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Abstract—Machine unlearning is the process through which
a deployed machine learning model is made to forget about
some of its training data points. While naively retraining the
model from scratch is an option, it is almost always associ-
ated with large computational overheads for deep learning
models. Thus, several approaches to approximately unlearn
have been proposed along with corresponding metrics that
formalize what it means for a model to forget about a data
point. In this work, we first taxonomize approaches and
metrics of approximate unlearning. As a result, we identify
verification error, i.e., the �2 difference between the weights
of an approximately unlearned and a naively retrained
model, as an approximate unlearning metric that should be
optimized for as it subsumes a large class of other metrics.
We theoretically analyze the canonical training algorithm,
stochastic gradient descent (SGD), to surface the variables
which are relevant to reducing the verification error of
approximate unlearning for SGD. From this analysis, we
first derive an easy-to-compute proxy for verification error
(termed unlearning error). The analysis also informs the
design of a new training objective penalty that limits the
overall change in weights during SGD and as a result
facilitates approximate unlearning with lower verification
error. We validate our theoretical work through an empirical
evaluation on learning with CIFAR-10, CIFAR-100, and
IMDB sentiment analysis.

1. Introduction

The goal of machine unlearning is to provide a mech-
anism for removing the impact a datapoint in the training
set had on the final model. This is motivated by multiple
settings where forgetting a datapoint is paramount. For
example, a model which has not unlearned may leak
some of the private information contained in a point [1],
[2]. This is particularly relevant in scenarios where a
particular user who owns the data later revokes access to
it–a possibility popularized by the right-to-be-forgotten in
the GDPR [3]. The odds of leakage is exacerbated by the
ability of a ML model to memorize parts of its dataset [4],
[5].

Machine unlearning was first introduced by Cao et
al. [6] to unlearn datapoints for simple hypothesis spaces
which have known SQ learning algorithms. Machine un-
learning has since been extended to deep neural networks
(DNNs) [7], [8], [9], [10], [11], [12], [13], and its privacy
implications have been studied [14], [15], [16]. There are
currently two broad approaches to machine unlearning:
retraining and approximate unlearning.

. *Equal Contribution

With retraining, the point to be unlearned is removed
from the training set, and a new model is trained from
scratch on this updated training set. This approach has
the advantage of carrying a strong claim for why the new
model was not influenced in any way by the point to be
unlearned, as it is not trained on it. This is a non-trivial
advantage when unlearning needs to be transparent, e.g., in
the context of right-to-be-forgotten requests [3]. Naively
retraining from scratch can be made more efficient [7].
Nevertheless it is still an expensive process that requires
changes to the training pipeline.

In approximate unlearning, the model owner instead
starts from the existing model and seeks to modify its
weights so as to obtain a slightly different model which
satisfies an unlearning criterion (e.g., poor performance
on the point to be unlearned, or similar weights to a
model naively retrained without the point to be unlearned,
etc). This can be done for example through a form of
gradient ascent [8], which is the opposite of gradient de-
scent performed to train the model normally. Alternatively
various approaches suggest hessian-based updates [11],
[9]. Approximate unlearning has the advantage of being
more computationally efficient than retraining but comes
at the expense of a weaker guarantee: the model learnt
may not be completely un-influenced by the unlearned
datapoint.

Underlying the ambiguity with the various approxi-
mate claims to unlearning is simply the variety of such
unlearning criterion that individual approaches consider
and their associated metrics: each typically has their own
metric for measuring unlearning, but it is not clear how to
compare claims made with different approaches/metrics.
Ideally, there would be one metric which captures most,
if not all the intuitive properties of unlearning covered
by metrics proposed to this day. Our work tackles this
problem by first showing that verification error—the �2
difference in weights between an approximately unlearned
model and a naively retrained model—implies a large
class of the other metrics. Thus it carries a stronger
intuition, and helps unify the pursuits of other work.

Nevertheless, verification error has its own faults. To
measure it, one needs to compute the naively retrained
model, which begs the question of why not just use the
retrained model as the unlearned model? Furthermore,
despite discounting randomness associated with training
algorithms, training a model is noisy due to numerical in-
stabilities introduced by back-end randomness in floating
point computations; comparison with respect to any one
retrained model leaves the metric itself noisy. It is also not
immediately apparent what one should do then to reduce
the verification error. Additionally, for verification error
to subsume other metrics, the unlearning method should
satisfy specific properties (refer § 4.1).
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Our work answers these questions. First by expand-
ing the canonical training algorithm, stochastic gradient
descent (SGD), with a Taylor series and then further ana-
lyzing it, we formalize an unlearning method—single gra-
dient unlearning—that only depends on the initial weights
(and obtain some other terms that capture approximation
error); unlearning is approximate (due to the error term)
but inexpensive as it depends on only the initial weights.

Second, the analysis leads to an approximation of an
unlearned model’s verification error which we call the un-
learning error. The main advantage of this approximation
compared to verification error is that it does not require
computing the retrained model (i.e., the ground truth that
one would obtain by retraining from scratch to unlearn a
point). This makes unlearning error cheaper to compute,
and also alleviates the issue of the retrained model being
noisy in the computation of verification error. We em-
pirically show that unlearning error is strongly correlated
with verification error in relevant contexts. This allows us
to envision directly minimizing unlearning error during
training, so as to improve our ability to later unlearn with
smaller verification error. This is particularly appealing
given that unlearning error is expressed in a form where
the variables we need to change during training to de-
crease unlearning error are apparent.

These properties of unlearning error help us (and
future efforts building on our work) design approxi-
mate unlearning mechanisms with lower verification error.
Specifically, we propose our standard deviation (SD) loss
which we show effectively decreases this unlearning error
(and consequently, verification error). Intuitively, SD loss
forces the model to converge with less overall change to
the weights. This allows us to unlearn a point from models
trained with the SD loss using single gradient unlearning.

To summarize, the main contributions of our work are:

1) A taxonomy of approximate unlearning which con-
cludes with verification error as a metric to study as
it subsumes a large class of unlearning criteria.

2) An analysis of SGD which (a) introduces an inexpen-
sive mechanism for unlearning termed single gradient
unlearning, and (b) uncovers the variables impacting
verification error. This not only yields an easier-to-
compute proxy for verification error, but also informs
how to train models that are easier to unlearn well.

3) A way of decreasing this unlearning error (and thus
in turn verification error) by the use of our SD loss
with little impact to performance. We validate our ap-
proach empirically for models trained on on CIFAR-
10, CIFAR-100, and IMDb sentiment classification.

2. Primer on Deep Learning & Notation

In our work, we focus on supervised learning [17].
We utilize a bold-faced font to denote vectors (and ten-
sors). We consider a dataset D which consists of pairs
{(xi, yi)i∈[n]} (where [n] = {0, 1, · · · , n − 1}); x is a
datapoint (e.g., an image) and y is its label. We wish to
train a model M , which is a parameterized function of
weights w that we can modify (or learn); mathematically,
the model is denoted as the function M : X → Y , where
X denotes the space of inputs (i.e., x ∈ X ) and Y denotes
the space of outputs (i.e., y ∈ Y). Ideally, the model
should be denoted Mw, but we omit the dependence on w

Figure 1. Taxonomy of prior work on post-hoc (post-training) ap-
proximate (avoiding retraining) unlearning methods. Unlearning
methods are categorized in two ways: (1) What is the definition
of unlearning used to motivate the removal of information (hor-
izontal axis)? (2) How is the success of the unlearning method
measured (vertical axis)?

when the context is clear. Our experiments consider deep
neural networks (DNNs) given their success on various
difficult tasks [18], and their large training costs.

To learn the weights that make M best classify D,
we minimize a loss function L that measures the error
our model has when predicting the label y from an input
x. Examples of such loss functions include the cross-
entropy (CE) loss [19] which is the de-facto choice for
classification tasks. The cross-entropy loss is defined as:

LCE(M(x),y) = −
c∑

i=1

yi log(M(x)i) (1)

where M(x) returns a probability simplex, and M(x)i
is the ith value in this simplex, and y = (y1, · · · , yc)
s.t. yi ∈ {0, 1} is the one-hot vector defining the label
of x, and c is the number of classes. Since a closed
form solution cannot be found analytically for non-convex
models such as DNNs, the weights w are learnt in an
iterative manner. Many established optimization schemes
are derived from mini-batch stochastic gradient descent
(SGD) [20]. Formally speaking, mini-batch SGD can be
described as below:

wt+1 = wt − η
∂L
∂w
|wt,x̂t

where weights at step t are obtained using the weights
from step t− 1, x̂t is the mini-batch of data used at step
t, and η denotes the learning rate hyperparameter.

3. Taxonomy of Approximate Unlearning

We begin by discussing the semantics behind unlearn-
ing: the problem of forgetting a datapoint x∗ ∈ D from
a model M which was trained on it (§ 3.1). We proceed
to discuss metrics to measure the efficacy of unlearning
(§ 3.2), and methods to achieve them (§ 3.3). Broadly
speaking we follow the taxonomy given in Figure 1, with
emphasis on specific examples of the metrics (y-axis) and
methods (x-axis).

304

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 05,2024 at 04:22:13 UTC from IEEE Xplore.  Restrictions apply. 



