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ABSTRACT Low-dose CT images contain severe mottle noise and streak artifacts, which seriously affect
the physician’s diagnosis of the disease. Hence, in this paper, we propose a novel anisotropic fourth-order
diffusion model for low-dose CT image processing. The proposed diffusion model uses both image gradient
magnitude and weighted residual local energy to determine the diffusion coefficient. Gradient magnitude is
used to detect the image edges, while the weighted residual local energy preserves textures and details in the
image. In addition, the fidelity term is introduced into the diffusion model to avoid excessive smoothing and
weaken the blocky effects. Experimental results show that when compared with the anisotropic fourth-order
diffusion model, the proposed algorithm protects the texture details and suppresses the blocky effects.
In comparison with other state-of-the-art algorithms, the proposed model effectively suppresses mottle noise
and streak artifacts while simultaneously improving the low-dose CT image quality.

INDEX TERMS Low-dose computed tomography, anisotropic diffusion, fourth-order PDEs, residual local
energy.

I. INTRODUCTION

In recent years, computed tomography (CT) has been used
as an effective auxiliary tool in clinical diagnosis and disease
detection, as it can provide clear images without tissue over-
lap. However, the large amount of radiation applied during
the CT scan is likely to induce cancer, leukemia, and other
diseases, causing serious harm to patients [1], [2]. Therefore,
numerous researchers have attempted to address this concern,
and the as low as reasonably achievable (ALARA) princi-
ple [3] was proposed and implemented in clinical practice.
Naidich et al. [4] first proposed the concept of low-dose
CT (LDCT); subsequently, the LDCT technology has under-
gone rapid development. The general methods to lower the
radiation dose are as follows: using a sparse angle to obtain
the projection data; reducing the tube voltage and current of
the X-ray tube; improving the hardware conditions of the
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CT system, etc. Among them, reducing the tube current is
most commonly used in clinical practice because it is easy
to implement and has limited influence on the reconstruction
results. Presently, low-dose spiral CT is an effective method
for early screening of lung cancer in middle and old aged
smokers. Moreover, the technology has been extended to
other detection fields. However, the low-dose CT technology
adds noise to the projection data, causing severe noise in the
reconstructed image, which affect the physician’s diagnosis
of the disease.

Denoising in the projection domain is the most direct
method to improve the low-dose CT image quality. After
removing the noise from the projection data, an approximate
standard dose CT (SDCT) image can be reconstructed by
the filtered back projection algorithm. The iterative recon-
struction algorithms mainly reduce noise by optimizing the
objective function with prior terms, and the design of the prior
terms becomes the key to constructing the objective function.
However, both these methods require projected data, which
restricts their development.
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The post-processing algorithm removes noise from the
reconstructed images; therefore, these do not require pro-
jection data and are not affected by hardware devices. This
has significantly improved their applicability and attracted
the attention of numerous researchers. Based on the fea-
tures of low-dose CT images, researchers have modified the
classical denoising algorithm and proposed methods such
as dictionary learning [5], [6], guided filtering [7], non-
local mean [8], weighted kernel norm minimization [9], and
BM3D [10], [11]. Meanwhile, deep learning-based algo-
rithms [12]–[16] have attracted much research attention due
to their excellent noise reduction performance. However, the
noise reduction results are heavily dependent on the training
dataset, which has a problem of insufficient robustness; more-
over, training the network also requires a significant amount
of time.

