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UGRoadUpd: An Unchanged-Guided Historical
Road Database Updating Framework Based on

Bi-Temporal Remote Sensing Images
Mingting Zhou , Haigang Sui, Shanxiong Chen , Xu Chen , Wenqing Wang, Jianxun Wang, and Junyi Liu

Abstract— Timely updated road networks are the basis for
many real-world applications such as intelligent navigation and
traffic management. Existing road updating methods based on
remote sensing images learn from historical road databases to
update roads. Road extraction models learned from historical
images however, are not easily applied to a current image due
to spectral differences; and only changed roads need updating.
In this paper, an Unchanged-Guided Road Updating (UGRoad-
Upd) framework is proposed to improve the quality of updated
road networks by limiting the road updating range and learning
from historical unchanged roads. The UGRoadUpd framework
identifies road changes using a novel dual-task dominant-
transformer-based neural network for road change detection
(DT-RoadCDNet). DT-RoadCDNet executes road segmentation
and change detection simultaneously, from bi-temporal remote
sensing images. The Dominant-Transformer based Global Con-
text Modeling module in DT-RoadCDNet globally models the con-
textual spatial structure for improved integrity in roads and road
changes. Based on the discovery of road changes, an unchanged-
guided road update strategy updates the roads in changed areas
by learning from the prior information provided by unchanged
roads in a historical road database. Experiments on two newly
annotated road change detection and update datasets confirms
the effectiveness of our UGRoadUpd framework.

Index Terms— Road network change detection, road network
update, dominant-transformer, road change detection datasets.

I. INTRODUCTION

AN UPDATED high-precision road network has applica-
tions in intelligent navigation, traffic management, urban
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planning, and emergency response management. However,
extracting a current and accurate road network from remotely
sensed data is a challenging task. Updating roads involves the
verification of roads in an old database and the extraction of
new roads that must be integrated into a geographic informa-
tion system [1]. Basic geospatial databases have undergone
continuous development; thus, the focus of road network
construction has gradually transitioned from the interpretation
of the entire road network to the discovery of road changes
and the updating of roads in changed areas. However, even
with the historical geographic databases as the foundation,
road network updating is still time-consuming, laborious, and
inefficient. Hence, the development of automatic road network
updating methods from remote sensing images is an urgent
need.

Road extraction methods from remote sensing images
collected at a current time are used to update road net-
works. Many different road extraction methods have been
proposed in the past decades. These methods can be divided
into traditional methods and deep learning-based methods.
Traditional methods [2]–[4] use manually-designed features
with expert knowledge to distinguish road pixels from the
backgrounds. However, the manually-designed low-level and
middle-level features used in these traditional methods are
often overfit to a small region, and lack robustness when
roads appear under different complex scenes [5]. Unlike tradi-
tional methods, deep learning-based road extraction methods
[6]–[8] automatically learns hierarchical feature expression
from a benchmark road dataset. The development of deep
learning-based methods has greatly improved the accuracy
of large-scale road network extraction. However, factors such
as material changes, spectral confusions, and occlusions will
reduce the completeness and correctness of the road seman-
tic segmentation results. Complex post-processing procedures
should be conducted on the whole image to smooth bristly
road boundaries, link fragmented roads, and remove false
roads before these road segmentation results are applied to
real-world road network updates. Therefore, although road
semantic segmentation methods based on deep learning can
automatically extract roads, there are restrictions in directly
using the road segmentation results for road updating. Road
change detection between images collected at a historical time
and a current time can limit the scope of road network update
and thus improving the efficiency.

Road change detection can be used to determine the regions
where roads should be updated, thereby reducing the workload
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of road network update. Due to the lack of benchmark road
change detection datasets, the existing deep learning-based
road change detection methods are mainly based on general
change detection neural networks [9], [10]. General change
detection networks can effectively detect changes in land
cover; however, complex post-processing steps are required to
find road-related changes. Moreover, general change detection
networks focus on spectral changes and lack geometric con-
straints on boundaries; thus, these networks are not sensitive to
changes between objects such as buildings, roads, and paved
spaces since they are constructed with similar materials and
are spectral-alike. Hence, a specialized road change detection
method is needed to improve the completeness of road change
detection and restrict the regions of road network update;
since the inherent features of roads can provide clues for
road change detection from images collected at different
times.

To address these problems, an Unchanged-Guided Road
Updating (UGRoadUpd) framework is proposed to update
a historical road database from bi-temporal remote sensing
images. A dual task dominant-transformer CNN for road
change detection (DT-RoadCDNet) was designed for the first
stage of the proposed UGRoadUpd framework that discov-
ers road changes from bi-temporal remote sensing images
of the same area. DT-RoadCDNet executes road semantic
segmentation and road change detection at the same time.
This dual-task collaborative learning strategy improves road
change detection accuracy by learning road structures from
bi-temporal images. A Dominant-Transformer CNN was intro-
duced into DT-RoadCDNet to model the spatial contextual
structure globally thus alleviating the problem of discontinuity
in road detection results. Based on the road change detection
results, an unchanged-guided road update strategy updates
roads in changed areas with the prior information provided by
the unchanged roads in a historical road database. In addition
to the proposed UGRoadUpd framework, another contribution
of this paper is two new road change detection datasets,
designed for testing and validating road extraction and change
detection algorithms. These two datasets will be available for
download at our website.

The remainder of this paper is organized as follows.
Section II introduces the related road extraction and road
change detection methods. Section III introduces an overview
of the proposed road change detection and update framework.
Section IV presents the experimental results and analysis.
Section V demonstrates the ablation analyses. Conclusions are
presented in Section VI.