3.1. Defining Unlearning

Let HD define the distribution of all models a training
rule could return when trained on a dataset D. HD is
a distribution and not a single point as SGD has inher-
ent stochasticity and there is randomness with back-end
floating point operations. Similarly let HD′ represent the
distribution of all the models the same training rule returns
when trained on dataset D′ = D\x∗ where x∗ ∈ D is the
datapoint that is to be unlearned. Lastly, let U(M,x∗) be
some process (randomized or deterministic) that takes a
model M ∼ HD and a data point x∗, and returns another
model M ′′. Now if S = U(HD,x∗) is the distribution
of HD after the transformation by U , we say the process
U is an exact unlearning process iff S = HD′ , i.e., the
distribution of output models from U(HD,x∗) is the same
distribution as HD′ . In this case, M ′′ ∼ U(M,x∗) is
called an unlearned model.

Though this definition looks precise, there is am-
biguity in what metric space these models belong to
(and consequently for the distributions). A model can
be viewed either as just a mapping of inputs to outputs
(x,M(x)) in which case HD, S , HD′ are distributions
over a function space (i.e., continuous function with the
supremum metric), or as the specific parameters w for an
architecture, in which case HD, S , HD′ are distributions
over the weight space (e.g., some finite dimensional real
vector space with the euclidean norm). The ambiguity
leads to two notions of exact unlearning.

Def 1 dw(S,HD′) = 0 where dw measures difference in the
distribution of weights

Def 2 dout(S,HD′) = 0 where dout measures difference
in the distribution of input-output maps, or simply
difference in the distribution of outputs

Naively retraining without x∗ as the unlearning pro-
cess U guarantees both of these definitions (as we exactly
obtain HD′ ), and is the undisputed baseline for exact
unlearning. However the issue with naive retraining is the
large computational overhead associated with it (i.e., cost
to train a model), especially for large models [21].

Approximate unlearning methods try to alleviate these
cost-related concerns. Instead of retraining, these methods
execute computationally less expensive operations on the
final weights [11], [8], [10], apply some architectural
change [12], or filter outputs [12]. Approximate unlearn-
ing also relaxes the definition of Def 1 or Def 2 to
requiring the distance between HD′ and S to be small
rather than being exactly zero.

Observe that there can be many different metrics d
over both of these spaces. Since comparing distributions
is expensive (especially if it involves running the train-
ing algorithm multiple times to obtain multiple samples),
approximate unlearning methods often move away from
requiring a measure of the distance d between distribu-
tions to instead a measure of an alternative quantity that
captures the difference in the weight space or output space
on a point basis. For example, a popular approach is to use
membership inference [1] to gauge how close two models
(before and after unlearning) are in the output space. The
popular classes of metrics used are listed on the y-axis of
our taxonomy in Figure 1, and what aspect of the model
the approximate unlearning methods change to unlearn a
datapoint are listed on the x-axis.

3.2. Unlearning Metrics

We now provide some examples of the various un-
learning metrics used in past work. This follows the main
categories found on the y-axis of Figure 1. Note the first
three are metrics over the weight space (i.e., the metrics
take as inputs weights or distributions of weights), and the
fourth is in the output space (i.e., metrics take as inputs
the outputs of the model).

1. �2 Distance: Here, we compute the weights of a naively
retrained model M ′ and compare them to the weights of
the model M ′′ that we obtained after using an approximate
unlearning process. If they are close, then this suggests
that M ′′ is close to an exactly unlearned model, and can
approximate the unlearned model. The standard approach
to measure distance in the weight space is the �2 distance;
we term this verification error throughout the paper. Such
an approach is used by Wu et al. [22].

Despite this metric being simple, there are certain
drawbacks. First, to compute the verification error, one
first needs to compute M ′ (through naive retraining),
which is computationally expensive. If one could obtain
M ′, then they could avoid approximate unlearning al-
together and use that as the unlearned model. Another
issue is that one can retrain on the same sequence of
data from the same initialization and obtain different
terminal weights [23] (which is caused by randomness
and numerical instabilities in floating point operations).

2. KL Divergence: To bypass this issue of hardware
randomness in training, Golatkar et al. [9] consider mea-
suring the similarity of the weights of M ′′ with respect
to a distribution of weights of M ′. They achieve this by
looking at Kullback-Leiber (KL) divergence of the two
distributions (as they consider M ′′ as being the result
of another stochastic process on the original model M ).
The drawback to this are that explicitly calculating the
KL divergence requires knowing the final distributions
of models trained on D′. This in turn involves sampling
many final models trained on D′ in order to fit some
distribution to the known distribution of M ′.
3. Privacy Leakage of Weight Distributions: Another
common metric for measuring unlearning that also looks
at the distribution of weights is the privacy leakage from
the distribution of weights of M ′′ (e.g., [24]): ideally, the
distribution of weights of M ′ leaks no information about
x∗ as it was not trained on it (though this is not necessarily
the case [15]), and so the smaller the privacy leakage of
x∗ from the distribution of weights of M ′′, the closer
M ′′ is to being unlearned. Sekhari et al. [10] analogously
present privacy leakage for unlearning in the framework
of differential privacy (DP): they bound the leakage of
information about a particular x∗ (or more generally a set
of datapoints to unlearn) with privacy parameters ε, δ and
define this as (ε, δ)-unlearning. Guo et al. [11] work with
a similar setup to Sekhari et al., though not identical as
they consider only the ε bound part. In both cases, having
(or decreasing) a bound on privacy leakage is presented
as unlearning better.

4. Membership Inference: A privacy attack like mem-
bership inference (MI) only requires access to the model’s
predictions (outputs) to determine whether the unlearned
model M ′′ was or was not trained on the point to be
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unlearned x∗. This approach is used by Graves et al. [8]
and Baumhauer et al. [12]. The reasoning here is that
as M ′ was properly retrained without x∗, a MI attack
should return that it was not trained with x∗; if a MI
attack on M ′′ also consistently outputs that M ′′ was not
trained with x∗, then one could argue that their outputs
are similar. However, such approaches are not precise: it is
possible a MI attack will give a false positive that M ′ had
indeed trained on x∗, in which case simply lowering the
MI likelihood of x∗ for M ′′ does not necessarily imply it
has unlearned. We revisit the limitations of MI in § 4.3.

3.3. Unlearning Methods

We turn our attention to the following question: how
exactly does one unlearn? Current approaches are broadly
categorized on the x-axis of Figure 1.

Logits: Baumhauer et al. [12] consider a specific type of
model taking the form M(x) = wf(x), where f is some
black-box feature extractor, and w is some parameterized
matrix which is what is modified by training. They then
unlearn a class from the linear layer only. This unlearning
is done by defining a filtration matrix and appending it to
the model which shifts the outputs to what one would get
if one did not train with that class.

Weights: Graves et al. [8] proposed amnesiac machine
learning, which is an unlearning protocol that logs all
the training updates. Then, upon receiving an unlearning
request for x∗, one proceeds to add back all the training
updates that involved x∗ to the final weights to obtain an
unlearnt model M ′′.
Distribution of Weights: The scrubbing procedure intro-
duced by Golatkar et al. [9], [13] is derived by adding a
weighted term to the loss (to measure the KL divergence
of the distribution of final weights), and minimizing the
added term. Alternatively, DP provides bounds on how
indistinguishable a given model is to one not trained
on any one of its training datapoints, in essence stating
that a model has already unlearned. However Sekhari
et al. [10] show that differentially private learning only
allows one to delete O( n√

d
) data points while retaining

meaningful bounds, and propose an unlearning algorithm
for (strongly) convex loss functions that improves the
number of datapoints one can delete by adding a hessian
update and noise to the final weights.

4. Verification Error & Other Metrics

The taxonomy in § 3 captures the different unlearning
metrics, which in turn represent the different aspects of a
model that can change with the training data. Understand-
ing the relationship between these metrics is paramount to
concretely understanding the unlearning guarantees they
provide. To this end, we focus on understanding what
metrics verification error can and can not capture.

4.1. Verification Error implies Lp Weight Metrics

We will prove that verification error provides a bound

on the supremum norm (or L∞ norm1) of the difference
of the distribution of weights obtained by (a) naively
retraining, and by (b) using an approximate unlearning
method2. Note that a bound on the L∞ norm implies
bounds on all Lp norms for p ≥ 1 (refer Propostion 6.10 in
[25] and by definition, distributions are in L1). Informally,
this allows us to motivate verification error as a metric that
bounds a large class of weight space metrics.

Similarly, a bound on the supremum norm also implies
guarantees similar to DP (in particular ε = 0 and δ = b
where b is the bound on the supremum norm) by the
reverse triangle inequality. The opposite, though, is not
true when ε �= 0 (as the bound now depends on the
magnitude of the function and thus is not uniform). How-
ever, it should be noted that in our subsequent analysis,
we make several assumptions about the stochasticity of
training which does not allow us to derive strict DP-like
guarantees. In particular, we will assume that noise in the
final weights for a fixed training sequence is a function
of only the number of steps, and changes negligibly when
removing a single step from each epoch. We explain why
we made these assumptions later in the section during our
derivation. Similarly our analysis will focus on unlearning
with batch size 1 for simplicity.

In particular, the focus here will be first comparing
the probability distributions of final weights obtained by
training m epochs starting at a fixed initial weight w0

with dataset D and dataset D′ = D \ x∗ with SGD (and
not mini-batch SGD, i.e., considering mini-batch sizes of
1). We will represent the density functions respectively as
P(w) and P

′(w) where both are functions of the weights
of the model w. Note that in what follows, x∗ is fixed but
can be any datapoint (i.e., is a constant).

