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Abstract— The berth allocation problem (BAP) is an NP-hard
problem in maritime traffic scheduling that significantly influ-
ences the operational efficiency of the container terminal. This
paper formulates the BAP as a permutation-based combinatorial
optimization problem and proposes an improved ant colony
system (ACS) algorithm to solve it. The proposed ACS has
three main contributions. First, an adaptive heuristic informa-
tion (AHI) mechanism is proposed to help ACS handle the
discrete and real-time difficulties of BAP. Second, to relieve the
computational burden, a divide-and-conquer strategy based on
variable-range receding horizon control (vRHC) is designed to
divide the complete BAP into a set of sub-BAPs. Third, a partial
solution memory (PSM) mechanism is proposed to accelerate
the ACS convergence process in each receding horizon (i.e.,
each sub-BAP). The proposed algorithm is termed as adaptive
ACS (AACS) with vRHC strategy and PSM mechanism. The
performance of the AACS is comprehensively tested on a set of
test cases with different scales. Experimental results show that
the effectiveness and robustness of AACS are generally better
than the compared state-of-the-art algorithms, including the
well-performing adaptive evolutionary algorithm and ant colony
optimization algorithm. Moreover, comprehensive investigations
are conducted to evaluate the influences of the AHI mechanism,
the vRHC strategy, and the PSM mechanism on the performance
of the AACS algorithm.
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I. INTRODUCTION

THE globalization of the world economy has stimulated
the rapid increase in import and export volumes of cargo

and resulted in the development of the international logistics
industry. Maritime transport is a vital link in the global logis-
tics supply chain [1]. The United Nations Conference on Trade
and Development indicates that approximately 80% of goods
of international trade are carried by sea, and this figure is even
higher among developing countries [2]. Container terminals
are one of the critical components of the maritime transport
system. Considering the ever-increasing demand for maritime
transport, increases in container terminals’ operational effi-
ciency and productivity are in great need. Directly expanding
the scale of container terminals or increasing the terminal
resources is considered an unrealistic option because of natural
and economic constraints. Instead, it is highly preferred to
improve the operational efficiency of container terminal by
reasonably allocating and scheduling existing resources. Since
berths are a bottleneck resource in container terminal, berth
allocation plays an essential role in operational efficiency.

Therefore, this paper studies the berth allocation prob-
lem (BAP) and proposes an efficient algorithm to allocate
berthing berth and berthing time for each vessel. According
to the actual situation of berths and vessels, BAP models can
be categorized into four types: continuous BAP, discrete BAP,
dynamic BAP, and static BAP. In a continuous BAP case, the
container terminal is a whole platform, and multiple vessels
can be berthed at a time. In a discrete BAP case, the container
terminal is divided into several berths (i.e., multi-berth), and
each berth serves only one vessel at a time. In the dynamic
BAP case, vessels arrive at the container terminal at any time.
However, in the static BAP case, the allocation is conducted
after all vessels have arrived at the container terminal, which
therefore incurs more management costs and requires a larger
waiting area to berth all vessels. In addition, a continuous
berth can be divided into several discrete berths according to
the loading and unloading equipment of the container terminal.
Therefore, this paper focuses on the discrete and dynamic BAP.
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Fig. 1. Example of different vessels’ berthing modes.

For the discrete dynamic BAP, various formulations to
model the problem have been proposed. For instance, the
minimization of the total cost was used as the objective
in [3]. In [4], since the handling speed of each berth was
different, minimizing the total service time which included
all vessels’ waiting time and handling time was used as an
objective to evaluate the berth allocation plan. Minimization
of the port penalty cost as the optimization objective was
proposed in [5]. As environmental issues are taken seriously,
carbon dioxide emissions costs due to container handling
have also been used to assess berth allocation plans in [6].
Furthermore, in addition to berths, some recent studies also
considered to schedule and allocate other resources at the
container terminal, such as ship-to-ship cranes [7], quay
cranes [8], yard cranes [9], containers [10], vehicles [11], and
labor [12]. The availability of these equipment resources is a
key factor in determining the speed of loading and unloading.
In practice, the allocation of these equipment resources is
usually the same at every discrete berth. Among the above
existing BAP models, the waiting time of the vessel plays
a key role in the objective function of each BAP model.
Therefore, the minimization of total waiting time (TWT) is
adopted as the optimization objective of our BAP model.

The BAP can be regarded as a kind of permutation-based
combinatorial optimization problem, which is known to be
NP-hard [13], [14]. A solution of the BAP is a permutation
containing the berthing time and berthing berth of all vessels.
Different berths and different berthing sequences will both
affect the performance quality of the solution (i.e., the fit-
ness value). For example, Fig. 1 shows the BAP case with
three vessels and two discrete berths. Because the loading
and unloading time (LUT) of vessel 1 is longer than that of
vessel 2, the TWT can be reduced by berthing vessel 3 at
berth 2 rather than at berth 1.

As an important branch of BAP research, many efforts
on algorithm research have been conducted. A straightfor-
ward method to solve this problem is the first come first
served (FCFS) approach. However, FCFS always obtains a
fixed permutation with a poor objective value TWT [15].
In most cases, the LUT required for each vessel is different. If a
vessel with a larger LUT value berths first, other vessels that
berth later than this vessel will have a longer total waiting time.
Therefore, instead of FCFS, various meta-heuristic algorithms
have been proposed to solve the BAP. Cordeau et al. [16]

presented two tabu search heuristics for solving the discrete
BAP and the continuous BAP separately. Oliveira et al. [17]
proposed a clustering search method in which a meta-heuristic
simulated annealing was applied to generate BAP solutions.
Furthermore, two simulated annealing variants improved by
the restart strategy were proposed to solve the dynamic BAP
in [18]. In addition, genetic algorithm (GA) and its variants,
which are population-based meta-heuristics, have also been
used for solving BAP [19], [20]. Dulebenets [19] proposed a
novel evolutionary algorithm with an adaptive mechanism to
solve BAP. The adaptive mechanism was a parameter control
strategy developed for the mutation operator, in which the
mutation rate was updated based on feedback from the search.
Golias et al. [20] presented a GA-based heuristic was used
to solve the discrete and dynamic BSP for the minimiza-
tion of the total waiting and delayed departure time for all
vessels.

