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Abstract— The fast-growing market of autonomous vehicles,
unmanned aerial vehicles, and fleets in general necessitates the
design of smart and automatic navigation systems considering the
stochastic latency along different paths in the traffic network.
The longstanding shortest path problem in a deterministic
network, whose counterpart in a congestion game setting is
Wardrop equilibrium, has been studied extensively, but it is well
known that finding the notion of an optimal path is challenging
in a traffic network with stochastic arc delays. In this work,
we propose three classes of risk-averse equilibria for an atomic
stochastic congestion game in its general form where the arc delay
distributions are load dependent and not necessarily independent
of each other. The three classes are risk-averse equilibrium
(RAE), mean-variance equilibrium (MVE), and conditional value
at risk level α equilibrium (CVaRαE) whose notions of risk-averse
best responses are based on maximizing the probability of taking
the shortest path, minimizing a linear combination of mean and
variance of path delay, and minimizing the expected delay at a
specified risky quantile of the delay distributions, respectively.
We prove that for any finite stochastic atomic congestion game,
the risk-averse, mean-variance, and CVaRα equilibria exist.
We show that for risk-averse travelers, the Braess paradox may
not occur to the extent presented originally since players do not
necessarily travel along the shortest path in expectation, but they
take the uncertainty of travel time into consideration as well.
We show through some examples that the price of anarchy can
be improved when players are risk-averse and travel according
to one of the three classes of risk-averse equilibria rather than
the Wardrop equilibrium.

Index Terms— Stochastic congestion games, vehicle navigation,
risk-aversion, risk-averse equilibrium.

I. INTRODUCTION

THE intelligent transportation systems are growing faster
than ever with the speedy emergence of autonomous

vehicles, unmanned aerial vehicles, Amazon delivery robots,
Uber/Lyft self-driving cars, and such. One of the principal
components of such systems is the navigation system whose
goal is to provide travelers with fast and reliable paths from
their sources to destinations. In a fleet of vehicles, an equi-
librium is achieved when no travelers have any incentives in
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a certain sense to change routes unilaterally. In the classical
Wardrop equilibrium [1], [2], travelers have incentives to
change routes if they have an alternative route that has lower
expected travel time. In other words, the optimality metric is
based on minimizing the expected travel time in the Wardrop
equilibrium. In the context of transportation though, collisions,
weather conditions, road works, traffic signals, and varying
traffic conditions can cause deviations in travel times [3]. As a
result, the path with the minimum expected travel time may
not be reliable due to its high variability and the path travel
times may not be independent from each others due to cor-
relations introduced by the mentioned underlying phenomena
that cause uncertainty in travel times. Similarly, in the context
of telecommunication networks, noise, signal degradation,
interference, re-transmission, and malfunctioning equipment
can cause variability in transmission time from source to
destination [3]. The empirical works by Abdel-Aty et al. [4],
Kazimi et al. [5], Lam [6], Lam and Small [7], and Small [8]
also support the fact that taking travel time uncertainty into
account is indeed an essential criterion in navigation systems.

As mentioned above, minimizing the expected travel time
is inadequate in scenarios involving risk due to variability
of travel times. In order to address this issue, we study a
richer class of congestion games called stochastic congestion
games in an atomic setting, where the travel times along
different arcs of the network are random variables that are
not necessarily independent of each other. In this framework,
we introduce probability statements regarding the risk-averse
best response of a traveler given the choice of the rest
of travelers in the network. We propose three classes of
risk-averse equilibria for stochastic congestion games: risk-
averse equilibrium (RAE), mean-variance equilibrium (MVE),
and conditional value at risk level α equilibrium (CVaRαE),
whose notions of risk-averse best responses are based on maxi-
mizing the probability of traveling along the shortest path (also
known as Risk-Averse Best Action Decision with Incomplete
Information (R-ABADI)), minimizing a linear combination of
mean and variance of path delay, and minimizing the expected
delay at a specified risky quantile of the delay distributions,
respectively. We prove that the risk-averse, mean-variance,
and CVaRα equilibria exist for any finite stochastic atomic
congestion game. Note that an equilibrium similar to the
mean-variance exists in the literature which is discussed in
the related work section, but the probability distributions of
travel times are load independent or link delays are considered
to be independent in the literature, which is not the case in
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this article. It is noteworthy that most studies on stochastic
congestion games make use of simplifying assumptions such
as considering the arc delay distributions to be independent of
their loads or adding independent and identically distributed
errors to nominal delays of arcs, neglecting potential differ-
ences in uncertainty over different paths. As an example, travel
time uncertainty over a rural path is inherently different from
travel time uncertainty over an urban path. In the Braess para-
dox [9], [10], which is known to be a counterintuitive example
rather than a paradox, the risk-neutral/selfish travelers select
the shortest path in expected travel time, which maximizes the
social delay/cost incurred by the whole society. Although the
focus of this article is not on deriving bounds on price of anar-
chy, we study the Braess paradox in a stochastic setting under
the three proposed risk-averse equilibria and show that the
risk-averse behavior of travelers results in improving the social
delay/cost incurred by the society; and as a result, the price of
anarchy is improved if travelers are risk-averse. As the result,
the Braess paradox may not occur to the extent presented
originally if travelers are risk-averse. Furthermore, we study
the Pigou network [11] in a stochastic setting and observe that
the price of anarchy is also improved if travelers are risk-averse
in the senses discussed above. Note that the Pigou networks
are prevalent in traffic/telecommunication networks. Hence,
providing travelers with risk-averse navigation can decrease
the social delay/cost in the real world applications.

The article is structured in the following way. The related
work is discussed in Section II. The stochastic congestion
game is formally defined in Section III. The three pro-
posed classes of equilibria, i.e. risk-averse, mean-variance,
and CVaRα equilibria, are presented in Section IV and their
existences in any finite stochastic congestion game are proven;
detailed proofs can be found in the Appendix. Numerical
results including the study of the Pigou and Braess networks
as well as notes for practitioners are provided in Section V.
Finally, conclusions and discussion of opportunities for future
work are provided in Section VI.

II. RELATED WORK

In this section, the literature on navigation for both deter-
ministic and stochastic networks is presented first, then the
literature on deterministic and stochastic congestion games is
discussed in details. The main focus of the literature review
is to motivate the necessity of risk-averse algorithms for
navigation of autonomous vehicles and congestion games in a
stochastic setting.

The problem of finding the shortest path in a transporta-
tion/telecommunication traffic network is one of the main
parts of the in-vehicle navigation systems for autonomous
vehicles. This problem has been studied well in deterministic
networks resulting in many efficient algorithms, e.g., the
algorithms developed by Dijkstra [12], and Dreyfus [13]; also
see [14]–[23]. Although finding the shortest path problem
is well understood in deterministic networks, the definition
of an optimal path and how to identify such a path is more
challenging in the stochastic version of the problem. There
have been multiple approaches to define the optimal path in

stochastic networks as summarized below. The least expected
travel time is studied by Loui [24] and is equivalent to the
deterministic case from a computational point of view. The
path with the least expected time may be sub-optimal for risk-
averse travelers due to its high variability and uncertainty; as
the result, the probability distributions of link travel times
need to be considered explicitly to find the most reliable
path for autonomous vehicles. In this manner, Frank [25]
proposed the optimal path to be the one that maximizes
the probability of realizing a travel time that is less than a
threshold, Sigal et al. [26] proposed the optimal path to be
the one that maximizes the probability of realizing the shortest
time, and Chen and Ji [27] proposed the optimal path to be
the one with minimum travel time budget required to meet
a travel time reliability constraint. For more variants of the
mentioned algorithms, refer to [28]–[44].

In the context of route selection in a fleet of autonomous
vehicles, a game emerges between all vehicles where the
action of each vehicle affects the travel time of the other
vehicles, which creates a competitive situation forcing vehicles
to strategize their decisions. In a deterministic network, the
mentioned game is formalized by Wardrop and Whitehead
[1], von Neumann and Morgenstern [45], [46], and Nash
et al. [47]. However, it is not realistic to consider the link
delays to be known prior to making a decision due to external
factors that make the travel times uncertain. In order to put
this in perspective, several approaches have been adopted by
researchers to capture the stochastic behavior of the traffic
networks. For example, Harsanyi [48], [49] proposed Bayesian
games that consider the incomplete information of payoffs,
Ordóñez and Stier-Moses [3] modeled the risk-averse behavior
of travelers by padding the expected travel time along paths
with a safety margin, Watling [50] proposed an equilibrium
based on the optimality measure of minimizing the probability
of being late or maximizing the probability of being on
time, Szeto et al. [51] associated a cost with the travel time
uncertainty based on travelers’ risk-averse behavior, Chen and
Zhou [52] proposed an equilibrium based on the optimality
measure of minimizing the conditional expectation of travel
time beyond a travel time budget, and Bell and Cassir [53]
proposed to play out all possible scenarios before making a
choice. For more details in the context of traffic networks,
we refer readers to [54]–[67]. To the best of our knowledge,
in all of the existing results, the travel time distribution is
shadowed and is not used directly in the characterization of the
equilibrium. In contrast, we propose three classes of equilibria
for stochastic congestion games that are directly defined based
on the distribution of the travel time along different paths of
the network that are not necessarily independent of each other.

III. PROBLEM STATEMENT

Consider a directed graph (network) G = (N , E) with a
node set N = [N] := {1, 2, . . . , N} and directed link (edge)
set E with cardinality |E |, where the pair (i, j) ∈ E indicates a
directed link from node i ∈ N to node j ∈ N in the directed
graph. Denote the set of source-destination (SD) pairs with
K ⊆ N ×N , where for the SD pair k = (sk, dk) ∈ K, sk �= dk ,
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the set of simple directed paths from sk to dk in G is denoted
by Pk , and let nk be the number of players (travelers, vehicles,
or data packages) associated with source-destination k. Let
P := ∪k∈KPk be the set of all paths. A feasible assignment
m := {m p : p ∈ P} allocates a non-negative number of players
to every path p ∈ P such that

∑
p∈Pk

m p = nk for all k ∈ K.
As a result, the number of players along link e ∈ E denoted
by me is given by me = ∑

{p∈P :e∈p} m p .
The latency (delay or travel time) along link e is

load-dependent which is denoted by the non-negative con-
tinuous random variable Le(me) with marginal probability
density function (pdf) fe(x |me) and mean le(me). Note that
the number of players along an edge is determined by
an assignment m, so Le(m), fe(x |m), and le(m) can be
used instead of Le(me), fe(x |me), and le(me), respectively.
Furthermore, the latency along links of the graph can be
dependent, in which case, the joint pdf of latency over all links
is denoted by fe1,e2,...,e|E|(x1, x2, . . . , x|E ||m1, m2, . . . , m|E |),
which can be denoted as fE (x1, x2, . . . , x|E ||m). Given
the link latency defined above, the nominal latency of
player i along path pi ∈ P under a given assign-
ment m is simply Li (m) := ∑

e∈pi
Le(m) with pdf

f i (x |m) = ∂
( ∫ ∫

. . .
∫
{∑e∈pi

xe≤x} fE (x1, x2, . . . , x|E ||m)

dx1dx2 . . . dx|E |
)/

∂x and mean li (m) = ∑
e∈pi

le(m).