Let the size of D be |D| = n, and let I =
{xi1 ,xi2 , · · · ,ximn

} denote a particular ordering of the
datapoints when training on D for m epochs (where
ij ∈ [n]). Note that we have (n!)m such combinations;
for D′, we have (n − 1)!m such combinations. For each
I , there exists an I ′ (corresponding to D′ = D \ x∗),
which is formed by removing all instances of x∗ (in-
place) from I . Note that for a given I ′, we have nm

corresponding choices of I (as for each epoch we have
n choices to place x∗ per epoch, and m epochs in total).
Let wI represent the deterministic final weights resulting
from training with the data ordering I , starting from w0.
Let g denote the random variable which represents the
noise on the final weights when training for m · n steps.
Thus, the random variable representing the final weights
when training with I is zI = wI +g. Similarly, we define
zI′ = wI′+g′ where g′ represents the noise when training
(n−1) ·m steps. Note that, if training is deterministic, we
have wI′ = wI −dI where dI is some constant that only
depends on w0 and the ordering I (as under deterministic
operations wI′ and wI are constants depending only on
w0 and the ordering I and thus wI − wI′ = dI is a
constant that only depends on them). Lastly, we make an
assumption that the noise from training with m ·n steps is
equivalent to that training from (n−1) ·m steps, i.e., that
g = g′. This is based on the fact that this noise should

1. See [25] for more on Lp spaces.

2. In our final result we will require the unlearning method to only
depend on the initial weights and batch ordering.
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only be a function of the number of training steps, and
that noise per step is small (see [23, § 6] for a discussion
on noise during training)3. Thus we have zI′ = zI − dI .

Given that SGD samples individual datapoints uni-
formly, the probability of obtaining a given data ordering
is constant. Further, if PI(w) is the density function
corresponding to zI and P

′
I′(w) is the density function

corresponding to zI′ (which is equal to PI(w−dI)), then
P(w) = 1

n!m

∑
I PI and P

′(w) = 1
(n−1)!m

∑
I′ P

′
I′(w).

Lemma 1. If every PI is Lipschitz with Lipschitz constant
L (which is true if g is gaussian), and if we let d =
1

n!m

∑
I ||dI ||2, then:

||P(w)− P
′(w)||2 ≤ L · d (2)

We refer the reader to Appendix A for the detailed
derivation. This result shows that by accounting for all
the individual distributions (for each ordering I), we were
able to obtain a Lipschitz condition on the combined dis-
tribution (of final weights obtained by training m epochs
starting at a fixed intial weight w0). The Lipschitz condi-
tion is expressed with respect to the datasets including or
excluding the point to be unlearned.

Now, we are also interested in the difference between
the density function obtained after the application of an
approximate unlearning method on M (i.e., P′′(w)), and
P
′(w). If the approximate unlearning method only consid-

ers w0, I to define an unlearning update uI , and obtains
the approximately unlearned weights by adding uI to wI ,
i.e., w′′I = wI + uI , then:

Corollary 1. If every PI is lipschitz with constant L (true
if g is gaussian), and if we let v = 1

n!m

∑
I ||dI + uI ||2,

then:
||P′′(w)− P

′(w)||2 ≤ L · v (3)

The detailed proof is in Appendix A. This naturally
follows from the same accounting procedure used for
the previous lemma, but now dI have been swapped for
dI + uI . This gives us a bound on the supremum (or
L∞) norm by the average verification error v (times some
constant) on the difference of the probability distributions
after approximate unlearning P

′′(w) and ideal retraining
P
′(w). Note, however, that there is a necessary assumption

on the form of this approximate unlearning method: to
obtain Equation 3, we require the unlearning update to
only be dependant on the initial weight w0 and I . We
will introduce such an unlearning approach in § 5. Finally,
an analogous bound going in the opposite direction is
provided in Appendix A.

4.2. Convergence in the Outputs over Finite Sets

It is intuitive that having similar weights would mean
having similar outputs, as clearly if the weights of two
models are identical then so are their outputs. We can
formalize this by looking specifically at the verification

3. Thus, adding or removing m steps (1 per epoch) when compared
to the m · n total steps when training with ordering I is insignificant

error defined as v = ||w′′ − w′||2 where w′′ are the
weights of M ′′ (the unlearned model) and w′ are the
weights of M ′ (the model unlearned by retraining). With
v defined as above, we have for any x ∈ D that
limv→0 ||M ′(x) −M ′′(x)||2 = 0 under continuity of the
outputs of the models as functions of the weights. Here,
by continuity, we mean that fixing the input x to a model
results in the output M(x) being a continuous function of
the weights. Thus, limv→0 entails point-wise convergence
of the outputs of M ′′ to the outputs of M ′. Furthermore,
note that smooth functions are locally lipschitz. Because
DNNs are smooth functions, this relation in the limit
is thus equivalent to a linear convergence on an upper
bound on the �2 difference between the two models’
outputs. Now note, considering only a finite set of inputs
{x1, · · · ,xn} (i.e., a dataset), we can take the maximum
local lipschitz constant of all M(xi) as a function of
its weights for a fixed input xi, and hence have linear
convergence on the outputs for all points in the set (not
just pointwise). This means changes to the differences in
weights lead to proportional changes to an upper bound
on the �2 difference in the models’ outputs over a dataset.

However the opposite does not hold. Consider the fol-
lowing counterexample: if one permutes the weights of a
neural network, the model’s outputs remain identical [26].
Yet, the verification error would not be 0 after such a
permutation, and so having all the outputs be the same
does not entail having the same weights.

4.3. Connection to Membership Inference

We now describe an apparent lack of a consistent rela-
tionship between verification error and MI-based metrics
such as privacy risk score (or PRS) [27] (which will be
further supported by results in § 8.4). Note that PRS was
shown to accurately represent the confidence a datapoint
was used during training i.e., likelihood of MI. We imple-
mented PRS by taking a shadow model trained only on
half the training set, and allow the MI adversary to access
half the test set. We then constructed the conditional prob-
ability distribution given in Equation 15 of [27], where we
estimate the per label conditional probability by dividing
the range of the entropy losses (Equation 8 in [27]) for
a given label into bins. Once the conditional distribution
for training and test are constructed, we evaluate the PRS
for a given point by computing Equation 13 of [27]. We
now proceed to empirically show how a decrease in PRS
does not result in a decrease in verification error.

Specifically, we test the correlation between PRS and
verification error after applying an approximate unlearning
method to a datapoint x∗. We choose amnesiac machine
learning [8] because it was introduced with a MI-based
criterion.4 We train the original model M , the naively
retrained model M ′, and model M ′′ unlearned using
amnesiac unlearning on the CIFAR-10 [29] and CIFAR-
100 datasets [29], using the ResNet-18 and VGG-19 ar-
chitectures [30], [31]. We obtain 27 triplets of M ,M ′′,M ′
by changing the training settings (i.e., different amounts of
training, batch sizes, learning rates etc.). For each triplet,
we measured the PRS of the unlearned point x∗ on M ′′,

4. We reproduced the approach because it was originally evaluated on
a MI attack by Yeom et al. [28].
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Figure 2. Correlation between privacy risk score and verification
error in different training setups for CIFAR-10 and CIFAR-100.
The correlations are -0.29 and -0.02, respectively.

and the verification error ||w′′−w′||2 (obtained from M ′′
and M ′ respectively). The results are in Figure 2.

The main takeaway is there is no monotonic relation
between PRS and verification error. However it may be
that under certain constraints (on the model, loss, training
algorithm, etc.) there is a monotonic or even linear rela-
tionship between verification error and PRS, and future
work may look into studying this.

5. Defining the Unlearning Error

Recall that verification error’s strongest limitation is
the expense associated with calculating it (i.e., the require-
ment for naive retraining). To circumvent this issue, we set
out to approximate verification error. Our analysis seeks
to understand the deterministic impact of a datapoint x∗
on the final weights of a model when trained with SGD
starting at initial weights w0. We expand the recursive
updates performed by SGD to isolate terms that can be
easily unlearned (because they do not depend on the order
of datapoints) from terms that are difficult to unlearn. We
then obtain and analyze a closed form approximation of
these terms. This results in (a) a proxy metric (which
we term unlearning error) that captures the effects of
the verification error, and (b) an inexpensive approximate
unlearning method that only depends on w0 and so allows
us to use the bounds presented in § 4 5.

5.1. Expanding SGD

To understand the impact of a datapoint x∗ on the final
weights, we need to expand a sequence of SGD updates.
We begin with the definition of a single SGD learning
update:

w1 = w0 − η
∂L
∂w
|w0,x̂0

where w0 denotes the weights at step 0 and x̂0 denotes
the data sampled at step 0. Note, we make no constraints
on what w0 is (that is where training starts from), i.e.,
could start from a pre-trained model). We obtain w2, the
weight obtained at step 2, as follows:

w2 = w0 − η
∂L
∂w
|w0,x̂0

− η
∂L
∂w
|w1,x̂1

=⇒ w2 = w0 − η
∂L
∂w
|w0,x̂0

− η
∂L
∂w
|w0−η ∂L

∂w |w0,x̂0
,x̂1

5. Do note future methods may expand our theory to consider methods
not only dependent on w0.

This can further be expanded and approximated as fol-
lows:

w2 ≈ w0−η(∂L
∂w
|w0,x̂0

+
∂L
∂w
|w0,x̂1

+
∂2L
∂2w

|w0,x̂1
(−η ∂L

∂w
|w0,x̂0

))

Our end goal is informed by our analysis in § 4: we must
focus on an analysis of verification error in SGD that is
only a function of the initial weights w0 and the ordering
of batches of data I . To scale the above for a sequence of t
updates, notice that the hessian terms from the expansion
recursively depend on each other. Thus we have the final
approximation:

wt ≈ w0 − η

t−1∑
i=0

∂L
∂w
|w0,x̂i

+

t−1∑
i=1

f(i) (4)

where f(i) is defined recursively as:

f(i) = −η ∂
2L

∂2w
|w0,x̂i

(−η
i−1∑
j=0

∂L
∂w
|w0,x̂j

+

i−1∑
j=0

f(j)) (5)

with f(0) = 0.