II. RELATED WORK

Road extraction and road change detection from
high-resolution remote sensing images are the two main
ways to update a historical road database. Deep learning has
robust feature learning abilities for high quality road extraction
and road change detection. In this section, we briefly present
a review of the literature relevant to road extraction and
road change detection algorithms based on deep learning
techniques.

A. Road Extraction

Deep learning-based road extraction methods automatically
detect roads in a current image to update a historical road
database. Research on road extraction using deep learning
methods began with Mnih and Hinton’s work on neural
networks trained with expert-labelled data to detect roads [11].
Since then, numerous road extraction neural networks have
been proposed [12]–[19]. Fully convolutional networks are
the most commonly used road extraction backbones. Feature
pyramid networks [8], [20], [21] and multi-scale feature fusion
strategies [22]–[24] were integrated into fully convolutional
networks to improve the accuracy of multi-width road extrac-
tion. However, the plain convolutional operations used in these
networks do not capture long-range contextual features and
thus cannot extract a complete road network when the roads
in an image are occluded. Attention mechanisms can improve
the incomplete road extraction results.

Attention-based road extraction methods identify relation-
ships between pixels separated by shadows, trees, or buildings
in an image and link fragmented road segments. For exam-
ple, Mei [25] proposed a connectivity attention module and
designed CoANet to explore the relationships between neigh-
boring pixels to deal with occlusions. Tao et al. [26] designed
a spatial information inference structure (SIIS-Net), enabling
multidirectional message passing across the rows and columns
of feature maps to guess occluded roads. Transformer-based
methods [27]–[30] calculate the relationships between all
pixels on a feature map using a self-attention module. In a
self-attention module, each pixel has a global receptive field,
thus supporting a stronger global-contextual structure reason-
ing ability than the conventional spatial attention modules
found in CoANet and SIIS-Net, greatly improving the cor-
rectness and the topological completeness in road extraction
results. However, they are computationally heavy and slow
when processing large-scale remote sensing images. Moreover,
updating a historical road database based on road extraction
methods is constrained by the extensive updating range since
only the changed roads need to be updated. In this paper, a new
unchanged-guided road update (UGRoadUpd) framework is
presented to update historical road databases. Road change
detection and road extraction are integrated in the proposed
UGRoadUpd framework, in which the road change detection
procedure limits the range of roads in need of updating
for higher road update efficiency, while the road extraction
step updates roads in changed areas with the guidance of
unchanged historical roads for higher road update accuracy.

B. Road Change Detection

Road change detection from bi-temporal remote sensing
images [31]–[33] identifies roads that are newly-built, dis-
appeared, damaged, or reconstructed based on images col-
lected at different times. Deep learning-based road change
detection methods are usually based on general detection
systems since there are few publicly available benchmark
road change detection datasets. Attention mechanisms that
focus on regions of interest while ignoring irrelevant areas
are the most commonly deployed module in general change
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Fig. 1. Workflow of the proposed unchanged-guided road updating (UGRoadUpd) framework.

detection neural networks that model land cover changes from
bi-temporal images. The spatial attention module and the
channel attention module are integrated in DASNet [34] and
DTCDSCN [35] to learn changes. DSAMNet [36] combines a
convolutional block attention module with metric learning to
learn more discriminative change features. BIT-CD [37] adopts
a transformer-based encoder and decoder to relate long-range
relationships between pixels in space-time. In addition to
attention mechanisms, recurrent neural networks are also
exploited to build temporal-spatial relationships between bi-
temporal images to extract land cover changes. For example,
EGRCNN [38] incorporates edge information with a recurrent
convolutional neural network to improve the boundary accu-
racy of change detection results. UnetLSTM [39] combines
U-net with long short-term memory for temporal modeling.
These methods detect changes in land cover by capturing spec-
tral differences between bi-temporal remote sensing images.

Based on the land cover change areas detected by these
general change detection systems, expert knowledge is used
to distinguish road changes from general land cover changes.
Song et al. [9] proposed a spatially-adaptive denormalization
based U-Net to detect general land cover changes; and
object-oriented analysis was used to distinguish change types
of different features including buildings, roads, farmlands, tiny
houses, forests, and waterside areas. Han et al. [10] devel-
oped a convolutional Siamese network-based change detection
method to identify the changed road region using time-series
Unmanned Aerial Vehicle images. This approach provides a
reference road map that can help engineers manage progress in
the construction of physical roads. The post-processing steps
used to separate road changes from general land cover changes
are complex and lack robustness, thus leading to difficulties
when updating a historical road database. A road change
detection method based on the inherent features of roads is
needed to improve the accuracy of road change detection and
thus support automatic road updating.

III. METHODOLOGY

A two-stage Unchanged-Guided Road Updating (UGRoad-
Upd) approach is proposed to update roads in basic geographic

database. The premise for the proposed UGRoadUpd frame-
work is that the area of changed roads is far smaller than
that of the unchanged roads; and thus, we can update roads
in the changed area from prior knowledge provided by the
unchanged roads labeled in historical databases. The workflow
of the UGRoadUpd framework is shown in Fig. 1.

It can be seen from Fig. 1 that the proposed UGRoadUpd
framework takes two images collected at different times and
a historical reference road map as the input, and outputs an
updated roads result. There are two steps in the proposed
UGRoadUpd framework: a Dual-Task Road Change Detec-
tion and segmentation Network (DT-RoadCDNet) discovers
regions where roads changed; and the road update strategy
updates the road database in changed areas. In the second
stage of the UGRoadUpd framework, our road update strategy
only updates the roads in changed areas. Since a well-trained
DT-RoadCDNet learns not only road changes but also roads,
we used the road segmentation branch of DT-RoadCDNet
to update changed roads from the current image in the
second stage of our UGRoadUpd framework. However, there
are spectral differences between the benchmark dataset used
for training DT-RoadCDNet and the current image. Hence,
to adapt the initial weights of the road segmentation network in
DT-RoadCDNet to fit the current image, the road annotations
covering the unchanged areas in the historical road database
are combined with the current image to refine the weights
of the road segmentation network. This optimization strategy
allows the road segmentation network to learn the roads in
the current image from the prior knowledge provided by the
roads in the unchanged area, thus supporting high quality road
extraction in the changed areas in a current image.