Swarm intelligence algorithms are a class of meta-heuristic
algorithms that imitate the foraging behavior of animals,
which have also been utilized to solve the BAP, such as
particle swarm optimization [21], artificial fish swarm opti-
mization [22], and ant colony optimization (ACO) [23], [24].
However, the ACO variant proposed in [23] mainly focused
on the continuous BAP, which was unsuitable for the discrete
BAP. In [24], a greedy mechanism was used in ACO to help
choose the berth that first became idle, which was suitable
for the discrete BAP. Moreover, by using such a greedy
algorithm, it is easy to become trapped in local optima.
Therefore, to overcome the above drawbacks, we propose
to use an ant colony system (ACS) algorithm to solve the
discrete BAP. As an efficient and widely-used ACO variant,
ACS has more extensive population diversity and better
problem-solving ability [25]. ACS has been widely used in
various discrete combinatorial optimization problems, such
as the traveling salesman problem (TSP) [25], supply chain
management [26], cloud computing resource scheduling [27],
[28], aircraft arrival sequencing and scheduling problem
[29], workflow scheduling [30], and the new energy vehicle
dispatch problem [31]. Based on the above, the ACS has
enormous potential for solving the discrete BAP efficiently.

However, as the scale of the BAP increases, the com-
putational burden of ACS for solving BAP also increases
significantly. Receding horizon control (RHC) is a strategy
to assist decision feedback, in which a large-scale problem is
divided into smaller ones to reduce the computational burden
and improve computational efficiency [32]. As a divide-and-
conquer strategy, RHC has been applied to solve or help solve
various optimization problems. In [33], the RHC strategy was
integrated into a GA to solve the multiairport capacity manage-
ment problem. Zhan et al. [29] applied the RHC to divide the
arrival aircraft into different receding horizon regions to help
the ACS schedule the sequencing more efficiently. Inspired
by the application of RHC in the combinatorial optimization
problem, we introduce the RHC strategy to improve ACS for
solving the BAP. Note that, to avoid the situation in which
some aircraft will be missed when the receding horizon moves
processes, the basic information of these aircraft is modified
in [29]. For example, the predicted arrival time of those aircraft
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that are not scheduled in the current horizon will be modified
to ensure that these aircraft will be considered in the following
horizons. However, when we consider multi-berth BAP in
this paper, we think it is not a good idea to modify the
vessels’ basic information (e.g., the predicted arrival time).
Changing the predicted arrival time of a vessel may make this
vessel unsuitable for some berths. Therefore, different from
the modification of the predicted arrival time used in [29],
an improved RHC strategy is proposed to ensure that no
vessels are missed when the receding horizon moves forward.

In view of the characteristics of BAP, which is multi-berth,
real-time, and multi-constrained, we propose three improve-
ment strategies for ACS to efficiently solve the BAP, which
are outlined as follows:

1) We propose an adaptive ACS (AACS) to solve the BAP
for higher solution accuracy. As the multi-berth feature
is considered in our BAP model, the AACS adopts
an adaptive heuristics information (AHI) mechanism to
update the heuristics values based on feedback from berth
information and vessel arrival time.

2) To meet the real-time requirements of BAP, a variable-
range RHC (vRHC) strategy is proposed to cooper-
ate with AACS to address the BAP as several smaller
sub-BAPs to enhance computational efficiency. The time
intervals of allocation windows in receding horizons are
adjusted according to the arrival time of vessels so that
every vessel can be considered in a certain horizon.

3) A partial solution memory (PSM) mechanism is proposed
for AACS to accelerate the convergence speed in the
optimization process of the next receding horizon. The
memory mechanism adjusts the initial individuals accord-
ing to the best solution of the previous receding horizon.

The rest of this paper is organized as follows. Section II
provides a detailed description of the BAP and gives the math-
ematical definition of the BAP. The proposed AACS based
on AHI, vRHC, and PSM is then given in Section III. Fur-
thermore, Section IV introduces how to generate experimental
instances, which is followed by the analysis of experimental
results. Finally, Section V concludes this paper and provides
a discussion on future works.

II. PROBLEM DESCRIPTION AND FORMULATION

A. Problem Description

In this paper, the BAP model is a single-user model. The
single-user refers to a shipping company that schedules all
the vessels. Therefore, the different waiting times for each
vessel can be tolerated. A vessel with an earlier arrival time
is sometimes the last vessel to berth. This situation does not
affect the satisfaction of the vessels because they all belong
to the same company. Table I summarizes the notations and
definitions of the BAP model including some sets, known vari-
ables, auxiliary parameters, vRHC parameters, and objective
parameters. Some of the important symbols of the BAP model
are detailed described as follows.

Firstly, the set V = {1, . . . , n} denotes a set of vessels
arriving at the container terminal and n denotes the number of
vessels. All vessels belong to the same shipping company. Let

TABLE I

LIST OF MATHEMATICAL SYMBOLS

B = {1, . . . , m} be a set of available discrete berths, where m
denotes the number of berths that this shipping company can
use on the terminal (i.e., the number of berths offered to the
shipping company by the terminal manager). In addition, it is
assumed that all berths meet the draft and the length of all
vessels (i.e., any vessel can be served at any provided berth).

Secondly, the predicted arrival time PATv is the accu-
rate arrival port time for vessel v provided by the shipping
company. Uncertain circumstances, such as the vessel being
delayed to the terminal due to adverse weather conditions or
other factors, are not considered in this model. The loading
and unloading time LUTv is a known condition that is provided
by the shipping company. The number of quay cranes at
every berth is fixed, and quay cranes always maintain a stable
handling rate for vessel service. The handling rate is the
same at each berth. The number of cargoes to be loaded and
unloaded for each vessel is known, it is easy to calculate the
vessel loading and unloading time LUTv at the berth according
to these known conditions. Moreover, the BAP model does not
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consider the distance from berths to yards, which is another
factor of the vessel’s processing time.

