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Forward Prediction and Inverse Design of
Nanophotonic Devices Based on Capsule Network

Ruiyang Shi

Abstract—Deep neural networks have been successfully applied
to forward predicting optical response and inverse designing topo-
logical structure of nanophotonic devices. However, the existing
deep learning based methods need sufficient simulated data to train
the model effectively. For those devices with complex structures
that containing many design variables, obtaining enough training
data through numerical simulations will become extremely time-
consuming. In order to reduce the requirement of large amounts of
training data, we present a new deep learning approach based on
the Capsule Network in this paper. By employing the proposed
model, we have designed and verified a series of silicon-based
wavelength demultiplexer with more than one thousand design
variables. The numerical simulations validate that the trained
model can both effectively predict the optical response with a fixed
topological structure, and inverse design the approximate topologi-
cal structure for a needed given optical response. Comparison with
the classical convolutional neural networks show that our model
can obtain nearly the same performance when using only 60% of
the training data.

Index Terms—Capsule network, forward prediction, inverse
design, nanophotonic device.

1. INTRODUCTION

ANOPHOTONICS is devoted to the study of interac-
N tion between light and matter at subwavelength scale.
In the past few decades, nanophotonic devices have practi-
cally achieved a large scale of integration in many fields, in-
cluding optical switches [1], [2], programmable nanophotonic
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processors [3], all-optical memories [4], [5], photonic neural
network circuits [6], quantum photonic circuits [7] and other
photonic integrated circuits [8]-[10]. Although the field of
nanophotonics is developing rapidly, the design process is still
challenging. An complete designing scheme for nanophotonic
devices contains two major parts: forward prediction that outputs
the optical response given the structure, and inverse design
that outputs the structure from the required optical response.
During the design process, solving Maxwell equations itera-
tively is required, which is time-consuming and leads to low
efficiency [11]. The optimization-based methods [12], such as
genetic algorithms [13], direct binary search algorithms [14]-
[16], level set methods [17], adjoint methods [ 18], topology opti-
mization methods [19] and objective-first algorithms [20]—-[23],
can automatically design the device according to the objective
function and greatly improve the performance. However, they
usually take massive simulations before finding a reasonable de-
sign. These methods become too slow to bear as the complexity
of device increases.

In recent years, Deep Learning (DL) becomes more and
more popular [24]. It learns the internal patterns and mapping
relationships from the large amounts of training data, and can
get good generalization performance on the unseen test dataset.
As a one-time cost process, once the model is trained, the results
can be obtained quickly. As an alternative, DL based methods
are utilized to solve the forward prediction and inverse design
problem of nanophotonic devices [11], [25]-[28] nowadays.
For example, D. Liu et al. [26] used a Fully Connected Deep
Neural Network (FCDNN) architecture to design the thickness
parameter of a thin film consisting of alternating layers of SiO2
and SisNy. I. Malkiel et al. [27] constructed a bidirectional
FCDNN to design and characterize plasmonic nanostructure
with eight variables. J.Peurifoy et al. [28] exploited FCDNNs
to design the eight-shell nanoparticle made of alternating shells
of TiO5 and SiO5 with tens of dielectric shells. To deal with
complex structure, W. Ma ef al. [11] designed chiral meta-
material with five parameters using a two bidirectional neural
networks combined with FCDNNs and Convolutional Neural
Networks (CNNs). Noticing that DL has achieved success in
the device design with several to dozens of variables, in this
paper, we would exploit it to design the nanophotonic device
with more than a thousand variables. Specifically, we construct a
DL model to design the silicon-based wavelength demultiplexer
with 1,352 variables, which is based on digital metamateri-
als [12] and is one of the key components of photonic integrated
circuits.
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As the data-driven approach, the existing DL based methods
need a large number of data to train the model effectively.
When training data is insufficient, the performance of the DL
model would decline. However, generating substantial data often
involves high-cost simulations and requires significant amounts
of computational resources [26]. Taking the wavelength demul-
tiplexer we designed in this work as an example, producing one
single data needs to run for about 3 minutes on a server with
20 cores, 40 threads and 64 G memory, which is very expen-
sive. Therefore, how to tackle this problem is worth studying
and is important for designing complex nanophotonic devices.
Recently, the idea of generating training data iteratively during
the training process has emerged [29]-[31]. These models draw
lessons from generative adversarial network [32]. Specifically,
the device topology based on realistic design targets is con-
structed subsequently, and the true physical response of these
devices is calculated in another iteration of simulations. These
generated data are appended to the training data. The generator
is then trained again on the fresh training data and this process is
repeated. However, since the network training process is expen-
sive which needs to be repeated several iterations on generating
data [33], this kind of approach has the disadvantage of high
computational cost. For this purpose, we concentrate on design-
ing the DL model which needs relatively less data in this paper.