A. Dual-Task Learning for Road Change Detection and
Segmentation

DT-RoadCDNet takes the images at two times as the input,
and predicts both pixel-level road segmentation and change
detection results. There are three branches in DT-RoadCDNet,
including two road segmentation branches and one road
change detection branch. The weights are shared among
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Fig. 2. The architecture of the dual-task road change detection and
segmentation network (DT-RoadCDNet).

the three branches to reduce the number of parameters in
DT-RoadCDNet. The architecture of DT-RoadCDNet is shown
in Fig. 2, in which the two road segmentation branches are in
the two big orange boxes, while the road change detection
branch is in the gray box.

It can be seen from Fig. 2 that DT-RoadCDNet uses an
architecture similar to the U-Net [40] with ResNet-34 [41]
as the encoder. The difference between DT-RoadCDNet and
U-Net lies in the fact that DT-RoadCDNet is a Siamese
network with two encoders and three decoders, whereas U-Net
has only one encoder and one decoder. The two encoders in
DT-RoadCDNet allow users to feed bi-temporal images to
the network so it can learn multi-scale road features from
images of the same area collected at different times. The
multi-scale road features extracted from bi-temporal images
are sent to the road change detection branch to obtain the
difference feature maps. Unlike the conventional U-Net that
adopts a plain convolution operation to link its encoder and
decoder, the output feature map of the last encoder of our
DT-RoadCDNet is sent to a Dominant-Transformer based
Global Context Modeling (DTGCM) module to calculate the
spatial relationships between all road pixels in the whole
feature map. The DTGCM module improves the complete-
ness of road extraction and change detection results more
than the plain convolution blocks used in the conventional
U-Net. Details about the DTGCM module are described in
Section III-B.

The three decoders in DT-RoadCDNet share the same
structure and are symmetrical to the encoders, accomplishing
the tasks of road extraction from the input bi-temporal images
and road change detection. The segmentation of roads from
bi-temporal images provides contextual information to find
road changes, thus eliminating the influence of spectral vari-
ants for improved road change detection accuracy. There are
five stages in each decoder, containing three plain convolution
blocks in each stage. Eighteen side outputs are produced
from the five decoders and the bridge part to supervise the
training process of DT-RoadCDNet. A hybrid loss function
lhybrid designed in [5] is utilized for backward propagation to
supervise the training of each side output. Since each branch

Fig. 3. Illustration of the DTGCM module, full-attention, and dominant-
attention.

in the DT-RoadCDNet is supervised with six side outputs, the
loss function of each branch is a summation of the six side
outputs. To obtain road segmentation maps and road changes
at high quality, losses of these three branches are integrated
to train the network, and the overall loss is calculated as:

L = wseglseg1 + wseglseg2 + wchangelchange (1)

in which wseg is the weight of the outputs of the two road
segmentation branches, wchange is the weight of the output of
the change detection branch. The value of wseg and wchange

will be analyzed in Section V-A.

B. The Dominant-Transformer Based Global Context
Modeling (DTGCM) Module

Since plain convolution operations can only capture local
spatial context within the receptive field, a Dominant-
Transformer based Global Context Modeling (DTGCM) mod-
ule was designed as the bridge to connect the encoders and
decoders in DT-RoadCDNet and thus obtain the long-range
contextual relationships between all road pixels in entire
images for improved road segmentation and change detec-
tion integrity. The DTGCM module was developed based on
Vision Transformer (ViT) [42]. In the conventional ViT, a full
attention module extracts the global spatial context. However,
a full attention block is computationally heavy and slow when
processing large-scale remote sensing images. To speed up
road extraction and change detection processing, dominant-
attention is adopted as the kernel of the DTGCM module for
efficient global contextual structure modeling. The architecture
of the full-attention block, the dominant-attention block, and
the DTGCM module are illustrated in Fig. 3.

The design of the dominant-attention module was inspired
by the Informer method from natural language processing [43].
Informer was originally designed for long sequence time-
series forecasting. We explored its potential in remote sensing



ZHOU et al.: UGROADUPD: UNCHANGED-GUIDED HISTORICAL ROAD DATABASE UPDATING FRAMEWORK 21469

image processing to speed up road change detection and
road extraction. Extensive experiments in Informer reveal
that the dot-products of Q and K in the full-attention
block are in a long-trail distribution, but only a few of
them make a major contribution. Inspired by this observa-
tion, the dominant-attention module employs an approximate
Kullback-Leibler divergence to evaluate the importance of
each qi in Q. The larger the value of the Kullback-Leibler
divergence of qi , the more important is the qi . The domi-
nant self-attention module selects U queries with the largest
Kullback-Leibler divergence value to get Q�. The value of U
is determined according the length of Q using the equation:

U = scale ∗ ln(L Q) (2)

in which scale is a pre-set scale factor to adjust the number
of selected queries, which was set to five. The influence
of the value of scale on the speed and accuracy of road
change detection will be discussed in Section V-C. L Q is
the length of Q. The value of L Q equals 1024. Top U
queries with the largest Kullback-Leibler divergence values
are selected from Q and we get the dominant queries Q�.
Then the dominant-attention block calculates the dot-products
between the dominant query Q� with K . In this way, we can
not only use the Transformer’s ability to model the global
spatial context between long-range pixels to improve the
continuity of road extraction/change detection results, but also
reduce computational load by reducing the number of queries
involved in the dot-product computation, thereby speeding up
the road network change detection process.

