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ABSTRACT The traditional A* algorithm has several problems in practical applications, such as many path
turning points, redundant nodes, and long running time. it is sometimes impossible to plan the theoretical
optimal route. To solve the above problem, this paper presents an optimized A* algorithm, the adaptive
adjustment step algorithm and the three-time Bezier curve are used to solve the problems of many turning
points, large turning angles, and long running time in the search path. Moreover, aiming at the path planning
problem of mobile robots facing dynamic obstacle interference in complex environments, an algorithm that
integrates the improved A* algorithm with the dynamic window method is proposed, which not only solves
the shortcomings of the A* algorithm in which the dynamic obstacles cannot be avoided, but also prevents
the mobile robot from falling into local optimization. The results show that the fusion algorithm of the
improved A* algorithm and the dynamic window method with the traditional A* algorithm reduces the
number of turns by 50% and the path length by 3.62% compared with the original algorithm. In the same
environment, compared with the traditional algorithm, the hybrid algorithm in this paper reduces the average
time consumption by 10.27%, the number of path inflection points by 57.14%, and the accuracy is higher

than 33.33%, which is more effective in complex dynamic environments.

INDEX TERMS Path planning, hybrid algorithms, improved A* algorithm, improved DWA.

I. INTRODUCTION

In recent years, mobile robots have received widespread
attention from all over the world, and because of their
autonomous and flexible characteristics, they are widely used
in many important fields such as national defense science and
technology, industrial manufacturing, life services, medical
and health. With the continuous popularization of mobile
robots, path planning problems have become the primary
problems that need to be solved urgently, and the driving
efficiency of robots and whether the travel route is optimal
will seriously affect the walking of robots [1]-[3].
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According to the different working environments where
path planning is applicable, there are global static path plan-
ning and local dynamic path planning, of which global static
path planning is only suitable for solving the path plan-
ning problem of moving robots in the static environment
known for the obstacles in the surrounding environment,
and the common methods are the Dijkstra algorithm, fast
random tree search algorithm, A* algorithm [4], [5], etc.;
local dynamic path planning solves the path planning problem
of mobile robots known in the environment within a range.
The dynamic window approach, the ant colony algorithm,
and other methods are common. Among them, Dijkstra is a
breadth-first search algorithm. The search mode is relatively
simple, although it can achieve global path planning; in the
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case of a more complex environment, the algorithm calculates
more nodes, occupies more memory, the search is slow and
inefficient, and it is difficult to plan a smooth and safe optimal
path in a short period of time [6]. The fast random tree search
algorithm is a sample-based search algorithm that has fast
search speed and strong ability and occupies an important
position in high-dimensional environments, but the search
accuracy of the algorithm is low, the path smoothness is
poor, and it is difficult to plan the optimal path [7]. The
standard A* algorithm is based on the Dijkstra algorithm to
introduce heuristic functions. Through the evaluation of the
node generation value, the optimal path is finally planned.
Because of its fast calculation speed, path optimization and
other advantages, it is widely used in global path planning.

A vast number of experts have researched the classic A*
algorithm because of its flaws, such as too many inflection
points and node redundancy [8]-[10]. The heuristic func-
tion of the standard A* algorithm is improved by using
the Manhattan distance-Euclidean distance hybrid method,
which improves the search efficiency and saves search
time [11]. The two-way algorithm is used to search in
both positive and negative directions at the same time to
improve the search efficiency [12]. The dynamic window
method is a local dynamic path planning algorithm. The
path is relatively smooth, but it is easy to fall into the local
optimal, and it is impossible to reach the target position
according to the global optimal path [13]-[15]. The ant
colony algorithm is robust and easy to combine with other
algorithms, but converges slowly and takes longer search
times [16]-[18].

In the face of complex and dynamic environments, relying
only on the A* algorithm is not enough. The task cannot
be completed with a single global or local path planning.
Considering the advantages and disadvantages of these algo-
rithms, global path planning and local path planning are
combined. The literature [19]-[22] proposes that a hybrid
algorithm combining the A* algorithm and the artificial
potential field method realizes the path planning problem
in the dynamic environment, but the artificial potential field
method cannot better plan the local optimal path, which
reduces the overall efficiency [23], [24]. Farhad Bayat deals
with the mobile robot path planning problem in the pres-
ence of scattered obstacles in a visually known environment.
So it is practical and can be applied to static and dynamic
environments [25].

None of the above algorithms can solve the problems
of traditional A* algorithm and dynamic window method
programming path inflection, low smoothness, and easy
fall into local optimization. Therefore, this paper proposes
an improved A* and dynamic window approach method
fusion algorithm, using the improved A* algorithm to plan
the global path, and then combining it with the improved
dynamic window method to complete the local path plan-
ning, to achieve real-time dynamic obstacle avoidance, and
finally plan the safe trajectory with optimal path and high
smoothness.
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Il. ENVIRONMENT MODEL DESCRIPTION

A. RASTER MODELING

Create an environment model in route planning using a grid
method that divides the environment space into equal, con-
tinuous, disjoint grids of a defined granularity. According to
the actual environmental information in the route planning,
the grids are set as free and occupied, where the free grid is
represented by white and the occupied grid is represented by
black. The coordinate origin is chosen in the lower left corner
of the two-dimensional plane Cartesian coordinate system;
the horizontal axis of the grid is represented by the x-axis,
and the values are incremented sequentially from left to right;
the vertical axis is represented by the y-axis, the values are
incremented sequentially from bottom to top, and the specific
location of each raster in the raster map is represented by

pxi, i), (,j=1,2,3,---- -, n).
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FIGURE 1. Environment model raster.