In deep neural networks, pooling, which originates from the
visual mechanism, is a basic operation to abstract information.
Although it brings many benefits, such as reducing information
redundancy, improving the scale and rotation invariance, and
preventing overfitting, it throws useful spatial information away
at the same time [34], [35]. Thus, the resulting networks need
more data to learn the intrinsic relationship between topology
and spectral response [36] for compensating the loss of spatial
information. To deal with this disadvantage, Hinton et al. pro-
posed the concept of capsule [34] in 2011 and Sabour et al.
first implemented the CapsNet [35] in 2017. Compared with
a traditional neuron, which uses a single scalar to summarize
the activities of feature detectors, a capsule is composed of a
group of neurons, and is encapsulated into a vector of highly
informative outputs [34]. For preserving the diversity of features,
the CapsNet abandons the pooling operation and exploits a
powerful dynamic routing mechanism instead to ensure that the
output of the capsule can be sent to an appropriate parent in the
layer above. These setups not only make the network require
less data for training, but also enhance the interpretability of the
model [35], [37]. Benefit from these superiorities, CapsNet has
received lots of attention [38]—[41], and has been widely applied
in many fields, including action detection [42], health care [43],
[44], sentiment analysis [45], text classification [46], etc. In this
work, we would apply CapsNet based DL model to forward
predict optical response and inverse design nanophotonic device
with thousands level design variables.

II. CAPSNET FOR THE DESIGN PROCESS OF NANOPHOTONIC
DEVICE

A. Silicon Based Wavelength Demultiplexer

The nanophotonic device we investigate in this pa-
per is the wavelength demultiplexer. It is designed on a
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silicon-on-insulator (SOI) wafer. The schematic of the device is
shown in Fig. 1. The SOI wafer has air cladding, 220 nm-thick
Si layer and 2 pm-thick buried oxide layer. The broadband
input light (fundamental TE mode) is launched from Port 1.
After passing through the design region, the output light will be
coupled out from Port 2 and Port 3. To ensure the fabricability
of the designed demultiplexer, the design region is divided into
26 x 52 = 1,352 square pixels with the sizes of 120 nm X
120 nm. The state of each pixel is binary, namely O or 1. When
the state of the pixel is 0, there will be a fully etched circle with
the radius of 45 nm in the middle of the pixel. Otherwise there
will be no etching. The simulated dataset is generated by the
direct-binary-search (DBS) optimization algorithm [14]. Each
data point in the dataset consists of the pixel matrix x and the
corresponding spectral response 75 of Port 2 and 75 of Port 3.
The spectral curve of each port is obtained by sampling 3000
points (from 1400 nm to 1700 nm). The states of 1,352 pixels
are determined by figure-of-merit (FOM), which is defined as:

FOM =1 — 0.5 (|1 — Ty, | + |1 — Ts.,]) - (1)

Here 15 ,, and T3, stand for the transmissions of Port 2 and
Port 3 at the target wavelengths of A; and Ao, respectively.

B. CapsNet Modeling Process

In this paper, we exploit CapsNet to assist forward prediction
and inverse design of wavelength demultiplexer. Specifically,
the CapsNet we used can be divided into a Rectified Linear Unit
(ReLU) convolutional layer, a Primary Capsule (PrimaryCaps)
layer and a Digital Capsule (DigitCaps) layer. We denote the
weight parameters of the first layer as W (1) € RC1xCoxKix Ky
the second layer as W(2) € Rd2xC2xCixKaxKa and the third
layer as W) ¢ RM2xMsxdsxdz \where (), K, are the di-
mensions of the ¢-th weight tensor along the filter and spa-
tial shape axes, respectively. d, is the dimension of each
capsule in the ¢-th layer. M, is the number of capsules in
the ¢-th layer. Here My = Co([(26 — K1 — Ko+ 1)/n] + 1)
(1(52 = K1 — K3+ 1)/n]| + 1). M3 is equal to the number of
categories in the specific task. Besides, the bias parameters are
denoted as b(") € R and b(?) € R4z,