C. Unchanged-Guided Changed Roads Update

Although DT-RoadCDNet outputs road extraction results
from a current remote sensing image, the accuracy of road
extraction is limited since DT-RoadCDNet is trained on a
benchmark dataset and there are differences between the
benchmark dataset and a current image in reality. To alle-
viate this problem, this article proposes an unchanged-guided
changed roads update strategy. This strategy considers that
only roads in the changed areas need to be updated; and
guiding the roads in changed area with the assistance of
unchanged roads in a historical road database is the simplest
way to update roads. Fig. 4 demonstrates the process of our
unchanged guided road update strategy.

It can be seen from Fig. 4 that the proposed
unchanged-guided changed road update strategy receives
a current image (Image T2), a historical road database
(Label T1), and a change mask produced from the
DT-RoadCDNet as the input, and outputs a road update
map. There are four steps in the unchanged-guided road
update strategy, including reorganizing road extraction dataset,
refining road segmentation network, inferencing roads in
changed areas, and maximum merging to output the final road
update result. As discussed in section III-A, a well-trained DT-
RoadCDNet learns roads and road changes simultaneously.
Hence, the segmentation branch of DT-RoadCDNet is used
to infer roads in changed areas. However, the initialized
segmentation branch of DT-RoadCDNet trained on a

benchmark road change detection dataset is not robust to the
current image, since there are spectral differences between the
benchmark dataset and the current image. Therefore, before
inferencing roads in changed areas using the segmentation
branch of DT-RoadCDNet, we refine the initial weights of
the road segmentation branch of DT-RoadCDNet by learning
from prior information provided by the unchanged roads in
the historical database for improved road extraction accuracy.

The reorganization road extraction dataset and the road
segmentation network refining procedures designed in our
unchanged-guided road update strategy supports stronger
adaptability of the road extraction network. The road extrac-
tion dataset reorganizing step automatically reproduces a
new training dataset from the unchanged roads in current
region to optimize the initialized road segmentation branch of
DT-RoadCDNet. Based on the pixel level road change detec-
tion results from DT-RoadCDNet described in Section III-A,
the proportion of changed pixels in each image patch is
counted. If the pixel-level road change rate exceeds 1%, then
road change has occurred in that image patch and this image
patch is recorded as a changed patch; otherwise recorded as
an unchanged patch. Subsequently, we use the historical road
networks covering the unchanged patches with the new remote
sensing images to reproduce the training dataset. In the road
segmentation network refining step, the weights of the road
segmentation branch of DT-RoadCDNet are refined using the
newly produced training dataset. The refining process not only
retains the feature distribution learned by the network on large
benchmark datasets, but also can migrate the model to fit
the current image. Based on the optimized road segmentation
branch of DT-RoadCDNet, we predict the roads in the current
images of the changed patches to update the road network in
the changed area. A maximum merge operation is conducted to
integrate the unchanged roads in the historical database and the
updated roads in changed areas thus a complete road network
on the current image can be obtained.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setups

1) Test Datasets and Training Details: We manually anno-
tated two road change detection datasets to evaluate the
performance of the proposed unchanged-guided road updat-
ing (UGRoadUpd) framework. The first dataset is located
in Christchurch, New Zealand, and named the Christchurch
Road Change Detection (CRCD) dataset. The bi-temporal
remote sensing images in the CRCD dataset were collected
in the year 2012 and 2016 and were downloaded from
here.1 The second dataset we manually annotated is located
in Jiangxia District, Wuhan, China, and named the Wuhan
Road Change Detection (WRCD) dataset. We downloaded
the remote sensing images of the WRCD dataset in the year
of 2012, 2014, and 2016 from Google Earth.2 We manually
annotated the roads and road changes in the CRCD dataset
and the WRCD dataset to train and test road change detec-
tion and road update algorithms. Both the CRCD and the

1http://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
2https://www.google.com/earth/
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Fig. 4. Process of the unchanged-guided road update strategy.

Fig. 5. Illustration of the CRCD and the WRCD datasets.

WRCD dataset will be publicly available for download at
http://www.lmars.whu.edu.cn/suihaigang/index. An illustration
of the WRCD and the CRCD datasets are shown in Fig. 5.

It can be seen from Fig. 5 that the CRCD dataset and
the WRCD dataset cover a total area of approximately
214 km2 with varied ground sampling distance (GSD) from
0.2 to 1.14 meters. All the images and the corresponding
ground truths were cropped into 512 × 512 tiles. There were
120 overlapping pixels between adjacent image blocks. The
first 41 columns of CRCD dataset were taken as the test dataset
with a total of 1599 samples; the other 1638 samples were used
for training. Unlike the CRCD dataset, we collected images
of Wuhan at three different times to verify the adaptability of
the model across years. The images of 2012 and 2014 were
taken as the training dataset in the WRCD dataset to train the
models, and images from 2014 and 2016 as the test dataset to
infer road changes and update roads. A total of 980 training
samples and 980 test samples were obtained.

All the experiments were conducted on a server with
one NVIDIA TITAN RTX GPU accelerator, with 24 GB
GPU memory. Limited by the size of the GPU memory, the
training batch size for training DT-RoadCDNet was set to
two. We trained the network until the loss of the validation

dataset converged within 60 training epochs. For the WRCD
dataset, the entire training process took about eleven hours.
For the CRCD dataset, it took about twenty-four hours to
converge. The prediction process took about 2.39 milliseconds
to generate a road change result and two segmentation results
for each sample pairs.