B. THE RASTER GRAIN SIZE IS DETERMINED

The basic element of the grid method is that the grid granular-
ity is the smallest. If the grid particles are too small, the path
search process will be more difficult, consume a lot of com-
puting resources and time, and will not achieve the expected
goal; if the grid particles are too large, the environment model
will be different from the real environment. The path search
algorithm will be unable to avoid obstacles or even finish
the desired path planning if it is too vast. Therefore, grid
granularity is extremely important for environmental model
establishment and path planning.

Ill. A* ALGORITHM IMPROVEMENTS

A. TRADITIONAL A* ALGORITHM

The A* algorithm is a heuristic path exploration algorithm
that enables global path planning, inherits the principles of
the classic Dijkstra algorithm and the BFS algorithm, and
improves the shortcomings of slower search speeds. The A*
algorithm sets the evaluation function, searches around from
the starting point, selects the node with the smallest total
generation value as the next extension node, and stops the
search until the end point, completing the search for the
optimal path. The cost function is

f(n) = g(n) + h(n) ey
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where: n represents the current node; f (n) is the cost function
of the current node; g(n) is the actual generation value of the
mobile robot from the current node to the target node n; h(n) is
the estimated generation value that will be consumed from the
current node to the target node. Common methods of calculat-
ing generation value are Manhattan distance, Euclidean dis-
tance, and Chebyshev distance. This article selects Euclidean
distance as the h(n) cost function, and its calculation formula
is expressed as

h(n) = [ — xm)* + (n — ym)212 )

where: (x,, y,) represents the current path node coordinates,
(xm, ym) represents the target node coordinates.

The following is a simple proof of the convergence optimal
point of the A* algorithm.

Assumption: The secondary advantage G is a node gen-
erated in the open table, n is a node (it is the node with the
closest distance to the optimal point G).

Proof:

f(G2) = g(G2)
8(G2) > g(G)
f(G) =g(G)
f(G2) > f(G)
h(n) < h*(n)

because h(Gy) = 0;

because G is the secondary advantage;
because h(G) = 0;

from the above;

basic requirement;

gn) + h(n) < g(n) + h*(n)
fn) < f(G)

Remark: 1f there is an optimal point, then the A* algorithm
will always find the optimal point first.

| +
4——¢——> - —>
+ ;

a) Four-neighborhood search b) Eight neighborhood searches

FIGURE 2. Environment model raster.

The traditional A* algorithm mainly searches for four
domains, as shown in Figure 2a, and Eight Neighborhood
Search as shown in Figure 2b, and the search neighbor-
hood indicates the direction in which the robot can move.
In Figure 2, the gray dot represents the current node position
of the robot, and the solid arrow represents the robot’s search
direction. Use four neighborhoods to search for 7 /2 corners
per turn and eight neighborhoods to search for 7 /4 corners
per turn. When there are more search neighborhoods, the
direction of the search becomes more important, and the
overall length of the planned path is smaller, but the search
is less efficient.
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The flow chart of the A* algorithm in the actual path search
process is shown in Figure 3. Traditional A* algorithms are
confined to finding a single optimal path from beginning
to end by first splitting the surrounding search space into
measurable nodes. The A* algorithm creates two lists when
executed; the open list and the closed list. Unexpanded nodes
are placed in the open list, and expanded nodes are stored
in the closed list. When adding a node to the Open list, it is
added directly to the end, regardless of the value. On each
expansion, the sizes of all the nodes in the Open list are
compared; the node with the smallest value is obtained; the
node with the smallest value is removed from it and added
to the Close list. If these nodes are not in the Open list, add
them all to the Open list and choose the smallest node as
the current node, in which case continue searching for the
remaining nodes. If these extended nodes are in the Open list,
use the current node as the parent node, use the cost function
to evaluate, recalculate the value, loop the above steps until
the target is found, and finally arrange the nodes in the Open
list in reverse order to get the optimal path.

Create Open list, add node S, create
Closed list, leave empty

Select the node n with
smallest f(n) in the Open list

[ Addto the Closed List |

Yes
—| Add to the Closed List

Reverse search for
the preceding node

Obtain subs of all
subsequent nodes of n

Generate the optimal path l

Extracta node sub from subs l

Solve for the length of the
path from » to sub

Sub is in the Open
list or Closed list?

Yes

No

Yes
Delete history sub

FIGURE 3. A* algorithm flowchart.

Solve sub nodes
[(sub)=G(sub)+h(sub)

B. ADAPTIVE ADJUSTMENT STEP SIZE ALGORITHM
In the A* algorithm, the step length is one of the important
parameters affecting the mobile robot, and the fixed step
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size makes the mobile robot have defects such as low safety
performance, poor obstacle avoidance effect and insufficient
flexibility. Therefore, this paper proposes an adaptive adjust-
ment step algorithm, when there are more obstacles in the
surrounding environment, reducing the step size increases
the number of nodes per search, and the search path is safer
and more detailed; when there are fewer obstacles in the
surrounding environment, increasing the step size speeds up
and improves the efficiency of search. According to the dis-
tribution of obstacles, the step size is automatically adjusted
to enhance the flexibility of the robot.

The distribution of obstacles in the surrounding environ-
ment is split into two groups when considering the elements
impacting step size: whether they are dynamic barriers or not,
and the quantity and position distribution of obstacles within
a specific range.

FIGURE 4. Robot movement direction and obstacle threat weight diagram.

In Figure 4, the robot uses eight-neighborhood search, and
the trolley model replaces the mobile robot, which has eight
directions of motion. The number of static obstacles in the
dark red area in the figure is x1, the number of static obstacles
in the light red area is x», the number of dynamic obstacles
in the direction of motion is d, and the closer to the trolley
model, the greater the threat of obstacles in the area to the
mobile robot, so the threat function f(x1, x2) is defined as:
; d=0
kix1 +koxo + ¢ 3
1 d#0

fGi,x) =

where: k1, k> represents the threat factor of a static obstacle, ¢
represents a self-adjusting constant, k1 € (1, 2), k2 € (0.5, 1),
¢ € (0, 1). Then the adaptive adjustment step is
| = S, x2) lmax d =0 (4)
S, x2) Imin d#0
where: Inin <! < lnax, Imin = 0.1m, [pax = 0.2m.