Understanding the approximation. From Equation 4,
observe that one can represent the weights obtained after
training t updates as the sum of two sums. We now wish
to understand how x∗ affects this expression (and thus the
approximate outcome of training). The terms in the first
sum are simply gradients taken with respect to the initial
weights w0 and x̂i following the order we give data to
the model. Notice, however, that the exact order does not
matter as we are simply adding them. In this case, it is
clear that the effect of x∗ (provided at any step in training)
on this first sum is a gradient (or gradients) computed with
respect to w0 and x∗.

Single gradient unlearning: To reverse this effect
and unlearn, we simply have to add back these
gradients which amounts to adding ηm

b
∂L
∂w |w0,x∗

to the final weights, where η is the learning rate,
b is the batch size, and m is the number of epochs
(which is the number of copies of this gradient that
are present in the first sum).

The second sum is more complex as the expression is
recursive, and so there is an inherent dependence on order.
Understanding this sum will be our focus in § 5.2. One
of the main takeaways is that to compute all the terms
that contain a particular x∗, one would have to spend at
least as much compute as training. For this reason, the
process to unlearn the first sum will be our unlearning
method, and our analysis of the second sum (which we
do not unlearn) will result in an inexpensive proxy metric
for the verification error which makes clear key variables
one should focus on to decrease verification error.

5.2. Approximating the Second Sum Series

The global structure of the second sum follows η2ct+
η3ct−1+ ...+η2+t−1c1, where ci represents some vector.
Thus, we can focus primarily on the η2 dependent term
as, in practice, we often observe η being a magnitude or
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more less than 1, and so η2 is the dominant term. Thus,
the second sum can be approximated as:

η2ct =

t−1∑
i=1

η2
∂2L
∂2w

|w0,x̂i

i−1∑
j=0

∂L
∂w
|w0,x̂j

(6)

We can further approximate
∑i−1

j=0
∂L
∂w |w0,x̂j

by its expec-

tation
i(wt−w0)

t . We further normalize the vector, and thus
have:

η2ct ≈ η2
||wt − w0||2

t

t−1∑
i=1

∂2L
∂2w

|w0,x̂i

wt − w0

||wt − w0||2 i (7)

By focusing on ||ct||2, note that

||∂
2L

∂2w
|w0,x̂i

wt − w0

||wt − w0||2 ||2 ≤ ||
∂2L
∂2w

|w0,x̂i
||2

Now note the definition of the induced �2 norm of the
hessian, which is simply the square root of the largest
eigenvalue of the hessian i.e., σ1,i the first singular value
of the hessian on x̂i. For sake of simplicity we consider
σ = max(σ1,i), and thus have the following inequality:

||η2ct||2 ≤ η2
||wt − w0||2

t
· σ · t(t− 1)

2
(8)

From this, we can observe that the second sum linearly
depends on ||wt − w0||2, σ, and t. σ captures the non-
linearity of the loss landscape from the hessian, and so
we see that the more linear the loss landscape, the tighter
this bound on the approximation. We also see from this
that in the scenario t = 1 or σ = 0, this bound, and
thus the term is 0, reinforcing the notion that if the loss
landscape was just linear we could focus solely on the
first sum of gradients.

Counting terms. Now, with an understanding of what the
dominant terms in the second sum of Equation 4 are, we
take a step back and ask whether it is possible to unlearn
x∗ from these. What we will do is count all the terms
involving x∗; we then show that it is computationally
expensive to compute those terms in order to remove their
influence (and thus we can not reasonably improve our
single-gradient unlearning method). Specifically, we focus
on the expression in Equation 6. We let i∗ denote the first
index where x∗ appears, and we are interested in those
terms that contain x̂i∗ (and thus x∗). These are the terms
that we would need to remove in order to forget x̂i∗ from
the dominant terms in our second sum in Equation 4. Note
then that this will actually be an undercount, as x∗ could
appear in another batch; the final cost we state will be
less than what we actually need to completely forget x∗.

The first thing to note is that x̂∗i does not appear in
any terms in the expression until i = i∗. For this index,
we have i∗ terms dependent on x̂i∗ as every term in the

second sum in Equation 6 is multiplied by ∂2L
∂2w |w0,x̂i∗ .

Now for all the indices i > i∗ (i.e., t − 1 − i∗ indices),
we have exactly one term with x̂i∗ which comes from a
∂L
∂w |w0,x̂i∗ appearing in the second sum. In total, we have
(t − 1 − i∗) + i∗ = t − 1 terms, and note that all these
terms are hessian vector products (because all the terms
in Equation 6 are hessian vector products). In general, it
is possible to implement hessian products in O(n) [32].

Importantly, hessian vector products are at least as
expensive as a gradient computation. When batch size
b = 1, this would be equivalent to the cost for training,
and in general is 1

b× the cost of training as we only
need to compute 1 of the b gradients per batch, i.e., just
with respect to x∗. However, this can still be a significant
amount of computational expense in practice (as t here is
not the number of epochs but the number of individual
training steps), and so from counting the terms with x∗
we see that this second sum in Equation 4 (which we can
approximate with Equation 6) is a bound to how well we
can reasonably forget the effect of x∗.

5.3. Unlearning Error

Based on the above discussion for estimating the sec-
ond sum, and how it bounds the efficacy of unlearning
(without adding significant computational costs), we de-
fine Equation 8 to be our unlearning error (e). In practice,
we make a slight modification as this bound can be loose;
we take σ to be the average of all the σ1,i rather than the
max, as to better approximate Equation 6. To be precise,
setting σavg = 1

t

∑t
i=1 σ1,i, we define unlearning error

as:

e = η2 · ||wt − w0||2
t

· σavg · t
2 − t

2
(9)

Working with the average also allows one to only
compute σ1,i every couple of steps, saving costs. Lastly,
computing unlearning error e does not require us to have
applied our unlearning method first; we can pre-emptively
know what it will be.

6. Reducing the Unlearning Error

In § 5, we identified terms of SGD which force (post-
training) approximate unlearning approaches to incur ver-
ification error. Our unlearning error captures these effects
through the number of steps t, the average singular value
σavg, and the difference between final and initial weights
||wt−w0||2. Our closed form approximation of SGD from
the previous section leads to an unlearning method (see
gray box in § 5) that only depends on the initial weights
w0. We now introduce modifications to the training pro-
cedure, which are orthogonal to the unlearning method
itself but reduce the values of the different variables
contributing to unlearning error. This therefore yields a
training algorithm which makes it easier to later unlearn
with our method at a minimal verification error.

6.1. Strawman Approaches

We first consider two6 strawman approaches, each
trying to directly minimize one of three factors identified

6. We also tried several other ideas at reducing unlearning error which
we do not describe in great detail here. One such idea was trying to
reduce σavg by adding a regularization term with the sum of the diagonal
entries of the Hessian of CE loss with respect to the logits squared (which
are of the form {p1(1− p1), · · · , pc(1− pc)} where pi is the softmax
output of logit M(x)i), but as will be theme with this section, we saw
no benefit.
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Figure 3. Unlearning error for 4 different settings as a function
of the number of finetuning steps with no pretraining. Across
all 4 settings, the unlearning error increases as a function of t.
Each model was trained for t = 7812 steps (5 epochs)

in the unlearning error formulation: the number of steps
t and the difference between final and initial weights
||wt − w0||2.

1. Training for less. From Equation 9, recall that un-
learning error e depends on number of steps t. A simple
method to reduce e would be to train for fewer steps. We
verify empirically if training for less steps t reduces e.

Our evaluation is performed on two canonical archi-
tectures for computer vision, ResNet-18 [30] and VGG-
19 [31], on two vision datasets, CIFAR-10 [29] and
CIFAR-100 [29]. The datasets consist of 60,000 32×32×3
images that belong to 10 and 100 classes respectively. The
classes include animals and objects. This leads to four
settings (one for each model and dataset combination). For
a dataset D, we denote by Mt the model trained on D for
t training steps starting from M0; in the experiments we
compute the unlearning error from M0 to Mt, and record
the intermediate values of unlearning error e.

Figure 3 illustrates how e increases (practically lin-
early) with t. This implies that by training less, we de-
crease e almost proportionally. This however also degrades
the model’s performance (i.e., prediction accuracy) which
creates an undesirable trade-off. One way to alleviate this
limitation would be to pre-train the model on a public
dataset so as to start training at a better initialization
and compensate for the lower number of training steps
performed on data that may be unlearned. However, it is
not always possible to find a public dataset for which no
unlearning requests will be issued.

2. �2 regularization. The next factor involved in the
unlearning error e is the weight difference ||wt − w0||2;
decreasing this term (while not changing anything else)
would also decrease unlearning error e. By the triangle
inequality, we have that ||wt − w0||2 ≤ ||wt||2 + ||w0||2
and so it would seem that by decreasing either ||wt||2
or ||w0||2, we might be able to obtain a tighter bound
on ||wt −w0||2 and decrease it. This reasoning motivates
using �2 regularization which decreases the norm of the
final weights ||wt||2 by adding a λ||w||2 regularization
term (where λ is a regularization constant) to the CE loss.