2) Evaluation Metrics: Precision, Recall, and Intersection
over Union (IoU) were applied to evaluate road change
detection and road update performance. Both road change
detection and update aim to distinguish between targets and
backgrounds. Precision measures the percentage of correctly
classified target pixels among all predicted target pixels, while
Recall measures the percentage of correctly classified target
pixels among all actual target pixels. IoU is a comprehensive
metric. It is the ratio of the overlapping area to the union
area of the ground truth and the predicted map. They are
defined as follows: Precision = T P/(T P + F P), Recall =
T P/(T P + F N), and IoU = T P/(T P + F P + F N), where
T P , F N and F P are true positive, false negative, and false
positive, respectively.

3) Algorithms for Comparative Evaluation: The proposed
UGRoadUpd framework was compared with other state-
of-the-art methods in two ways, a road change detection
comparison and a road update comparison. To evaluate the
effectiveness of our proposed DT-RoadCDNet on road change
detection, DT-RoadCDNet was compared with DASNet [34],
UnetLSTM [39], DTCDSCN [35], BIT-CD [37], DSAM-
Net [36], and EGRCNN [38] on the CRCD and WRCD
datasets. The road update results of our UGRoadUpd frame-
work were compared with the road segmentation results of the
current image produced by DTCDSCN [35] since DTCDSCN
is a dual-task collaborative networks that can extract roads
and road changes simultaneously. In addition to DTCDSCN,
two road semantic segmentation algorithms including
SIISNet [26], and CoANet [25] are also compared with the
road update results of our UGRoadUpd framework. Both
SIISNet and CoANet were trained with the historical remote
sensing images and the corresponding road labels that cover
the same region as the test dataset of CRCD and WRCD.
The comparison between our UGRoadUpd framework with
the three road segmentation methods verifies the effectiveness
of our method on road update.
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Fig. 6. Road change detection results on the CRCD dataset.

B. Visual Results on the Christchurch Road Change
Detection (CRCD) Dataset

Experiments on the CRCD dataset were conducted to verify
the adaptability of the tested methods to update roads across
regions. In this section, we will show the experimental results
of the tested algorithms in discovering road changes on the
CRCD dataset, as well as the road update results using our
proposed unchanged-guided changed road update strategy,
as shown in Section IV-B.1 and IV-B.2.

1) Road Change Detection Results on the CRCD Dataset:
The change detection results on the CRCD dataset for all
tested methods are shown in Fig. 6. In subfigures (c) to (i), the
pixel-level road change detection results for the seven tested
methods are shown in red. Blocks with different color marked
are their patch-level road change detection results, in which
the yellow blocks indicate correctly recognized road change
patches, while the green and the purple blocks are false- and
miss- detected road change patches.

It can be seen from Fig. 6 that the road change detection
results from the proposed DT-RoadCDNet have less detection
error than the other six tested change detection algorithms
since there are fewer green blocks in subfigure (c) than
subfigures (d) to (i). Less falsely alarmed road change areas
indicate that the problem of pseudo changes caused by the
spectral difference between the images at different times can
be eliminated by our method. All of the six tested algorithms
can recognize most of the road change blocks, as there are few
purple blocks shown in Fig. 6. We selected five samples from

Fig. 7. Close-ups of road change detection results on the CRCD dataset.

the test dataset of the CRCD dataset to give a more intuitive
comparison of our proposed method with the other three tested
algorithms, as shown in Fig. 7.

In Fig. 7, region A and B show the changes brought about by
road reconstruction; region C to E show the changes from dirt
to paved roads. As can be seen from region A and B that the
changes in road reconstruction are complicated, especially the
changes between the large-scale intersections shown in the fig-
ure, it is difficult to maintain the slender topological structure
of the roads. The results obtained by DT-RoadCDNet, UnetL-
STM, DTCDSCN and DSAMNet are similar to the ground
truth, while the results of DASNet and EGRCNN have many
incorrectly identified road changes. From region C to E in the
figure, we can see that our proposed DT-RoadCDNet yielded
the most complete and accurate results for roads changing
from dirt to paved surfaces. The change detection results of
UnetLSTM, DTCDSCN, and EGRCNN at the road boundary
are less accurate than DT-RoadCDNet. The pixel-level road
change detection results of our DT-RoadCDNet had greater
integrity than DASNet. DT-RoadCDNet and DASNet are both
methods that use the attention mechanisms. However, DASNet
is not sensitive to changes from soil to road, resulting in
discontinuous road changes. Visual results on the CRCD
dataset demonstrate that our proposed DT-RoadCDNet can
effectively extract road changes caused by dirt roads, and roads
under construction. The area of false-alarm and miss-detected
road changes are smaller than those from the comparative
methods, demonstrating that the DT-RoadCDNet improves the
efficiency of road change detection.

2) Road Update Results on the CRCD Dataset:
Among the 1599 patch-level samples on the CRCD test
dataset, we detected 222 patches with road changes
and 1377 unchanged patches based on our proposed
DT-RoadCDNet. These patch-level changed and unchanged
samples were derived from the pixel-level road change detec-
tion results from section IV-B.1 at a change ratio of 1%.
The patch-level road change rate in the CRCD test dataset is
13.89%. We take the current remote sensing images and road
annotations in the old period of these 1377 unchanged samples
to form a new dataset, named ref_CRCDD. ref_CRCDD was
randomly divided into training dataset and validation dataset
at a ratio of 4:1 to re-train the road segmentation branch
of DT-RoadCDNet. Since the road segmentation branch of
DT-RoadCDNet is optimized based on the target image, the
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Fig. 8. Road update results on the CRCD dataset.

refined model is with more robust adaptability than the initial
weights provided by DT-RoadCDNet. We inferred the roads
from the current images of the 222 changed samples to update
roads in changed areas. The road update result for the new
image in the CRCD test dataset is shown in Fig. 8.