Figures 5 and 6 show the path planning results using the tra-
ditional A* algorithm and the adaptive adjustment step algo-
rithm respectively. Table 1 shows the differences in elapsed
time, number of nodes, elapsed time reduction rate, and node
reduction rate before and after the method was improved.

We can see from these two graphs that the enhanced A*
algorithm significantly decreases the number of search nodes.
The path before and after the algorithm improvement is stud-
ied using the running time, number of nodes, and running
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time reduction rate as performance indicators to further vali-
date the effect of the adaptive adjustment step length method.
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FIGURE 5. Path planning results of the traditional A* algorithm.
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FIGURE 6. Path planning results of adaptive adjustment step algorithm.

TABLE 1. Comparison of performance indicators before and after
algorithm optimization.

The Elz}psed Node
Parameter Number of time .
elapsed - reduction
names . nodes reduction
time rate
rate
111 *
Tradmo.nal A 07295 18 . .
algorithm
Adaptive
regulation step  0.632s 14 13.31% 33.3%
algorithm

The performance indices of the traditional A* algorithm
and the adaptive step-size adjustment technique are compared
in Table 1. The improved algorithm decreases the number of
nodes by 33.3% and the running time by 13.31%, resulting in
better operational efficiency.

C. ARC OPTIMIZATION

The traditional A* algorithm has many path inflection points,
which makes it difficult for the robot to walk, and also poses
a huge challenge to the load of the motor. In order to satisfy
the nonholonomic constraints of mobile robots, it is necessary
to smooth the motion trajectory. The trajectory smoothing
process can reduce the frequency and amplitude of motor
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start and stop, and thus increase the service life and safety of
the robot. Therefore, this paper uses the cubic Bezier curve
to optimize the trajectory and compare it with the original

trajectory curve.
P /\Pz

Po P
FIGURE 7. Cubic Bezier curves.

The Bezier curve is mainly applied to the smooth pro-
cessing of two-dimensional plane line segments, as shown
in Figure 7. The figure is composed of P;(i = 0,1,2,3)
four nodes and connecting line segments between them, and
Py is the starting point, P3 is the end point, and P; is the
control point. Taking B(#) to represent the coordinates at time
t € [0, 1], the cubic Bezier curve formula is:

B(t) = (1 — 1)°Py + 3t(1 — 1)>P; + 3t>(1 — )Py + 12 P3

)
20 Original path ——— Bessel curve
I

15

10

5

0

0 5 10 15 20

FIGURE 8. Bezier curve path optimization path diagram.

Figure 8 shows the Bezier curve smoothing the entire
path, and the peaks at the corners are optimized to ensure
the robot travels smoothly during the operation. The total
steering angle and path length are significantly lower than
the traditional curve, reducing the loss of the motor and
avoiding the unbalance of the robot itself. and satisfy the
motion constraints of the mobile robot.

IV. IMPROVED DYNAMIC WINDOW APPROACH METHOD
At present, most robots perceive the surrounding environ-
ment based on multi-sensor fusion technology, such as depth
camera and laser radar, and then use local path planning
algorithms to complete tasks such as avoiding obstacles and
chasing dynamic targets according to the obtained informa-
tion. The traditional dynamic window algorithm lacks the
guidance of global path planning, and can only plan the paths
of obstacles in the environment in real time. However, in a
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multi-obstacle environment, the robot will fall into narrow
channel oscillation due to the lack of guidance from global
planning, resulting in a larger global path and being unable to
quickly plan the optimal path.

Dynamic Window Approach (DWA) is a velocity-based
local planner that transforms the path planning problem into
a constrained optimization problem in velocity vector space.
The purpose of the dynamic window method is to sample
multiple sets of data in a two-dimensional space and simulate
the trajectory of the robot at this speed. To finish the local
route planning, the ideal trajectory speed is chosen using the
designed evaluation function.

FIGURE 9. Schematic diagram of DWA method.

DWA is shown in Figure 9, model robot, obstacles in grey
rectangle represent environment, each curve is forecast to get
multiple sets of line trajectory, dotted line means the robot’s
trajectory and obstacle collision will occur, so the path is
not the optimal trajectory, selection of the optimal trajectory
only requires evaluating the rest of the track, and finally, the
evaluation function’s optimal safety trajectory is selected.

A. KINEMATIC MODEL

In order to avoid obstacles in real time, the velocity of the
robot must be sampled in space to simulate its trajectory.
Generally speaking, the motion state of the robot is mea-
sured by the linear velocity and angular velocity. Suppose
the velocity of the robot per unit time is (v;, @), and then
select the optimal trajectory from all the trajectory through
the evaluation function. Within a unit time At interval, the
arc-shaped trajectory can be regarded as a linear motion, and
the kinematic model is:

X =X+ vy Atcost, — vyArsing,
y =Y+ vy Atsint, — vyAt cos 6, (6)
9; = 9; + Cl)tAt
Define the pose q = [x,y, 6, qb]T of the robot in the envi-
ronment, input its own linear velocity and angular velocity

u = [v, w]”. The schematic diagram and parameters of the
model are shown in Figure 10 and Table 2.
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FIGURE 10. Mobile robot kinematics model.
TABLE 2. Parameters and meanings.
Parameter Meaning

v Line speed
@ Front wheel angular velocity
u Input (including v, @)
q Pose
o Angle between the longitudinal and x axis
@ Front wheel steering angle
L Body length

According to the geometric relationship, the angular veloc-
ity can be obtained 0:

. t
6= a2¢v %
SO
[cos(®) O]
sin(@) O
B=| tang 0 u ®)
L
0 1
In more detail:
cos(@) O
¥ sin@@) 0
y v 9)
0 tan ¢ 0 |:w:| (
) L
0 1

B. SPEED SAMPLING
There are infinite groups (v, @) of robots in the velocity space,
and the range of sampling velocity is constrained according
to the actual situation.