To evaluate this regularizer, we use the same setup
that was previously described. We repeat the experiments
for different values of regularization strength: we pick

Figure 4. Unlearning error of 4 setups trained with increasing
strength of �2 regularization. As shown, weight decay does not
decrease the unlearning error consistently.

λ ∈ {0.0, 0.001, 0.01, 0.1}. In Figure 4, we track e for
t = 7812 training steps (5 epochs) for the two CIFAR-
10 models (Table 3 includes CIFAR-100 results) and the
various strengths of �2 regularization. We observe that
there was no consistent benefit to employing the loss
penalty, and in most cases it in fact increased e. The main
issue is that the bound ||wt − w0||2 ≤ ||wt||2 + ||w0||2
is very loose and we can decrease the right hand side
without decreasing the left hand-side (the part which we
are interested in) as seen in Figure 16. Thus, we next
refine our analysis to obtain a tighter bound and a more
effective regularization penalty.

6.2. Our Proposal: Standard Deviation Loss

In § 6.1, we considered two strawman approaches:
decreasing training steps t and �2 regularization. What we
proceed to do in this section is one of the main contribu-
tions of this work: we introduce our own novel standard
deviation regularizer. By way of studying a binary linear
classifier, we show how it would (when training on an
arbitrary, single data point) decrease the final change in
weights by moving the minimum of the loss closer to
the initial weights. Observe then that as long as this loss
does not also increase the singular values (which we later
empirically show in § 8.2), it decreases the unlearning
error e. Informally, the loss yields a model whose final
weights required smaller gradient descent steps to get to
from the initial weights. This explains why unlearning the
contributions of a point to these steps using our single
gradient approach leads to a smaller unlearning error when
the model was trained with our loss. This loss, which
we will call standard deviation (SD) loss, is defined as
follows:

LSD(M(x),y)

= LCE(M(x),y) + γ

√√√√(

c∑
i=1

(M(x)i − μ)2)/c

(10)

where c is the output dimension of the model M , γ is
the regularization strength, and μ is the average value of
the output logits M(x) for a specific datapoint x. Note that
the SD loss is simple to integrate into a training framework
as it just requires adding a regularization term to the loss
function.
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A Simple Binary classifier. Next, we illustrate our intu-
ition behind the SD loss with the case of a binary linear
classifier (i.e., a linear model with just two outputs) trained
to minimize its loss on a single datapoint; we show how
the SD loss reduces the minimum distance (in the weight
space) to the minimum of the loss (which is where the
final weights are found). This results in a lower weight
difference ||wt−w0||2, which in turn reduces unlearning
error. This holds as long as the SD loss does not also
simultaneously increase other variables involved in the
definition of our unlearning error, e.g., singular values.
We confirm later in § 8.1 that this is the case (even for
the neural networks we considered in our evaluation).

Let us consider the specific setup where x is a vector

of length k representing a datapoint, w =

[
w1

w2

]
is a 2×k

weight matrix, and M is a linear model with two outputs
defined by M(x) = wx. For the sake of simplicity (and
without loss of generality) let us assume the label of x
is 0. Then, the SD loss of our model, where a = M(x)1
and b = M(x)2 (i.e., the first and second output), is:

LSD(M(x), 0) = − log(
ea

ea + eb
)+γ

√
a2 + b2 − 0.5(a+ b)2

2
(11)

where the second term is just a simplified version of the
standard deviation.

The main empirical observation motivating the follow-
ing analysis is the following: increasing the strength of γ
moves the minimum of the SD loss with respect to the
outputs a and b (given by Equation 11) closer to the line
defined by a = b. This is illustrated in Figure 5 where we
plot the gradients of our loss with respect to the outputs to
observe where they are 0 (i.e., when the direction flips).
Similarly, Figure 6 illustrates how the minimum of the
loss approaches the line a = b (in black), and generally
how the minimum is defined by a line a = b+ ε where ε
decreases with the strength of γ.

We now proceed to analytically show how SD loss
reduces the minimum change in weights required to reach
a minimum of the loss (for a binary linear classifier). We
focus on the initialization of w by a constant (that is all the
entries are the same), and thus a0 = w1 ·x = w2 ·x = b0.
To find the minimum distance in the weights space to a
minimum of the loss, we need to solve the constrained
optimization problem

min
u1,u2

||u1||22 + ||u2||22
subject to

a0 + u1 · x = b0 + u2 · x+ ε

=⇒ (u1 − u2) · x− ε = 0

(12)

where u1 and u2 are the updates to w1 and w2

respectively to reach the minimum of the loss.
The solution, given by minimizing the lagrangian

L = u1 ·u1+u2 ·u2+λ((u1−u2)·x−ε), is u1 = ε
2||x||22x

and u2 = −ε
2||x||22x. Note that ||u1||22 + ||u2||22 = ε2

2 ||x||22,

and by reducing ε we reduce the magnitude of the change
of weights needed to reach a minimum of the loss. As in-
creasing the strength of our SD loss regularization (γ) does
just that, we see that increasing γ means decreasing the
minimum change in weights needed to reach a minimum

(which is what the path following negative gradients ap-
proximates). Thus, if the SD loss does not (also) increase
the singular values, it decreases the unlearning error. As
a final remark, we showed that a state with a = b is close
to a minimum, but this implies a more general result of
just being close to such a state where a = b (i.e., having
low standard deviation in the outputs) means being close
to the minimum.

7. Implementation

All of the experiments we describe next (and those
performed in § 6.1) were conducted on T4 Nvidia GPUs
with 16 GB of dedicated memory. We used Intel Xeon
Silver 4110 CPUs with 8 cores each and 32GB of RAM.
The underlying OS is Ubuntu 18.04.2 LTS 64 bit. We use
pytorch v1.8.1 with CUDA 10.2 and python 3.7.
We used the same datasets and models as described in
§ 6.1. We also evaluate our proposal on a different do-
main, text, using a pre-trained DistilBERT [33] fineunted
on IMDb reviews [34] for sentiment analysis (a binary
classification task); note IMDb has 25, 000 training and
test datapoints consisting of sentences of varying lengths
which we truncated to the first 512 tokens (the maximum
DistilBert takes as input). Note the size and variety of the
datasets and models used in our evaluation is comparable
or exceeds previous work in the topic of unlearning [22],
[9], [11].

8. Evaluation

Through our evaluation, we wish to answer the fol-
lowing questions.

1) Does SD loss decrease unlearning error?
2) How are the various components of the unlearning

error (t, σavg, ||wt−w0||2) affected by training with
SD loss?

3) Does decreasing unlearning error (either using SD
loss or changing t) result in a decrease in verification
error? Particularly, are they linearly related (strong
Pearson correlation)?

4) Can the effect of single gradient unlearning be mea-
sured by other metrics, such as PRS?

To answer the questions above, we utilize our single
gradient unlearning approach to obtain the approximately
unlearned model. Our salient results are:

1) In § 8.1, we conclude that the proposed SD loss
is effective at decreasing the unlearning error. This
is achieved at a moderate penalty to accuracy (< 3
percentage points in the setups we tested).

2) In § 8.2, we see that SD loss significantly decreases
the final change in weights ||w0−wt||2, and that the
impact of SD loss for a given regularization strength
is concentrated at the beginning of training

3) In § 8.3, we see that decreasing unlearning error
with any of the methods we have considered also
decreases verification error (i.e., they are strongly
correlated) showing that unlearning error serves as
a good proxy metric.

4) In § 8.4, we observe that single gradient unlearning
decreases the PRS of the baseline (i.e., γ = 0).
However, cases where γ > 0 has no consistent effect.
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(a) γ = 0.01 (b) γ = 0.1 (c) γ = 1.0 (d) γ = 5.0

Figure 5. Plots of the negative gradients of SD loss with respect to the two outputs (a = out1, b = out2). The black line represents
a = b. Observe how the minimum of the loss landscape (where the arrows switch direction) approaches the black line.

(a) γ = 0.01 (b) γ = 0.1

(c) γ = 1.0 (d) γ = 5.0

Figure 6. Plots of the SD loss landscape with respect to the two
outputs (a = out1, b = out2). Note the black dot represents
where a = b, and observe how the minimum of the loss
landscape approaches the black dot

Note that while our theory is for batch size b = 1, in
particular Lemma 1 and Corollary 1, our evaluation is for
b > 1 (where results are consistent across batch sizes).
We believe future work may extend our theory for b > 1.

8.1. SD Loss Decreases Unlearning Error

Recall that we introduce the SD loss as a method to re-
duce the unlearning error as training commences. We wish
to empirically validate this. We utilize the implementation
setup details described in § 7, and the following setup:

1) Train M0 on D with SD loss for N pre-training steps
to obtain MN .

2) Train MN for an additional t steps on x̂1, x̂2, · · · , x̂t

(from D) to get MN+t.
3) Compute the unlearning error (Equation 9) of MN+t

starting from MN , except here wt is the weights of
MN+t and w0 are the weights of MN .