In recent years, algorithms based on partial differential
equation (PDE) have achieved good results in image noise
reduction. Perona andMalik proposed the famous anisotropic
diffusion model, namely the PM model [17], and Rudin et al.
proposed the total variation (TV) model [18]. They pioneered
the PDE in the field of image edge preservation and noise
reduction, but there are problems such as the generation of
blocky effects and inaccurate identification of weak edges.
Since then, researchers have proposed several improved algo-
rithms. Wang et al. [19] modified the PM model combine
directional Laplacian operator, which effectively alleviated
the blocky effects. Chao and Tsai [20] fused the image local
variance with the diffusion coefficient to better retain the
image edges and fine details. Rafsanjani et al. [21] incorpo-
rated the residual local energy into the PM model to better
preserve the texture and details in the diffusion process.
To suppress the blocky effects caused by traditional second-
order PDE, many researchers have utilized fractional PDE
and fourth-order PDE. You and Kaveh presented a fourth-
order isotropic diffusion model, namely the YK model [22],
which avoided the blocky effect but produced speckle noise.
Hajiaboli [23] first replaced the Laplacian operator with
the gradient magnitude in the diffusion coefficient to atten-
uate the speck noise in the YK model. In a subsequent
study, Hajiaboli [24] proposed the anisotropic fourth-order
diffusion (AFOD) model, in which the diffusion strength
varies according to the direction of the gradient and edge
to achieve a better edge protection effect. However, when
the noise intensity increases, blocky effects are generated.
The researchers also applied the PDE methods to achieve
noise reduction in low-dose CT images. Mendrik et al. [25]
proposed a denoising algorithm for low-dose CT images
by combining edge enhancement and coherent enhancement
diffusion. Wang et al. [26] combined the fractional order
PM model with fractional order TV model and presented a
novel fractional order diffusion model (FPMTV) to improve
the quality of low-dose CT images. Liu et al. [27] improved
the PM model and fused the image variance and residual
image variance with the diffusion coefficient, named ASNDF
model, which effectively suppressed the streak artifact and

mottle noise in low-dose CT images. Based on the above anal-
ysis and inspired by the idea presented in [21], we propose
a novel fourth-order diffusion model of weighted residual
local energy applied to low-dose CT image noise reduction.
The model is named the novel anisotropic fourth-order dif-
fusion (NAFOD) model, which overcomes the shortcomings
of the AFOD [24] model, i.e., generating blocky effects
and neglecting the protection of texture and details. The
NAFOD model effectively suppresses the noise in low-dose
CT images.

This paper is organized as follows: Section II briefly intro-
duces the relevant fourth-order PDE model. Section III intro-
duces the algorithm and explains its implementation in this
study. Section IV presents the parameter setting and experi-
mental analysis, and section V summarizes the study.

II. RELATED FOURTH-ORDER PDE MODELS
Although the PM model and the subsequent improved
second-order PDE algorithm have achieved good results in
the field of image noise reduction, their denoising results
often contain blocky effects, which deteriorate the visual
effect and blur the image details. Researchers have been
exploringmethods to remove the blocky effect, and the higher
order PDE model is one of the main techniques.

A. YK MODEL
Taking the Laplace operator of the image as the energy func-
tion, You and Kaveh [22] presented a fourth-order isotropic
diffusion model, the energy function is

E(u) =
∫
�

f (|∇2u|)dxdy, (1)

where∇2 represents the Laplacian operator and f (•) is a non-
negative increasing function. The Laplace operator is zero in
the smooth region, therefore, minimizing the above equation
is equivalent to smoothing the image and removing noise.

The gradient descent flow of the above equation can be
obtained as follows

∂u
∂t
= −∇

2
[
f ι(|∇2u|)

∇
2u
|∇2u|

]
= −∇

2
[
c(|∇2u|)∇2u

]
. (2)

Experimental results revealed that the YKmodel converges
to a piecewise planar image, and no blocky effects are gener-
ated. However, there is severe speckle noise in the denoising
results.

B. ANISOTROPIC FOURTH-ORDER DIFFUSION MODEL
Hajiaboli pointed out that the YK model is an isotropic
diffusion model and proposed the AFOD [24] model. In the
diffusion coefficient function, the gradient magnitude |∇u| is
used instead of the Laplace operator |∇2u|, obtaining faster
convergence rate and reducing speckle noise. The diffusion
model is expressed as

∂u
∂t
= −∇

2(c(|∇u|)2uηη + c(|∇u|)uξξ ), (3)
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c(|∇u|) =
1