The speed constraint of the robot under the influence of
motor performance is:

vi = {(v, ®)|V € [Vmin, Vmax], ® € [@min, ©®max]}  (10)
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The speed range that can be achieved under the acceler-
ation of the robot under the limitation of the motor driving
force is:

vg ={(v, o)lv € [ve — aqgAt, ve + aq At],
w € [we — agAt, o +agAt]}  (11)

where: v, @, indicates the current linear velocity and angular
velocity of the robot; a4, ag indicates the upper and lower
limits of linear acceleration of the robot; «,, s indicates the
upper and lower limits of angular acceleration of the robot.

When performing local path planning, the robot must
maintain a safe distance to protect its own safety. As a result,
the robot must come to a halt before colliding with the
obstruction; when the speed is decreased to zero, the speed
space is:

Vo = {(v, w)|v < [2dist(v, w)aq]"/?,
o < [2dist(v, w)ag)'/?} (12)

where: dist(v, w) indicates the nearest distance between the
robot and the obstacle.

C. EVALUATION FUNCTION

In the local path planning of the robot, there are several
sampling velocities available in the velocity space, so it
is necessary to design an evaluation function to select the
optimal trajectory. The parameters considered are azimuth,
velocity and distance respectively. The designed evaluation
function is:

Gv,w) =ola - head(v, w) + B - stob(v, w)
46 - dyob(v, w) + y - velo(v, w)] (13)

where, head (v, o) represents the azimuth evaluation function
of the robot, and represents the angular deviation between
the end direction of the current simulated trajectory and
the global path; stob(v, @) represents the vertical distance
between the current simulated trajectory and the static obsta-
cle; dyob(v, w) represents the vertical distance between the
current simulated trajectory and the dynamic obstacle; Eval-
uation function velo(v, w) representing the current simulation
speed; o is smoothing coefficient, and «, 8, 8, y are four-
term weighting coefficients. Finally, the trajectory with the
G(v, w) smallest value is taken as the optimal trajectory.

In order to meet the requirements of trajectory smoothness,
head(v, w), stob(v, w), dyob(v, w), velo(v, w) needs to be nor-
malized and then added. That is, each item is divided by the
sum of each item:

. head (i)
normal_head (i) = ———— (14)
> head (i)
i=1
normal_stob(i) = :H)A (15)
> stob(i)

i=1

57741



IEEE Access

Y. Li et al.: Mobile Robot Path Planning Algorithm Based on Improved A* Algorithm

normal_dyob(i) = ndyoA (16)
Y dyob(i)
i=1

normal_velo(i) = nvel& (17)
> velo(i)

i=1

where, n is all the sampled trajectory points, i is the cur-
rent trajectory point to be evaluated. The four weights of
the objective function G(v, w) are all necessary and finally
normalized. By continuously adjusting the weight coefficient
and maximizing the objective function G(v, w), the robot can
avoid obstacles at the fastest speed under the constraints, and
at the same time move towards the target position. Although
the obstacle avoidance performance of the DWA algorithm
depends on the weighting parameter «, 8, §, ¥, the algorithm
is still stable even if the value of the weighting parameter
changes slightly. We found that «, 8, §, y values of 0.7, 0.7,
0.1 and 0.1 worked well. A higher weight of the target head-
ing parameter makes the robot very close to the obstacle.
Choose appropriate parameters according to the environment.
In limited barrier situations, a greater target heading weight
is preferable, while in a large environment, a lower target
heading weight may be preferable.

D. DWA SIMULATION VERIFICATION

The robot will encounter different types of obstacles in the
path search, namely static obstacles and dynamic obstacles.
In order to verify the robot path planning in response to
the effectiveness of the dynamic obstacles, the simulation
in MATLAB R2020a validation, grids are built environment
setting, starting point and goal, respectively, in the presence of
dynamic obstacles in both cases the influence of simulation,
and compare the results, verify the algorithm on the merit of
trying to avoid dynamic obstacles.

Figure 11 shows the algorithm simulation diagram of
DWA. The starting point is (1,1) and the ending point is (9,9).
The robot avoids all static obstacles and reaches the goal
location to finish the simulation of the static environment
when the environment is packed with static obstacles. When
a dynamic obstacle appears in the environment and is located
on the originally planned path, the robot will change its
original trajectory. The robot successfully avoids the dynamic
impediment and reaches the target spot, as indicated by the
solid blue line in the picture.

When carrying out local path planning, DWA can complete
the avoidance of dynamic and static barriers, but it is simple
to fall into local optimum and fail to reach the goal location.
As shown in Figure 12, when the starting point is set as (1,0)
and the end point is set as (10,10), it is easy to choose to go
around from the left when using the DWA algorithm. At this
time, it just falls into the local minimum point, resulting in
path planning failure and failure to reach the target point. This
is because when the robot is carrying out local path planning,
it only deals with the information of surrounding obstacles
each time and lacks the concept of global path planning. As a
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FIGURE 11. DWA algorithm simulation diagram.

result, it reaches a dead end of impediments, resulting in path
planning failure and failure to reach the target site.