The stochastic congestion game consists of n := ∑
k∈K nk

players (travelers), where player i ∈ [n] := {1, 2, . . . , n}
is associated with the corresponding source-destination pair
k(i) ∈ K. As a result, Pk(i) is the set of possible pure strategies
(actions or paths) for player i . The pure strategy profile of all n
players is denoted by p := (p1, p2, . . . , pn), where pi ∈ Pk(i),
that fully specifies all actions in the game. The set of all pure
strategy profiles is the Cartesian product of pure strategy sets
of all players which is denoted by P := Pk(1) × Pk(2) · · · ×
Pk(n). Let p−i := (p1, p2, . . . , pi−1, pi+1, . . . , pn) be the
pure strategies of all players except player i , so p = (pi , p−i ).
Given the pure strategy profile p, the number of players
on a path p ∈ P is given by m p = ∑n

i=1 �{pi = p},
and the number of players on a link e ∈ E is given by
me = ∑

{p∈P :e∈p}
∑n

i=1 �{pi = p}. Let m( p) show the
number of players on all paths which is fully determined
by the pure strategy p. As a result, given the pure strategy
profile p = (pi , p−i ), the latency of player i by choosing the
path pi is the random variable Li (m( p)) = ∑

e∈pi
Le(m( p))

with pdf f i (x |m( p)) and mean li (m( p)) = ∑
e∈pi

le(m( p)).
For simplicity, instead of using Li (m( p)), f i (x |m( p)), and
li (m( p)), we use Li ( p), f i (x | p), and li ( p), respectively.

The mixed strategy of player i is denoted by σi ∈ �i , where
�i is the set of all probability distributions over the set of
pure strategies Pk(i), and σi (p) is the probability that player i
selects path p. The mixed strategy profile of all n players
is denoted by σ := (σ1, σ2, . . . , σn), where σi ∈ �i . The
set of all mixed strategy profiles is the Cartesian product of
mixed strategy sets of all players which is denoted by � :=
�1 ×�2 · · ·×�n . Let σ−i := (σ1, σ2, . . . , σi−1, σi+1, . . . , σn)
be the mixed strategies of all players except player i , so σ =
(σi , σ−i ). The latency of player i by selecting path pi when

the other [n] \ i players select paths according to a mixed
strategy σ−i is denoted by the random variable L

i
(pi , σ−i )

that has the following pdf using the law of total probability:

f̄ i (x |(pi, σ−i )) =
∑

p−i ∈P−i

(
f i (x |(pi , p−i )) · σ ( p−i )

)
, (1)

where σ ( p−i ) = ∏
j∈[n]\i σ j (p j ) and p j is the corresponding

strategy of player j in p−i , and the mean of the random
variable is given as

l
i
(pi , σ−i ) := �[L

i
(pi , σ−i )]

=
∑

p−i ∈P−i

(
li (pi , p−i ) · σ ( p−i )

)
. (2)

The expected average delay (latency) incurred by the n
players in the stochastic congestion game under the pure
strategy profile p, also known as the social cost or social
delay in this context, is denoted by D( p) := 1

n

∑n
i=1 li ( p).

The social delay under the mixed strategy σ is D(σ ) :=
1
n

∑
p∈P

∑n
i=1 σ ( p) · li ( p), where σ ( p) = ∏

i∈[n] σi (pi) and
pi is the corresponding strategy of player i in p. The (pure)
optimal load assignment denoted by o minimizes social delay
among all possible (pure) load assignments which might be
in contrast with the selfish behavior of players. The (pure)
price of anarchy (PoA) of a congestion game is the max-
imum ratio D( p)/D(o) over all equilibria p of the game.
Throughout the article, we follow the convention that y ≤ x
means that y is less than or equal to all elements of the
vector x.

IV. RISK-AVERSE EQUILIBRIUM FOR STOCHASTIC

CONGESTION GAMES

In the following sub-section, illustrative examples are pro-
vided with analysis of their equilibria in classic and risk-averse
frameworks which motivate the novel risk-averse approach for
stochastic congestion games presented in this article.

A. Illustrative Examples

The Pigou network [68] is one of the simplest networks
studied in congestion games. We first use the Pigou network
to clearly state the motivation of the current work in the
first example. We then study the more controversial network
used by Braess [9] in the famous Braess’s paradox in the
second example. The two examples below set grounding for
the risk-averse equilibrium for congestion games proposed in
this article.

Example 1: Consider the Pigou network with two parallel
links between source and destination as shown in Figure 1.
There are n players (vehicles or data packages) to travel from
source to destination. The top and bottom links are labeled
as 1 and 2 with loads m1 and m2 = n − m1, respectively.
The travel times on links 1 and 2 are respectively independent
random variables L1(m1) and L2(m2) with expected values
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Fig. 1. The Pigou network in Example 1 with the load-dependent latency
pdfs and the corresponding means of links.

l1(m1) = m1
n and l2(m2) = 1 and pdfs

f1(x |m1)

= α

(
2ex p

(
− 100

(
x − m1

4n

)2
)

· �
{

0 ≤ x ≤ m1

2n

}
+3ex p

(
− 100

(
x − 3m1

2n

)2
)

· �
{

5m1

4n
≤ x ≤ 7m1

4n

})
,

f2(x |m2) = βex p
(
−100 (x − 1)2

)
· �

{
3

4
≤ x ≤ 5

4

}
,

where α and β are constants for which each of the two
distributions integrate to one and �{.} is the indicator function.

The well-known Wardrop equilibrium [1], [2], also Nash
equilibrium [69], for the Pigou network in Example 1 is that
all the n players travel along the top link since it is the weakly
dominant strategy for any player as the expected latency
incurred along the top link is always less than or equal to
the expected latency incurred along the bottom link, l1(m1) =
m1
n ≤ 1 = l2(m2). As a result, the Wardrop equilibrium

for Pigou network is p∗
W = (1, 1, . . . , 1) with social delay

DW ( p∗
W ) = 1. However, although the expected latency along

the top link is less than or equal to that of the bottom link,
l1(m1) ≤ l2(m2), the variance of travel time along the top link
at full capacity is larger than that along the bottom link, which
increases the risk and uncertainty of traveling along the top
link [70]–[72]. In fact, the bottom link with higher expected
travel time is more likely to have a lower delay than the top
link at full capacity, i.e., P

(
L2(0) ≤ L1(n)

) = 0.6 > 0.5.
As a result, a risk-averse player selects the bottom link for
commute when the top link is at full capacity, especially if
it is a one-time trip. We will also show later, the risk-averse
behavior of players decreases social delay for this example.
As an example, consider a traveler who wants to go from
hotel to airport who has two options for this trip: taking the
highway that has lower expected travel time, but is more likely
to get congested due to traffic jams and crashes (top link
in Pigou network), or taking the urban streets with a higher
expected travel time and lower congestion (the bottom link in
Pigou network). A risk-neutral player travels along the top link
with lower expected latency, but a risk-averse player travels

Fig. 2. The Braess network in Example 2 with the load-dependent latency
pdfs and the corresponding means of links.

along the bottom link to assure not to incur a long delay and
miss the flight. Even in everyday commutes between home
and work, the expected delay over many days may not be a
desirable objective to minimize. No-one desires to arrive early
to work some days but late on others, and to be penalized
accordingly. The Braess network, studied in the next example,
further enforces the fact that minimizing the expected delay is
not desirable for risk-averse players.

Example 2: Consider the Braess network depicted in
Figure 2. There are n players (vehicles or data packages) to
travel from source to destination. Other than the source and
destination, there are two nodes A and B in the network. The
directed links (S, A), (A, D), (S, B), (B, D), and (A, B) are
referred to as links 1, 2, 3, 4, and 5 with loads m1, m2, m3,
m4, and m5, respectively. The travel times on links 1, 2, 3, 4,
and 5 are respectively independent random variables L1(m1),
L2(m2), L3(m3), L4(m4), and L5(m5) with expected values
l1(m1) = m1

n , l2(m2) = 1, l3(m3) = 1, l4(m4) = m4
n , and

l5(m5) = 0 and pdfs

f1(x |m1) =
γ

(
ex p

(
− 100

(
x − m1

2n

)2
)

· �
{

0 ≤ x ≤ m1

n

}
+ ex p

(
− 100

(
x − 3m1

2n

)2
)

· �
{

m1

n
< x ≤ 2m1

n

})
,

f2(x |m2) = ζ ex p
(
−100 (x − 1)2

)
· �

{
1

2
≤ x ≤ 3

2

}
,

f3(x |m3) = ζ ex p
(
−100 (x − 1)2

)
· �

{
1

2
≤ x ≤ 3

2

}
,

f4(x |m4) =
γ

(
ex p

(
− 100

(
x − m4

2n

)2
)

· �
{

0 ≤ x ≤ m4

n

}
+ex p

(
− 100

(
x − 3m4

2n

)2
)

· �
{

m4

n
< x ≤ 2m4

n

})
,

where γ and ζ are constants for which the distributions inte-
grate to one, �{.} is the indicator function, and P

(
L5(m5) =

0
) = 1. There are three paths from source to destination,

(S, A, D), (S, A, B, D), and (S, B, D), that are referred to
as paths 1, 2, and 3 with loads m1, m2, and m3, respectively,
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where the difference between links and paths should be clear
from the context. Note that the link loads are related to
path loads as m1 = m1 + m2, m2 = m1, m3 = m3,
m4 = m2 + m3, and m5 = m2, and the delays along paths
are related to link delays as L1(m) = L1(m1) + L2(m2),
L2(m) = L1(m1) + L5(m5) + L4(m4) = L1(m1) + L4(m4),
and L3(m) = L3(m3) + L4(m4).

The Wardrop (Nash) equilibrium for the Braess network in
Example 2 is that all the n players travel along path 2 since
it is the weakly dominant path for any player as the expected
latency incurred along path 2 is always less than or equal to the
expected latency incurred along the other two paths 1 and 3,

l2(m) = l1(m1) + l5(m5) + l4(m4)

= m1

n
+ m4

n

{
≤ m1

n + 1 = l1(m1) + l2(m2) = l1(m),

≤ 1 + m4
n = l3(m3) + l4(m4) = l3(m).

As a result, the Wardrop equilibrium for Braess network is
p∗

W = (2, 2, . . . , 2) with social delay DW ( p∗
W ) = 2. However,

although path 2 has latency less than or equal to that of paths
1 and 3, l2(m) ≤ (

l1(m), l3(m)
)
, the variance of travel time

along path 2 at full capacity is larger than that along paths
1 and 3, which increases the risk and uncertainty of traveling
along path 2. In fact, path 1 (or 3) with higher expected
travel time is more likely to have a lower delay than the
rest of the paths, i.e., P

(
L1(0) ≤ (

L2(n), L3(0)
)) = 3

8 >

1
4 = P

(
L2(n) ≤ (

L1(0), L3(0)
))

. As a result, a risk-averse
player selects paths 1 or 3 for commute when path 2 is at
full capacity, and as is shown later, the risk-averse behavior
of players decreases social delay for this example.

B. Risk-Averse Equilibrium

In the classical Wardrop (Nash) equilibrium, the best
response of player i ∈ [n] to the mixed strategy σ−i of the
other [n] \ i players is defined as the set

argmin
pi ∈Pi

l
i
(pi , σ−i ).