In this setup, N is a configurable parameter which
allows us to understand how the amount of train-
ing affects the impact of SD loss on unlearning er-
ror (see § 8.2). For the vision models, we utilize
N = {0, 15625, 31250, 46875, 62500, 78125} steps (i.e.,
0, 10, 20, 30, 40, 50 epochs, respectively). For the reg-
ularization strength, we use γ = {0, 1, 5, 10, 15, 20}
for CIFAR-10 and γ = {0, 50, 100, 150, 200, 250} for
CIFAR-100. In the case of DistilBERT fine-tuned on
IMDB reviews, we observed we reached peak accuracy
after just N = 4688 steps (or 3 epochs) and simply evalu-

ated that for γ = {0.0, 0.01, 0.05, 0.1, 0.15, 1.0, 1.25, 1.5}
and discuss that independent of t.7

Results: In Figure 7, we plot the unlearning error as a
function of the number of training steps t. Observe that,
as expected, the unlearning error grows as the training
duration increases. However, increasing the regularization
parameter γ (from 0 i.e., CE loss, to > 0 values) reduces
the rate or growth, and thus the final unlearning error.
This is consistent with the final unlearning errors we ob-
served for DistilBERT in Table 2 where we see increasing
regularization dropped final unlearning error by 40×.

The influence of SD loss on the accuracy of the final
(vision) models is presented in detail in Table 4 in Ap-
pendix C; Table 1 highlights results from our experiments
with CIFAR-10 for N = 10 epochs. Results for the Distil-
BERT experiments are in Table 2. For the vision models,
note that as we increase the value of γ, the accuracy of
the classifier learnt decreases. From Table 1, the decrease
is within 5 percentage points for values of γ ≤ 5. For
values of γ > 5, the drop in accuracy is larger. This can be
explained by having to fit to the dataset while also balanc-
ing the requirement of minimizing ||wt −w0||2. We will
demonstrate this effect in more detail in § 8.2. However,
observe that the experiments with DistilBERT indicate a
subtle increase in accuracy even after the regularization
had cut the unlearning error by 2.5×, suggesting some
domains/models can handle the regulariation better. More
detailed analysis is required to explain this phenomenon.

TABLE 1. UNLEARNING ERROR (e) AND TESTING ACCURACY

ON CIFAR-10 FOR A PRETRAINING AMOUNT OF 10 EPOCHS

AND t EQUAL TO 1 EPOCH.

Regularization ResNet-18 VGG-19
(γ) e Acc (%) e Acc (%)
0.0 132.49 77.11 141.73 77.69
1.0 101.79 74.5 123.17 76.81
5.0 98.3 73.21 113.27 77.16

10.0 90.71 69.13 107.9 74.07
15.0 86.17 68.46 78.82 65.32
20.0 11.5 34.74 27.94 31.18

8.2. An Ablation Study

Recall that the unlearning error is dependent on t,
σavg, wt, and also the value of N . As we can calculate the
unlearning error with respect to different stages of training
by varying the value of N , we can obtain a more nuanced

7. γ = 0 means we just train with CE loss (which acts as our baseline)
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Figure 7. Unlearning error of 4 setups trained with the standard deviation loss with increasing levels of SD regularization. Across all
4 setups, a stronger regularization decreases the unlearning error at a (minimal) cost of the performance of the model.

TABLE 2. UNLEARNING ERROR e, VERIFICATION ERROR v
AND TESTING ACCURACY FOR DISTILBERT ON THE IMDB

DATASET FOR VARYING REGULARIZATION CONSTANTS. NOTE

THE PRETRAINING AMOUNT IS 3 EPOCHS AND t IS 1 EPOCH.

Regularization (γ) e v Acc (%)

0 85.10 4.35 92.13
0.01 85.89 4.27 92.53
0.1 71.73 3.43 92.38
0.5 31.98 1.57 92.71
1.0 8.91 0.57 92.09

1.25 5.60 0.43 87.22
1.5 2.57 0.48 84.99

view of how it evolves with respect to these factors.
All results in this subsection are presented for the vision
models only. The results are plotted for N = 15, 625 steps
(10 epochs), and t = 7812 steps (5 epochs) in Figure 8,
but the trends and ensuing discussion hold for all other
values of N .
Singular values & change in weights. The impact of SD
loss on σavg and the final change in weights and largest
singular values are presented in Figure 8 (left). We see
that the impact to the singular values is minimal. After
some initial oscillation, SD loss leaves σavg unchanged.
Thus, the effect on reducing the unlearning error comes
from elsewhere; we can see that SD loss does decrease
the change in weights ||wt − w0||2 significantly with
increasing γ8, as suggested by our analysis in § 6.2 (refer
to Figure 8 (right)). Recall that the change in weights
influences the unlearning error, and smaller values of
||wt−w0||2 induces smaller values of the unleraning error.

Influence of N . We wish to answer a more nuanced
question: how does the impact on SD loss vary as training
progresses i.e., as N increases? The results are presented
in Table 4 in Appendix C. We observe that as N increases,
the decrease in unlearning error caused by a given regu-
larization diminishes (with the exception of ResNet-18 on
CIFAR-10). Looking at VGG-19 on CIFAR-10 in Table 4,
we see w.r.t the N = 10 epochs of pre-training row,
γ = 5 decreases the unlearning error by 20% relative
to the baseline (γ = 0). With respect to the N = 30
epochs of pre-training row, γ = 5 results in a 4% drop
relative to the baseline (γ = 0). This reduced effect is due

8. Here wt are the weights of the model MN+t, and w0 of the model
MN .

Figure 8. Largest singular value and change in weights over
training for different regularization strengths for ResNet-18 on
CIFAR-10. The change in weights decrease consistently and
significantly as the regularization strength increases.

to the model converging (or being close to converging)
to its final weights: recall that in our setup, the weights
obtained after N steps of training are considered as w0;
as N increases, the value of wt (which are the weights
obtained after N + t steps of training) are close to w0.

8.3. Unlearning Error & Verification Error

Having established the relationship between unlearn-
ing error and SD loss, we wish to validate if unlearning
error is a good proxy for verification error. To this end,
we evaluate the relationship between unlearning error and
verification error with a specific emphasis on training
duration t, regularization strength γ, and a combination
of the two datasets and model architectures. For this
experiment, we utilize the setup (and notation) from § 8.1
(i.e., both vision and text models) to compute unlearning
error and the following setup to compute verification error:

1) Train MN for t− 1 steps on batches x̂2, . . . , x̂t. The
resulting model is the naively retrained model M ′
without batch x̂1 (where note x̂1 varies as we vary
N ) with weights w′.

2) Obtain the approximately unlearned model M ′′ (in
particular w′′) using our single gradient method as
follows:

w′′ = wN+t +
η

b

∂L
∂w
|wn+t,x̂1

where wN+t were the weights of MN+t.
3) Compute the verification error (i.e., ||w′ − w′′||2).
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Changing t: In Figure 3 in § 6.1, we saw that unlearning
error increases with t. To this end, we utilize the ResNet-
18 model trained using CIFAR-10. We wish to understand
if verification error also increases with t. Figure 9 (left)
shows the relationship between the verification error and
the unlearning error as a function of the number of steps
t taken, for t = 15, 625 (5 epochs) steps after N = 0
steps. Observe that the two are strongly correlated (with
a Pearson’s coefficient of 0.934). When we increase the
value of N to 250, 000 steps (80 epochs) to measure how
this effect is at a different stage of training (for the same
value of t as before), we observe the same effect: there
is a strong correlation between verification and unlearn-
ing error (with a Pearson’s coefficient of 0.9668); refer
Figure 9 (right).

Figure 9. Unlearning and verification error as a function of the
fine-tuning steps (indicated by the color gradient) for ResNet-
18 on CIFAR-10 for N = 0 steps, t = 7, 812 steps (5
epochs) and N = 250, 000 steps (80 epochs), t = 15, 625 (5
epochs). Unlearning and verification error are measured every
400 and 100 SGD updates, respectively. The Pearson correlation
between unlearning and verification error is 0.934 and 0.9668,
respectively. Note that t is the only variable giving a distribution.
Both unlearning error and verification error increase as a function
of the number of fine-tuning steps.

Changing γ: Similarly, from Figure 11, we can observe
that varying the strength of our regularization (γ) results
in a strong linear correlation between unlearning error and
the verification error. For ResNet-18 trained on CIFAR-10,
the Pearson coefficient is 0.96, and the Pearson coefficient
is 0.81 for VGG-19 trained on CIFAR-10. Furthermore for
DistilBERT fine-tuned on IMDB reviews we observe a
Pearson Coefficient of 0.998 (see Figure 10). Also notice
that for large values of γ (i.e., the blue points near the
origin), both verification and unlearning error are low. This
further validates the efficacy of SD loss.

Considering all models: The goal now is to see if un-
learning error can be used to compare which architectures
and training setups are better at unlearning (i.e., does
unlearning error strongly correlate with verification error
across training setups). This is seen in Figure 12 where we
consider 160 different training setups for CIFAR-10 and
CIFAR-1009; we observe that generally when a model
with a specific setup has lower unlearning error, it has
lower verification error, and this relation is almost linear.

9. We consider different amounts of pre-training N =
{10, 20, . . . , 80} epochs, batch sizes {32, 64, 128}, SD regularization
strengths (values between the ranges shown in Figure 7), models
(ResNet-18 and VGG-19) and batch size over which the hessian is
calculated.

Figure 10. The Pearson correlation of verification error and un-
learning error for DistilBERT on the IMDB dataset when varying
the SD regularization strength.

Figure 11. Pearson correlation between unlearning error and ver-
ification error for ResNet-18 and VGG-19 on CIFAR-10 with
regularization strength γ being the only variable giving the
distribution. The correlations are both high at 0.96 and 0.81 for
ResNet-18 and VGG-19, respectively. Notice that the stronger
the regularization (more blue) the more the verification and
unlearning error decrease in both settings.