1
O Obstacles
O start o o o o
8 #*  Target o o o
— Path
[n] [n]
6k o o o o o
§ o
4 o o o o
[n] =]
2 o o o o o
[n] & [n] [n]
0 1 1 1 1 1
2 0 2 4 6 8 10
x/m

FIGURE 12. DWA algorithm falls into local optimum.

V. HYBRID ALGORITHM

According to the above analysis, robot path planning should
consider the interference of dynamic obstacles as well as
static obstacles. The global path planning of the A* algo-
rithm only considers static obstacles in the surrounding envi-
ronment and does not consider the influence of dynamic
obstacles, which may lead to collisions between robots and
dynamic obstacles. However, the local path planning of the
DWA algorithm only considers the obstacles in the surround-
ing environment without the awareness of global path plan-
ning, which results in the robot falling into the local optimal
and failing to reach the target point. To solve this problem,
the proposed fusion algorithm combining the improved A*
algorithm and the DWA algorithm can not only ensure the
avoidance of obstacles but also ensure the smoothness and
optimality of path planning.

As shown in Figure 13, the improved A * algorithm and
DWA algorithm combined with a mixture of path planning
system design, mainly includes global path planning and
local path planning of two parts, using the improved A *
algorithm for global path planning, and then according to
the surrounding environment sensors information to update
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FIGURE 13. Hybrid algorithm planning diagram.

the local maps, combined with planning out the global path
generation of target. The DWA method is then utilized to
complete local motion path planning, allowing the robot
to avoid dynamic impediments, reach the local goal point,
update the route continuously, and eventually reach the target
location.

Target

Next local

Globally
planned path

target point

[pom=—a
e,

N,
Local path,
planning

4
! \
] ]
' [
H §  Lastlocal
\ ',l target point

\
RS

\“~--_-"\———\
Start

FIGURE 14. Schematic diagram of local target point.

g

The temporary goal points of each stage of the optimized
dynamic window technique are retrieved from the key points
of the global path planned by the enhanced A* algorithm.
The combination of the improved A* algorithm and the DWA
algorithm can solve the defects of their respective algorithms
and avoid dynamic obstacles effectively in real time while
completing the global path planning. As shown in Figure 14,
the local path planning algorithm combined with the global
path generates the local target point, and the global target
point is finally reached after the continuous update of the last
local target point and the next local target point. The fusion
algorithm not only ensures the optimal global path, but also
ensures good obstacle avoidance and movement effects in
local planning.

In order to verify the feasibility and effectiveness of the
path planning of the above mixed algorithm, The local
optimum state of the DWA algorithm is straightforward to
achieve. The simulation conditions are the same, and related
simulations are performed. The starting point is still set to
(1, 0), and the end point is set (10, 10). The orange path in the
figure is the global path planning track by using the traditional
A * algorithm. On this basis, the DWA algorithm is integrated,
the search results of the mixing algorithm are the red path in
the figure. The final result is shown in Figure 15.
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FIGURE 15. Path simulation diagram of hybrid algorithm.
TABLE 3. Performance comparison of each algorithm.
. Number of Avmq Path
Algorithm type . . Smooth dynamic
turning points obstacles length /m
— =
Traditional A 8 No No 14.07
algorithm
*
fmproved A 6 Yes No 11.92
algorithm
DWA algorithm - Yes Yes arljsé d
Hybrid algorithm 4 Yes Yes 13.56

As shown in Figure 15, compared with the traditional
A* algorithm, the fusion algorithm in this paper avoids the
occurrence of long routes and excessive turning angles. Fur-
thermore, as shown in Table 3, the improved hybrid method
decreases the number of turns by 50% and the path length by
3.62% to the traditional A* algorithm, improving planning
efficiency.

The hybrid algorithm’s trajectory may be seen above.
A smooth curve, the combined advantage of the two, not
only solves the A* algorithm’s inability to avoid dynamic
obstacles, but also compensates for the DWA algorithm’s
inability to fall into the most optimal defects in local path
planning, allowing the track to meet the motor and angle to
the smoothness of the constraint conditions.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the effectiveness of the fusion algorithm
proposed in this paper, the robot operating system (ROS) was
used for verification. The experimental environment was a
64-bit Ubuntu 18.04 operating system with 4GB of mem-
ory, and the experimental platform was ROS(Melodic). The
starting point of path planning was (1,0) and the target point
position was (17,15). In Figure 16, the green arrow represents
the position and direction of the starting point, and the red
arrow represents the position and direction of the target point.
The traditional A* algorithm’s path involves several turn-
ing sections and large turning degrees, resulting in increased
path redundancy and a severe reduction in the motor’s oper-
ating efficiency and life, which is detrimental to the mobile
robot walking.
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FIGURE 16. Traditional A* path planning under ROS.

The realization results of the fusion algorithm in ROS in
this paper are shown in Figure 17. The red line represents
global path planning, the green line represents local path
planning, and the blue area represents the expansion layer
of the obstacle. The path planning process of a mobile robot
in the initial, intermediate and final stages is described in
the figure respectively. The robot avoids impediments in the
general direction of global route planning, as well as local
path planning, in order to complete the navigation assignment
as rapidly as feasible.

By using the fusion algorithm proposed in this paper, the
path smoothness is guaranteed, the redundant points and the
turning angle are reduced effectively, and the smoothness and
length of the path are optimized.

Considering that the mobile robot may encounter interfer-
ence from dynamic obstacles when walking, dynamic obsta-
cles are added to the path planned by the fusion algorithm, and
the path planned by the mobile robot is shown in Figure 18.
The figure describes the path planning process of the mobile
robot in the beginning, end and middle to avoid obstacles.
The blue circles and bar squares in the figure replace dynamic
obstacles. Due to the limited size of the picture, the box
selects the local details of the mobile robot walking along the
path, and the local zoom is displayed in the lower right corner
of the picture.