1+ (|∇u|/k)2
. (4)

where ∇2 is the Laplace operator, uηη and uξξ are the second
order derivatives of the image in the directions of the gradient
and edge respectively, and 0 < c(|∇u|) ≤ 1 is the diffusion
coefficient function, which decreases monotonically with the
image gradient magnitude. In the diffusion process, the local
properties of the image are considered, and the diffusion
strength in the image gradient direction is weaker than in the
edge direction, therefore, this model can obtain stronger edge
protection. However, the AFOD model has two major flaws:
firstly, the blocky effects are caused by the inconsistency of
the diffusion strength in the directions of the gradient and
edge, the blocky effects are more serious when the noise is
severe. Secondly, the gradient magnitude is used as the edge
detector, which ignores the protection of the texture and fine
details.

III. PROPOSED MODEL
Inspired by the concept presented in [21], the proposed
NAFOD model uses the residual local energy as the texture
and detail detector, and image gradient magnitude as the edge
detector in the diffusion coefficient. Because the residual
local energy and image gradient magnitude are insensitive to
mottle noise and streak artifact in low-dose CT images, the
diffusion strengths in the noise and artifacts region is large,
which achieves the effect of suppressing the mottle noise
and streak artifact while preserving the valid information.
Different diffusion strengths in the directions of the edge and
gradient lead to better edge preservation capability. At the
same time, the fidelity item is added to avoid excessive
smoothness and reduce the blocky effect.

A. RESIDUAL LOCAL ENERGY
Some denoising algorithms such as the PM model [17],
YK model [22], and AFOD model [24] remove some valid
information from the images, such as weak edges and fine
details. Based on this, the local residual energy is used
to define the texture and detail detector in the proposed
algorithm to obtain valid information that was incorrectly
removed from the residual image. Unlike [21], we found
that the algorithmic implementation of the proposed model,
achieved better results using the AFOD model to obtain the
residual images than the PM model, hence, the AFOD model
was used instead of the PM model. The residual image is
defined as:

uR(t) = uo − u(t) = us + un, (5)

where uo denotes the distorted image, us denotes the valid
information such as texture details, un includes some noise
components. The residual energy can be expressed as

PR = Ps + Pn, (6)

where PR, Ps, and Pn are the local energies of uR, us, un,
respectively. Assuming that the valid information and noise

in the residual image can be separated accurately, the valid
information can be returned to the denoising result.

The iteration stop condition of the AFOD model is
described as follows:

1
|�|

∫
�

(uR(t)− µ(uR(t)))2dxdy ≤ βk2n , (7)

where β > 1 is constant, and k2n denotes the noise variance.
In this case, the residual image has rich texture and fine
details. To remove noise and artifacts from the residual image,
a median filter and Gaussian filter are added to the residual
local energy, which are described as follows:{
uRm(x, y)=medw(uR(x, y))

PR(x, y)= 1
|�s|

∫
�s

(uRm(
∧
x,
∧
y)−µ(uRm))2wx,y(

∧
x,
∧
y)d
∧
x d
∧
y

(8)

where medw is the median filter, |�s|is the size of the Gaus-

sian window,wx,y(
∧
x,
∧
y)is a normalized Gaussian window, and

µ(•)is the mean operator.
In the diffusion model, we normalize the residual local

energy and propose a new diffusion coefficient function as

PRScaled(t) =
PR(x, y)−min(PR)
max(PR)−min(PR)

∗max(|∇u(t)|), (9)

c(|∇u|) → c(|∇u| + αPRScaled). (10)

Fig. 1 shows an example of the residual local energy of the
low-dose CT image. We can see the texture and details of the
tracheas and blood vessels in the lungs in Fig. 1(a), as well as
the mottle noise and streak artifacts caused by the insufficient
X-ray dose. After processing with the AFOD model, the
residual image is obtained, and processed by the median filter
and local Gaussian filter. The residual local energy image
mainly contains edges and texture details wrongly removed
as shown in Fig. 1(b), and there is almost no streak artifact,
indicating that the residual local energy is insensitive to the
artifacts in the low-dose CT image. Therefore, as the texture
detail detector, the residual local energy can protect the image
texture details and restore some of the valid information to the
denoising results wrongly removed by the AFOD model.