This can be observed by looking at the strong positive
Pearson correlation between unlearning error and the ver-
ification error across the different settings and architecture
considered.

The fact that unlearning error is a good proxy for the
verification error serves as evidence that the mathematical
basis for unlearning error presented in § 5.2 holds for
the different architectures, domains, and datasets we con-
sidered, despite the approximations we made to arrive at
the definition of unlearning error. Another takeaway from
this result, and the fact that the correlations stand across
different architectures, is that unlearning error can be used
to compare how well different models with potentially
different architectures unlearn, leading to the possible
study of what architectures unlearn better. We leave this
aspect to future work.

8.4. The Effect on PRS

We now study the effect of our single gradient un-
learning method and training using SD loss on PRS, a
metric which represents MI confidence. To do so, we
calculate the PRS of the point to be unlearned before and
after applying our unlearning method (when training was
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Figure 12. Unlearning and verification error for 160 settings
across CIFAR-10 and CIFAR-100. The Pearson correlation be-
tween unlearning error and verification error for CIFAR-10 and
CIFAR-100 are 0.9028 and 0.8813, respectively. Settings trained
with SD loss (green) for both datasets have lower unlearning and
verification error then those trained with regular CE (red).

performed with varying strengths of SD regularization).
The results are presented in Figure 13.

Observe that by applying single gradient unlearning
on the baseline case (i.e., γ = 0), we can consistently
decrease the PRS by roughly 2×. On average, varying the
regularizaion strength γ decreases the PRS. However we
find no consistent monotonic relation between SD regular-
ization and PRS, as seen by the varying Spearman correla-
tions (which switch sign and are often weak). Note we use
Spearman here as we are asking if there is any monotonic
relation, not necessarily linear. Regardless, the fact that
SD regularization is not needed to decrease the PRS with
our unlearning method, but greatly decreases verification
error, highlights the dependence between seemingly inde-
pendent methods.

8.5. SISA Cost Comparison

An interesting question is whether exact unlearning
could ever be cheaper than approximate unlearning. As
our method is a very cheap form of approximate unlearn-
ing, and SISA is the cheapest exact unlearning method,
we compare how the costs of exactly unlearning with
SISA [7] compares to our approximate unlearning costs.
The cost of unlearning with SISA is at best 2S

(R+1)×
cost-to-retrain (R is number-of-slices and S is number-of-
shards). Additionally, this requires O(S.R) storage. Our
cost is computing a single gradient (cost-to-retrain/N
where N is number-of-steps) and requires no storage.
When 2S

(R+1) < 1
N SISA could be faster, but then R

or S is at least
√
N
2 − 1 (and typically N ≈ 100, 000).

Thus R and S would be significantly higher than what
was originally tested by Bourtoule et al., and note that
increasing S was observed to decrease performance, but
future work may investigate training with large S and R.

9. Discussion

We focus on discussing open questions raised.

When Is unlearning achieved: The immediate ques-
tion raised by our work is deciding when an entity has
unlearnt. We see from the disparity between verification
error and PRS that decreasing one does not necessarily
mean decreasing the other. More over with verification

error and unlearning error, we can reason about how much
it has decreased from a baseline error (i.e., the error with
regularization γ = 0), but we do not have a scale of how
much is enough. We believe answering when unlearning is
achieved is an application oriented problem and depends,
for instance, on what the user wants unlearning to achieve.

Experimental constraints: We leverage the widely used
implementation from kaungliu 10 which achieves a
93% test accuracy (on CIFAR-10) with ResNet18. We
remove several enhancements, specifically:

1) Learning rate (η) scheduler: our derivation assumes
a constant LR.

2) Data augmentation: introduces multiple copies of the
unlearned data.

3) Momentum/ADAM: as our approximation was fo-
cused on SGD.

These restrictions are common when learning with
differential privacy, and the drop to performance we ex-
perience on CIFAR-10 and CIFAR-100 is less significant.
Nevertheless future work may be able to improve the
performance by utilising other enhancements or dropping
some of these restrictions. It is worth noting however that
DistilBERT was still able to achieve high test accuracy.

Unlearning error and verification error for other un-
learning methods: An interesting question is whether our
unlearning error serves as a good proxy for verification er-
ror even when employing unlearning methods besides our
own. We focused on amnesiac machine learning [8], and
computed the analogous result of Figure 12 in Figure 14
where we once again vary different batch sizes, training
amounts, regularization strength(s), etc. except now M ′′
is obtained via amnesiac machine learning. As was the
case for our approach, we see very strong correlations
between unlearning error and verification error of 0.91 on
CIFAR-10 and 0.81 on CIFAR-100. We similarly com-
puted the analogous result of Figure 9 in Figure 15 and
got comparable results to using our unlearning method.
This begs the question of whether unlearning error can be
used to assess the verification error (by proxy) of other
approximate methods for unlearning in SGD.

Expanding analysis of verification error: However, it
should be noted that though amnesiac machine learning
retains a strong correlation, it does not solely depend
on w0 or I . This is because it computes gradients with
respect to intermediate weights during training; training
from the same w0 with the same batch ordering I , we get
significantly different weights during the end of training.
Thus, it violates the assumptions made by our analysis
as it introduces significant noise we did not account for
in our proofs. Thus the bounds presented in § 4 do not
apply (i.e., we are not sure if lowering verification error
with these methods lowers the difference in probability
distributions). However this does not mean similar bounds
do not exist, and we leave it for future work to expand
these results to other classes of unlearning methods and
possibly expanding our existing assumptions.

Architectures and unlearning error: Recall from § 8.1,
that the results of the ResNet architecture on CIFAR-10

10. https://github.com/kuangliu/pytorch-cifar
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Figure 13. PRS of point to unlearn before and after unlearning as a function of the SD regularization trained with. Spearman correlation
coefficients before and after unlearning are shown in the title of each of the plots. Note the inconsistencies in signs and magnitude
of correlation before and after unlearning in all 4 settings.

Figure 14. Unlearning and verification error for 104 settings
across CIFAR-10 and CIFAR-100 using amnesiac unlearning.
Correlations between unlearning error and verification error for
CIFAR-10 and CIFAR-100 are resp. 0.91 and 0.81.

were atypical. The SD loss on ResNet-18 continued to
significantly reduce unlearning error into the later stages
of training and in general dropped unlearning error with
a smaller cost to performance compared to VGG-19; we
also see from Table 4 that though SD loss effect dimin-
ishes for ResNet-18 on CIFAR-100, it is significantly less
so than VGG-19. Similarly, DistilBERT in fact was able
to drop unlearning error by a magnitude while seeing
less significant drops to accuracy. This begs the question,
are some models or domains just better for unlearning?
We believe an interesting direction for future work is
to pinpoint what architectural or domain features make
unlearning easier or harder.

Regularizers and unlearning error: Similarly future
work might look into better regularizers, potentially ones
focusing on reducing singular values, and improving the
performance of our SD loss by a regularization scheduler
that accounts for the degrading impact we noted in § 8.2.

10. Conclusion

In this paper we first discussed past work on approxi-
mate unlearning, noting how there was a great breadth to
what metric one can use to define unlearning. Following
this we showed how verification error captures a large
class of unlearning metrics (under some assumptions),
motivating using it to define an approximate unlearning
method. However, as verification error cannot be opti-
mized directly when devising an unlearning method (as
it requires a perfectly unlearned model for computation),
we decomposed SGD with a Taylor series to first propose

Figure 15. Unlearning error and verification error as a function of
the finetuning steps (indicated by the color gradient) for ResNet-
18 on CIFAR-10 using amnesiac unlearning

our single-gradient unlearning method, and furthermore
propose our unlearning error which we showed effec-
tively proxies verification error when using our unlearning
method. To then improve the effectiveness of our unlearn-
ing approach, we looked at the variables our proxy metric
depends on and proposed our SD loss which we showed
can effectively decrease the unlearning error (and thus the
verification error) associated with our unlearning method.
We expect that future work will try and improve the loss
we used in our work, or see how it may help with different
machine learning related tasks, and extend the bounds we
presented in our work to other contexts and see if certain
assumptions can be dropped.
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Appendix

1. Proofs

Lemma 1
We have:

||P(w)− P
′(w)||2 =

||P(w)− P
′(w) +

(n− 1)!m

n!m
(nm

P
′(w)− nm

P
′(w))||2

≤ || 1

n!m

∑
I

PI(w)−P′I′(w)||2+|( (n− 1)!mnm

n!m
−1)|P′(w)

≤ 1

n!m

∑
I

||PI(w)− PI(w − dI)||2 (13)

Where the step from the first line to the second
line follows from noting that by having nm copies of
(n− 1)!mP

′(w) =
∑

I′ P
′
I′(w) we can associate to each

PI(w) it’s corresponding P
′
I′(w), which comes from the

previous remark on counting of I and I ′. If we assume
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every PI is lipschitz (which is true for Gaussian noise),
then ||PI(w) − PI(w − dI)||2 ≤ LI ||dI ||2; note by
definition all PI are just the same distributions but shifted
(as we have the same noise g for each plus some varying
constant wI ), thus all the LI are equal, i.e., LI = L
for every I (as translating a function doesn’t change its
lipschitz constant). Lastly if we let d be the average of all
the dI , that is d = 1

n!m

∑
I ||dI ||2, we have

||P(w)− P
′(w)||2 ≤ Ld (14)

Corollary 1
To understand how this relates to verification error

and approximate unlearning, let us consider an approx-
imate unlearning method which only looks at w0 and I
and to wI obtains the approximately unlearned weights
w′′I = wI +uI where uI is some unlearning update. Note
then we can analogously define a z′′I = wI + uI + g
as before with corresponding density function P

′′
I (w).