In other words, the best response for player i given σ−i is
defined as the path that minimizes the expected travel time.
However, motivated by Examples 1 and 2, the path with
minimum expected latency may have a high volatility as well
that causes risky scenarios for travelers. As a result, the clas-
sical Wardrop (Nash) equilibrium that ignores the distribution
of path latency except for taking the expected latency into
account, that does not carry any information about variance
and the shape of the distribution, falls short in addressing
risk-averse behavior of players. In this article, motivated by
Examples 1 and 2, we propose a Risk-Averse Best Action
Decision with Incomplete Information (R-ABADI) of a player
to the strategy of the other players in a stochastic congestion
game as follows.

Definition 1: Given the mixed strategy profile σ−i of play-
ers [n] \ i , the set of mixed strategy risk-averse best responses
of player i is the set of all probability distributions over the
set

arg max
pi∈Pi

P
(

L
i
(pi , σ−i ) ≤ L

i
(Pi \ pi , σ−i )

)
, (3)

where what we mean by L
i
(pi , σ−i ) being less than or equal

to L
i
(Pi \ pi , σ−i ) when Pi \ pi �= ∅ is that L

i
(pi , σ−i ) is less

than or equal to L
i
(p′

i , σ−i ) for all p′
i ∈ Pi \ pi ; otherwise,

if Pi \ pi = ∅, player i only has a single option that can be
played. The same randomness on the action of players [n] \ i
is considered in L

i
(pi , σ−i ) for all pi ∈ Pi . Given the mixed

strategy σ−i of players [n] \ i , the risk-averse best response
set of player i ’s strategies is denoted by RB(σ−i ), which is
in general a set-valued function.

The risk-averse equilibrium for stochastic congestion games
is defined as follows.

Definition 2: A strategy profile σ ∗ = (σ ∗
1 , σ ∗

2 , . . . , σ ∗
N ) is

a risk-averse equilibrium if and only if σ ∗
i ∈ RB(σ ∗−i ) for all

i ∈ [n].
The following theorem proves the existence of a risk-averse

equilibrium for any stochastic congestion game with finite
number of players and pure strategy sets Pi for all i ∈ [n]
with finite cardinality.

Theorem 1: For any finite n-player stochastic congestion
game, a risk-averse equilibrium exists.

The proof of Theorem 1 is provided in the Appendix.
As a direct result of Definitions 1 and 2, the pure strategy

risk-averse best response and pure strategy risk-averse equi-
librium are defined as follows. The pure strategy risk-averse
best response of player i to the pure strategy p−i of players
[n] \ i is the set

⎧⎪⎪⎨⎪⎪⎩
arg maxpi∈Pi

P
(

Li
(

pi , p−i

) ≤ Li
(Pi \ pi , p−i

) )
,

if Pi \ pi �= ∅,

pi , if Pi \ pi = ∅.

(4)

Given the pure strategy p−i of players [n] \ i , the risk-averse
best response set of player i in Equation (4) is denoted by
RB( p−i ) (overloading notation, RB(.) is used for both pure
and mixed strategy risk-averse best responses). As a result,
a pure strategy profile p∗ = (p∗

1, p∗
2, . . . , p∗

n) is a pure strategy
risk-averse equilibrium if and only if p∗

i ∈ RB( p∗−i ) for all
i ∈ [n].

Strict dominance in the classical Wardrop (Nash) equilib-
rium is defined as follows. A pure strategy pi ∈ Pi of player i
strictly dominates a second pure strategy p′

i ∈ Pi of the player
if

li (pi , p−i ) < li (p′
i , p−i ), ∀ p−i ∈ P−i .

The solution concept of iterated elimination of strictly domi-
nated strategies can also be applied to the risk-averse equilib-
rium using the following definition.

Proposition 1: A pure strategy pi ∈ Pi of player i strictly
dominates a second pure strategy p′

i ∈ Pi of the player in the
risk-averse equilibrium if

P
(

Li (pi , p−i
) ≤ Li (Pi \ pi , p−i

) )
> P

(
Li (p′

i , p−i

) ≤ Li (Pi \ p′
i , p−i

) )
, ∀ p−i ∈ P−i . (5)
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Consider path pi ∈ Pi strictly dominates path p′
i ∈ Pi for

player i ; then, for any σ−i ∈ �−i

P
(

L
i
(pi , σ−i ) ≤ L

i
(Pi \ pi , σ−i )

)
(a)=

∑
p−i ∈P−i

(
P
(

Li (pi , p−i ) ≤ Li (Pi \ pi , p−i )
)

· σ ( p−i )

)
(b)
>

∑
p−i ∈P−i

(
P
(

Li (p′
i , p−i ) ≤ Li (Pi \ p′

i , p−i )
)

· σ ( p−i )

)
= P

(
L

i
(p′

i , σ−i ) ≤ L
i
(Pi \ p′

i , σ−i )
)

, (6)

where (a) is true by the law of total probability, σ ( p−i ) =∏
j∈[n]\i σ j (p j ) and p j is the corresponding strategy of player

j in p−i , and (b) is followed by Equation (5) in Definition 1.
By Equation (6) and Equation (3) in Definition 1, a strictly
dominated pure strategy cannot be a best response to any
mixed strategy profile σ−i ∈ �−i , so it can be removed from
the set of strategies of player i .

In order to find the risk-averse equilibrium for a stochastic
congestion game, we use support enumeration. For example,
hypothesize that P ′ := {P ′

1,P ′
2, . . . ,P ′

n} is the support of a
risk-averse equilibrium, where P ′

i is the set of pure strategies
of player i that are played with non-zero probability and
σi (pi) for pi ∈ P ′

i indicates the probability mass function
on the support. At equilibrium, player i ∈ [n] should be
indifferent between strategies in the set P ′

i , has no incentive
to deviate to the rest of strategies in the set Pi \ P ′

i , and
the probability mass function over the support should add to
one. As a result, if there is a risk-averse equilibrium with the
mentioned support, it is the solution of the following set of
equations for σ ∈ �:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P
(

L
i
(p′

i , σ−i ) ≤ L
i
(Pi \ p′

i , σ−i )
)

≥ P
(

L
i
(pi , σ−i ) ≤ L

i
(Pi \ pi , σ−i )

)
,∀pi ∈ Pi , p′

i ∈ P ′
i ,

∀i ∈ [n],∑
pi∈P ′

i
σi (pi) = 1,∀i ∈ [n],

σi (pi ) = 0,∀pi ∈ Pi \ P ′
i ,∀i ∈ [n].

(7)

As mentioned earlier in Equation (6), using the law of total
probability, we have

P
(

L
i
(pi , σ−i ) ≤ L

i
(Pi \ pi , σ−i )

)
=

∑
p−i∈P−i

(
P
(

Li (pi , p−i ) ≤ Li (Pi \ pi , p−i )
)

· σ ( p−i )

)
=

∑
p−i∈P−i

(
ti (pi , p−i ) · σ ( p−i )

)
, (8)

where ti (pi , p−i ) := P
(
Li (pi , p−i ) ≤ Li (Pi \ pi , p−i )

)
is

the i -th element of an n-dimensional vector called t(pi , p−i ).
Construct a risk-averse probability tensor of rank n where
Pi forms the i -th dimension of the tensor. Let the ele-
ment associated with (pi , p−i ) in the tensor be the vector
t(pi , p−i ). Equations (7) and (8) along with the definition of
the risk-averse probability tensor provide us with an alternative
approach for deriving the risk-averse equilibrium, which is

to find the Wardrop (Nash) equilibrium on the risk-averse
probability tensor.

The mean-variance (MV) and conditional value at risk
level α (CVaRα) methods are two well-known frameworks
to consider risk in statistics. In the next two sub-sections,
two risk-averse equilibria based on these two concepts are
proposed.

C. Mean-Variance Equilibrium

As seen in Examples 1 and 2, the high variance of paths
with lower expected travel time can result in uncertainty
and impose high latency for travelers. The mean-variance
framework in statistics addresses this issue by keeping a
balance between low latency and low variance. Applying this
method to the proposed stochastic congestion game setting, the
mean-variance best response and mean-variance equilibrium
are defined as follows.

Definition 3: Given the mixed strategy profile σ−i of play-
ers [n] \ i , the set of mixed strategy mean-variance best
responses of player i is the set of all probability distributions
over the set

argmin
pi∈Pi

Var
(

L
i
(pi , σ−i )

)
+ ρ · l

i
(pi , σ−i ), (9)

where the variance Var
(

L
i
(pi , σ−i )

)
can be calculated using

the pdf of L
i
(pi , σ−i ) provided in Equation (1) and ρ ≥ 0 is

a hyper-parameter capturing the absolute risk tolerance. Given
the mixed strategy σ−i of players [n] \ i , the mean-variance
best response set of player i ’s strategies is denoted by
M B(σ−i ), which is in general a set-valued function.

Definition 4: A strategy profile σ ∗ = (σ ∗
1 , σ ∗

2 , . . . , σ ∗
N ) is

a mean-variance equilibrium if and only if σ ∗
i ∈ M B(σ ∗−i ) for

all i ∈ [n].
The existence of the mean-variance equilibrium is discussed

in the following theorem.
Theorem 2: For any finite n-player stochastic congestion

game, a mean-variance equilibrium exists.
The proof of Theorem 2 is provided in the Appendix.
The pure strategy mean-variance best response of player i

to the pure strategy p−i of players [n] \ i is the set

argmin
pi ∈Pi

Var
(

Li (pi , p−i )
)

+ ρ · li (pi , p−i ), (10)

where Var
(
Li (pi , p−i )

) = Var
(∑

e∈pi
Le(pi , p−i )

)
=∑

e∈pi

∑
e′∈pi

Cov
(
Le(pi , p−i ), Le′ (pi , p−i )

)
. Given the

pure strategy p−i of players [n] \ i , the mean-variance best
response set of player i in Equation (10) is denoted by
M B( p−i ) (overloading notation, M B(.) is used for both
pure and mixed strategy mean-variance best responses).
As a result, a pure strategy profile p∗ = (p∗

1, p∗
2, . . . , p∗

n)
is a pure strategy mean-variance equilibrium if and only
if p∗

i ∈ M B( p∗−i ) for all i ∈ [n]. The strict dominance
concept is straightforward among pure strategy profiles in
mean-variance equilibrium that is defined as follows. A pure
strategy pi ∈ Pi of player i strictly dominates a second pure



YEKKEHKHANY AND NAGI: RISK-AVERSE EQUILIBRIA FOR VEHICLE NAVIGATION 18725

strategy p′
i ∈ Pi of the player in pure strategy mean-variance

equilibrium if

Var
(

Li (pi , p−i )
)

+ ρ · li (pi , p−i )

< Var
(

Li (p′
i , p−i )

)
+ ρ · li (p′

i , p−i ), ∀ p−i ∈ P−i . (11)

However, due to the fact that variance is not a linear operator,
strict dominance may not be derived from Equation (11) for
mixed strategy mean-variance equilibrium as described below.