B. NOVEL ANISOTROPIC FOURTH-ORDER DIFFUSION
MODEL
According to the literature [24], we propose the following
objective function with a fidelity term:

E(u) =
∫
�

f (|∇2u|)dxdy+ λ
∫
�

(u− u0)2dxdy, (11)

where f (·) is a non-negative increasing function. Minimizing
the above equation, the gradient descent flow is obtained by
the Euler equation as follows:

∂u
∂t
= −∇

2(c(|∇2u|)∇2u)− λ(u− u0), (12)

The approach of the literature [24] is adopted, using the
gradient magnitude in the diffusion function and by divid-
ing the diffusion process into the gradient direction and the
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FIGURE 1. Residual local energy of low-dose CT image. (a) Low-dose CT
image; (b) residual local energy.

edge direction. Thereafter, combined with the residual local
energy, the model is proposed as follows:
∂u
∂t =−∇

2(c(|∇u|, αPRScaled)
2uηη+c(|∇u|, αPRScaled)uξξ )

−λ(u− u0)
c(|∇u|, αPRScaled )=

1
1+
(
(|∇u|+αPRScaled )/k

)2
u(x, y, t)|t=0=u0(x, y)

(13)

where ∇2 is the Laplace operator, uηη and uξξ are the second
order derivatives of the image in the directions of the gradient
and edge respectively, and parameter λ > 0. The fidelity term
is added to avoid excessive smoothing and reduce the blocky
effects.

In the second term of Eq. (11), α is the weight coefficient to
adjust the residual local energy and selecting a reasonable α
can achieve a better denoising result. According to |∇u| and
αPRScaled , a low-dose CT image can be subdivided into four
parts. In the first region, |∇u| and αPRScaled have large values
to obtain the minimum diffusion coefficient and preserve the
valid information; in the second region, a large |∇u| and small
αPRScaled protects the image edge; in the third region, a small
|∇u| and large αPRScaled protects the texture and details; in
the fourth region, both |∇u| and αPRScaled have smaller values
to obtain larger diffusion coefficients, corresponding to the
flat region or streak artifact region, which will be smooth and
suppressed.

The flowchart of the NAFOD model is shown in Fig. 2.
Compared to the AFOD algorithm, the NAFOD algorithm

has two main improvements. First, regarding the diffusion
coefficient, the weighted texture detail detection operator is
used in the model, which offers better protection for low-dose
CT images rich in texture and detail. Second, the evolving
image u and distorted image u0 are added as fidelity items to
avoid excessive smoothing and reduce the blocky effects.

C. NUMERICAL SOLUTION OF THE MODEL
The finite difference scheme is used to solve the pro-
posed model. Assuming a time step size 1t and space grid
size h = 1, the discrete time and space coordinates can be
expressed as 

t = n1t, n = 0, 1, 2 · ··
x = ih, i = 0, 1, 2 · · · I
y = jh, j = 0, 1, 2 · · · J

(14)

FIGURE 2. Flowchart of the proposed NAFOD algorithm.

the difference operator is

ux ≈ Dxui,j = (ui−1,j − ui+1,j)/2
uy ≈ Dyui,j = (ui,j−1 − ui,j+1)/2
uxx ≈ Dxxui,j = ui−1,j + ui+1,j − 2ui,j
uyy ≈ Dyyui,j = ui,j−1 + ui,j+1 − 2ui,j
uxy ≈ Dxyui,j = (ui−1,j−1 + ui+1,j+1
− ui−1,j+1 − ui+1,j−1)/4

(15)

with symmetric boundary conditions{
uni,−1 = uni,0, uni,J+1 = uni,J , i = 0, 1, 2 · · · I
un
−1,j = un0,j, unI+1,j = unI ,j, j = 0, 1, 2 · · · J , (16)

the image gradient magnitude is

|∇ui,j| =
√
(Dxui,j)2 + (Dyui,j)2, (17)

uηη and uξξ can be expressed as
uηη =

u2xuxx+2uxuyuxy+u
2
yuyy

u2x+u2y

uξξ =
u2yuxx−2uxuyuxy+u

2
xuyy

u2x+u2y

, (18)

the discrete expressions for the residual local energy and
diffusion coefficient are as follows:

PnR(i,j)Scaled =
PR −min(PR)

max(PR)−min(PR)
max(|∇un|), (19)

cni,j = c(|∇uni,j| + αP
n
R(i,j)Scaled ), (20)

as g = c2uηη+ cuξξ , the discrete expression of the Laplacian
operator is

∇
2gni,j = gni+1,j + g

n
i−1,j + g

n
i,j+1 + g

n
i,j−1 − 4gni,j. (21)
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Algorithm 1 Algorithm to implement the NAFOD
Input: Low-dose CT image uo
Solution process:
1) Set the initial iteration image u(0) = uo, determine the parameters

α, β, λ, and time step 1t;
2) Calculate the residual local energy PR according to Eqs. (7–9);
3) Iterative calculation: n = 1, 2, 3 · ··, calculate un+1.
Step 1: Calculate PnR(i,j)Scaled and cni,j of each pixel according to Eqs. (19,

20);
Step 2: Calculate the Laplacian operator ∇2gni,j according to Eq. (21);
Step 3: Calculate un+1i,j according to Eq. (22).
When un+1i,j meets the iteration termination condition, the iteration is

stopped; otherwise, let n = n+ 1, and go to Step 1.

Output: Denoised image un.

Finally, the discrete result is obtained as follows:

un+1i,j = uni,j −1t∇
2gni,j −1tλ(u

n
i,j − u0). (22)

Applying the above discrete scheme, the specific steps of the
model are given below.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed NAFOD
algorithm, we tested it on the Mayo public dataset [28],
the low-dose CT images were reconstructed using standard-
dose projection data added with Poisson noise, simulating a
1/4 SDCT image. The CT images of the abdominal cavity,
chest cavity, and pelvic cavity were used in the following
experiments.

In the quantitative assessment of images, the peak signal-
to-noise ratio (PSNR) is an effective criterion for noise eval-
uation, the larger the value, the smaller is the image noise

PSNR = 10 log

(
255× 255

1
I×J

∑I
i=1

∑J
j=1 (Ide(i, j)− Ire(i, j))2

)
,

(23)

Mean structural similarity (MSSIM) [29] is built on the
human eye perception system, it combines the image bright-
ness, contrast, and structural information. The larger the
value, the greater is the similarity between the denoising
image and the original image in terms of structure. Feature
similarity (FSIM) [30] and gradient magnitude similarity
deviation (GMSD) [31] were also used as quality indices
of the noise reduction performance in low-dose CT images.
FSIM is an improvement over the MSSIM, and the larger the
value, the better protected are the feature parts. The GMSD
is proposed due to the feature that the image gradient is
more sensitive to image degradation, and the smaller the
value, the better the denoising image preserves the gradient
information.

The proposed algorithm was compared with the YK
model [22], AFODmodel [24], FPMTVmodel [26], ASNDF
model [27], and REDCNN [32]. The YK and AFOD models
are fourth-order PDE models; FPMTV and ASNDF models
are the PDE algorithms for processing low-dose CT images,

TABLE 1. Parameter settings for different models.

and the REDCNN was proposed by Chen et al. as an excel-
lent deep learning based method for low-dose CT image
processing. We used the above mentioned PSNR, MSSIM,
FSIM, and GMSD as the quantitative evaluation indexes. The
parameter setting and analysis of the experimental results are
presented below.