Defining vI = uI + dI we get zI′ = z′′I − vI where vI

represents the analytic (ignoring noise) verification error
for the given ordering I (i.e., the difference between the
weights obtained from the approximate unlearning w′′I and
the retrained weights wI′ ). At this point it is clear all the
previous steps follow and defining v as the average of all
the ||vI ||2 we get

||P′′(w)− P
′(w)||2 ≤ Lv (15)

where now P
′′(w) = 1

n!m

∑
I P
′′
I represents the prob-

ability density function of the weights after applying the
approximate unlearning method on M to obtain M ′′.
Reverse Direction of Corollary 1 We now proceed to

get a bound on the average verification error v based on
a uniform bound between the density function after the
approximate unlearning and the density function for ideal
retraining.

Note, assuming the noise has 0 mean, v is simply the
difference in expectation of P

′′(w) and P
′(w), and let us

for the time being assume that the union of the support
of P

′′(w) and P
′(w) is bounded, i.e., if W is the union

of the supports, then
∫
W
||w||2dw = a < ∞. This is

reasonable as we would expect the noise from training
to be bounded; in fact in general we would only need
the integral outside a bounded domain to be finite, but
the reasoning is analogous to what follows and would
simply add an extra constant term. Now if say ||P′′(w)−
P
′(w)||2 < b for some scalar b for all w (i.e., b is a uniform

bound), we have:

v = ||E(P′′(w))− E(P′(w))||2
= ||

∫
W

P
′′(w)wdw−

∫
W

P
′(w)wdw||2

≤
∫
W

||P′′(w)− P
′(w)||2 · ||w||2dw

≤ ba (16)

and so in this sense we see reducing the max value of
||P(w)−P′(w)||2 gives a smaller bound on the expectation
of verification error v.

2. Additional Figures

In Figure 16, the change in weights and singular values
for varying strengths of the �2 regularization is shown.
Figure 15 and 14 are identical setups to Figure 9 and 12
but using amnesiac unlearning to produce the model M

′′
.

Figure 16. Change in weights and singular values during training for
different strengths of �2 regularization for ResNet-18 trained on CIFAR-
10

3. Additional Tables

In Table 3, the unlearning error and test accuracy for
the 4 setups as a function of the �2 regularization strength
and pretraining amount (in epochs) are shown. Table 4
shows a similiar experiment but with the proposed SD
regularization.
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TABLE 3. UNLEARNING ERROR AND TESTING ACCURACY FOR 4 DIFFERENT SETTINGS FOR VARYING REGULARIZATION STRENGTHS OF THE �2
REGULARIZER AND PRETRAINING AMOUNT COMPARED TO ZERO REGULARIZATION.

Pretrain Epochs Regularization ResNet-18 CIFAR-10 VGG-19 CIFAR-10 Regularization ResNet-18 CIFAR-100 VGG-19 CIFAR-100
CIFAR-10 Unlearning Error Accuracy (%) Unlearning Error Accuracy(%) CIFAR-100 Unlearning Error Accuracy(%) Unlearning Error Accuracy(%)

0

0.0 148.31 10.84 200.66 10.2 0.0 154.51 0.95 359.05 1.18
1e-05 145.44 10.68 174.23 10.87 1e-05 171.82 0.94 256.09 1.12
0.0001 164.48 8.78 165.01 10.53 0.0001 159.26 1.22 501.29 0.92
0.001 613.22 9.65 199.99 9.85 0.001 161.26 0.85 547.47 0.98
0.01 702.94 9.54 772.91 10.01 0.01 651.45 1.18 1162.51 1.0
0.1 2092.77 10.43 3980.42 10.52 0.1 854.97 1.11 3211.49 1.08

20

0.0 161.09 76.61 108.75 79.14 0.0 182.06 45.71 214.51 51.71
1e-05 174.62 75.98 116.3 79.98 1e-05 174.36 46.69 201.91 52.07
0.0001 142.46 76.94 141.75 79.51 0.0001 191.54 46.53 206.77 51.78
0.001 205.24 76.11 137.72 80.24 0.001 171.26 47.29 214.15 52.35
0.01 421.03 67.73 346.64 79.93 0.01 458.96 49.53 361.27 55.18
0.1 86.73 77.95 176.45 80.85 0.1 – 7.0 383.14 24.72

40

0.0 152.67 76.94 106.7 81.71 0.0 169.7 44.68 214.5 51.4
1e-05 176.08 76.71 111.17 82.5 1e-05 177.19 45.36 221.92 51.74
0.0001 162.47 76.13 – – 0.0001 201.82 45.89 225.43 52.91
0.001 159.88 76.18 122.83 82.48 0.001 235.74 46.37 228.98 53.58
0.01 189.76 71.75 224.72 80.93 0.01 265.38 45.76 271.12 60.22
0.1 101.32 81.28 182.46 75.73 0.1 361.16 5.4 290.84 20.5

TABLE 4. UNLEARNING ERROR AND TESTING ACCURACY FOR 4 DIFFERENT SETTINGS FOR VARYING REGULARIZATION STRENGTHS OF THE

STANDARD DEVIATION REGULARIZER AND PRETRAINING AMOUNT. NOTE t = 1 EPOCH HERE.

Pretrain Epochs Regularization ResNet-18 CIFAR-10 VGG-19 CIFAR-10 Regularization ResNet-18 CIFAR-100 VGG-19 CIFAR-100
CIFAR-10 Unlearning Error Accuracy (%) Unlearning Error Accuracy (%) CIFAR-100 Unlearning Error Accuracy (%) Unlearning Error Accuracy (%)

0

0.0 141.35 8.82 160.95 9.03 0.0 165.65 0.78 245.66 1.09
1.0 110.32 9.66 348.85 10.51 50.0 142.59 1.01 381.88 1.38
5.0 102.71 9.82 139.47 9.98 100.0 127.31 0.99 288.04 1.0
10.0 90.66 10.06 203.44 10.15 150.0 110.48 0.95 186.17 1.0
15.0 44.85 10.61 156.59 10.07 200.0 58.59 0.74 48.08 0.85
20.0 21.63 10.32 69.34 9.5 250.0 30.81 0.85 34.56 1.21

10

0.0 132.49 77.11 141.73 77.69 0.0 251.12 44.07 258.63 48.39
1.0 101.79 74.5 123.17 76.81 50.0 176.35 43.52 233.65 50.08
5.0 98.3 73.21 113.27 77.16 100.0 177.28 43.12 212.71 47.49
10.0 90.71 69.13 107.9 74.07 150.0 171.77 38.5 216.0 46.97
15.0 86.17 68.46 78.82 65.32 200.0 124.74 26.68 195.89 36.75
20.0 11.5 34.74 27.94 31.18 250.0 34.53 13.76 59.9 8.98

20

0.0 153.78 76.34 120.19 79.05 0.0 194.65 45.79 260.59 52.27
1.0 109.07 74.14 135.44 80.93 50.0 140.1 45.77 220.46 52.55
5.0 90.61 74.01 93.58 79.97 100.0 165.91 45.45 208.58 53.12
10.0 86.31 69.88 100.09 78.21 150.0 181.78 44.89 233.99 52.42
15.0 86.67 68.69 95.62 73.81 200.0 184.81 41.18 241.61 47.34
20.0 10.74 36.29 32.23 38.88 250.0 116.28 27.7 131.24 23.15

30

0.0 153.26 76.48 113.37 81.5 0.0 210.35 45.68 250.87 52.17
1.0 112.01 73.7 130.25 81.18 50.0 151.56 45.02 194.86 52.69
5.0 94.44 72.48 108.84 80.24 100.0 178.74 45.57 229.36 52.88
10.0 83.53 70.19 116.96 78.76 150.0 205.75 42.71 217.5 52.48
15.0 88.96 69.17 92.93 77.13 200.0 203.18 43.1 256.51 51.81
20.0 13.73 36.98 49.03 48.69 250.0 127.97 28.52 200.4 37.02

40

0.0 175.32 75.59 120.92 82.07 0.0 209.52 45.11 219.14 52.32
1.0 97.11 74.86 109.44 80.89 50.0 176.31 45.45 250.64 52.36
5.0 93.74 73.58 108.54 80.21 100.0 201.74 45.01 251.3 53.01

10.0 83.11 70.33 92.38 79.31 150.0 211.01 42.12 233.39 52.49
15.0 79.86 68.7 96.14 77.64 200.0 218.61 41.58 233.58 50.67
20.0 8.24 41.02 58.35 44.14 250.0 198.57 41.05 253.88 45.69

50

0.0 184.99 76.89 118.56 81.39 0.0 235.23 45.51 221.19 52.47
1.0 100.39 74.51 121.06 81.37 50.0 168.65 44.91 226.56 51.95
5.0 88.43 73.57 114.11 80.31 100.0 206.35 44.57 224.88 52.67
10.0 80.72 72.14 113.41 79.28 150.0 229.16 43.73 230.4 53.57
15.0 76.42 71.39 87.12 77.17 200.0 234.73 43.04 255.56 51.29
20.0 17.43 37.31 77.01 68.4 250.0 228.22 40.7 254.52 47.52

319

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 05,2024 at 04:22:13 UTC from IEEE Xplore.  Restrictions apply. 