In the forward modeling process, the spectral response needs
to be predicted according to the topology of the device. We
train the CapsNet with mean square loss to predict the spectral
transmission response vector, which is a two-dimensional vector
with 3000 components in each of two ports. The ReLU convo-
Iutional layer receives x as input to extract low-level features.
The obtained feature maps are sent to the next layer. A feature
map z(1) € RO *26-Ki+1)x(52-K1+1) s produced by:

1 _ 1 1
ZC1,i,j - f ({X ® ng?:,:,:}ij + b£1)>

Co K1 K4
=f(z 33 [w<]b<)

co=1p1=1p2=1
(2)

where f is the nonlinear activation, ® is the convolutional oper-
ation, ¢ € {1,...,Co},c1 € {1,...,C1}, and “:” represents all
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Schematic of the device. (a) Three-dimensional diagram. (b) Top view. (c) Front view. Fundamental TE mode is launched from Port 1, after passing

through the design region, the output light will be coupled out from Port 2 and Port 3.

subscripts for the specific dimension when it is used as subscripts
in index expressions alone.

Then, the PrimaryCaps layer takes z(") as input, and stacks
neurons together to form primary capsules. Compared with a
traditional neuron, a capsule consists of a group of neurons.
Instead of neurons that use a single scalar to summarize the
activities of feature detectors, the capsule is proposed to operate
some internal computations on their inputs and then encapsulates
the results into a vector of highly informative outputs. The
activities of the neurons within an active capsule represent the
various properties of a specific entity appeared in the input
image, including different types of instantiation parameters,
such as position, size, orientation, etc. Among them, the position
information of etching holes is the key for the task. The fact that
capsules can store position information is the main reason we
think that CapsNet is more suitable for nanophotonic device
design than traditional neural networks.

Since convolutional operation has good advantages in image
interpretation, and we would like to replicate learned knowledge
across space, the primary capsules are still convolutional. Specif-
ically, the PrimaryCaps layer is a convolutional capsule layer
with Cs channels of dy dimensional capsules (i.e. each primary
capsule contains dy convolutional units with a K5 x K kernel
and a stride of n). Each primary capsule captures the outputs
of all Cy x K7 x K units in ReLU convolutional layer whose
receptive fields overlap with the location of the center of the
capsule. For each convolutional unit, the feature map z(® can
be formulated as:

2
l(iC2’ 1,5 f <|: (1 ® W<(1 22,:,:,::| 4, + bg))
Cl Kg K2

2
Z Z Z [wcl»P1+7717P2+"7]ng’c)27cl7p17p2:| -‘rbg) s

c1=1p1=1pa=
(3)

where nis the stride size, co € {1,...,C2},andd € {1,...,d2}.
Compared with the former layer that generating a neuron, the
PrimaryCaps layer needs ds convolution units to obtain capsules
for each channel.

Algorithm 1: Dynamic Routing Algorithm.

I: procedure Routingﬁ(.il)’i), T

2: for all primary capsule ¢ and digital capsule j:
Q; 5 < 0
3: for r iterations do -
. . o _explaiy
4: for all primary capsule i: ¢; ; = S exp(afl 0

5: for all digital capsule j: s( ) > cmuﬁ)
6: for all digital capsule j: ul® = 1 57
' T ISP P
7 for all primary capsule 7 and digital capsule j:
;4 a5 + u(3) ”;zl?
8: end for
9: return ugg)

10: end procedure

The last layer is the DigitCaps layer with M35 class capsules.
Initially, each capsule is routed to all possible parents, and it
is scaled down by coupling coefficients that sum to 1. For
each possible parent, the routed capsule needs to compute a
“prediction vector” by multiplying its own output with the
corresponding transformation matrix. If the inner product of the
prediction vector and the output of a possible parent is large, the
dynamic routing mechanism will feed back this information to
the coupling coefficient from top to bottom, which increases the
coupling coefficient for this parent and decreases the coupling
coefficients for other parents. The dynamic routing mechanism
increases the contribution that the capsule makes to the parent,
and enables the capsules representing different attributes to be
clustered better. The dynamic routing process is given below.