Thirdly, some auxiliary parameters are described as follows.
When vessel v arrives at the terminal, if its assigned berthing
berth ABBv is now serving another vessel, vessel v will wait
at the waiting area (such as vessel 3 and vessel 4 in Fig. S.1
in the supplementary material). The waiting time of vessel v
in the waiting area will be added to the total vessels’ waiting
time TWT. In another situation, when vessel v arrives at the
container terminal and the assigned berthing berth ABBv is
idle, the assigned berthing time (ABT) of vessel v is ABTv =
PATv . When the loading and unloading service is finished, the
vessel should leave the berth immediately. Fragments of time
(which may be caused by the vessel that is towed from the
waiting area to its assigned berth, time of quay crane startup,
or operating time of vessel departure from berth) are ignored
in this paper. Also, we define the berth stopped operating time
(BSTb) and the berthing sequence (Sv

b ) as auxiliary variables.
BSTb denotes the stopped operating time of berth b, and its
initial value is set to 0. Sv

b denotes the berthing sequence index
of vessel v on berth b. For instance, Sv1

b1 = 1 means that vessel
v1 is the first vessel at the berth b1 sequence. Sv3

b2 − Sv2
b2 = 1

means that the next berthing vessel of vessel v2 is vessel v3
at berth b2.

B. Objective Formulation

The objective of the BAP model is to find a berth schedule
that minimizes the TWT. The berth schedule includes ABTv

and ABBv of all vessels that need to be served in BAP.
A minimum TWT implies a minimum total operation time
of all vessels. The metric of the TWT emphasizes the best
utilization of berths and the maximum throughput of the
container terminal.

The BAP model can be formulated as:
min f =min T W T

=min
�

b∈B

�
v∈V

(ABT v − P AT v ) · xvb

(1)

subject to :
�

b∈B
xvb = 1, ∀v ∈ V (2)�

v∈V
xvb ≤ 1, ∀b ∈ B (3)

ABT v ≥ P AT v , ∀v ∈ V (4)

xvb ∈ {0, 1} , ∀v ∈ V ,∀b ∈ B (5)

Equation (1) is the objective function of the BAP that
minimizes the total vessels’ waiting time TWT. Constraint (2)
indicates that each vessel must be served only once at one
of any berths. Constraint (3) ensures that only one vessel can
be served at a given berth at a time. Constraint (4) guaran-
tees that vessels are served after their arrivals. Constraint (5)
shows decision variables xvb of the BAP model. The assigned
berthing time ABTv of Equation (1) for each vessel to be
served at berth b (b ∈ B) is calculated by

ABT v =
�

P AT v , if Sv
AB Bv

= 1

max
�

P AT v , BST AB Bv�
�
, otherwise

(6)

where vessels v and v � satisfy:
AB Bv � = AB Bv = b, v � ∈ V , v ∈ V , b ∈ B (7)�
Sv

AB Bv

�− �
Sv �

AB Bv�

	
= 1, v � ∈ V , v ∈ V (8)

BST AB Bv� = ABT v � + LU T v �, v � ∈ V (9)

0 < Sv
b ≤ m ∀v ∈ V , ∀b ∈ B (10)

AB Bv ∈ B ∀v ∈ V (11)

Equation (6) calculates the value of assigned berthing time
ABT v . When vessel v is the first moored at the same berth b,
ABTv = PATv . Otherwise, the value of ABT v is the maximum
value between PATv and BST AB Bv� . Constraint (7) indicates
that vessel v � and vessel v choose the same berth b. Con-
straint (8) guarantees that vessel v � is the previous vessel that
is berthed at berth b before vessel v. Constraint (9) calculates
the BST AB Bv , of vessel v � choosing berth AB Bv � , which is
a recursive formula. The value of BST AB Bv� is related to
all vessels that are moored at berth AB Bv � before vessel v.
In general, when vessel v arrives at the port and the selected
berth AB Bv � is idle, vessel v will be moored immediately.
If vessel v � is operating at berth AB Bv � , vessel v needs to
wait until the loading and unloading operation of vessel v �
is completed. Constraints (10) and (11) define the respective
domains of the variables in the BAP model.

III. THE AACS ALGORITHM

This section introduces the proposed AACS algorithm with
the AHI mechanism, the vRHC strategy, and the PSM mech-
anism to solve the BAP.

A. vRHC Strategy

The proposed vRHC is a divide-and-conquer strategy. The
BAP is divided into several smaller sub-BAPs by receding
horizon. In the K th receding horizon, the AACS is used to
solve the sub-BAP to obtain a partial solution. Then, the
optimization process repeats for the (K+1)th sub-BAP until a
complete solution for the BAP is built. The relevant parameters
of vRHC are defined in Table I.

The first step of the vRHC strategy is to find all vessels in
the current sub-BAP (i.e., the K th receding horizon). In the
K th sub-BAP, the vessel set VK includes all vessels whose
PATv is within the K th receding horizon. Then, the AACS
algorithm is executed for the K th sub-BAP to obtain the ABTv

and ABBv of the vessels in the set VK . The second step of
the vRHC strategy is to save the solution of the current sub-
BAP into the best solution � to complete the solution. Each
receding horizon is divided into NRHC time intervals, which
are also named allocation windows. Note that although all the
vessels in all the NRHC allocation windows of the K th sub-
BAP are considered in the AACS scheduling, only the ABTv

and ABBv of the vessels whose ABTv are within the first alloca-
tion window can be saved into the best solution �. These saved
vessels are regarded as having been scheduled and will not be
added to the next receding horizon. The third step of the vRHC
strategy is to find the range of the next sub-BAP (i.e., the
(K +1)th receding horizon). The receding horizon moves one
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Fig. 2. Example of variable domain RHC for BAP (NRHC = 4).

allocation window every time. The NRHC allocation windows
initially have a fixed width W0 in the first receding horizon
(i.e., the first sub-BAP). However, some vessels may have their
PATv within the first allocation window, but their ABTv are not
within the first allocation window. In such cases, these vessels
cannot be saved into the best solution � and they should be
included in the next sub-BAP. However, as pointed out in
the Introduction, modifying the PATv of these vessels may
make them unsuitable for some berths. Therefore, unlike [29],
to make these vessels available in the next receding horizon,
the width of the first allocation window W K

1 of the following
receding horizon (i.e., K ≥ 2) is variable. That is, the starting
time of the first allocation window W K

1 (K ≥ 2) should be
pushed forward to include those vessels that are not scheduled
in the current receding horizon. Specifically, if some vessels
whose PATv are within the first allocation window of the K th
receding horizon but cannot be scheduled because their ABTv

are not within the first allocation window, the starting time of
the first allocation window of the (K + 1)th receding horizon
TK+1 is set as the smallest PAT of these vessels. Otherwise, the
width of the first allocation window of the (K +1)th receding
horizon remains unchanged. Note that the widths of the other
NRHC − 1 allocation windows remain the same as W0 when
the receding horizon moves forward. Then, the optimization
process repeats for the (K + 1)th sub-BAP until all vessels in
the BAP are allocated.