Var
(

L
i
(pi , σ−i )

)
+ ρ · l

i
(pi , σ−i )

(a)= E

[(
L

i
(pi , σ−i )

)2
]

−
(

l
i
(pi , σ−i )

)2 + ρ · l
i
(pi , σ−i )

(b)=
∑

p−i ∈P−i

(
σ ( p−i ) · E

[(
Li (pi , p−i )

)2
])

−
⎛⎝ ∑

p−i∈P−i

(
σ ( p−i ) · li (pi , p−i )

)⎞⎠2

+ρ
∑

p−i∈P−i

(
σ ( p−i ) · li (pi , p−i )

)
(c)=

∑
p−i ∈P−i

(
σ ( p−i ) · E

[(
Li (pi , p−i )

)2
])

−
∑

p−i∈P−i

⎛⎜⎝ ∑
p′−i∈P−i

(
σ ( p−i ) · σ ( p′−i ) · li (pi , p−i ) · li (pi , p′−i )

)⎞⎟⎠
+ρ ·

∑
p−i∈P−i

(
σ ( p−i ) · li (pi , p−i )

)
(d)=

∑
p−i ∈P−i

σ ( p−i ) ·
(

E

[(
Li (pi , p−i )

)2
]

− li (pi , p−i )

·
∑

p′−i∈P−i

(
σ ( p′−i ) · li (pi , p′−i )

)
+ ρ · li (pi , p−i )

)

=
∑

p−i ∈P−i

σ ( p−i ) ·
(

E

[(
Li (pi , p−i )

)2
]

− li (pi , p−i )

·
⎛⎜⎝ ∑

p′−i ∈P−i

(
σ ( p′−i ) · li (pi , p′−i )

)
+ ρ

⎞⎟⎠)
, (12)

where (a) is true by the definition of variance, (b) is followed
by Equation (2), (c) is derived by expanding the second
term, and (d) is true by combining the summation over
p−i ∈ P−i and factoring σ ( p−i ). As can be seen in Equation
(12), since variance is a non-linear operator, it is not clear
whether Equation (11) can result in Var

(
L

i
(pi , σ−i )

)
+ ρ ·

l
i
(pi , σ−i ) < Var

(
L

i
(p′

i , σ−i )
)

+ ρ · l
i
(p′

i , σ−i ) for all
σ−i ∈ �−i . As a result, use of strict dominance in the mixed
strategy mean-variance equilibrium is not advised. In certain
circumstances though, we can propose conditions for strict
dominance; e.g., when li ( p) ≤ ρ

2 for all p ∈ P and for all
i ∈ [n] which is discussed in the following definition or when
li ( p) ≥ ρ

2 for all p ∈ P and for all i ∈ [n].

Proposition 2: If li ( p) ≤ ρ
2 for all p ∈ P and for

all i ∈ [n], pure strategy pi ∈ Pi of player i strictly
dominates a second pure strategy p′

i ∈ Pi of the player in
the mean-variance equilibrium if

li (pi , p−i

)
< li (p′

i , p−i

)
, ∀ p−i ∈ P−i , (13)

and

E

[(
Li (pi , p−i

))2
]

< E

[(
Li (p′

i , p−i

))2
]

, ∀ p−i ∈ P−i .

(14)
Consider that path pi ∈ Pi strictly dominates path p′

i ∈ Pi

for player i as defined in Definition 2; then, using Equation
(13), for any σ−i ∈ �−i ,

l
i
(pi , σ−i ) =

∑
p−i∈P−i

(
σ ( p−i ) · li (pi , p−i )

)
<

∑
p−i∈P−i

(
σ ( p−i ) · li (p′

i , p−i )
)

= l
i
(p′

i , σ−i ).

(15)

Note that l
i
(pi , σ−i ) ≤ ρ

2 for all pi ∈ Pi , for all σ−i ∈ �−i ,
and for all i ∈ [n] as a result of li ( p) ≤ ρ

2 for all p ∈ P
and for all i ∈ [n]. Hence, using the fact that the function
− f 2 + ρ · f is increasing for f ≤ ρ

2 , for any σ−i ∈ �−i we
have

−
(

l
i
(pi , σ−i )

)2 + ρ · l
i
(pi , σ−i )

< −
(

l
i
(p′

i , σ−i )
)2 + ρ · l

i
(p′

i , σ−i ). (16)

On the other hand, using Equation (14), we have

E

[(
L

i
(pi , σ−i )

)2
]

=
∑

p−i ∈P−i

(
σ ( p−i ) · E

[(
Li (pi , p−i )

)2
])

<
∑

p−i ∈P−i

(
σ ( p−i ) · E

[(
Li (p′

i , p−i )
)2

])

= E

[(
L

i
(p′

i , σ−i )
)2

]
. (17)

Finally, Equations (16) and (17) conclude that
Var

(
L

i
(pi , σ−i )

)
+ ρ · l

i
(pi , σ−i ) < Var

(
L

i
(p′

i , σ−i )
)

+
ρ · l

i
(p′

i , σ−i ) for all σ−i ∈ �−i .
In order to find the mean-variance equilibrium for a sto-

chastic congestion game, we use support enumeration. For
example, hypothesize P ′ := {P ′

1,P ′
2, . . . ,P ′

n} to be the
support of a mean-variance equilibrium, where P ′

i is the set
of pure strategies of player i that are played with non-zero
probability and σi (pi ) for pi ∈ P ′

i indicates the probability
mass function on the support. At equilibrium, player i ∈ [n]
should be indifferent between strategies in the set P ′

i , has no
incentive to deviate to the rest of strategies in the set Pi \P ′

i ,
and the probability mass function over the support should add
to one. As a result, if there is a mean-variance equilibrium
with the mentioned support, it is the solution of the following
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set of equations for σ ∈ �:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Var
(

L
i
(p′

i , σ−i )
)

+ ρ · l
i
(p′

i , σ−i )

≤ Var
(

L
i
(pi , σ−i )

)
+ ρ · l

i
(pi , σ−i ), ∀pi ∈ Pi , p′

i ∈ P ′
i ,

∀i ∈ [n],∑
pi∈P ′

i
σi (pi) = 1,∀i ∈ [n],

σi (pi) = 0,∀pi ∈ Pi \ P ′
i ,∀i ∈ [n].

(18)

D. CVaRα Equilibrium

The conditional value at risk level α (CVaRα) is another
framework in statistics to measure risk and to address the
risk-averse behavior. Applying this method to the proposed
stochastic congestion game setting, the CVaRα best response
and CVaRα equilibrium are defined below.

Definition 5: Given the mixed strategy profile σ−i of play-
ers [n] \ i , the set of mixed strategy CVaRα best responses of
player i is the set of all probability distributions over the set

argmin
pi ∈Pi

CV a Rα

(
L

i
(pi , σ−i )

)
=

argmin
pi ∈Pi

E
[

L
i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
]
, (19)

where v i
α(pi , σ−i ) is a constant derived by solving the equality

P
(

L
i
(pi , σ−i ) ≥ v i

α(pi , σ−i )
)

= α and the constant 0 <

α ≤ 1 is a hyper-parameter depicting the risk level. Given the
mixed strategy σ−i of players [n]\i , the CVaRα best response
set of player i ’s strategies is denoted by C B(σ−i ), which is
in general a set-valued function.

Definition 6: A strategy profile σ ∗ = (σ ∗
1 , σ ∗

2 , . . . , σ ∗
N ) is

a CVaRα equilibrium if and only if σ ∗
i ∈ C B(σ ∗−i ) for all

i ∈ [n].
The existence of the CVaRα equilibrium is discussed in the

following theorem.
Theorem 3: For any finite n-player stochastic congestion

game, a CVaRα equilibrium exists.
The proof of Theorem 3 is provided in the Appendix.
The pure strategy CVaRα best response of player i to the

pure strategy p−i of players [n] \ i is the set

argmin
pi∈Pi

CV a Rα

(
Li (pi , p−i )

)
=

argmin
pi∈Pi

E
[

Li (pi , p−i )
∣∣∣Li (pi , p−i ) ≥ v i

α(pi , p−i )
]
, (20)

where v i
α(pi , p−i ) is a constant derived by solving the equality

P
(
Li (pi , p−i ) ≥ v i

α(pi , p−i )
) = α and the constant 0 < α ≤

1 is the hyper-parameter depicting risk level. Given the pure
strategy p−i of players [n] \ i , the CVaRα best response set of
player i in Equation (20) is denoted by C B( p−i ) (overloading
notation, C B(.) is used for both pure and mixed strategy
CVaRα best responses). As a result, a pure strategy profile
p∗ = (p∗

1, p∗
2, . . . , p∗

n) is a pure strategy CVaRα equilibrium
if and only if p∗

i ∈ C B( p∗−i ) for all i ∈ [n]. A pure strategy
pi ∈ Pi of player i strictly dominates a second pure strategy

p′
i ∈ Pi of the player in pure strategy CVaRα equilibrium if

E
[

Li (pi , p−i )
∣∣∣Li (pi , p−i ) ≥ v i

α(pi , p−i )
]

< E
[
Li (p′

i , p−i )
∣∣∣Li (p′

i , p−i )≥v i
α(p′

i , p−i )
]
, ∀ p−i ∈ P−i ,

(21)

where v i
α(pi , p−i ) and v i

α(p′
i , p−i ) are constants derived

by solving P
(
Li (pi , p−i ) ≥ v i

α(pi , p−i )
) = α and

P
(
Li (p′

i , p−i ) ≥ v i
α(p′

i , p−i )
) = α, and the constant 0 <

α ≤ 1 is the risk level hyper-parameter. However, similar
to the mean-variance equilibrium, strict dominance may not
be derived from Equation (21) for mixed strategy CVaRα

equilibrium as described below. Using Equation (1) and
P
(

L
i
(pi , σ−i ) ≥ v i

α(pi , σ−i )
)

= α, the distribution of the

random variable
(

L
i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
)

is⎛⎝ ∑
p−i∈P−i

(
f i (x |(pi, p−i )) ·σ ( p−i )

)/
α

⎞⎠ · �
{

x ≥ v i
α(pi , σ−i )

}
.

(22)

As a result,

E
[

L
i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
]

(a)= 1

α
·

∑
p−i∈P−i

(
σ ( p−i ) ·

∫ ∞

−∞

(
x · f i (x |(pi, p−i ))

·�
{

x ≥ v i
α(pi , σ−i )

} )
dx

)
(b)= 1

α
·

∑
p−i∈P−i

(
σ ( p−i ) · P

(
Li (pi , p−i ) ≥ v i

α(pi , σ−i )
)

·
∫ ∞

v i
α(pi ,σ−i )

(
x · f i (x |(pi , p−i ))

P
(
Li (pi , p−i ) ≥ v i

α(pi , σ−i )
))dx

)
= 1

α
·

∑
p−i∈P−i

(
σ ( p−i ) · P

(
Li (pi , p−i ) ≥ v i

α(pi , σ−i )
)

·E
[

Li (pi , p−i )
∣∣∣Li (pi , p−i ) ≥ v i

α(pi , σ−i )
])

, (23)

where (a) is true by using the pdf of the corresponding
random variable in Equation (22) and switching the order of
summation and integral and (b) is true by multiplying and
dividing by the term P

(
Li (pi , p−i ) ≥ v i

α(pi , σ−i )
)
. As can

be seen in Equation (23), it is not clear whether Equation (21)
can result in E

[
L

i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
]

<

E
[

L
i
(p′

i , σ−i )
∣∣∣Li

(p′
i , σ−i ) ≥ v i

α(p′
i , σ−i )

]
for all σ−i ∈

�−i . As a result, use of strict dominance in the mixed strategy
CVaRα equilibrium is not advised due to its complication.