In detail, we denote the coupling coefficients as ¢ € RM2*Ms
and the initial logits as a € RM2*Ms_ The capsule feature
map z® in the PrimaryCaps layer is first flattened to u(® =

[u§2), R uS\Z] € R%*Mz and capsules are represented as pose

vectors. Then, each pose vector of capsule 7 in u(® needs to

multiply a transformation matrix WE:?: . € R4z o obtain

(3)

the “prediction” vector ﬂj‘i corresponding to capsule j in the
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Forward and inverse modeling process of CapsNet for wavelength demultiplexer. For the forward modeling process, the device topology binary image is

the CapsNet model’s input and the spectral response of the device is the output. For the inverse modeling process, the spectral response is first reshaped. Then the
image-like response is the CapsNet model’s input and the topology binary image of the device is the output.

class capsule layer, namely

a® WO @, @

Wi = Wi
The product of a “prediction vector” and a coupling coefficient,
which represents the degree of relevance, is calculated to obtain
the prediction of capsule 7 to the corresponding higher-level
capsule j. Therefore, the input to capsule j will be

stV = Z cl,Jﬁﬁl . (5)

Finally, a “squashing” function

el
T

limits the vector length in the interval of [0,1). As for the update
rules of coupling coefficients ¢ and initial logits a, they are
implemented by the dynamic routing mechanism. The coupling
coefficients between capsule ¢ and all the capsules in the layer
above sum to 1 and are determined by

exp (a;,;

_ plog) ™
2ok exp (aik)

where the initial logits a; ; are the log prior probabilities that

capsule ¢ should be coupled to capsule j. Then, the initial

coupling coefficients are iteratively updated by measuring the
3

Ci,j

agreement between the current output u;™" of each capsule j

(3)

in the layer above and the prediction ﬁj‘i made by capsule 1.

The agreement is measured by the inner product ul?. ﬁ;‘l?,
which can be seen as a log likelihood and is added to a; ;
before computing the new values for the coupling coefficients
connecting capsule ¢ to the higher level capsule j.

In the inverse modeling process, the structure of the nanopho-
tonic device needs to be designed according to the targeted
spectral response. We use the spectral transmission response
as the input and the structure matrix as the label. It is solved as a
classification problem. Therefore, we use the cross entropy loss
to train the CapsNet model. We reshape the spectral response
vector with dimension (2,3000) to (2,60,50), and denote it as
y.y is fed to CapsNet and the model finally outputs the topol-
ogy structure of the devices. The purpose of this operation is
adapting to the feature extraction process and making the shape
of the feature map more uniform. In addition, we also segment
the transmission at different wavelengths, so that through the
feature extraction of “image” spectral curve, the model can find
the internal relationship between different transmission and the
corresponding device structure in a certain region. The overall
modeling process is shown in Fig. 2.

III. RESULTS AND DISCUSSION

In this section, we present the numerical simulations of both
forward prediction and inverse design process. First, we quan-
titatively compare the performance from multiple indicators of
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our CapsNet with two state-of-the-art CNN models. The results
show that the modeling process based on CapsNet has better
performance than that based on CNNs. Second, we train the
CapsNet on different percentage settings of the original training
set. From the results, we find that the CapsNet can achieve
similar performance of CNNs with only about 60% training data.
Third, to study the asymptotic convergence, we plot the training
curves of the relative loss. At last, to prove the feasibility of our
CapsNet based model, we randomly select some unseen cases
in the test set and compare the predicted results with the ground
truths. Specifically, we display the outcome of the CapsNet for
forward prediction of spectral response from the binary image,
and inverse designing the hole position from a given spectral
response.

Before presenting the details of our numerical simulations
and results, we first describe the specific architectures of the
CapsNet model.

e CapsNet model for forward prediction:

—ReLU convolutional layer: the kernel size (C; x Cy X
K1 x K1)is 32 x 1 x 9 x 9, the stride is 1;

—PrimaryCaps layer: the kernel size (Cy x C7 X Ko X
K5)is 8 x 32 x 9 x 9, the stride is 4, and the dimension
of capsules (d2) is 8;

—DigitCaps layer: the number of capsules (M3) is 2, and
the dimension of capsules (d3) is 3000.

e CapsNet model for inverse design:

—ReLU convolutional layer: the kernel size (C; x Cy X
K1 x Kq)is 32 x 2 x 9 x 9, the stride is 2;

—PrimaryCaps layer: the kernel size (Cy x C7 x Ko X
K5)is 32 x 32 x 9 x 9, the stride is 4, and the dimen-
sion of capsules (d2) is 16;

—DigitCaps layer: the number of capsules (M3) is 1352,
and the dimension of capsules (d3) is 1.