A. PARAMETER SETTING
The proposed NAFOD model mainly involves two param-
eters: the residual weight coefficient α in Eq. (10) and the
weight coefficient λ of the fidelity term in Eq. (11). In the
AFOD model, the time step 1t proves that when 1t <

0.0313, the model has a stable solution. Therefore, in the
proposed model, the time step is set 1t = 0.03. We initially
used the method applied in literature [33] to estimate the
noise variance k2n in Eq. (7), due to the complicated noise of
the low-dose CT image, the noise estimation was not ideal;
therefore, we used the image processed by Gaussian filtering
as the reference standard dose image to estimate the noise
variance and achieve better results, the size of the Gaussian
operator was 5× 5, and δ = 5. In Eq. (7), the noise intensity
coefficient β = 1.8; In Eq. (11), the contrast parameter k can
be a fixed value. In this study, we used a method similar to the
Canny noise estimation [34] as k = (0.9/|�|)

∫
�
|∇uo|dxdy.

Moreover, in Eq. (8), the size of the median filter is 3 × 3,
the size of the Gaussian operator is 9 × 9, and δ = 5.
Because the dataset contains SDCT images, we used the
MSSIM as the algorithm iteration stopping criterion to retain
the best structural properties of the denoising results. In the
comparison experiments, we determined the parameters by
using the MSSIM metric and fine-tuned them according to
visual effects. MSSIM was also used as the iteration stopping
criterion. The REDCNN used 760 sets of images from the
Mayo dataset for network training, with the learning rate
set to 10−4 and batch-size of 16. Table 1 shows the model
parameter settings.

In the next section, the abdomen CT image in the folder
L014 will be used as an example to introduce the parameter
settings of the proposed model and explain the effect of the
parameter settings on the denoising performance. We deter-
mined the weight coefficient α and λ according to the evalu-
ation index and visual effect of the processed result.
1) Residual local energy weight coefficient α
Literature [21] proposed the residual local energy, and

the ASNDF model added the residual local energy to the
diffusion coefficient, but the weight was simply set as 1.
In this study, different weights were selected according to
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FIGURE 3. PSNR and MSSIM curves of folder L014 abdomen CT image: (a) Residual local energy weight coefficient α; (b) fidelity term weight
coefficient λ.

FIGURE 4. ROIs of folder L014 abdomen CT image with different
parameter α: (a) α =0; (b) α =2; (c) α =3.6.

FIGURE 5. MSSIM and PSNR values of ROI of Fig. 4.

the image properties to enhance the protection of the texture
details and improve the image quality. We can see that the
MSSIM and PSNR curves increase first and then decrease in
Fig. 3(a), which indicates that the quality of the denoising
image improves first and then deteriorates. When α = 2,
MSSIM has the maximum value and PSNR has a large value,
hence, it is considered the optimal weight coefficient. In this
case, the details and edges are clear, as shown in the zoomed
regions of interest (ROI) in Fig. 4(b) (indicated by the green
arrow). When α=0, we can see that some image edges are
blurred, i.e., the interior tissue has noise in Fig. 4(a). When α
is large, the noise is enhanced, as indicated by the red arrow in
Fig. 4(c). It can also be seen from Fig. 5 that the best metrics
values are obtained when α = 2.
2) Fidelity term weight coefficient λ
Added the fidelity term can avoid excessive smoothing and

reduce the blocky effects. The MSSIM and PSNR curves
increase first and then decrease in Fig. 3(b). When λ = 0.6,
both MSSIM and PSNR have large values; therefore, it is
regarded as the optimal parameter value. In such a case, the
processed image has good noise reduction effect, as shown
in Fig. 6(b). When λ = 0, from Fig. 6(a), a small number of

FIGURE 6. ROIs of folder L014 abdomen CT image with different
parameter λ: (a) λ =0; (b) λ =0.6; (c) λ =1.0.

FIGURE 7. MSSIM and PSNR values of ROI of Fig. 6.

blocky effects is generated (indicated by the yellow arrow).
When λ is large, noise is introduced in the processing result,
as shown by the red arrow in Fig. 6(c). It can also be seen from
Fig. 7 that the best metrics values are obtained when λ = 0.6.