In order to find the CVaRα equilibrium for a stochastic
congestion game, we use support enumeration. For example,
hypothesize P ′ := {P ′

1,P ′
2, . . . ,P ′

n} to be the support of a
CVaRα equilibrium, where P ′

i is the set of pure strategies of
player i that are played with non-zero probability and σi (pi )
for pi ∈ P ′

i indicates the probability mass function on the
support. At equilibrium, player i ∈ [n] should be indifferent
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between strategies in the set P ′
i , has no incentive to deviate

to the rest of strategies in the set Pi \P ′
i , and the probability

mass function over the support should add to one. As a result,
if there is a CVaRα equilibrium with the mentioned support,
it is the solution of the following set of equations for σ ∈ �:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E
[

L
i
(p′

i , σ−i )
∣∣∣Li

(p′
i , σ−i ) ≥ v i

α(p′
i , σ−i )

]
≤ E

[
L

i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
]
,

∀pi ∈ Pi , p′
i ∈ P ′

i ,∀i ∈ [n],∑
pi∈P ′

i
σi (pi) = 1,∀i ∈ [n],

σi (pi) = 0,∀pi ∈ Pi \ P ′
i ,∀i ∈ [n].

(24)

Remark 1: It is noteworthy that the polynomial terms in
Equation (7) for the risk-averse equilibrium are of degree
n − 1 while the polynomial terms in Equation (18) for the
mean-variance equilibrium are of degree 2(n−1) for n number
of players. On the other hand, it is more complicated to solve
for Equation (24) as the top α quantile of distributions should
be calculated.

V. NUMERICAL RESULTS

The risk-averse, mean-variance, and CVaRα equilibria are
numerically analyzed for Examples 1 and 2 in this section.
The price of anarchy for each of the mentioned equilibria is
calculated as well. In the end, extra examples are presented
to shed light on the corner cases of each one of the equilibria
and to provide insight on how to tackle such circumstances.

A. Example 1 (Continued)

In order to find any of the three types of pure equilibria for
the Pigou network in Example 1 with n players, hypothesize
that m1 players choose link 1 and m2 = n − m1 players
choose link 2 and check whether any player has any incentive
in the corresponding sense of the equilibrium of the interest
to change route, given the pure strategy of the other players.
If none of the players has any incentive to change route given
the pure strategy of the rest of players, (m1, n − m1) is a pure
equilibrium, where (m1, m2) denotes that m1 players select
link 1 and m2 players select link 2. By varying m1 from zero
to n and taking the above procedure, the pure equilibrium is
found if any exists. Given a fixed number of players m1 that
choose link 1, it is obvious that they all have the same
incentive to change to link 2 or stay in link 1, and all of
the m2 = n − m1 players have the same incentive to change
to link 1 or stay in link 2. As a result, if a specific player out
of the m1 players has no incentive to switch to link 2 given
the pure strategy of the other players, and a specific player out
of the m2 players has no incentive to switch to link 1 given
the pure strategy of the other players, (m1, m2 = n − m1) is
a pure equilibrium. In other words, (m1, m2 = n − m1) is a
pure risk-averse equilibrium if{

P
(
L1(m1) ≤ L2(m2 + 1)

) ≥ 0.5,

P
(
L2(m2) ≤ L1(m1 + 1)

) ≥ 0.5,
(25)

where the first inequality is true since each player has two
options, link 1 and link 2, so P

(
L1(m1) ≤ L2(m2 + 1)

) ≥

Fig. 3. The pure risk-averse, mean-variance (ρ = 1), CVaRα (α = 0.1), and
Nash equilibria of the Pigou network in Example 1 are denoted for different
numbers of players.

P
(
L2(m2+1) ≤ L1(m1)

)
, and since random variables are con-

tinuous we have P
(
L1(m1) ≤ L2(m2 +1)

)+ P
(
L2(m2 +1) ≤

L1(m1)
) = 1, which results in P

(
L1(m1) ≤ L2(m2 + 1)

) ≥
0.5. The second inequality is true due to a similar reasoning.
By varying m1 from zero to n, if Equation (25) holds for
(m1, m2 = n − m1), it is a pure risk-averse equilibrium.

Similar to the above approach, (m1, m2 = n −m1) is a pure
mean-variance equilibrium if⎧⎪⎪⎪⎨⎪⎪⎪⎩

Var
(
L1(m1)

) + ρ · l1(m1)

≤ Var
(
L2(m2 + 1)

) + ρ · l2(m2 + 1),

Var
(
L2(m2)

) + ρ · l2(m2)

≤ Var
(
L1(m1 + 1)

) + ρ · l1(m1 + 1).

(26)

Again, by varying m1 from zero to n, if Equation (26) holds
for (m1, m2 = n−m1), it is a pure mean-variance equilibrium.
Similarly, (m1, m2 = n − m1) is a pure CVaRα equilibrium if⎧⎪⎪⎪⎨⎪⎪⎪⎩

E
[
L1(m1)

∣∣L1(m1) ≥ v1
α(m1)

]
≤ E

[
L2(m2 + 1)

∣∣L2(m2 + 1) ≥ v2
α(m2 + 1)

]
,

E
[
L2(m2)

∣∣L2(m2) ≥ v2
α(m2)

]
≤ E

[
L1(m1 + 1)

∣∣L1(m1 + 1) ≥ v1
α(m1 + 1)

]
,

(27)

where P
(
L1(m1) ≥ v1

α(m1)
) = P

(
L2(m2 + 1) ≥ v2

α(m2 +
1)
) = P

(
L2(m2) ≥ v2

α(m2)
) = P

(
L1(m1 + 1) ≥ v1

α(m1 +
1)
) = α. By varying m1 from zero to n, if Equation (27)

holds for (m1, m2 = n − m1), it is a pure CVaRα equilibrium.
Note that the equilibrium in the Pigou network in Example 1

is characterized by m1, since m2 can be derived given m1.
The pure risk-averse, mean-variance (ρ = 1), and CVaRα

(α = 0.1) equilibria are found for the mentioned Pigou
network and the proportion of players who select link 1, i.e.,
m1
n , is depicted in Figure 3 for different values of n. Under the

Nash equilibrium, no matter what the probability distributions
of latency over links look like, all players select link 1 as it
has less or equal latency in expectation. Hence, (n, 0) is the
Nash equilibrium for all n, which corresponds to m1

n = 1 as
depicted in Figure 3. Note that players are insensitive to the
travel time uncertainty under the Nash equilibrium, but they
take the travel time uncertainty into consideration according
to different metrics under the three classes of risk-averse
equilibria.
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Fig. 4. The prices of anarchy for the risk-averse, mean-variance (ρ = 1),
CVaRα (α = 0.1), and Nash equilibria of the Pigou network in Example 1
are plotted for different numbers of players.

The social delay/latency defined as the expected average
delay/latency incurred by the n players in the Pigou network
in Example 1 under the pure strategy (m1, m2) is D(m1) =
1
n

(
m1 · m1

n + (n − m1)
) = (m1

n

)2− m1
n +1, which is minimized

when m1 = n
2 for an even n, and m1 = 
 n

2 � and m1 = � n
2 � for

an odd n. As a result, it is socially optimal that about half of
the players take the top link and the rest take the bottom link to
travel from source to destination in the Pigou network, which
results in a social latency close to 3

4 for n � 1. If players
are risk-neutral and seek to minimize their expected latency
given the strategy of the rest of players, which is how the Nash
equilibrium models games, the social latency in the mentioned
Pigou network equals to one for the Nash equilibrium (n, 0).
In contrast, if players are risk-averse in the different senses
discussed in this article, the social latency decreases compared
to when players are risk-neutral; as a result, the price of
anarchy decreases as depicted in Figure 4. In this example, it is
to the benefit of the society if players are risk-averse, which
is the case as numerous studies in prospect theory discuss the
fact that players in the real world often behave in a risk-averse
manner.

Considering the Pigou network in a non-atomic setting,
which corresponds to the case with infinite number of players,
the socially optimal strategy is (0.5, 0.5) with social latency of
3
4 , where (u1, u2) corresponds to u1 fraction of players travel-
ing along link 1 and u2 = 1 − u1 fraction of players traveling
along link 2. We numerically calculate that the risk-averse
equilibrium is (0.7303, 0.2697) with PoA = 1.0707, the
mean-variance equilibrium with ρ = 1 is (0.7750, 0.2250)
with PoA = 1.1008, the CVaRα equilibrium with α =
0.1 is (0.6822, 0.3178) with PoA = 1.0442, and the Nash
equilibrium is (1, 0) with PoA = 4

3 .

B. Example 2 (Continued)

In the Braess network in Example 2, there are three paths
from source to destination, p1 = (1, 2), p2 = (1, 5, 4), p3 =
(3, 4), where links S A, AD, SB, B D, and AB are denoted
with 1, 2, 3, 4, and 5, respectively. In order to find the three
types of pure equilibria for the Braess network with n players,
hypothesize that m1 players select path p1, m2 players select

path p2, and n − m1 − m2 players select path p3, then check
whether any player has any incentive in the corresponding
sense of the equilibrium of the interest to change route, given
the pure strategy of the other players. If none of the players has
any incentive to change route given the pure strategy of the rest
of players, (m1, m2, n − m1 − m2) is a pure equilibrium. As a
result, (m1, m2, n −m1 −m2) is a pure risk-averse equilibrium
if ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
L1 ≤ {L2, L3}) ≥

{
P
(
L2 ≤ {L1, L3}),

P
(
L3 ≤ {L1, L2})},

where L1 = L1(m1 + m2) + L2(m1),

L2 = L1(m1 + m2) + L4(n − m1 + 1), and

L3 = L3(n − m1 − m2 + 1) + L4(n − m1 + 1),

P
(
L2 ≤ {L1, L3}) ≥

{
P
(
L1 ≤ {L2, L3}),

P
(
L3 ≤ {L1, L2})},

where L1 = L1(m1 + m2) + L2(m1 + 1),

L2 = L1(m1 + m2) + L4(n − m1), and

L3 = L3(n − m1 − m2 + 1) + L4(n − m1),

P
(
L3 ≤ {L1, L2}) ≥

{
P
(
L1 ≤ {L2, L3}),

P
(
L2 ≤ {L1, L3})},

where L1 = L1(m1 + m2 + 1) + L2(m1 + 1),

L2 = L1(m1 + m2 + 1) + L4(n − m1), and

L3 = L3(n − m1 − m2) + L4(n − m1).

(28)

By varying m1 from zero to n and m2 from 0 to n − m1,
if Equation (28) holds for (m1, m2, m3 = n − m1 − m2), it is
a pure risk-averse equilibrium.