An example of vRHC is given in Fig. 2. Given a sequence
containing PAT of all vessels, the vRHC strategy begins the
scheduling of the first sub-BAP as the first receding horizon.
We set T1 = PATv1, K = 1, and NRHC = 4. In the first
receding horizon, all allocation windows have the same width
W 1

t = W0. According to the PATv of the vessels, there are
12 vessels (i.e., v1, v2, . . . , v12 in Fig. 2) in the first sub-BAP.
After the AACS algorithm is executed on the first receding
horizon, the berthing plan is shown in Fig. 2, where v1, v3,
v5, v8, v10, and v12 are assigned to berth 1 while v2, v4, v6,
v7, v9, and v11 are assigned to berth 2. Since ABTv1, ABTv2,
and ABTv4 are in the first allocation window, the berthing
plan of v1, v2, and v4 is saved into �. The saved vessels are
marked as solid triangles in Fig. 2. Since vessel v3 cannot
be saved in the first (K = 1) receding horizon, it will be
added to the second receding horizon. The second receding

horizon is marked in blue in Fig. 2. To make v3 available in
the second receding horizon, the starting time of the second
allocation window is set as T2 = PATv3 (with PATv3 being the
smallest among the remaining unallocated vessels). Therefore,
the width of the first allocation window of the second receding
horizon is changed (i.e., W 2

1 �= W0).
Obviously, some vessels (e.g., v3, v5, v6, . . . , and v12 in

Fig. 2) are included in two adjacent sub-BAPs. Therefore,
the allocation plan of these vessels, which has been obtained
in the previous sub-BAP, can be utilized to accelerate the
convergence speed of AACS in solving the current sub-BAP.
Therefore, we propose the PSM mechanism by which the par-
tial best allocation plan of the previous sub-BAP is reserved.
The partial best allocation plan is a set of arcs that is also
contained in the current sub-BAP. The PSM mechanism adds
the pheromone to the arcs of the current sub-BAP, which is
introduced in Section III-B-1).

B. AACS for Solving Sub-BAP

The proposed AACS is used to find the optimal berthing
plan of the vessels in the K th sub-BAP. The objective of the
AACS is to minimize the TWT by the optimal berthing plan.
The objective function for the K th sub-BAP is given as

min T W TK =
�m

b=1

�nk

v=1
(ABT v − P AT v ) · xvb (12)

where TWTK denotes the total vessels’ waiting time in the K th
sub-BAP, and nk is the number of vessels in the K th sub-BAP.
The pseudo-code of the solution process of the K th sub-BAP
is given in Algorithm 1. Detail information is described below.

1) Initialization and Updating Rules of Pheromone: The
pheromone τ (i, j) is a desirability measure of edges visited
by ants. In the directed graph of the BAP, the pheromone
on every directed edge between two vessels is not the same
(i.e., τ (i, j) �= τ ( j, i) ,∀i ∈ VK ,∀ j ∈ VK ). The design of
the initial pheromone in the AACS algorithm includes two
steps: pheromone initial value assignment based on FCFS and
pheromone enhancement by the PSM mechanism, which are
shown in step 3 and step 5 of Algorithm 1, respectively.

In the sub-BAP, each edge has an initial pheromone
τ0 (i, j) (∀i ∈ VK ,∀ j ∈ VK ). In step 3 of Algorithm 1, the
FCFS algorithm is used to allocate berths and obtain a fitness
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Algorithm 1 Construct Solution of the K th Sub-BAP
1. Initialize VK and the number of vessels nk via vRHC;
2. Initialize the number of ants NA, maximal generation NG;
3. Initialize pheromone;
4. If K ≥ 2
5. Enhance the pheromone by the PSM mechanism via

Eq. (13);
6. End if
7. For each gen in {1, . . . , NG} Do
8. Randomly select the 1st of vessel for each ant;
9. For each j in {1, . . . , N A} Do

10. For each v̄ in {1, . . . , nk} Do
11. Construct the whole solution for ant j

according to state transition rule;
// The AHI mechanism is used in this step.

12. Perform the local pheromone updating;
13. End for
14. End for
15. Calculate the fitness of every ant;
16. Update the historical best solution gbest;

// The best solution includes πgbest, AB Bv̄ and
ABT v̄ of all vessels.

17. Perform the global pheromone updating;
18. End for
19. Return gbest .

Fig. 3. Partial best path of the 1st receding horizon in Fig. 2.

value fFCFS of the objective function (12). Then the initial
pheromone of all edges is set to τ0 (i, j) = (nk × fFCFS)−1.

To accelerate the convergence speed of AACS in the K th
(K ≥ 2) sub-BAP, the PSM mechanism is used to enhance the
pheromone on the best path of the (K −1)th receding horizon.
In step 5 of Algorithm 1, the pheromone is enhanced as

τ0 (i, j) = (1+ ρ) · τ0 (i, j) , (i, j) ∈ πVPSM (13)

where πVPSM is a set of unsaved vessel pairs in the best
path in the (K − 1)th receding horizon, and ρ (0 < ρ < 1)
is the pheromone enhancement parameter. According to the
example in Fig. 2, the allocation plan of v1, v2, and v4 has
been saved into � and is indicated by grouping them in the
dotted line circle, as shown in Fig. 3. The unsaved vessel
pairs of the best path in the first receding horizon are πVPSM
= {(3, 6), (6, 5), (5, 7), . . .}, as shown in Fig. 3. Then, we add
pheromones to these arcs in the second sub-BAP.