As can be seen from Figure 18, the mobile robot will move
forward along the previous path before encountering dynamic
obstacles. When there are dynamic impediments in the way,
the mobile robot will use radar location to take emergency
obstacle avoidance to escape the dynamic obstacles, allowing
the mobile robot to complete its local path planning.

The experiment used the mobile robot which is shown in
Figure 19 as the test object. This mobile robot has multiple
sensors, such as an inertial measurement unit (IMU), lidar,
camera and coded geared motor. It also has four 45-degree
mecanum wheels with rollers. The experimental environment
is a rectangular area of 8 m x 10 m. The obstacles in the
area are three rectangular blocks of 0.3 m x 1 m that are
randomly placed in the field. The master and slave connection
are configured in the experiment, and the Raspberry Pi on
the mobile robot is used as the host, and the Cartographers
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FIGURE 17. Fusion algorithm path planning in ROS.

algorithm is used to build a raster map of the experimental
scene.

Table 4 lists the selection of some main hardware equip-
ment and parameters in the design process of the mobile
robot. The selection of parameters determines the perfor-
mance of the algorithm to some extent.

The scanning angle of the lidar is selected from 0-360°,
which is more conducive to quickly obtaining information
about the surrounding environment and obstacles; the min-
imum scanning distance dpyin = 0.15m, the maximum scan-
ning distance dmax = 12m, the selected scanning distance
range are more suitable for the experimental environment of
this paper.

The choice of camera will affect the mobile robot’s ability
to perceive the environment. The better the resolution, frame
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FIGURE 18. Path planning under dynamic obstacles.

rate and detection range of the main parameters, the better.
However, considering the experimental cost, the details of the

VOLUME 10, 2022

FIGURE 19. Laboratory equipment and experimental site.

TABLE 4. Hardware equipment and its main parameters.

Hardware .
equipment Main parameter or type
. Scan angle: 0-360°
Lidar Scan distance:0.15-12m
Resolution:320x240(16bits)
Camera Fps: 30
Detection scope:0.8-6.0m
IMU MPU9250
Raspberry Pi Raspberry Pi 3b+

parameters selected in the table have fully met the experimen-
tal requirements of this paper. IMU is a device that measures
the three-axis angular velocity and acceleration of an object.
Angular velocity and acceleration are important parameters
for kinematic modeling, and they are also the basic param-
eters of the algorithm in this paper. The accuracy of the
data will greatly affect the performance of the algorithm.
The Raspberry Pi is a small single-board computer with the
Ubuntu 18.04 (ROS melodic) operating system installed.

Fig. 20(b, c) shows the mobile robot in the face of a
complex obstacle, using its own sensor for state estimation,
at the same time using the AMCL localization algorithm and
mixing to complete the autonomous navigation of the mobile
robot path planning algorithm.

Considering that the mobile robot may encounter the
interference of dynamic obstacles when walking, dynamic
obstacles are added to the path planned by the fusion algo-
rithm. The mobile robot moves forward along the previous
path before encountering dynamic obstacles. When there
are dynamic obstacles in the path, the mobile robot will
rely on radar to locate emergency obstacles and bypass the
dynamic obstacles. The experimental results are shown in
Figure 20(d).

The experimental results are shown in Table 5. We can infer
that the suggested hybrid method can successfully complete
path planning based on the smoothness of the experimental
site. The initial marching and navigation will undoubtedly
influence the mobile robot, but this will have no effect on the
ultimate path planning and obstacle avoidance procedure.

Table 5 shows that under the same environment, the hybrid
algorithm in this paper reduces the average time consumption
by 10.27%, the number of path inflection points by 57.14%,
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FIGURE 20. Experimental environment and algorithm path planning.

TABLE 5. Comparison of traditional and hybrid algorithms.

Lo . Traditional Hybrid
Navigation results (10 times) algorithms algorithms
Experimental site area 80m’ 80m?

Average elapsed time 55.42s 49.73s
Path turning point 7 3
Average error at the end point 3cm 2 cm

and the accuracy is higher than 33.33% compared with the
traditional algorithm. The results further verify the superior-
ity of the fusion algorithm, which has good applicability and
security for real and complex dynamic environments, and can
timely and reliably avoid new dynamic obstacles in the path,
and has the function of dynamic obstacle avoidance.

VII. CONCLUSION

The traditional A* method is improved in this paper: we
employ an adaptive modifying step size algorithm and a cubic
Bezier curve to handle the concerns of too many turning
points and too big turning angles in the search route, reducing
run time and increasing robot motion efficiency.

The global path planning system based on the A* algorithm
and the Bezier curve in this article evaluates the effects of
weights, optimizes the corners of the produced task path, and
smooths the path using the Bezier curve.

Based on the improvement of A*, the hybrid path planning
algorithm is proposed in this paper. It integrates the DWA
algorithm for real-time obstacle avoidance, which compen-
sates for the poor timeliness of the A* algorithm. The optimal
path is planned by combining the global path-related informa-
tion to realize the optimization of route length, smoothness
and safety performance.
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By comparing the simulation experiments, the real-time,
validity and security of the proposed fusion algorithm of
improved A* and DWA are verified. In the future, robot path
planning algorithms will be studied in multi-fields and multi-
scenes, and the path planning of mobile robots in multi-task
complex scenes will be further explored by combining deep
learning and machine vision.

ACKNOWLEDGMENT

The authors would like to thank the editors and the anony-
mous reviewers whose insightful comments have helped to
improve the quality of this paper considerably.

REFERENCES

[1] J. Han and Y. Seo, “Mobile robot path planning with surrounding point
set and path improvement,” Appl. Soft Comput., vol. 57, pp.35-47,
Aug. 2017, doi: 10.1016/j.as0c.2017.03.035.