Similar to the above approach, (m1, m2, n − m1 − m2) is a
pure mean-variance equilibrium if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var(L1) + ρ · E(L1) ≤{
Var(L2) + ρ · E(L2), Var(L3) + ρ · E(L3)

}
,

where L1 = L1(m1 + m2) + L2(m1),

L2 = L1(m1 + m2) + L4(n − m1 + 1), and

L3 = L3(n − m1 − m2 + 1) + L4(n − m1 + 1),

Var(L2) + ρ · E(L2) ≤{
Var(L1) + ρ · E(L1), Var(L3) + ρ · E(L3)

}
,

where L1 = L1(m1 + m2) + L2(m1 + 1),

L2 = L1(m1 + m2) + L4(n − m1), and

L3 = L3(n − m1 − m2 + 1) + L4(n − m1),

Var(L3) + ρ · E(L3) ≤{
Var(L1) + ρ · E(L1), Var(L2) + ρ · E(L2)

}
,

where L1 = L1(m1 + m2 + 1) + L2(m1 + 1),

L2 = L1(m1 + m2 + 1) + L4(n − m1), and

L3 = L3(n − m1 − m2) + L4(n − m1).

(29)

By varying m1 from zero to n and m2 from 0 to n − m1,
if Equation (29) holds for (m1, m2, m3 = n − m1 − m2), it is
a pure risk-averse equilibrium.
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Fig. 5. The pure risk-averse, mean-variance (ρ = 1), CVaRα (α = 0.1), and
Nash equilibria of the Braess network in Example 2 are denoted for different
numbers of players.

Similar to the above approach, (m1, m2, n − m1 − m2) is a
pure CVaRα equilibrium if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
L1

∣∣L1 ≥ v1
α

] ≤
{

E
[
L2

∣∣L2 ≥ v2
α

]
, E

[
L3

∣∣L3 ≥ v3
α

]}
,

where L1 = L1(m1 + m2) + L2(m1),

L2 = L1(m1 + m2) + L4(n − m1 + 1),

L3 = L3(n − m1 − m2 + 1) + L4(n − m1 + 1), and

P
(
L1 ≥ v1

α

) = P
(
L2 ≥ v2

α

) = P
(
L3 ≥ v3

α

) = α

E
[
L2

∣∣L2 ≥ v2
α

] ≤
{

E
[
L1

∣∣L1 ≥ v1
α

]
, E

[
L3

∣∣L3 ≥ v3
α

]}
,

where L1 = L1(m1 + m2) + L2(m1 + 1),

L2 = L1(m1 + m2) + L4(n − m1),

L3 = L3(n − m1 − m2 + 1) + L4(n − m1), and

P
(
L1 ≥ v1

α

) = P
(
L2 ≥ v2

α

) = P
(
L3 ≥ v3

α

) = α

E
[
L3

∣∣L3 ≥ v3
α

] ≤
{

E
[
L1

∣∣L1 ≥ v1
α

]
, E

[
L2

∣∣L2 ≥ v2
α

]}
,

where L1 = L1(m1 + m2 + 1) + L2(m1 + 1),

L2 = L1(m1 + m2 + 1) + L4(n − m1),

L3 = L3(n − m1 − m2) + L4(n − m1), and

P
(
L1 ≥ v1

α

) = P
(
L2 ≥ v2

α

) = P
(
L3 ≥ v3

α

) = α.

(30)

By varying m1 from zero to n and m2 from 0 to n − m1,
if Equation (30) holds for (m1, m2, m3 = n − m1 − m2), it is
a pure CVaRα equilibrium.

Note that the equilibrium in the Braess network in Exam-
ple 2 is characterized by m1 and m2, since m3 can be
derived given m1 and m2. The pure risk-averse, mean-variance
(ρ = 1), and CVaRα (α = 0.1) equilibria are found for
the mentioned Braess network and the proportions of players

who select paths 1 and 2, i.e., m1

n and m2

n , are depicted in
Figure 5 for different values of n. Under the Nash equilibrium,
no matter what the probability distributions of latency over
links look like, all players select path 2 as it has less or equal
latency in expectation. Hence, (0, n, 0) is the Nash equilibrium
for all n, which corresponds to m2

n = 1 and m1

n = m3

n = 0 as
depicted in Figure 5.

The social delay/latency defined as the expected
average delay/latency incurred by the n players in the
Braess network in Example 2 under the pure strategy

Fig. 6. The prices of anarchy for the risk-averse, mean-variance (ρ = 1),
CVaRα (α = 0.1), and Nash equilibria of the Braess network in Example 2
are plotted for different numbers of players.

(m1, m2, m3 = n − m1 − m2) is D(m1, m2) = 1
n ·

(
(m1 +

m2) · (m1+m2)
n + m1+ (n − m1 − m2) + (n − m1) · (n−m1)

n

)
=

1
n2 ·

(
2
(
m1

)2 + (
m2

)2 + 2 m1m2 − 2 nm1−nm2 + 2n2
)

,

which is minimized when
(
m1 = 
 n

2 �, m2 = 0, m3 = n −m1
)

or
(
m1 = � n

2 �, m2 = 0, m3 = n − m1
)
. As a result, it is

socially optimal that about half of players take path p1 and
the rest take path p3 to travel from source to destination in
the Braess network, which results in a social latency close to
3
2 for n � 1. If players are risk-neutral and seek to minimize
their expected latency given the strategy of the rest of the
players, which is how the Nash equilibrium models games,
the social latency in the mentioned Braess network equals
two for the Nash equilibrium (0, n, 0). In contrast, if players
are risk-averse in the different senses discussed in this article,
the social latency decreases compared to when players are
risk-neutral; as a result, the price of anarchy decreases as
depicted in Figure 6. In this example, it is again to the benefit
of the society if players are risk-averse.

Considering the Braess network in a non-atomic setting,
which corresponds to the case with infinite number of play-
ers, the socially optimal strategy is (0.5, 0, 0.5) with social
latency of 3

2 , where (u1, u2, u3) corresponds to u1 frac-
tion of players travel along path p1, u2 fraction of players
travel along path p2, and u3 = 1 − u1 − u2 fraction of
players travel along path p3. We numerically calculate that
the risk-averse equilibrium is (0.2655, 0.4690, 0.2655) with
PoA = 1.0733, the mean-variance equilibrium with ρ = 1 is
(0.1716, 0.6568, 0.1716) with PoA = 1.1438, the CVaRα

equilibrium with α = 0.1 is (0.3045, 0.3910, 0.3045) with
PoA = 1.0509, and the Nash equilibrium is (0, 1, 0) with
PoA = 4

3 .

C. Mixed Equilibrium Example

Although it is more prevalent to use pure equilibrium for
congestion games, we analyze the mixed equilibrium of the
Pigou network in Example 1 for two players. The underlying
stochastic congestion game with the probability distributions
of players’ delays, the pure and mixed Nash, risk-averse,
mean-variance, and CVaR equilibria are depicted in Figure 7
and the observations are presented below. Recall that the (pure)
price of anarchy of a congestion game is the maximum
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Fig. 7. The pure and mixed risk-averse, mean-variance (ρ = 1), CVaRα (α = 0.1), and Nash equilibria of the Pigou network in Example 1 for two players.

ratio D( p)/D(o) over all equilibria p of the game, where
o is the socially optimum strategy. As mentioned earlier, the
optimum strategy for the Pigou network with two players
depicted in Figure 7 is that one of the players travels along
the top link and the other player travels along the bottom
link which corresponds to the social delay of 3

4 . As a result,
the (pure) price of anarchy for the Nash equilibria is 4

3 . On the
other hand, the pure price of anarchy for the risk-averse,
mean-variance, and CVaR equilibria for the game depicted
in Figure 7 is equal to one, which is less than the price of
anarchy of 4

3 for the Nash equilibrium, and in fact achieves the
minimum/optimal value of the price of anarchy. Furthermore,
the price of anarchy among both pure and mixed equilibria
for the risk-averse, mean-variance, and CVaR equilibria for
the game depicted in Figure 7 is 1.2405, 1.1689, and 1.2897,
respectively, which are still less than the price of anarchy of
4
3 for the Nash equilibrium.

In the following, we present extra examples with the pur-
pose of shedding light on drawbacks of the different equilibria
in different scenarios and motivating more work to be done
on a unified risk-averse framework. Furthermore, the following
examples suggest that careful consideration should be given to
the choice of the equilibrium that best fits the application of
the interest.

D. Notes for Practitioners

The intention of this subsection is to direct the attention
of practitioners planning to implement risk-averse in-vehicle
navigation to cases in which each of the proposed risk-averse
equilibria may provide travelers with counterintuitive guid-
ance. To this end, three examples are discussed in the fol-
lowing to shed light on the implications of the three classes
of risk-averse equilibria. The examples are meant to be simple
to convey the idea in a straightforward manner.

Example 3: Consider a Pigou network with two parallel
links, 1 and 2, between source and destination. The travel
times on links 1 and 2 are respectively independent random
variables L1 and L2 with pdfs

f1(x) = α

(
ex p

(
−100 (x − 14)2

)
· � {13 ≤ x ≤ 15}

+ex p
(
−100 (x − 19)2

)
· � {18 ≤ x ≤ 20}

)
,

f2(x) = βex p
(
−100 (x − 20)2

)
· � {19 ≤ x ≤ 21} ,

where α and β are constants for which each of the two
distributions integrate to one.

In Example 3, the means and variances of travel times along
links 1 and 2 are l1 = 16.5, Var(L1) = 6.255, l2 = 20.0,
Var(L2) = 0.005, respectively, and P(L1 ≤ L2) = 1.0. As a
result, although link 1 has a higher variance than link 2, not
only is link 1 shorter than link 2 in expectation, but link 1 is
shorter than link 2 almost certainly. Hence, a rational traveler
intends to take link 1 for commute although its variance is
higher than the variance of link 2. However, the mean-variance
framework intends to keep a balance between lower expected
travel time and lower uncertainty in travel time assuming that
higher variance is against the spirit of risk-averse travelers.
In Example 3, the mean-variance framework guides travelers
to travel along link 2 if ρ < 1.7857, which is not optimal
from the perspective of a risk-averse traveler. Note that both
risk-averse equilibrium and CVaRα equilibrium for any α ∈
[0, 1] guide travelers to traverse along link 1 in this example.

Example 4: Consider a Pigou network with two parallel
links, 1 and 2, between source and destination. The travel
times on links 1 and 2 are respectively independent random
variables L1 and L2 with pdfs

f1(x) = α

(
4ex p

(
−100 (x − 5)2

)
· � {4 ≤ x ≤ 6}
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+ex p
(
−100 (x − 10)2

)
· � {9 ≤ x ≤ 11}

)
,

f2(x) = β

(
4ex p

(
−100 (x − 8)2

)
· � {7 ≤ x ≤ 9}

+ex p
(
−100 (x − 10)2

)
· � {9 ≤ x ≤ 11}

)
,

where α and β are constants for which each of the two
distributions integrate to one.