During the AACS process, a local pheromone updating
rule and a global pheromone updating rule are performed to
update the pheromone. These two pheromone updating rules
are used to guide the search direction of ants. The local
pheromone update is performed to reduce the probability of
each ant choosing the same path to ensure the diversity of the
population. The local pheromone updating rule is operated on
each vessel pair in the completed scheduled solution as

τ (i, j) = (1− ρ) · τ (i, j)+ ρ · τ0(i, j) (14)

where ρ is set as the same value in the PSM mechanism.
The global pheromone updating rule is used to accelerate

the speed of convergence by guiding the search in a more
promising direction of ants. The global pheromone updating is
performed after all ants have built their solutions in the current
generation. The pheromone on each vessel pair is increased as

τ (i, j) = (1− ε) · τ (i, j)+ ε · τ �, if (i, j) ∈ πgbest (15)

where τ � = 1/ fπgbest . πgbest is a set of the vessel pairs of
best paths in the current generation. Then, fπgbest is the fitness
of πgbest which is calculated by Eq. (12). ε is the pheromone
enhancement parameter.

2) State Transition Rule: In AACS, the first vessel of each
ant is randomly selected before solution construction. Then,
the state transition rule is used to guide the iterative process
of the ants by assigning the following vessels to ants one by
one. When an ant completes the allocation of vessel i , it then
chooses the next vessel j according to the state transition rule
given by

j =
�

arg max j∈Ai

�
τ (i, j) · η(i, j)β

�
, if q < q0

J, otherwise
(16)

where Ai is a set of unvisited vessels reachable by vessel i . q0
is a parameter in interval [0,1] used to control the exploitation
and exploration behaviors of the ant. A number q ∈ [0,1]
is randomly generated. If q < q0, then the ant chooses the
next vessel whose product of pheromone τ and heuristic
information η is maximal, measured by τ (i, j) · η (i, j)β ,
where β (β > 0) is a parameter for exploitation. The heuristic
information η is adaptively controlled by the AHI mechanism
in this paper as introduced in Section III-B-3). Otherwise,
the next vessel j can be determined according to a random
variable J , which is selected from Ai according to a probability
distribution selection as

P(i, j) =

⎧⎪⎨
⎪⎩

τ (i, j) · η(i, j)β�
u∈Ai τ (i, u) · η(i, u)β

, if j ∈ Ai

0, otherwise

(17)

Probability P is used to ensure better exploration ability when
the solution is feasible.

3) Adaptive Heuristic Information: Heuristic information is
an important component in the state transition rule of the
AACS algorithm. The heuristic information η (i, j) is the
inverse of the distance between two nodes, and the heuristic
information η (i, j) in BAP is designed as

η (i, j) = 1

dis(i, j)
(18)

where dis(i , j) is the “distance” between vessel i and ves-
sel j , and the “distance” is the time interval between two
vessels. Similar to the pheromone, the heuristic information
on every directed edge between two vessels is not the same
(i.e., η (i, j) �= η ( j, i)). In the AACS algorithm, the AHI
mechanism is designed to ensure a reasonable time interval
(i.e., heuristic information η (i, j)) between different vessels
and berths.
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Fig. 4. Adjacent vessels i and j berthing at the same berth. (a) vessel i
had not yet arrived when vessel j arrived. (b) the berth is idle when vessel j
arrives. (c) vessel i was being served in the berth when vessel j arrived.

Fig. 5. Adjacent vessels i and j berthing at different berths. (a) vessel i had
not yet arrived at berth a when vessel j arrived. (b) vessel i had left berth a
when vessel j arrived. (c) vessel i was being served at berth a when vessel
j arrived.

According to the characteristics of the BAP, three factors
affect the “distance” between two vessels: PAT, LUT, and ABB.
A sequence number sort(i) is assigned to each vessel i after
organizing in ascending order vessels according to their PATs.
As illustrated in Fig. 2, sort(v1) = 1, sort(v2) = 2. Then
the adaptive heuristic information is given in Eq. (19), where
|sort(i)−sort ( j)| = 1 indicates that the PATs of vessel i and
vessel j are adjacent (vessel i and vessel j are time-oriented
nearest neighbors). Here if vessel i is the previous vessel of
vessel j , vessel i and vessel j are called adjacent vessels.
The heuristic information considers four kinds of vessel pairs:
adjacent vessels berthing at the same berth, adjacent vessels
berthing at different berths, not-adjacent vessels berthing at
the same berth, and not-adjacent vessels berthing at different
berths.

a) Adjacent vessels berthing at the same berth: When
vessel i leaves berth AB Bi after finishing the loading and
unloading operations, vessel j can be moored at berth AB Bi .
Therefore, the loading and unloading time of vessel i must
be considered. The order of arrival of the two vessels is also
an influencing factor. As shown in Fig. 4(a), vessel j arrives
before vessel i , and vessel i must wait until vessel j leaves.
In Fig. 4(b), vessel i leaves the berth, vessel j has not arrived,
and the berth is idle. In Fig. 4(c), vessel i is operates when
vessel j arrives, and vessel j can be berthed if vessel i leaves
(19), as shown at the bottom of the page.

b) Adjacent vessels berthing at different berths: At dif-
ferent berths, vessel i and vessel j do not affect each other.
The “distance” dis(i , j) is designed as the idle time of the
berth. According to the arrival time of the two vessels, it can
be divided into three situations. If PATi ≥ PAT j , dis(i , j)
is designed as the idle time of ABBi . Otherwise, dis(i , j) is

designed as the idle time of ABB j . As illustrated in Fig. 5(a),
the selected berth is ABBi which is the idle time of berth a.
Fig. 5(b) and Fig. 5(c) show the idle time of the berth selected
by vessel j .

c) Non-adjacent vessels berthing at the same berth or at
different berths: In Eq. (19), VI is a set of vessels that arrive
at the port between the arrivals of vessel i and vessel j . Since
these vessels in VI may all need to wait until vessel i and
vessel j complete operation and depart, the operating time of
these vessels is added in dis(i , j) without loss of generality.

C. Complete AACS Algorithm With vRHC Strategy and PSM
Mechanism

The pseudo-code of the complete AACS algorithm is shown
in Algorithm 2.