In general, an image with a high level of texture and detail
should have a large residual local energy weight coefficient
α. The more severe the noise, the smaller is the fidelity
term weight coefficient λ. Based on numerous experimental
results, we give the reference ranges for two parameters

α ∈ [1, 6), λ ∈ (0, 1). (24)

We used Matlab 2016a to implement the proposed model,
using a CPU with Intel i7-9700K@ 3.6GHz, 32GB of RAM,
and an NVIDIA GeForce RTX 2080s GPU. From Fig. 2, it is
evident that the time complexity and space complexity of the
proposed model are consistent with the literature [24]. To be
precise, let the number of image pixels be n. The proposed
model contains two iterative processes, the first iteration
determines the residual image, the second iteration is to solve
the result image, and the time and space complexity are O(n)
for both iterations. Therefore, the time and space complexity
of the proposed model areO(n). For the Mayo dataset images
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FIGURE 8. Results of L014 low-dose abdomen CT image processing. The third to fifth rows depict the zoomed ROIs in (a1-h1).

used in the experiment, the time to process a low-dose CT
image is approximately 10 seconds using the GPU parallel
acceleration toolbox in Matlab, since the time step 1t is a
small value and the number of two iteration processes add
approximately 2000 times.

B. VISUAL ANALYSIS
The results of the image processing are depicted below, and
the display window of all the images is [-160,240] HU.

1) LOW-DOSE ABDOMINAL CAVITY CT
Fig. 8(a1) shows a low-dose abdominal cavity CT image
selected from the folder L014. The image contains mottle
noise and a small amount of streak artifacts, which affect the
detection of lesions and classification of tissues and organs.
Fig. 8(c1–h1) show the processed results from different mod-
els. Fig. 8(a2–h4) show the corresponding zoomed ROIs of
Fig. 8(a1–h1), respectively. The three ROIs contain the liver
region with lesion, the marginal region of the spleen, and the

smooth area of the liver with veins. The YKmodel overcomes
the blocky effect, there is severe speckle noise in the image,
indicated by the red arrow in Fig. 8(c2), moreover, the YK
model blurs the edge of the image. Blocky effects exist in
the AFOD model at the tissue edge (indicated by the yellow
arrow), as shown in Fig. 8(d3). The FPMTV model has the
problem of incomplete noise reduction, as shown in Fig. 8(e4)
(indicated by the red arrow). The ASNDF model has a high
similarity with the SDCT image, but it also has the problem
of a small amount of residual noise. The overall visual effect
of REDCNN is good, however, there is the problem of blurred
edges (indicated by the blue arrow in Fig. 8(g3)). In this
study, the proposed algorithm demonstrated the best visual
performance. There is almost no blocky artifact, and the edge
and small details are retained. In Fig. 8(h2), the lesion is
clearly visible; in Fig. 8(h3), the spleen edge is better pro-
tected (indicated by the green arrow). Denoising performance
is evident in the smooth area in Fig. 8(h4), moreover, the
liver’s blood vessels are clearly visible.
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FIGURE 9. Results of L019 low-dose chest CT image processing. The third and fourth rows depict the zoomed ROIs in (a1-h1).

2) LOW-DOSE CHEST CT
Fig. 9(a1) depicts a low-dose chest cavity CT image selected
from the folder L019,the ROIs in the red box contain the
artery edge region and the smooth area on the right side of the
heart. From the processed results, the YK model has severe
speckle noise (indicated by the red arrow in Fig. 9(c3)). There
are a few blocky effects in the AFOD model (indicated by
the yellow arrows in Fig. 9(d2) and (d3)). Residual noise
exists in the FPMTV model, which is evident in the interior
vascular and smooth areas of the heart (indicated by the red
arrows in Fig. 9(e2) and (e3)). The ASNDFmodel had a good
protective effect on the artery edge (indicated by the green
arrow in Fig. 9(f2)), whereas it produced more serious blocky
effects than the AFOD model on the cardiac edge (indicated
by the yellow arrow in Fig. 9(f3)). Despite the high similarity
between the REDCNN and SDCT images, there is still the
problem of blurred edges as shown in Fig. 9(g3) (indicated
by the yellow arrow). The NAFOD model achieved a good
balance between image noise suppression and edge protec-
tion; the inner area of the blood vessel is smooth (indicated
by the direction of the green arrow in Fig. 9(h2)), and the
heart edge is clear (indicated by the green arrow in Fig. 9(h3)),
in addition, almost no blocky effect is generated in the entire
image.