In Example 4, the means and variances of travel times along
links 1 and 2 are l1 = 6.0, Var(L1) = 4.005, l2 = 8.4,
Var(L2) = 0.645, respectively, and P(L1 ≤ L2) = 0.82.
Note that both distributions are the same over the interval
[9, 11]; however, the traveler has a better opportunity of
experiencing shorter travel time on the lower 0.8 quantile of
the distribution of link 1 compared to that of link 2. Hence,
a rational traveler intends to take link 1 for commute although
its variance is higher than the variance of link 2. Furthermore,
E [L1|L1 ≥ α] = E [L2|L2 ≥ α] for α ∈ [0, 0.2]; hence, the
CVaRα framework is indifferent between the two links when
α ∈ [0, 0.2], which can result in a counterintuitive route
selection in Example 4. The mean-variance framework also
guides travelers to traverse along link 2 if ρ < 1.4, which is
not optimal from the perspective of a risk-averse traveler. Note
that the risk-averse equilibrium guides travelers to traverse
along link 1 in this example as P(L1 ≤ L2) = 0.82.

Example 5: Consider a Pigou network with two parallel
links, 1 and 2, between source and destination. The travel
times on links 1 and 2 are respectively independent random
variables L1 and L2 with pdfs

f1(x) = βex p
(
−100 (x − 7)2

)
· � {6 ≤ x ≤ 8} ,

f2(x) = α

(
7ex p

(
−100 (x − 5)2

)
· � {4 ≤ x ≤ 6}

+3ex p
(
−100 (x − 10)2

)
· � {9 ≤ x ≤ 11}

)
,

where α and β are constants for which each of the two
distributions integrate to one.

In Example 5, the means and variances of travel times along
links 1 and 2 are l1 = 7.0, Var(L1) = 0.005, l2 = 6.5,
Var(L2) = 5.255, respectively, and P(L2 ≤ L1) = 0.7.
Although the expected travel time along link 2 is less than
that along link 1 and it is more likely that the travel time
along link 2 is shorter than travel time along link 1, the travel
time along link 2 is concentrated around 10 with probability
0.3 which is somewhat larger than the concentration of travel
time around 7 when traveling along link 1. Hence, a risk-averse
traveler may prefer to take link 1 for commute although its
expected travel time is higher than the expected travel time of
link 2 to avoid a long travel time. However, the risk-averse
equilibrium guides travelers to traverse along link 2, which
may not be optimal from the perspective of a risk-averse
traveler. Note that the CVaRα equilibrium for α < 0.748 and
mean-variance equilibrium for ρ < 10.5 guide travelers to
traverse along link 1 in this example.

VI. CONCLUSION AND FUTURE WORK

A stochastic atomic congestion game with incom-
plete information on travel times along arcs of a traf-
fic/telecommunication network is studied in this work from
a risk-averse perspective. Risk-averse travelers intend to make
decisions based on probability statements regarding their travel
options rather than simply taking the average travel time into
account. In order to put this into perspective, we propose
three classes of equilibria, i.e., risk-averse equilibrium (RAE),
mean-variance equilibrium (MVE), and CVaRα equilibrium
(CVaRαE). The MV and CVaRα equilibria are studied in
the literature for networks with simplifying assumptions such
as that the probability distributions of link delays are load
independent or link delays are independent, which are not the
case in this article. The notions of best responses in risk-
averse, mean-variance, and CVaRα equilibria are based on
maximizing the probability of traveling along the shortest path,
minimizing a linear combination of mean and variance of path
delay, and minimizing the expected delay at a specified risky
quantile of the delay distributions, respectively. We prove that
the risk-averse, mean-variance, and CVaRα equilibria exist
for any finite stochastic atomic congestion game. Although
proving bounds on the price of anarchy (PoA) is not the focus
of this work, we numerically study the impact of risk-averse
equilibria on PoA and observe that the Braess paradox may
not occur to the extent presented originally and the PoA may
improve upon using any of the proposed equilibria in both
Braess and Pigou networks. Promising future directions are
to study non-atomic, instead of atomic, stochastic congestion
games in the proposed three classes of equilibria in their
general case where the arc delay distributions are load depen-
dent and not necessarily independent of each other, to find
bounds on the price of anarchy for the proposed three classes
of equilibria, to find conditions for the uniqueness of risk-
averse equilibria, and to find a unified class of equilibrium
that captures risk-aversion for a broader class of travel time
distributions in traffic/telecommunication networks.

APPENDIX

A. Proof of Theorem 1

Let R B : � → � be the risk-averse best response function
where R B(σ ) = (

RB(σ−1), RB(σ−2), . . . , RB(σ−N )
)
. It is

easy to see that the existence of a fixed point σ ∗ ∈ � for the
risk-averse best response function, i.e., σ ∗ ∈ R B(σ ∗), proves
the existence of a risk-averse equilibrium. The following four
conditions of the Kakutani’s Fixed Point Theorem are shown
to be satisfied for the function R B(σ ) to prove the existence
of a fixed point for the function.
1) The domain of function R B(.) is a non-empty, compact,

and convex subset of a finite dimensional Euclidean space:
� is the Cartesian product of non-empty simplices as each
player has at least one strategy to play; furthermore, each
of the elements of � is between zero and one, so � is
non-empty, convex, bounded, and closed containing all its
limit points.

2) R B(σ ) �= ∅, ∀σ ∈ �: The set in Equation (3) is non-empty
as maximum exists over a finite number of values. As a
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result, RB(σ−i ) is non-empty for all i ∈ [n] since it is the
set of all probability distributions over the corresponding
mentioned non-empty set.

3) The co-domain of function R B(.) is a convex set for all
σ ∈ �: It suffices to prove that RB(σ−i ) is a convex
set for all σ−i ∈ �−i and for all i ∈ [n]. For any
i ∈ [n], if σi , σ

′
i ∈ RB(σ−i ), we need to prove that

λσi + (1 − λ)σ ′
i ∈ RB(σ−i ) for any λ ∈ [0, 1] and

for any σ−i ∈ �−i . Let the supports of σi and σ ′
i be

defined as supp(σi) = {pi ∈ Pi : σi (pi ) > 0} and
supp(σ ′

i ) = {pi ∈ Pi : σ ′
i (pi) > 0}, respectively. It is

concluded from the definition of the risk-averse best
response in Definition 1 that supp(σi), supp(σ ′

i ) ⊆
arg max

pi ∈Pi

P
(

L
i
(pi , σ−i ) ≤ L

i
(Pi \ pi , σ−i )

)
,

which results in supp(σi) ∪ supp(σ ′
i ) ⊆

arg max
pi ∈Pi

P
(

L
i
(pi , σ−i ) ≤ L

i
(Pi \ pi , σ−i )

)
. As a result,

using the definition of risk-averse best response, any
probability distribution over the set supp(σi) ∪ supp(σ ′

i )
is a risk-averse best response to σ−i . It is trivial that
the mixed strategy λσi + (1 − λ)σ ′

i is a valid probability
distribution over the set supp(σi) ∪ supp(σ ′

i ) for any
λ ∈ [0, 1], so λσi +(1−λ)σ ′

i ∈ RB(σ−i ) for any λ ∈ [0, 1]
and for any σ−i ∈ �−i that completes the convexity proof
of the set RB(σ−i ).

4) R B(σ ) has a closed graph: R B(σ ) has a closed graph if
for any sequence {σm, σ̂ m} → {σ , σ̂ } with σ̂m ∈ R B(σm)
for all m ∈ N, we have σ̂ ∈ R B(σ ). Proof by contradiction
is used to show that R B(σ ) has a closed graph. Consider
by contradiction that R B(σ ) does not have a closed graph,
so there exists a sequence {σm, σ̂m} → {σ , σ̂ } with σ̂m ∈
R B(σm) for all m ∈ N, but σ̂ /∈ R B(σ ). As a result,
there exists some i ∈ [n] such that σ̂i /∈ RB(σ−i ). Using
the definition of risk-averse best response in Definition 1,
there exists p′

i ∈ supp(RB(σ−i )), p̂i ∈ supp(̂σi), and
some � > 0 such that

P
(

L
i
(p′

i , σ−i ) ≤ L
i
(Pi \ p′

i , σ−i )
)

> P
(

L
i
( p̂i , σ−i ) ≤ L

i
(Pi \ p̂i , σ−i )

)
+ 3�. (31)

Since the latencies over edges are continuous random
variables and σm−i → σ−i , for any � > 0, there exists
a sufficiently large m1 such that we have the following for
m ≥ m1:

P
(

L
i
(p′

i , σ
m−i ) ≤ L

i
(Pi \ p′

i , σ
m−i )

)
> P

(
L

i
(p′

i , σ−i ) ≤ L
i
(Pi \ p′

i , σ−i )
)

− �. (32)

By adding inequalities with the same direction in Equations
(31) and (32), for m ≥ m1 we have

P
(

L
i
(p′

i , σ
m
−i ) ≤ L

i
(Pi \ p′

i , σ
m
−i )

)
> P

(
L

i
( p̂i , σ−i ) ≤ L

i
(Pi \ p̂i , σ−i )

)
+ 2�. (33)

For the same reason as of Equation (32), for any � > 0,
there exists a sufficiently large m2 such that we have the

following for m ≥ m2:

P
(

L
i
( p̂i , σ−i ) ≤ L

i
(Pi \ p̂i , σ−i )

)
> P

(
L

i
( p̂m

i , σm
−i ) ≤ L

i
(Pi \ p̂m

i , σ m
−i )

)
− �, (34)

where p̂m
i ∈ supp(RB(σm

−i )). By adding the inequalities
with the same direction in Equations (33) and (34), for
m ≥ max{m1, m2} we have

P
(

L
i
(p′

i , σ
m
−i ) ≤ L

i
(Pi \ p′

i , σ
m
−i )

)
> P

(
L

i
( p̂m

i , σ m−i ) ≤ L
i
(Pi \ p̂m

i , σm−i )
)

+ �. (35)

Equation (35) contradicts the fact that p̂m
i ∈

supp(RB(σm−i )), which completes the proof that R B(σ )
has a closed graph.

As listed above, the risk-averse best response function R B(σ )
satisfies the four conditions of Kakutani’s Fixed Point The-
orem. As a direct result, for any finite n-player stochastic
congestion game, there exists σ ∗ ∈ � such that σ ∗ ∈
R B(σ ∗), which completes the existence proof of a risk-averse
equilibrium for such games.

B. Proof of Theorem 2

Let M B : � → � be the mean-variance
best response function where M B(σ ) =(
M B(σ−1), M B(σ−2), . . . , M B(σ−N )

)
. It is easy to

see that the existence of a fixed point σ ∗ ∈ � for the
mean-variance best response function, i.e., σ ∗ ∈ M B(σ ∗),
proves the existence of a mean-variance equilibrium. The
following four conditions of the Kakutani’s Fixed Point
Theorem are shown to be satisfied for the function M B(σ )
to prove the existence of a fixed point for the function.

1) The domain of function M B(.) is a non-empty, compact,
and convex subset of a finite dimensional Euclidean space:
� is the Cartesian product of non-empty simplices as each
player has at least one strategy to play; furthermore, each
of the elements of � is between zero and one, so � is
non-empty, convex, bounded, and closed containing all its
limit points.

2) M B(σ ) �= ∅, ∀σ ∈ �: The set in Equation (9) is
non-empty as minimum exists over a finite number of
values. As a result, M B(σ−i ) is non-empty for all i ∈ [n]
since it is the set of all probability distributions over the
corresponding mentioned non-empty set.

