169]-[171]. However, the PJM market is now redesigned to
comply with the FERC Order 841. Batteries are now allowed
to submit charging, discharging, and continuous mode opera-
tion bids/offers based on their cost curves to participate in the
energy market [10]. In New England ISO, under the ongo-
ing market design changes, a battery system sized 5 MW or
larger would be able to participate in the regulation market as
of December 2019 [10].

The California Independent System Operator (CAISO) has
already designed a market model that supports the partici-
pation of energy-limited ESSs and considers constraints on
their SOC as well as on their maximum charge and discharge
capacity [127]. Thereby, in CAISO, batteries can participate in
the day-ahead and real-time regulation markets by submitting
simple price-quantity based bids/offers. New York Independent
System Operator (NYISO) might be the first grid operator to
allow BESSs to generate revenue as both wholesale and retail
energy resources. It might be the first to make possible the dual
participation of batteries, as required by Order 841 [172].

The Federal Network Agency of Germany updated its bid-
ding times and minimum bid size for secondary and tertiary
frequency control. In July 2018, Germany adjusted the sec-
ondary and tertiary frequency control bidding times from
weekly to daily basis. The regulatory adjustments have made
possible the participation of BESSs in the ancillary services
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market. Such a daily bidding also allows the storage capac-
ity to participate in more target markets [173]. However, there
still exist a number of technical requirements for a unit partic-
ipating in the German secondary regulation market that may
limit BESSs. From a battery storage perspective, two of these
requirements include the capability to reach the offered power
within 5 minutes and to continue providing that power for
4 hours [174]. Although the former is not an issue for BESSs,
the latter may be limiting.

In July 2017, the United Kingdom’s Office of Gas and
Electricity Markets and the Department for Business, Energy
& Industrial Strategy revealed the “Smart Systems and
Flexibility Plan”, the UK’s most important document for
promoting energy storage in the energy market. In compli-
ance with this market change, in May 2018, U.K. transmis-
sion operator National Grid released a report, announcing
the creation of “Virtual Lead Party”, a new category of
market participant, as well as “secondary balancing mech-
anism units (SBMU)”, a new balancing market service
provider [173].

In Chile, following the presidential order on a long-
term national energy strategy that targets generating at least
70% of the electricity from renewable sources by 2050, the
national energy commission issued new ancillary services
regulations that would pave the way for BESSs to offer
rapid frequency response services [175]. In August 2017,
the Australian Energy Market Commission (AEMC) released
its “National Electricity Amendment Rule 2017” to open
up its ancillary services market to new participants other
than large power generation companies. The rule has greatly
increased the opportunities for ESSs to participate in the
ancillary services market. The rule aims to make the competi-
tion fair for behind-the-meter resources when participating in
the electricity market by clarifying the various services that
behind-the-meter resources can offer [173].

Finally, it can be said that research topics such as storage
ownership and operation, the necessity to upgrade regula-
tory mechanisms, degradation cost model of ESSs [10], and
bidding strategies [127] are still among the ongoing debates
surrounding the participation of ESSs in electricity markets.
For further details on applications, market participations, and
integration of grid-connected batteries, readers are referred
to [14].

V. GLOBAL BATTERY ENERGY STORAGE PROJECTS

In this section, a review of global stationary battery
energy storage projects is presented. The given statistics are
slightly underestimated as decentralized battery storage is
not included. The data is obtained from International Energy
Agency (IEA) [176] and the U.S. DOE global energy stor-
age database [177]. Fig. 8 shows the geographic distribution
of the global battery storage projects and provides a tangi-
ble representation of what the status quo is. The data includes
announced, contracted, and constructed projects. It can be seen
that most of the projects are in the United States, Europe (par-
ticularly Germany), Japan, China, South Korea, and Australia.
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Fig. 8. The geographic distribution of battery energy storage projects [177].

As Fig. 8 shows, the number of projects in the United States
and Germany is quite significant.

Despite the many challenges associated with the supply
chain and shipping constraints due to COVID-19, in early
2021, the world’s largest BESS (400 MW/1600 MWh) became
operational in Monterey County, California and out-scaled the
250 MW/250 MWh Gateway energy storage facility already
installed in San Diego. The Monterey BESS is extendable up
to 1500 MW/6000 MWh according to Vistra, the company
who deployed it. The project is housed inside a gas power plant
and comprises more than 4500 stacked battery racks, each of
which consists of 22 individual battery modules [178]. The
BESS absorbs surplus energy from the grid during daylight
hours, which helps slightly mitigate the Duck curve issue in
California where electricity generation by PV power plants is
abundant. The stored energy is then used to help the network
meet its peak demand. Both the Monterey and Gateway storage
facilities use Li-ion batteries.

A few BESS-aided Automatic Generation Control (AGC)
projects have been practically employed in China. These
BESSs are installed within coal-fired power plants in
regions with significant renewables. For instance, there is a
2 MW/0.5 MWh BESS deployed at Shijingshan, a major
frequency regulation thermal power plant in Beijing City. The
BESS works coordinately with the generating unit to improve
AGC performance [179].