Algorithm 2 Complete AACS

1. Initialize NRHC, W 1
1 , and W0;

2. K = 1; T1= PATv1;
3. While(V �= ∅) Do
4. πVK ← ∅; VK ← ∅;
5. VK ← argv{TK ≤ PATv < TK + W K

1 + (NRHC − 1)×W 0};
// v ∈ V

6. Construct solution of the K th sub-BAP via Algorithm 1;
7. πVPSM ← ∅;
8. For each v̄ in VK Do //v̄ ∈ VK
9. If ABT v̄ ≤ TK + W K

1 Then
10. Store AB Bv̄ and ABT v̄ to �;
11. V ← V – {v̄};
12. VK ← VK – {v̄};
13. Store path of v̄ to πV ;
14. Delete path of v̄ from πVK ;
15. End if
16. End for
17. If min(P AT∀v �� ) > W K

1 + TK Then // v
�� ∈ VK

18. TK+1← W K
1 + TK ;

19. W K+1
1 ← W0;

20. Else
21. W K+1

1 ← W K
1 + TK −min

�
P AT∀v ��

	
+ W0;

22. TK+1← min
�
P AT v ��

�
;

23. End if
24. πVPSM ← πVK ;
25. K ← K+1;
26. End while
27. Return � and πV .

In the first receding horizon (i.e., K = 1), the time interval
of each allocation window is the same. We therefore set W 1

1 =
W0 in step 1. The W0 in every receding horizon is the same,
and we simply use W0 to represent all the W K

t (t > 1) herein
and in Algorithm 2. The W K

1 (K ≥ 2) can be varied in different
receding horizons due to the variable range characteristic of
vRHC when the receding horizon moves forward. Then, the

dis(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��P ATi + LU Ti − P ATj
�� , if |sor t(i)− sor t( j)| = 1 and AB Bi = AB B j��P ATi − P ATj

�� , if |sor t(i)− sor t( j)| = 1 and AB Bi �= AB B j��P ATi + LU Ti − P ATj
��+�

d∈V I LU Td , if |sor t(i)− sor t( j)| �= 1 and AB Bi = AB B j��P ATi − P ATj
��+�

d∈V I LU Td , if |sor t(i)− sor t( j)| �= 1 and AB Bi �= AB B j

(19)
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procedure enters the loop (step 3 - step 26) until V �= ∅,
where V is reduced through an iterative process. In step 4,
πVK and VK is reinitialized in every sub-BAP. Next, in step 5,
the set VK of the K th receding horizon is determined. The
solution of the K th sub-BAP is constructed via Algorithm 2
in step 6. Then the loop (step 8 - step 16) is used to store
the solution of vessels in the first allocation window W K

1 .
In step 17, the changing criterion of the time interval W K

1
is determined. In this step, VK is a set of unsaved vessels
in the K th receding horizon. If the changing criterion of the
time interval is satisfied, the receding horizon moves for-
ward directly with the same allocation windows (step 18 and
step 19). Otherwise, the allocation window W K+1

1 in the
(K + 1)th receding horizon is determined by the PAT of the
earliest vessel in VK (step 21 and step 22). In step 24, πVPSM
is determined by the K th receding horizon. πVPSM is a set of
leftover vessels in the K th receding horizon, which is used in
the (K + 1)th receding horizon. The procedure is terminated
when all vessels find their ABBv and ABTv .

IV. EXPERIMENTAL STUDIES

A. Parameter Configurations

Experimental tests are conducted in this section to evaluate
the effectiveness and efficiency of the proposed AACS. These
numerical comparison tests are implemented in Visual Studio
C++ and run on a PC with Dell Intel(R) Core-i7 and 8.0 GB
RAM.

References in scheduling application literature [6], [19]
and actual data [2], test cases with integer numerical data
were generated by different distributions. The exponential
distribution is used to assign the predicted arrival time of the
vessel, which was marked as PATv = E(60), where randomly
generated data conform to an exponential distribution (E -)
with a mean value of 60 minutes. To facilitate the algorithm
expression, the test cases are normalized, that is, the pre-
dicted arrival time is represented by an increasing integer. For
example, in Test Case 1, the arrival time of the first vessel
is standardized to 0, and the arrival time of other vessels
is the incremental data plus the time interval. For example,
if the arrival time of vessel 1 is 8:00 am, then vessel 2 arrives
at 9:25 am after an interval of 85 minutes. The loading and
unloading time of the vessel occupying the berth was generated
as LUTv = U (120, 300) or U (45, 240), meeting the uniform
distribution (U -) between 2 hours and 5 hours or 45 minutes
and 4 hours. Different value ranges are used to diversify cases
and better verify each algorithm.

By adjusting the number of vessels, 20 test cases are created
using the generated data, from 10 vessels to 120 vessels.
In these test cases, the AACS is compared with FCFS, the
adaptive evolutionary algorithm (AEA) [19], and ACO [24],
which have proven to be suitable for solving the discrete BAP
model with minimum delay time. FCFS is a fast method,
in which the vessel with earlier arrival time will give priority to
the earlier free berth. AEA is a well-performing algorithm for
BAP with adaptive parameter control mechanism. Moreover,
the ACO is compared because the ACS is a variant of ACO.
The AACS applies the ACS algorithm to solve the BAP

TABLE II

PARAMETER CONFIGURATIONS FOR THE AACS ALGORITHM

with the AHI mechanism, the vRHC strategy, and the PSM
mechanism. The pseudo-code of FCFS and AEA can be found
in [19].

The parameter configurations for AACS are shown in
Table II. The ACS-related parameters are the population size
NP = 7 × nk and maximal generation number NG = 3 × nk.
They are set to seven times and three times the number of
vessels nk in the current receding horizon. nk is changed
according to vRHC-related parameters. The other ACS-related
parameters are q0 = 0.1, β = 1.0, ε = 0.1, and ρ = 0.9. The
vRHC-related parameters are NRHC = 4, W0 = m × PATV n /n.
m is the number of berths in test case, and n is the number of
vessels in test case. Vn is the last arrived vessel in test case.
Since the number of vessels and their arrival time are different
in each test case, it is more reasonable to divide the allocation
window W0 according to the arrival time of the last vessel
Vn. In addition, other parameter configurations are based on
empirical studies presented in Sections IV-D and E.