3) LOW-DOSE PELVIC CT
Fig. 10(a1) depicts a low-dose pelvic cavity CT image
selected from the folder L006.The ROIs in the red box contain
the hip bone region and pelvic tissue region. We see that a
large number of speckles exists in the YKmodel (indicated by
the red arrow in Fig. 10(c3)). TheAFODmodel has good edge
protection effect, but a small number of blocky effects are
generated in the pelvic tissue (indicated by the yellow arrow
in Fig. 10(d3)). The FPMTV model and ASDNF model have
the problem of residual noise, as indicated by the red arrows
in Fig. 10(e3) and (f3). The REDCNN has strong noise sup-
pression and no blocky effect; however, its edges are blurred,
as indicated by the yellow arrow on the edge of the tissue in
Fig. 10(g3). The proposed algorithm achieved the best results
for the pelvic cavity image, the noise in the smooth area of the
muscle was completely reduced (indicated by the green arrow
in Fig. 10(h2)), Fig. 10 (h3) shows that there are clear tissue
edges and the blocky effect is not produced.

C. QUANTITATIVE ASSESSMENT
The quantitative result of the proposed algorithm and com-
peting algorithms are presented in Table 2. It is evident that
only the REDCNNhas some highermetrics than the proposed
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FIGURE 10. Results of L006 low-dose pelvic CT image processing. The third and fourth rows depict the zoomed ROIs in (a1-h1).

TABLE 2. Comparative quantitative results of different algorithms.bold values denote the best results.

algorithm. The REDCNN is effective at suppressing noise
and has metrics that closely resemble the proposed model.
The proposed NAFOD model achieves high metrics and it
exhibits the best performance among all the PDE methods.

Considering the ROIs contain more valuable information,
we selected three ROIs in the red box from the abdominal
cavity low-dose CT image in Fig. 8(a1). The calculated values
of MSSIM and PSNR are shown in Fig. 11. In the three

ROIs, theMSSIM and PSNR of the proposed model achieved
the highest values among all PDE methods, which confirms
that the NAFOD model is effective in reducing noise and
maintaining the structures. While the REDCNN still achieves
good results, the proposed model has better metrics. Thus,
the visual effects and quantitative assessment show that the
proposedNAFODmodel demonstrates the best result in noise
suppression and structure maintain of low-dose CT images.
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FIGURE 11. MSSIM and PSNR values of different ROIs.

V. CONCLUSION
This paper proposes a novel anisotropic fourth-order diffu-
sion model for suppressing mottle noise and streak artifacts
in low-dose CT images. The edges of the low-dose CT image
are detected using the image gradient magnitude, whereas
the texture details are detected by the residual local energy.
The parameter α is introduced to detect texture details more
accurately to achieve the effect of preserving the valid infor-
mation and suppressing the noise. In addition, a fidelity term
is introduced into the diffusion model to avoid excessive
smoothing and weaken the blocky effects. The experiment of
low-dose CT images of the abdominal cavity, thoracic cavity,
and pelvic cavity from the Mayo open dataset verifies the
effectiveness of the proposed algorithm. The proposed model
has certain flaws: the criterion for stopping the iterations
utilizes the MSSIM standard to make better preservation of
image structure, but this criterion relies on reference images.
Moreover, the MSSIM standards introduce uncertainty into
the number of iterations, therefore, the model running time
is not only related to the image size, but also to the image
structure. Furthermore, as the exposures are further reduced,
low-dose CT images contain more severe noise, and the
proposed model gradually exhibits show the problem of noise
residue, in which case, the parameter k no longer conforms
to the adaptive formula, and needs to be manually adjusted.
Our future work will focus on the iterative stopping condition
and adaptive parameters selection. We have made the code
publicly available to facilitate future studies [35].
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