As can be seen from Fig. 8, in comparison with the
segmentation results from the other four tested algorithms,
the visual completeness and accuracy of the road update
results produced by our UGRoadUpd framework shown in
subfigure (f) were greatly improved. The road update results
of SIIS-Net and CoANet are discontinuous as there are many
red pixels in subfigures (b) and (c). Subfigure (e) is the
road segmentation result obtained by DT-RoadCDNet, i.e.
the first stage of our UGRoadUpd framework. Compared
with the results of DT-RoadCDNet, there were less missed
detected roads after adopting the unchanged guided roads
refining process, verifying the effectiveness of the proposed
unchanged-guided road update strategy.

The low visual integrity of SIIS-Net and CoANet demon-
strates that it is challenging to generalize neural networks
trained across time. Hence, learning from historical images and
road database cannot guarantee the quality of road update from
current images. The unchanged-guided road update strategy
can not only restrict the range of road update for improved
road update efficiency, but also improve the ability of the
model to adapt to the current image. The capacity of the
road extraction model to migrate is one of the biggest bot-
tlenecks restricting the automaticity of road update methods.
The strategy proposed in this paper effectively alleviates
this bottleneck, thereby improving road network update
automation.

C. Visual Results on Wuhan Road Change Detection Dataset

Experiments on Wuhan road change detection (WRCD)
dataset were conducted to evaluate the adaptability of the
method across time. The imaging time of the training and
the testing data from the WRCD dataset was collected during
different years, unlike the CRCD dataset collected from dif-
ferent regions. Hence, there is a greater difference in radiation
and spectrum between the training and testing dataset of the

Fig. 9. Road change detection results on the WRCD dataset
from 2014 to 2016.

WRCD dataset, requiring higher robustness from the tested
algorithms.

1) Road Change Detection Results on the WRCD Test
Dataset: The change detection results for the seven tested
change detection methods on the WRCD dataset are shown
in Fig. 9.

As can be seen from Fig. 9, DT-RoadCDNet, UnetLSTM,
and DSAMNet can distinguish most of the road changes
at the pixel-level and the patch-level. There were many
miss-detected road changes in the results of DTCDSCN,
DASNet, EGRCNN, and BIT-CD, especially for roads
changed from muddy soil. There were fewer pseudo changes
detected in the results from our DT-RoadCDNet than DASNet
and DSAMNet. An excessively high false change detection
rate will increase the workload in the basic geographic data-
base updating process, because the roads in the changed area
need to be updated. We selected five samples from the
test dataset of the WRCD dataset to give a more intuitive
comparison of our proposed method with the other six tested
algorithms, as shown in Fig. 10.

It can be seen from the five detailed images in Fig. 10 that
the continuity of changing roads detected by DT-RoadCDNet
was stronger with fewer discontinuous roads as compared with
the other six tested methods, indicating that the global atten-
tion mechanism for modeling spatial relations improved the
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Fig. 10. Close-ups of road change detection results on the WRCD dataset
from 2014 to 2016.

integrity of the changed road results. The integrity of changing
roads was weak in the UnetLSTM results shown in subfigure
(e), as there were missed detections at road intersections
and in areas where the road material changed. DASNet and
EGRCNN could not detect road changes between the roads
under-construction and completed roads seen in region D and
E, thus limiting its applicability in the management of a road
construction. The completeness and correctness of BIT-CD on
the WRCD dataset were the least visually convincing. Both
BIT-CD and our proposed DT-RoadCDNet are transformer-
based CNNs. BIT-CD employs transformer modules in the
decoders and encoders; while our DT-RoadCDNet take trans-
former as a bridge to link CNN-based encoders and decoders
to exploit the global-context modeling ability of transformers.
Transformers in both encoders and decoders cannot be trained
easily with a small number of road change labels, thus the
migration ability of BIT-CD on images at different imaging
times was less effective than our DT-RoadCDNet. In general,
on the WRCD dataset, DT-RoadCDNet has the strongest
migration ability for detecting changes between images of
different times.

2) Road Update Results on the WRCD Dataset: Among
the 980 samples on the test dataset of the WRCD
dataset, we detected 185 samples with road changes and
795 unchanged samples using the proposed DT-RoadCDNet.
We predicted the roads from the current images of the
185 changed samples to update the historical road database
as guided by 795 unchanged samples. The road update results
for the current image in the WRCD test dataset is shown in
Fig. 11. The overview road update result of our UGRoad-
Upd framework is shown in subfigure (a). Details about
the visual comparisons between the five tested methods for
regions marked in subfigure (a) are magnified and shown in
subfigures (b) to (h).

It can be seen from Fig. 11 that the overview road update
results of our UGRoadUpd framework are visually convincing.
The details of small roads were retained in the results of our
UGRoadUpd framework. Details shown in subfigures (b) to (h)
reveal that the road network updated by our UGRoadUpd
maintains the connectivity while the results of CoANet, SIIS-
Net, DTCDSCN, and DT-RoadCDNet may be disconnected.
In Region A, our UGRoadUpd method can accurately iden-
tify the road with material changes, but DTCDSCN and

Fig. 11. Road updating results on the WRCD dataset in the year 2016.

DT-RoadCDNet cannot extract these roads at high integrity.
In Regions B to D, the roads in the middle of the image
are under construction with heterogeneous road surface; the
results of DTCDSCN and DT-RoadCDNet failed to preserve
the connectivity, but the result obtained by UGRoadUpd is
more consistent with the ground truth. Region E demonstrates
the roads occluded by shadows on the image. All four com-
parative methods failed to extract occluded roads, while our
UGRoadUpd approach obtained a complete road network.