Tohoku Power Electric, a Japanese power utility, installed
40 MW/20 MWh BESS at Sendai-Nishi substation in 2015 as
a part of a demonstration project funded by the Ministry of
Economy, Trade, and Industry [180]. The project aims to be an
actual demonstration of a frequency regulation control [181]
where the BESS compensates short-term fluctuations, and
thermal power plants compensate for mid-term and long-
term fluctuations. In Oki Islands in Japan, where electricity
is mainly produced by renewables and hydropower plants,
supply/demand flexibility has been improved using a BESS
consisting of Li-ion (2 MW/ 0.7 MWh) and sodium-sulfur
batteries (4.2 MW/ 25.2 MWh) [182].

Just two years after a devastating blackout hit the United
Kingdom, Europe’s largest battery energy storage project
(100 MW/100 MWh) at Minety plant in Wiltshire, U.K.
is now successfully grid-connected. The system will store
the surplus electricity from the UK’s national grid when
demand is low and renewables are high and then evacuate
it back into the grid as demand peaks. The Minety project,
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which uses LiFePO,4 batteries, now outsizes the once-the-
largest 48 MW European storage facility which was developed
in Jardelund, Germany for primary frequency reserve
purposes [183].

The Dalian project in China, which is going to be fully
operational soon, is the largest (200 MW/800 MWh) Vanadium
Redox Flow (VRF) battery storage system ever intended [184].
It is grid-tied, delivering power to the grid during the peak
hours and charging up from the grid during light-load hours.
Smaller capacity VRF battery projects are also in operation
in other countries, including the 15 MW/60 MWh Minami
Hayakita Substation in Japan [185].

Fig. 9 shows the development of battery storage systems
in terms of cumulative rated power since 2014. As the fig-
ure shows, the total installed battery storage capacity reached
nearly 17 GW as of the end of 2020. As seen, the United
States and China together led around 3 GW out of the total
5 GW storage capacity added in 2020.

The statistics recently revealed by Wood Mackenzie Power
& Renewables [186] predict that the annual U.S. energy stor-
age deployments will reach nearly 7 GW in 2025. The report
says that even taking into account the impacts of COVID-
19, the U.S. energy storage market will cross the threshold of
$6.9 billion by 2025.

In addition to the aforesaid stationary storage projects,
there also are a few Transportable Energy Storage
Systems (TESSs) recently deployed throughout the world.
For example, in the U.S., electric utility company Premium
Power’s 0.5 MW/2.8 MWh transportable Zinc-Bromine
energy storage system was set up by the Electric Power
Research Institute (EPRI) [187]. Li-ion manufacturer Altair
Nanotechnologies now has 1 MW/250 kWh trailer-mounted
Li-ion battery systems in service with both AES Corporation
and PJM interconnection [187]. Having added 30 new
338 kWh mobile battery energy storage systems from Alfen,
Greener project in Europe is now scaled up to 15 MWh, the
world’s largest emission-free mobile power provider [135]. In
2018, SPECO unveiled a new vehicular energy storage system
in China [136]. The system is capable of providing services
such as load shifting, emergency power supply, backup power,
smart charging, and mobile rescue services.
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VI. CHALLENGES IN IMPLEMENTING AND MANAGING
GRID-CONNECTED BESSS

Although there has been phenomenal growth of BESS
worldwide, a wide range of challenges still need to be
addressed to achieve sustainable development and wide
deployment of BESSs in power systems. Holistic and updated
analysis of the relationship between the characterization,
modeling, management, and applications of grid-tied BESSs
will remain to be a grand challenge as battery storage is a
dynamic research area. Nevertheless, in this section, the focus
is given to the challenges in battery management, reliability
analysis, and energy management of grid-connected BESSs,
shown in Fig. 10. The research challenges related to battery
safety, battery material recycling, and second-life applications
of used batteries are briefly discussed as well.

A. Smart BMS

An effective BMS is essential to any battery systems, partic-
ularly grid-connected BESSs. Accurate SOC and SOH estima-
tion remains one of the fundamental challenges for a BMS. As
more real operating data of different battery systems under
different operating conditions have been collected, data driven
and machine learning approaches will become a main trend
for SOC and SOH estimation [102], [135]. Another develop-
ment trend is to develop new sensors that can be embedded
inside battery cells for SOC (and/or SOH) estimation from the
perspective of hardware advancement [20].

In addition to the improvements and breakthroughs needed
from material science on batteries, it is equally important to
develop advanced BMS for reliability enhancement via new
power electronic converters. Most current battery systems are
interconnected in a fixed manner, and a single failure of a
battery can result in severe damage and the failure of the
whole system. As such, reconfigurable battery systems have
been previously proposed to handle battery failures [133].
However, in the existing approaches, another layer of circuit
has been added to achieve the function of reconfiguration,
which increases the cost and reduces the efficiency. It is thus
necessary to develop a smart power electronic converter to
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achieve individualized management for reliability and dura-
bility enhancement of large-scale BESSs. The recent advance-
ment in wide bandgap (WBG) devices such as SiC and GaN
brings new opportunities for the development of multi-level
power converters for transformerless grid connected BESSs.