[2] Y. Wang, X. Liang, B. Li, and X. Yu, “Research and implementation of
global path planning for unmanned surface vehicle based on electronic
chart,” in Recent Developments in Mechatronics and Intelligent Robotics,
vol. 690, F. Qiao, S. Patnaik, and J. Wang, Eds. Cham, Switzerland:
Springer, 2018, pp. 534-539, doi: 10.1007/978-3-319-65978-7_80.

[3] X. Zhao, Z. Wang, C. K. Huang, and Y. W. Zhao, “Path planning for
mobile robot based on improved A* algorithm,” Robot, vol. 40, no. 6,
pp. 903-910, 2018, doi: 10.13973/j.cnki.robot.170591.

[4] S. Y. Duan, Q. F. Wang, X. Han, and G. R. Liu, “A* path optimization
method with ensuring safe distance,” J. Mech. Eng., vol. 56, no. 18,
pp. 205-215, 2020.

[5] X.Lai, J. Li, and J. Chambers, ‘“Enhanced center constraint weighted A*
algorithm for path planning of petrochemical inspection robot,” J. Intell.
Robotic Syst., vol. 102, no. 4, p. 78, Aug. 2021, doi: 10.1007/s10846-021-
01437-8.

[6] X. Shi, H. Liu, Y. Li, B. Zhu, and J. Liang, “Location planning of field

ammunition depot for multi-stage supply based on dijstra algorithm,”

J. Phys., Conf. Ser., vol. 2068, no. 1, Oct. 2021, Art. no. 012015, doi:

10.1088/1742-6596/2068/1/012015.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach

to single-query path planning,” in Proc. ICRA Millennium Conf. IEEE

Int. Conf. Robot. Automat. Symposia, Apr. 2000, pp.995-1001, doi:

10.1109/ROBOT.2000.844730.

L. Zhang and Y. Li, “Mobile robot path planning algorithm based on

improved a star,” J. Phys., Conf. Ser, vol. 1848, no. 1, Apr. 2021,

Art. no. 012013, doi: 10.1088/1742-6596/1848/1/012013.

[9] H. Min, X. Xiong, P. Wang, and Y. Yu, “Autonomous driving path plan-
ning algorithm based on improved A* algorithm in unstructured environ-
ment,” Proc. Inst. Mech. Eng., D, J. Automobile Eng., vol. 235, nos. 2-3,
pp. 513-526, Feb. 2021, doi: 10.1177/0954407020959741.

[10] X. L. Ma and H. Mei, “Global path planning for mobile robots based
on bidirectional hop search algorithm,” Mech. Sci. Technol. Aerosp.
Eng., vol. 39, no. 10, pp. 1624-1631, 2020, doi: 10.13433/j.cnki.1003-
8728.20190342.

[11] W. Wei, P. Dong, and F. Zhang, “The shortest path planning for mobile
robots using improved A* algorithm,” J. Comput. Appl., vol. 38, no. 5,
p. 1523, 2018.

[12] W. R. Du, X. Y. Wang, F. K. Jia, Z. Zheng, and H. Y. Li, “Research on
path planning algorithm of unknown environment based on multi-layer
bidirectional A*,” Comput. Appl. Softw., vol. 36, no. 12, pp. 261-267,
2019.

[13] C. Henkel, A. Bubeck, and W. Xu, “Energy efficient dynamic win-
dow approach for local path planning in mobile service robotics**this
work was conducted at the university of Auckland, Auckland, New
Zealand,” IFAC-PapersOnLine, vol. 49, no. 15, pp. 32-37, 2016, doi:
10.1016/j.ifacol.2016.07.610.

[14] Y. Zhang, J. Z. Song, and Q. Q. Zhang, “Local path planning for outdoor
cleaning robot based on improved dynamic window method,” Robot,
vol. 42, no. 5, pp. 617-625, 2020, doi: 10.13973/j.cnki.robot.190649.

[15] J. H. Zhang, Q. Feng, A. D. Zhao, W. He, and X. Hao, “Local path plan-
ning of mobile robot based on self-adaptive dynamic window approach,”
J. Phys., Conf. Ser., vol. 1905, no. 1, May 2021, Art. no. 012019, doi:
10.1088/1742-6596/1905/1/012019.

17

—

(8

—

VOLUME 10, 2022


http://dx.doi.org/10.1016/j.asoc.2017.03.035
http://dx.doi.org/10.1007/978-3-319-65978-7_80
http://dx.doi.org/10.13973/j.cnki.robot.170591
http://dx.doi.org/10.1007/s10846-021-01437-8
http://dx.doi.org/10.1007/s10846-021-01437-8
http://dx.doi.org/10.1088/1742-6596/2068/1/012015
http://dx.doi.org/10.1109/ROBOT.2000.844730
http://dx.doi.org/10.1088/1742-6596/1848/1/012013
http://dx.doi.org/10.1177/0954407020959741
http://dx.doi.org/10.13433/j.cnki.1003-8728.20190342
http://dx.doi.org/10.13433/j.cnki.1003-8728.20190342
http://dx.doi.org/10.1016/j.ifacol.2016.07.610
http://dx.doi.org/10.13973/j.cnki.robot.190649
http://dx.doi.org/10.1088/1742-6596/1905/1/012019

Y. Li et al.: Mobile Robot Path Planning Algorithm Based on Improved A* Algorithm

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Cao, “Robot global path planning based on an improved ant colony
algorithm,” J. Comput. Commun., vol. 4, no. 2, pp. 11-19, 2016, doi:
10.4236/JCC.2016.42002.

H. B. Wang, C. Hao, P. Zhang, M. Q. Zhang, P. H. Yin, and Y. S. Zhang,
“Path planning for mobile robot based on A* algorithm and artificial
potential field method,” China Mech. Eng., vol. 30, no. 20, pp. 2489-2496,
2019.