3) The co-domain of function M B(.) is a convex set for all
σ ∈ �: It suffices to prove that M B(σ−i ) is a convex
set for all σ−i ∈ �−i and for all i ∈ [n]. For any
i ∈ [n], if σi , σ

′
i ∈ M B(σ−i ), we need to prove that

λσi + (1 −λ)σ ′
i ∈ M B(σ−i ) for any λ ∈ [0, 1] and for any

σ−i ∈ �−i . Let the supports of σi and σ ′
i be defined as

supp(σi ) = {pi ∈ Pi : σi (pi ) > 0} and supp(σ ′
i ) = {pi ∈

Pi : σ ′
i (pi) > 0}, respectively. It is concluded from the def-

inition of the mean-variance best response in Definition 3
that supp(σi), supp(σ ′

i ) ⊆ argmin
pi ∈Pi

Var
(

L
i
(pi , σ−i )

)
+

ρ · l
i
(pi , σ−i ), which results in supp(σi) ∪ supp(σ ′

i ) ⊆
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argmin
pi∈Pi

Var
(

L
i
(pi , σ−i )

)
+ ρ · l

i
(pi , σ−i ). As a result,

using the definition of mean-variance best response, any
probability distribution over the set supp(σi)∪supp(σ ′

i ) is
a mean-variance best response to σ−i . The mixed strategy
λσi +(1−λ)σ ′

i is obviously a valid probability distribution
over the set supp(σi ) ∪ supp(σ ′

i ) for any λ ∈ [0, 1],
so λσi + (1 − λ)σ ′

i ∈ M B(σ−i ) for any λ ∈ [0, 1] and
for any σ−i ∈ �−i that completes the convexity proof of
the set M B(σ−i ).

4) M B(σ ) has a closed graph: M B(σ ) has a closed graph if
for any sequence {σm , σ̂m} → {σ , σ̂ } with σ̂m ∈ M B(σm)
for all m ∈ N, we have σ̂ ∈ M B(σ ). Proof by contradic-
tion is used to show that M B(σ ) has a closed graph. Con-
sider by contradiction that M B(σ ) does not have a closed
graph, so there exists a sequence {σm, σ̂ m} → {σ , σ̂ } with
σ̂m ∈ M B(σm) for all m ∈ N, but σ̂ /∈ M B(σ ). As a
result, there exists some i ∈ [n] such that σ̂i /∈ M B(σ−i ).
Using the definition of mean-variance best response in
Definition 3, there exists p′

i ∈ supp(M B(σ−i )), p̂i ∈
supp(̂σi), and some � > 0 such that

Var
(

L
i
(p′

i , σ−i )
)

+ ρ · l
i
(p′

i , σ−i )

< Var
(

L
i
( p̂i , σ−i )

)
+ ρ · l

i
( p̂i , σ−i ) − 3�. (36)

Since the latencies over edges are continuous random
variables and σm−i → σ−i , for any � > 0, there exists
a sufficiently large m3 such that we have the following for
m ≥ m3:

Var
(

L
i
(p′

i , σ
m−i )

)
+ ρ · l

i
(p′

i , σ
m−i )

< Var
(

L
i
(p′

i , σ−i )
)

+ ρ · l
i
(p′

i , σ−i ) + �. (37)

By adding inequalities with the same direction in Equations
(36) and (37), for m ≥ m3 we have

Var
(

L
i
(p′

i , σ
m
−i )

)
+ ρ · l

i
(p′

i , σ
m
−i )

< Var
(

L
i
( p̂i , σ−i )

)
+ ρ · l

i
( p̂i , σ−i ) − 2�. (38)

For the same reason as of Equation (37), for any � > 0,
there exists a sufficiently large m4 such that we have the
following for m ≥ m4:

Var
(

L
i
( p̂i , σ−i )

)
+ ρ · l

i
( p̂i , σ−i )

< Var
(

L
i
( p̂m

i , σ m
−i )

)
+ ρ · l

i
( p̂m

i , σm
−i ) + �, (39)

where p̂m
i ∈ supp(M B(σm−i )). By adding the inequalities

with the same direction in Equations (38) and (39), for
m ≥ max{m3, m4} we have

Var
(

L
i
(p′

i , σ
m
−i )

)
+ ρ · l

i
(p′

i , σ
m
−i )

< Var
(

L
i
( p̂m

i , σm−i )
)

+ ρ · l
i
( p̂m

i , σ m−i ) − �. (40)

Equation (40) contradicts the fact that p̂m
i ∈

supp(M B(σm
−i )), which completes the proof that

M B(σ ) has a closed graph.
As listed above, the mean-variance best response function
M B(σ ) satisfies the four conditions of Kakutani’s Fixed

Point Theorem. As a direct result, for any finite n-player
stochastic congestion game, there exists σ ∗ ∈ � such that
σ ∗ ∈ M B(σ ∗), which completes the existence proof of a
mean-variance equilibrium for such games.

C. Proof of Theorem 3

Let C B : � → � be the CVaRα best response function
where C B(σ ) = (

C B(σ−1), C B(σ−2), . . . , C B(σ−N )
)
. It is

easy to see that the existence of a fixed point σ ∗ ∈ � for the
CVaRα best response function, i.e., σ ∗ ∈ C B(σ ∗), proves
the existence of a CVaRα equilibrium. The following four
conditions of the Kakutani’s Fixed Point Theorem are shown
to be satisfied for the function C B(σ ) to prove the existence
of a fixed point for the function.
1) The domain of function C B(.) is a non-empty, compact,

and convex subset of a finite dimensional Euclidean space:
� is the Cartesian product of non-empty simplices as each
player has at least one strategy to play; furthermore, each
of the elements of � is between zero and one, so � is
non-empty, convex, bounded, and closed containing all its
limit points.

2) C B(σ ) �= ∅, ∀σ ∈ �: The set in Equation (19) is
non-empty as minimum exists over a finite number of
values. As a result, C B(σ−i ) is non-empty for all i ∈ [n]
since it is the set of all probability distributions over the
corresponding mentioned non-empty set.

3) The co-domain of function C B(.) is a convex set for
all σ ∈ �: It suffices to prove that C B(σ−i ) is a
convex set for all σ−i ∈ �−i and for all i ∈ [n]. For
any i ∈ [n], if σi , σ

′
i ∈ C B(σ−i ), we need to prove

that λσi + (1 − λ)σ ′
i ∈ C B(σ−i ) for any λ ∈ [0, 1]

and for any σ−i ∈ �−i . Let the supports of σi and
σ ′

i be defined as supp(σi) = {pi ∈ Pi : σi (pi) > 0}
and supp(σ ′

i ) = {pi ∈ Pi : σ ′
i (pi) > 0}, respectively.

It is concluded from the definition of the CVaRα best
response in Definition 5 that supp(σi), supp(σ ′

i ) ⊆
argmin

pi ∈Pi

E
[

L
i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
]
,

which results in supp(σi ) ∪ supp(σ ′
i ) ⊆

argmin
pi ∈Pi

E
[

L
i
(pi , σ−i )

∣∣∣Li
(pi , σ−i ) ≥ v i

α(pi , σ−i )
]
. As a

result, using the definition of CVaRα best response, any
probability distribution over the set supp(σi) ∪ supp(σ ′

i )
is a CVaRα best response to σ−i . The mixed strategy
λσi +(1−λ)σ ′

i is obviously a valid probability distribution
over the set supp(σi) ∪ supp(σ ′

i ) for any λ ∈ [0, 1],
so λσi + (1 − λ)σ ′

i ∈ C B(σ−i ) for any λ ∈ [0, 1] and for
any σ−i ∈ �−i that completes the convexity proof of the
set C B(σ−i ).

4) C B(σ ) has a closed graph: C B(σ ) has a closed graph if
for any sequence {σm, σ̂m} → {σ , σ̂ } with σ̂m ∈ C B(σ m)
for all m ∈ N, we have σ̂ ∈ C B(σ ). Proof by contradiction
is used to show that C B(σ ) has a closed graph. Consider
by contradiction that C B(σ ) does not have a closed graph,
so there exists a sequence {σm , σ̂m} → {σ , σ̂ } with σ̂m ∈
C B(σm) for all m ∈ N, but σ̂ /∈ C B(σ ). As a result, there
exists some i ∈ [n] such that σ̂i /∈ C B(σ−i ). Using the
definition of CVaRα best response in Definition 5, there
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exists p′
i ∈ supp(C B(σ−i )), p̂i ∈ supp(̂σi), and some

� > 0 such that

E
[

L
i
(p′

i , σ−i )
∣∣∣Li

(p′
i , σ−i ) ≥ v i

α(p′
i , σ−i )

]
< E

[
L

i
( p̂i , σ−i )

∣∣∣Li
( p̂i , σ−i ) ≥ v i

α( p̂i , σ−i )
]

− 3�. (41)

Since the latencies over edges are continuous random
variables and σm

−i → σ−i , for any � > 0, there exists
a sufficiently large m5 such that we have the following for
m ≥ m5:

E
[

L
i
(p′

i , σ
m
−i )

∣∣∣Li
(p′

i , σ
m
−i ) ≥ v i

α(p′
i , σ

m
−i )

]
< E

[
L

i
(p′

i , σ−i )
∣∣∣Li

(p′
i , σ−i ) ≥ v i

α(p′
i , σ−i )

]
+ �. (42)

By adding inequalities with the same direction in Equations
(41) and (42), for m ≥ m5 we have

E
[

L
i
(p′

i , σ
m−i )

∣∣∣Li
(p′

i , σ
m−i ) ≥ v i

α(p′
i , σ

m−i )
]

< E
[

L
i
( p̂i , σ−i )

∣∣∣Li
( p̂i , σ−i ) ≥ v i

α( p̂i , σ−i )
]

− 2�. (43)

For the same reason as of Equation (42), for any � > 0,
there exists a sufficiently large m6 such that we have the
following for m ≥ m6:

E
[

L
i
( p̂i , σ−i )

∣∣∣Li
( p̂i , σ−i ) ≥ v i

α( p̂i , σ−i )
]

< E
[

L
i
( p̂m

i , σm
−i )

∣∣∣Li
( p̂m

i , σ m
−i ) ≥ v i

α( p̂m
i , σ m

−i )
]

+ �,(44)

where p̂m
i ∈ supp(C B(σm−i )). By adding the inequalities

with the same direction in Equations (43) and (44), for
m ≥ max{m5, m6} we have

E
[

L
i
(p′

i , σ
m
−i )

∣∣∣Li
(p′

i , σ
m
−i ) ≥ v i

α(p′
i , σ

m
−i )

]
< E

[
L

i
( p̂m

i , σm−i )
∣∣∣Li

( p̂m
i , σm−i ) ≥ v i

α( p̂m
i , σ m−i )

]
− �. (45)

Equation (45) contradicts the fact that p̂m
i ∈

supp(C B(σm−i )), which completes the proof that C B(σ )
has a closed graph.

As listed above, the CVaRα best response function C B(σ ) sat-
isfies the four conditions of Kakutani’s Fixed Point Theorem.
As a direct result, for any finite n-player stochastic congestion
game, there exists σ ∗ ∈ � such that σ ∗ ∈ C B(σ ∗), which
completes the existence proof of a CVaRα equilibrium for such
games.
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