B. Test Case 1:20-Vessel

Table III gives an example with 20 vessels in Test Case 1,
which is generated by the method mentioned in Sections IV-A,
and LUTv = U (120, 300). The first three columns of Table II
are vessel v, PATv and LUTv . These vessels are numbered
in order of PATv . The berth schemes of FCFS, AEA, ACO,
and AACS are presented, which include the berthing sequence
of every vessel, ABBv , ABTv . The vessels are sorted by
their ABTv values. For the three evolutionary algorithms, the
berth schemes and TWT values are the best solutions among
30 independent runs. The average TWT values of the solutions
obtained by the 30 runs are given in the last row.

As shown in Table III, compared with other evolutionary
algorithms, the FCFS algorithm has the worst results. Sort-
ing in chronological order is the most direct, simple, and
time-efficient method, but it often fails to achieve a good
arrangement in the global view. The same number of vessels
are equally allocated to each berth one by one in the FCFS
scheme. In the three evolutionary algorithms, the number of
vessels assigned to each berth is different. The table lists
the best allocation schemes obtained by the AEA, ACO, and
AACS among their 30 runs, with each single run of each
algorithm under the same number of generations. The optimal
solution of the AEA algorithm is worse than that of the ACO
algorithm and AACS algorithm. Conversely, AACS obtains
the best results on TWT and ensures stability with the smallest
mean TWT and the smallest worst TWT among their 30 runs.
Moreover, the mean and standard deviation show that AACS
obtains a better solution than AEA and ACO, whereas AACS
obtains this best solution with the “Best Ratio” of 60%. A deep
observation on the waiting time of each vessel shows that there
are two vessels that do not have to wait in FCFS (i.e., the WTv
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TABLE III

EXPERIMENTAL RESULT COMPARISONS IN TEST CASE 1 WITH 20 VESSELS

is 0), and the number of vessels that do not have to wait in
AEA, ACO, and AACS are 2, 3, and up to 5, respectively.

The global search capability of the AACS algorithm is also
verified in Test Case 1 that the vessels with early PAT can
be arranged later to reduce the TWT. As shown in the AACS
scheme columns, vessel 5 with an earlier arrival time is the last
vessel to berth, and vessel 4 is the last vessel to berth in the
ACO scheme. In addition, the ability of ACS to jump out of the
local optimal solution is better than that of ACO. The vRHC
strategy further improves the global search capabilities of
ACS. Moreover, the vRHC strategy reduces the computational
burden by dividing the receding horizon and simultaneously
enabling vessels arriving earlier to be scheduled in the latter
receding horizon. In contrast, the AEA algorithm initializes
the population based on the FCFS policy, and although this
step increases the convergence speed, this is a limitation that
hinders the diversity of the population.

C. Test Case 2:30-Vessel

We also conduct experiments on Test Case 2 with 30 vessels
and the experimental results are listed in Table S.I in the
supplemental material due to the page limitation. Unlike Test
Case 1, the LUTv of Test Case 2 is generated by U (45, 240).
It can be observed from the table that the time gap between
each vessel’s berthing time has become larger. The number
of vessels has increased, but the value of TWT has decreased.
In practice, this situation is more common in small bulk cargo
terminals.

The results of FCFS, AEA, ACO, and AACS are presented
and compared in Test Case 2. Similar to the experimental
results in Test Case 1, the FCFS solution keeps the same
number of vessels allocated to each position, and still yields
the worst result. However, due to the large variance in the
berthing times of the vessels, FCFS is no longer alternately
allocated to the berth for each vessel. In Test Case 2, AEA

obtains better results than ACO and the mean value remains
stable. However, the optimal solution is still obtained by
AACS. From the mean value of AACS, it can be verified
that the algorithm remains stable as the number of vessels
increases. A deep observation on the waiting time of each
vessel shows that there are five vessels that do not have to
wait in ACO and FCFS, and the number is up to seven in
AEA and AACS.

D. Analysis of ACS Parameters

The parameters in AACS include the population size NP,
the maximal generations of the receding horizon NG, and the
performance-related parameters q0, ρ, ε, and β. Note that
when one parameter is investigated, the others remain the same
as in Table II.

The number of ants NP and the number of generations NG
are the basis of the algorithm and directly affect the entire
algorithm. We test these two parameters simultaneously in Test
Case 2. We set NP from 1 × nk to 10 × nk with a step
length of 1 × nk and NG from 1 × nk to 5 × nk with a step
length of 1 × nk, where nk is the number of vessels in every
receding horizon. The mean result of 30 independent runs is
plotted in Fig. S.2 in the supplemental material. Fig. S.2(a) and
Fig. S.2(b) show the influences of the parameters on the mean
TWT and the mean CPU time, respectively. As observed from
Fig. S.2(a), the smallest value is staying at NP = 7 × nk,
NP = 9 × nk, NG = 3 × nk, and NG = 4 × nk. Moreover,
as shown in Fig. S.2(b), the larger the values of NP and NG
are, the longer the CPU running time is. Therefore, we set
NP = 7 × nk and NG = 3 × nk.

The next parameter to be tested is q0. The algorithm con-
verges too slowly when q0 is set to 0, and a better result
cannot be obtained when the number of generations is not
enough. Furthermore, setting q0 to 1 will affect the exploration
ability of the algorithm. Therefore, we set q0 from 0.1 to
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TABLE IV

EXPERIMENTAL RESULTS OF AACS ON DIFFERENT STRATEGIES SITUATIONS IN TEST CASE 3 TO TEST CASE 10

0.9 with a step length of 0.1. The investigation results are
plotted in Fig. S.3 in the supplemental material. Herein, both
Test Case 1 and Test Case 2 are applied to test the performance
of different values of q0. It can be seen from Fig. S.3 that a
better solution can be obtained when the value of q0 is set
as 0.1. Therefore, q0 is set to 0.1 in this paper. The PSM
mechanism is used to accelerate the convergence speed of the
optimization process. Therefore, a small value of q0 is applied
to enhance the exploration ability.

Then, parameter β is investigated. This parameter has also
been tested on Test Case 1 and Test Case 2, and the values
range from 1 to 9. The investigation results are plotted in
Fig. S.4 in the supplemental material. It can be observed
that when the value of β is 1, the algorithm obtains a better
solution. Moreover, the value of TWT when β = 0 is too
large to plot within the scale of Fig. S.4, which indicates that
the heuristic information plays an important role in AACS
algorithm.