B. Reliability Analysis of Grid-Connected BESS

Reliability has been a great concern for battery systems
as there have been several high-profile battery failure events,
from small smartphone batteries to medium-size battery packs
used in airplanes and EVs. The issue will become much
more challenging, and the results could be much worse and
catastrophic when we are dealing with large-scale battery
systems consisting of hundreds and thousands of battery
cells/modules [188]—-[189]. Well-established reliability models
and analysis methods have been proposed for conventional
power system components such as generators, transmission
lines, transformers, etc. [190]. It is necessary to also have
reliability models of large-scale BESSs and analysis tools
for planning and operating of power systems with grid-
connected BESSs. Although the traditional reliability assess-
ment method is simple, when it comes to a battery module
with thousands of battery cells, the result obtained can be
very conservative [131]. The connection of reliability indi-
cators with battery degradation model is yet to be cleared
out. Thus, a new health-condition-based reliability evaluation
method that can handle variations in battery cells/modules and
even heterogeneous batteries as well as partial operating states
is of great importance and a great need for large-scale battery
systems.

C. Energy Management Tools for Power Systems With
Grid-Connected BESSs

As previously discussed, the cost function of a BESS is
not as readily available as the generation cost curve of con-
ventional generators. A comprehensive battery cost model is
needed to capture various factors including the investment
cost, operation and maintenance cost, and degradation cost that
depend on how the BESS is being operated. BESSs are capa-
ble of following both Regulation A (RegA) and Regulation
D (RegD) signals and providing stacked services, i.e., multiple
simultaneous grid services, such as voltage support and spin-
ning reserve. Algorithms are needed to seamlessly integrate
BESS dispatch models with the existing energy management
systems for long-term planning and real-time operation. Tools
and algorithms are also needed to dynamically allocate the
capacity of a BESS to achieve simultaneous stacked services.

D. Battery Safety

The issue of safety will continue to be an essential fac-
tor that significantly affects the growth of the Li-ion battery
industry, as reflected in recent research attempts on battery
fire causes [191], suppression medium [192], and protection
technologies [193]. However, less attention has been given to
battery fire detection instrumentation. Thus, on one hand, it
is imperative to perform research to enhance grid resilience
by promoting a safer design of battery storage facilities; on
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the other hand, it is critical to devise innovative instruments
for battery fire mitigation. Therefore, enhanced fire suppres-
sion technologies and fire diagnostic simulators/instruments
for Li-ion batteries will be among future research directions.
Such instruments need to encompass an acquisition unit with
embedded sensors for the real-time collection of battery fire
data (e.g., thermal conditions, current flow, impedance, and gas
emissions). The data could then be processed using machine
learning techniques to identify the features that elucidate the
characteristics that help proactively diagnose a battery fire. As
of now, there is no way of predicting a battery pack fire at
the onset. This is mostly because our knowledge of thermal
runaway pertains to the cell level, which is hard to extend to
fires in a large battery pack.

E. Battery Recycling and Repurposing of Used Batteries

Mountains of accumulated waste would be the legacy of
Li-ion batteries if not produced and used on a well-regulated
and sustainable basis, as evidenced by ongoing research
efforts [194] as well as the DOE’s current call [195] for
research proposal on the matter. Improper production and dis-
posal of batteries will remain to be an ever-growing challenge
to our environment and health unless the remedial measures
are taken now. Current battery recycling facilities are limited
and the new materials being used in emerging battery tech-
nologies not only complicates the recovery but also restricts
the applicability of the recycled materials in other fields.
Thus, three of the research directions that could be pursued
to mitigate the battery waste issue are: 1) Revisiting battery
manufacturing, configuration, and assembly in a way that eases
later battery recycling and reuse, 2) Creating advanced facil-
ities for end-of-life battery collection and recycling (e.g., the
mining and extraction of lithium, cobalt, nickel, and other
scarce metals used in batteries), and 3) Second-life applica-
tions for batteries that have been already used to power up
EVs [196], such as in stationary [197] or transportable [187]
storage units for providing grid services.

VII. CONCLUSION

Battery energy storage is becoming an important asset
to the power grid by providing a wide range of grid sup-
ports and services such as supply-demand balancing, fast
responsive frequency regulation, power quality, peak shav-
ing and load shifting, reliability enhancement, and system
restoration. However, these benefits are contingent upon the
battery’s efficient operation achieved through proper circuits
and algorithms all integrated into a battery management
system. In this paper, with a focus on Li-ion batteries, the
current state of battery modeling, management, and appli-
cations have been extensively reviewed and discussed. As
this literature survey shows, further research on battery stor-
age is still required towards “smart batteries for smart power
grids”. These research interests include, but not limited to,
smart battery management with data-driven SOC/SOH estima-
tion, reliability analysis of large scale battery storage systems,
and models, algorithms, and tools for energy management of
grid-connected battery storage systems.
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