D. Quantitative Analysis

1) Road Change Detection Results: TABLE I makes a
quantitative comparison between our method and six other
change detection methods on the CRCD and the WRCD
datasets. Pixel-level and patch-level metrics were displayed
in the table. Line five to eleven of the table show the
metrics for the seven tested algorithms, and the twelfth to the
seventeenth rows show the difference between our proposed
DT-RoadCDNet and six other tested methods.

As can be seen from TABLE I, our proposed
DT-RoadCDNet achieved the highest IoU scores on both
CRCD and WRCD datasets at pixel-level and patch-level,
indicating that our method can keep the balance between the
precision and completeness of road change detection. The
road change detection metrics of all the tested methods on the
WRCD test dataset were lower than the scores on the CRCD
test dataset. This is because the imaging time of the train and
the test WRCD dataset are different. Lower evaluation scores
of road change detection results on the WRCD test dataset
indicate that it is a bottleneck for the change detection neural
networks to generalize across time. The pixel-level Recall
scores of DT-RoadCDNet on both tested datasets are lower
than DSAMNet. Considering both the visual results in Fig. 6
and Fig. 9, our method has fewer omissions as compared
with DSAMNet visually. Moreover, our method showed a
significant improvement on Precision and IoU as compared to
DSAMNet, demonstrating that there are fewer false detected
road change pixels in the results of our DT-RoadCDNet than
that of the DSAMNet. In terms of patch level evaluation,
compared with the six comparative methods, our method
delivered a noticeable improvement of 15.87% to 44.91%
on Precision on the CRCD dataset, an increase of 2.02% to
53.60% on Recall on the WRCD dataset, and at least a 9.60%
improvement on the comprehensive indicator IoU on both
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TABLE I

QUANTITATIVE ANALYSIS OF ROAD CHANGE DETECTION

TABLE II

QUANTITATIVE ANALYSIS OF ROAD UPDATE RESULTS

datasets. These results confirm that our method can reduce
false changes and greatly improve the accuracy of change
detection, thus improving the road update efficiency.

2) Road Update Results: TABLE II shows the quantitative
comparison of the three tested road update results on the
CRCD dataset and the WRCD dataset shown in Fig. 8 and
Fig. 11.

As can be seen from TABLE II, compared with the road
update results of the other tested algorithms, the result of our
UGRoadUpd framework yielded at least an improvement of
3% in Recall, 6% in Precision, and 11% in IoU scores on
both CRCD and WRCD datasets. Although the metrics of the
road change detection results of our DT-RoadCDNet on the
WRCD test dataset were lower than the CRCD test dataset
shown in TABLE I, the recall, precision, and IoU scores
of the road update results on the WRCD test dataset were
higher than 90%. These road update scores show comparable
performance with results on the CRCD test dataset. The
road update results on the WRCD test dataset are produced
based on the road change detection results of DT-RoadCDNet
and the unchanged-guided road update strategy proposed in
this paper. The UGRoadUpd is consisted of a road change
detection process using DT-RoadCDNet and a road update
process using unchanged-guided refining strategy. Compared
with DT-RoadCDNet, the UGRoadUpd boost the recall scores
of the road update results from 75.43% to 94.11%, precision
scores from 86.40% to 95.48%, and IoU scores from 67.43%
to 90.10% on the WRCD dataset. These improvements in the
three evaluation indicators further validate the significance of

the unchanged-guided road network update strategy proposed
in this paper.

V. PARAMETER SETTINGS AND ABLATION ANALYSIS

As described in Section III, there are two hyperparameters
in our proposed DT-RoadCDNet, including the weights of the
road change detection and road segmentation branches, and
the scale parameter to control the number of the dominant
queries. The effect of the DTGCM module on the integrity
of road change detection is also analyzed in this section. To
increase the speed of the experiments for parameter settings
and ablation analysis, we created a small dataset based on
images and labels from the year of 2012 and 2014 in the
Wuhan Road Change Detection dataset, called the Mini Wuhan
Road Change detection (MWRCD) dataset. All the images and
the corresponding ground truths in the MWRCD dataset were
cropped into 512 × 512 tiles. There were 120 overlapping
pixels between adjacent image blocks. Half of MWRCD
dataset was taken as the training dataset, while the rest was
the test dataset. A total of 490 training samples and 490 test
samples were obtained. The entire training process took about
five hours until the loss of the validation dataset converged
within 60 training epochs. It saves about 90 hours of time by
conducting the fifteen ablation experiments with the MWRCD
dataset rather than the WRCD dataset.

A. Influence of Dual Task Collaborative Learning

DT-RoadCDNet is a dual task neural network with three out-
put branches. We conducted experiments of different weight
setting of the change detection branch and the two road seg-
mentation branches, to evaluate the contributions of different
branches for road change detection. The quantitative compar-
isons for the MWRCD dataset are presented in TABLE III.

It can be seen from TABLE III that the Exp 1 outperformed
the other parameter settings. Compared with Exp 5, Exp
1 shows an improvement of 6.84% on recall, 6.90% on
precision, and 7% on IoU. In Exp 5, only the change detection
branch was used to supervise the network training process;
while in Exp 1, the change branch and the segmentation
branches were regarded as equally important. The improved
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TABLE III

COMPARISONS OF DIFFERENT WEIGHT SETTINGS OF THE CHANGE
DETECTION BRANCH AND THE TWO SEGMENTATION BRANCHES

Fig. 12. Illustration of results on the Wuhan road change detection dataset
with and without DTGCM module.

evaluation indicators of Exp 1 compared with Exp 5 shows
that the supervision of road segmentation on the images
collected at different times effectively supports the discovery
of road changes. In Exp 2 to Exp 4, different weights for
the two road segmentation branches were tested to discover
how road segmentation influences the effect of road change
detection. It can be seen that as the weights of the two
segmentation branches increase, so do the precision and IoU
scores of road change detection, indicating that the introducing
of road segmentation branches can reduce the false-detected
road changes. Therefore, we set the same weights for the
road change detection branch and the two road semantic
segmentation branches for improved performance of road
change detection.