B. Curto, V. Moreno, and F. J. Blanco, “A general method for C-space
evaluation and its application to articulated robots,” IEEE Trans. Robot.
Autom., vol. 18, no. 1, pp. 24-31, Feb. 2002., doi: 10.1109/70.988971.

T. T. Mac, C. Copot, D. T. Tran, and R. D. Keyser, “A hierarchical global
path planning approach for mobile robots based on multi-objective particle
swarm optimization,” Appl. Soft Comput., vol. 59, pp. 68-76, Oct. 2017,
doi: 10.1016/j.as0¢.2017.05.012.

L. Yu, D. Kong, X. Shao, and X. Yan, “A path planning and navigation
control system design for driverless electric bus,” IEEE Access, vol. 6,
pp- 53960-53975, 2018, doi: 10.1109/ACCESS.2018.2868339.

J. Liu, J. Yang, H. Liu, X. Tian, and M. Gao, “An improved ant
colony algorithm for robot path planning,” Soft Comput., vol. 21, no. 19,
pp. 5829-5839, Oct. 2017, doi: 10.1007/s00500-016-2161-7.

M. Seder and I. Petrovic, “Dynamic window based approach to
mobile robot motion control in the presence of moving obstacles,” in
Proc. IEEE Int. Conf. Robot. Autom., Apr. 2007, pp. 1986-1991, doi:
10.1109/ROBOT.2007.363613.

M. Nieuwenhuisen and S. Behnke, “Layered mission and path planning
for MAV navigation with partial environment knowledge,” in Intelligent
Autonomous Systems, vol. 302, E. Menegatti, N. Michael, K. Berns, and
H. Yamaguchi, Eds. Cham, Switzerland: Springer, 2016, pp. 307-319, doi:
10.1007/978-3-319-08338-4_23.

C. Xu, L. Hua, and F. Jiyou, “Research on robot random obstacle avoid-
ance method based on fusion of improved A* algorithm and dynamic
window method,” Tech. Rep., Mar. 2021, pp. 132-140, vol. 42, doi:
10.19650/j.cnki.cjsi.J2007064.

F. Bayat, S. Najafinia, and M. Aliyari, “Mobile robots path planning: Elec-
trostatic potential field approach,” Expert Syst. Appl., vol. 100, pp. 6878,
Jun. 2018, doi: 10.1016/j.eswa.2018.01.050.

YONGGANG LI received the bachelor’s degree
from the Anhui University of Technology, China,
in 2020, where he is currently pursuing the Ph.D.
degree with the School of Mechanical Engineer-
ing. His research interests include autonomous
navigation, path planning, and machine vision.

RENCAI JIN is currently a Senior Engineer and
an Off-Campus Tutor for full-time Professional
degree graduate students with the Anhui Uni-
versity of Technology. He is mainly responsi-
ble for the company’s technological innovation,
engineering quality, building informatization, met-
allurgical national team steelmaking engineering
construction research institute, national enterprise
technology center, national postdoctoral worksta-
tion, construction industrialization, and intelligent
construction.

VOLUME 10, 2022

XIANGRONG XU (Member, IEEE) is currently
a Professor with the School of Mechanical Engi-
neering, Anhui University of Technology, Anhui,
China. He completed his postdoctoral research
with Purdue University, IN, USA, in 2001,
where he worked as a Researcher Associate,
from 2001 to 2002. Since 2002, he has been work-
ing as a Researcher with Florida State University,
Tallahassee, FL, USA. He has over 100 papers
published in international journals and conference

proceedings. His research interests include robotics, aerial robot, mechanical
design, and biomechanics.

YUANDI QIAN is currently pursuing the Ph.D.
degree. He is currently a Senior Engineer and a
National First-Class Construction Engineer. He is
also the Leader of Company’s Green Building
Materials and Intelligent Construction Technol-
ogy, the Innovation Leader of the “Special Sup-
port Plan” in Anhui, a member of the Organizing
Committee of the ICBTE International Academic
Conference, a member of the National Technical
Standard Innovation Base (Construction Engineer-

ing) Prefabricated Building Professional Committee, and an International
Standard Registration Expert.

=F

R i’ papers in international and national journals.

HAIYAN WANG received the master’s degree in
management science and engineering from the
Anhui University of Technology, in 2012. She
is currently a Lecturer with Maanshan Univer-
sity. Her research interests include supply chain
management and health services and management.
In 2020, she was the Principal Investigator of the
Top Talent Project of Anhui Province, China.

SHANSHAN XU received the B.S. degree in nurs-
ing from Florida State University, Tallahassee,
USA, in 2011. She is currently a Teacher with the
School of Osaka Medical Engineering, Maanshan
University. Her research interests include rehabil-
itation robot and bio-medical robot.

ZHIXIONG WANG is currently a Professor with
the School of Medicine, Osaka University, Japan.
He is mainly engaged in research in the field of
biomedical engineering. He has presided over and
participated in 13 national and provincial research
projects, four of which won provincial awards.
He has published 39 influential monographs and

57747


http://dx.doi.org/10.4236/JCC.2016.42002
http://dx.doi.org/10.1109/70.988971
http://dx.doi.org/10.1016/j.asoc.2017.05.012
http://dx.doi.org/10.1109/ACCESS.2018.2868339
http://dx.doi.org/10.1007/s00500-016-2161-7
http://dx.doi.org/10.1109/ROBOT.2007.363613
http://dx.doi.org/10.1007/978-3-319-08338-4_23
http://dx.doi.org/10.19650/j.cnki.cjsi.J2007064
http://dx.doi.org/10.1016/j.eswa.2018.01.050