Finally, parameter ρ for local updating and parameter ε for
global updating are investigated. We set ρ and ε from 0 to
1 with a step length of 0.1. The mean TWT results are plotted
in Fig. S.5 in the supplemental material. The performance is
verified in both Test Case 1 and Test Case 2. Fig. S.5(a) shows
the test results of Test Case 1, and Fig. S.5(b) shows the test
results of Test Case 2. The poor performance of the algorithm
when ε or ρ is set to 0 indicates that the pheromone updating
rules play important roles in the AACS algorithm. The results
of the mean TWT for ε = 1.0 or ρ = 1.0 are too poor to apply
to the algorithm. Fig. S.5(a) shows that the solution quality is
not very sensitive to ε and ρ when they are set from 0.1 to
0.9. Therefore, we set ε = 0.1 and ρ = 0.9, where the mean
TWT value is minimal in Test Case 1 and Test Case 2.

E. Analysis of vRHC Parameters

In this section, the impact of parameters NRHC and W 1
1 on

the performance of AACS is investigated. We set parameter
NRHC from 1 to 6 with a step length of 1. We set an
auxiliary parameter I to adjust the value of W0 (i.e., W0 =
I × m × PATV n / n), where I ranges from 1 to 4 with a step
length of 1. Thirty independent runs on Test Case 2 mean TWT
and mean CPU time are plotted in Fig. S.6 in the supplemental
material. As can be observed, the test results vary greatly
under different NRHC and W0, so we choose the setting that
takes less time to find the best solution, where NRHC = 4 and

I = 1. The appropriate allocation window width is set by the
actual situation of the test case, W0 = m × PATV n/ n.

F. Effectiveness of AACS and Its Components
on More Test Cases

In order to comprehensively evaluate the effectiveness of
the AACS algorithm, more test cases are conducted for exper-
iments and comparisons. In this section, Test Case 3 to Test
Case 10 with LUTv = U (45, 240) are generated to test
different algorithms. The numbers of vessels are shown in
Table IV as 10, 20, 30, and 40. All test cases in Table IV
are satisfied that the number of berths is 2.

Besides the compared FCFS, AEA, and ACO algorithms,
different variants of AACS are also compared to investigate
the effectiveness of different components in AACS. Especially,
among the compared algorithms, the ACS is a special case
of AACS, which does not have any strategy (i.e., without
the AHI mechanism, the vRHC strategy, or the PSM mech-
anism). Moreover, the AACS-w/o-AHI is an AACS variant
that does not include the AHI mechanism. Similarly, the PSM
mechanism is not applied in the AACS-w/o-PSM variant. The
minimum solution, the mean TWT, and the mean CPU time of
each algorithm independently executed 30 times are expressed
as Min, Mean, and CPU in Table IV. The values of the mean
CPU time and the mean TWT are integer values rounded up.
The results in Table IV not only verify the effectiveness of
the AACS algorithm, but also show that all the AHI mecha-
nism, vRHC strategy, and PSM mechanism contribute to the
effectiveness and efficiencies of the AACS.

As shown in Table IV, FCFS still obtains quite poor results
for any number of vessels. It is worth mentioning that in
Test Case 7, the result of FCFS is better than ACO and ACS
because most of the berthing time of the vessel in this random
Test Case is exactly less than the interval of arrival times.
Although there are more vessels in Test Case 7, the result is
a relatively small value. Therefore, FCFS can obtain better
results, while the ACO and ACS global search capabilities
are too strong for faster convergence. However, the AEA
algorithm and the related algorithm we proposed can both
jump out of the local solution to find a better solution. When
the number of vessels is 10, each algorithm can find the best
solution except for FCFS. The mean value of AEA and AACS
has also reached the optimal solution, which means that the
optimal solution can be found each time it is executed. As the
number of vessels increases, only the AACS algorithm can find
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a better solution, but the average CPU time of the algorithm
is longer. Given that it benefits from the vRHC strategy, the
mean CPU time of AACS is better than those of AEA, ACO,
and ACS.

G. Effectiveness of AACS on Medium- and Large-Scale
Test Cases

We also further evaluate the performance of AACS in a
set of medium- and large-scale test cases. The experiments
are conducted on 10 test cases with the numbers of vessels
from 50 to 120, and the number of berths being 2 or 4,
as shown in Table S.II in the supplementary material. More-
over, the LUTv of Test Case 11 to Test Case 20 are generated
by U (45, 240). The experimental results are compared in
Table S.II.

As shown in Table S.II, AACS still can obtain the best
results in medium- and large-scale test cases among the com-
pared algorithms. In total, the proposed AACS achieves the
best performance with respect to the minimal and mean TWT
values in all the test cases. This indicates that our AACS
is also effective in solving both medium- and large-scale
problems. Moreover, considering the results with respect to
the computational time, AACS also outperforms the compared
algorithms in most cases. Although the AEA obtains better
solutions in Test Case 14 and Test Case 16 with the least
CPU time, in all the other cases, the CPU times of AACS
are less than AEA and ACO. Besides, the results show that
with more berths, the advantage of AACS in computational
burden is more obvious. This may be due to that the number
of sub-problems is fewer in vRHC strategy if more berths are
used (i.e., more vessels are included in every sub-BAP and
therefore the number of sub-BAP is smaller).

V. CONCLUSION

In this paper, to adapt to the discrete and real-time char-
acteristics of BAP, we design adaptive heuristic information
for ACS to propose the AACS by considering several given
pieces of the BAP information. Furthermore, with respect to
the computational burden of BAP, we have also proposed a
variable domain RHC strategy to divide BAP into smaller
problems. Moreover, a memory mechanism is utilized to
improve convergence speed. To evaluate the effectiveness and
efficiency of the proposed AACS, we generate test cases based
on different BAP sizes. The test results show that our algorithm
improves effectiveness and efficiency. Each mechanism of the
algorithm is investigated separately. Experimental results show
that all mechanisms (i.e., the AHI mechanism, the vRHC
strategy, and the PSM mechanism) enhance the performance
of the proposed AACS.

For future research, we plan to extend the algorithm to
solve multi-objective BAP and multitasking BAP. Moreover,
the BAP model with more characteristics such as uncertain
circumstances is also worthy to be studied.
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