More details of the hyperparameters selection strategies for
CapsNet can be found in [35]. To compare the performance with
CNNs, we choose two popular CNN models AlexNet and VGG.
Considering that the capsules in CapsNet are more complex than
the neurons and CNNs are often deeper than CapsNet, to make
the comparisons as fair as possible, we require that the number
of parameters contained in the compared architectures should
be comparable. In detail, the specific architectures of AlexNet
and VGG we used in this paper are described as follows:
® AlexNet: It has eight layers, including five convolutional
layers and three fully connected layers. We set the
kernel size in each convolutional layers to 48 x 1 x 5 x
5,128 x 48 x 5 x 5,192 x 128 x 3 x 3,128 x 192 x 3
X 3,48 x 128 x 3 x 3, and the number of neurons in each
fully connected layers to 328, 192, 6000 (forwardly) and
164, 96, 1352 (inversely), respectively. The stride in each
convolutional layer is 1.

® VGG: We choose VGG8 with the first five convolu-
tional layers of VGG16 and three fully-connected lay-
ers. We set the kernel size in each convolutional lay-
ers to 64 X 1 x3x3,64x64x3x3,128x64 x 3 x
3,128 x 128 x 3 x 3,48 x 128 x 3 x 3, and the number
of neurons in each fully connected layers to 328, 192, 6000
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(forwardly) and 164,96, 1352 (inversely), respectively. The
stride in each convolutional layer is 1.

As for the dataset, we use the DBS optimization algorithm
to generate the dataset. The dataset contains 40000 data points.
We select 32000 input data for training and 8000 for testing. The
split ratio of training set and test set is 4: 1.

In order to quantitatively measure the fitting performance,
we introduce the goodness of fit. Goodness of fit of a regression
curve reflects how well it fits the observations [47]. The statistics
of goodness of fit is R2. More specifically, suppose {y; } are the
data points to be fitted, 7 is the mean of {y;}, and ¢, are the
predicted data points. R? is calculated by:

R2 — > (0 — g)z —1_ > (i — yz’)2 (8)
> Wi —9)

> (i — ?3)2 ’

Obviously, the closer its value is to 1, the better fitting degree
of the regression curve to the observed value. For the forward
and inverse modeling process, we list the value of R? in Table I.
It can be observed that when the training datasets are the same,
the performance of CapsNet is much better than the CNNs with
comparable number of parameters. Furthermore, we also find
that the CapsNet can obtain nearly the same performance when
using only 60% of the training data compared with VGG, the
better of the two CNNs. This fact illustrates the advantage of
CapsNet for saving training data, and demonstrates that the Cap-
sNet model is indeed an advanced model compared with CNNs.

In order to further visualize the error between the predicted
output and the target output, we plot the statistical histograms of
mean squared error (MSE) of the forward model and the inverse
model on the test set in Fig. 3. In detail, for each data point in the
test set, the MSE between the predicted spectral response curve
and the ground truth (or the targeted) spectral response curve
is first calculated. Then the number of data points according to
different intervals of MSE is counted. Finally, for each interval,
the number of data points and the median corresponding to each
interval are multiplied and summed together. Since the number
of data sample points in the test set is fixed, the total height of all
the intervals is constant. The better the fitting ability of a model
is, the more the number of sample points falls in the interval
with small MSE. Since the performance on VGG is better than
that on AlexNet, here we only set the MSE results of VGG
as baseline. From Fig. 3 and the reported results of weighted
sum MSE, we can see that the error of forward prediction and
inverse design based on CapsNet is smaller than that based on
VGG, which demonstrates again that the CapsNet has better
performance than CNNs. Although the advantage is limited, we
believe that in the design of complex nanophotonic devices using
DL approach, data saving is more practical than the substantial
improvement in the performance of the model. Since in the
process of designing complex nanophotonic device based on
neural networks, the use of large amounts of training data is the
main bottleneck restricting further developing of this kind of
approach. Our proposed CapsNet that can save a lot of training
data would have broad application prospects.