B. Effect of the Dominant-Transformer Based Global Context
Modeling (DTGCM) Module

To evaluate the influence of the proposed DTGCM mod-
ule on road change detection and segmentation accuracy,
we replaced the DTGCM module in DT-RoadCDNet with
plain convolutional blocks, and conducted experiments on the
MWRCD dataset. Fig. 12 demonstrates three representative
experimental results.

It can be seen in Fig. 12 that the DTGCM module produces
more complete results for roads and changed areas. Without
the global spatial context modeling by the DTGCM module,
complete roads and road changes cannot be maintained when
there are sudden material changes, and the occluded roads
cannot be reasonably estimated. The quantitative evaluation
results of road change detection on the MWRCD dataset of
DT-RoadCDNet with and without the DTGCM module are
shown in TABLE IV.

It can be seen in TABLE IV that all the evaluation metrics
of road change detection increases with the introduce of
the DTGCM module. DT-RoadCDNet with DTGCM module
shows an improvement of 5.33% on Recall, 1.51% on Pre-
cision, and 2.85% on IoU than DT-RoadCDNet without the

TABLE IV

QUANTITATIVE EVALUATION ON ROAD CHANGE DETECTION
RESULTS WITH OR WITHOUT THE DTGCM MODULE

TABLE V

INFLUENCE OF THE Scale PARAMETER ON THE PERFORMANCE
OF ROAD CHANGE DETECTION

DTGCM module. These improvements verify the efficiency of
the DTGCM module when extracting roads and road changes
under complex environments.

C. Effect of the Scale Parameter of Dominant Transformer

The scale parameter is a coefficient number that controls
the number of the dominant queries in our proposed Dominant-
Transformer block. We set the value of the scale parameter
to [1, 3, 5, 7, 9, 10, 30, 50, 90] and tested their performance.
The evaluation indicators of different scale values are shown
in TABLE V. The third column in the table is the value of U ,
the number of dominant queries. U is automatically calculated
using equation (2) and is related to the value of scale. The
units of U and L Q are number of “nodes,” while scale has
no unit. The third column demonstrates the inference time
of each image for different scale settings. To evaluate the
effectiveness of the dominant attention module proposed in
this paper, the last row of the table shows the road change
detection accuracy using the full attention module found in
Vision Transformer [42].

It can be seen from TABLE V that when scale is set
to five, the recall and IoU of the change detection result
are the highest. It took 2.39 milliseconds to predict the
change detection result of an image pair with 35 dominant
queries in Exp 3, while it took 3.39 milliseconds to use the
full attention module, indicating that the dominant attention
mechanism designed in this paper can simultaneously improve
the completeness and the speed of change detection. In Exp
1, when the scale parameter was set to one, a total of seven
dominant queries were selected. However, the three-evaluation
metrics dropped significantly compared with Exp 3 in which
the scale parameter was set to five, demonstrating that too
small numbers of dominant queries will affect the effect of
change detection. Exp 10 with full attention mechanism got the
highest precision score. However, comparing with Exp 3, the
recall and IoU of the full attention mechanism were reduced by
33.14% and 17.55%, indicating that selecting dot-product pairs
that contribute to the major contribution is helpful to improve
the completeness of road change detection. It can be seen from
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Exp 9 that when scale is set to 90, the inference time of the
Dominant Attention module on each image is longer than that
of Full Attention. The result of Exp 9 shows that we should
control the number of dominant queries to less than 60% of
the original queries to improve the completeness and efficiency
of road change detection. Based on the above analysis, we set
scale to five for improved road change detection speed and
accuracy.

VI. CONCLUSION

In this paper, a two stage Unchanged-Guided Road Updat-
ing (UGRoadUpd) framework is proposed that automatically
updates road networks. The proposed UGRoadUpd frame-
work is based on the premise that only changed roads
need to be updated; and we can update roads in the
changed area by exploiting prior knowledge provided by
the unchanged roads labeled in historical databases. A dual
task dominant-transformer CNN for road change detection
(DT-RoadCDNet) was designed as the first stage of the
UGRoadUpd framework to discover road changed areas.
DT-RoadCDNet collaboratively learns both road semantic
segmentation and road change detection tasks thus reducing
the high false- and miss-detected changes caused by the
complex remote sensing imaging mechanisms as well as by the
variation in the appearance of ground objects. Roads are topo-
logically connected; but the common road detection networks
capture contextual information only within the local recep-
tive field, leading to discontinuous road segmentation results.
To address this problem, a Dominant-Transformer module was
introduced to model the spatial contextual structure globally,
thus improving the integrity of road change detection and
road updating. Unlike a conventional Transformer, the pro-
posed Dominant-Transformer is more efficient when dealing
with large-scale remote sensing images. In the second stage,
an unchanged-guided road update strategy was designed to
update roads in the changed area with prior information
provided by roads in an unchanged area. Extensive experi-
ments on two newly-annotated benchmark datasets confirm the
effectiveness of the proposed UGRoadUpd framework. In the
future, we will focus on the use of remote sensing images
collected at a current time to directly update a historical road
network since it is difficult to obtain historical remote sensing
images that match the time of the historical road maps in some
cases.
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