The relative loss curves for forward training and inverse
training are given in Fig. 4, from which we observe that our
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TABLE I
GOODNESS OF FIT COMPARISONS BETWEEN CNNS AND CAPSNETS MODEL FOR FORWARD AND INVERSE TASKS

Models Forward prediction Inverse design
Port 2 Port 3 Overall Port 2 Port 3 Overall
AlexNet 0.8941 0.8753 0.8847 0.8313 0.8512 0.8413
VGG 0.9006 0.8768 0.8887 0.8471 0.8496 0.8484
CapsNet 0.9442 0.9348 0.9395 0.9382 0.9656 0.9519
CapsNet (90% training data) 0.9373 0.9226 0.923 0.9184 0.8946 0.9065
CapsNet (80% training data) 0.9266 0.9213 0.924 0.8942 0.8986 0.8964
CapsNet (70% training data) 0.9121 0.9135 0.9128 0.8773 0.8866 0.8821
CapsNet (60% training data) 0.9045 0.9011 0.9028 0.8632 0.8695 0.8664
CapsNet (50% training data) 0.8926 0.8851 0.8889 0.8479 0.8434 0.8457

The best results are highlighted in bold face.
(a) (b)
M [ CapsNet M [0 CapsNet
2500 i = VGG 2500 = VGG

2000 ‘ CapsNet weighted_sum MSE=176.78 ‘

1500 [ VGG weighted_sum MsE=180.44 |

Count

1000
500

il mmmmmmm

2000 [ capsnet weighted sum MsE=178.99 |

1500 [ VGG weighted_sum msE=183.48 |

Count

1000

Ll

500

| Mo =
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
MSE MSE
MSE histogram of the forward model MSE histogram of the inverse model
Fig. 3. MSE histograms of the forward model and the inverse model.
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Fig. 4. Relative loss curves for forward training and inverse training.

model can be trained effectively and converge well. The visu-
alizations based on CapsNet modeling process are displayed
in Figs. 5 and 6. From Fig. 5, we observe that the model can
predict transmission spectra quite accurately, which proves the
feasibility of CapsNet to solve the forward prediction task. From
Fig. 6, we find that the CapsNet model can indeed capture some
local position information. For example, we can see that the
overall device structures, especially the top right corner of the
first two ground truth devices and inverse designed devices are
quite similar. Consequently, their transmission curves fit well,
which demonstrates that the CapsNet can inverse design the
nanophotonic devices effectively.

In addition, we also observe an interesting phenomenon from
the numerical results in this section. Since inverse design is
naturally difficult to forward prediction, the effect of the inverse
model is worse than that of forward model for almost all the
existing approaches, which is also applicable to CNNs and our
CapsNet. However, taking the performance of CNN model as

Transmission (dB)
o
a

1400 1450 1500 1550 1600 1400 1450

Wavelength (nm)

1650 1700 1500 1550 1600

Wavelength (nm)

1650 1700

Fig. 5. Comparisons of CapsNet predicted spectral response to the nu-
merically simulated spectral responses on four randomly chosen wavelength
demultiplexers.

the benchmark, we are glad to find that the improvement of
our new method in inverse design is more obvious than that in
forward prediction. For example, in Fig. 3, the value of weighted
sum MSE for the forward task is lower than the inverse task,
and there are more devices from the orange bars in the low
error region (0.00 - 0.01) of the leftmost two columns in (a).
Similarly, the inverse modeling process converges slower than
the forward process as shown in Fig. 4. This is because the
process of inverse designing can make better use of the powerful
location information and spatial information capture ability of
CapsNet.
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Fig. 6.
demultiplexers.

IV. CONCLUSION

In recent years, DL based approach has been applied to
the modeling process of nanophotonic devices prediction and
designing. Fast forward approximation of spectral response with
DL models and DL aided inverse design can be regarded as an al-
ternative to typical numerical methods. Excellent performances
based on DL approaches have been reported recently. However,
producing the training data of complex devices is a computa-
tionally heavy process. If the training data is insufficient, the
performance of the DL model would decline. Thus, to reduce
the requirement of training data, we utilize CapsNet model
to assist forward prediction and inverse design of wavelength
demultiplexer in this paper. Extensive numerical results are pre-
sented to validate the performance of our CapsNet model. The
quantitative comparisons show that our CapsNet model performs
better than CNNs in both forward prediction and inverse design
problem, and can save approximately 40% training data. From
the loss curves of training and the visualization outcomes, we
observe that our CapsNet model has good generalization power
under a huge design space. Besides, benefiting from the good
generalization power of the CapsNet, the proposed DL method
can also be applied to forward prediction and inverse design of
other components of PICs, including power splitter, polarization
beam splitter, mode demultiplexer and so on.
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