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   Dear Editor,

In this  letter,  the recursive fault  estimation issue is  considered for
nonlinear  time-varying  systems  subject  to  the  effects  induced  by
energy  harvesting  sensors  and  uniform  quantization.  Based  on  the
energy  harvesting  mechanism  and  stochastic  distribution  of  the
absorbed  energy,  the  real-time  occurrence  probability  of  missing
measurements  is  calculated  recursively.  This  research  intends  to
develop  a  recursive  estimator  for  the  considered  nonlinear  time-
varying  system  with  energy  harvesting  sensors,  such  that,  under
uniform  quantization  effects,  the  state  and  fault  can  be  jointly
estimated.  By  adopting  the  induction  approach,  an  upper  bound  is
firstly  calculated  for  the  estimation  error  covariances  (EECs)  of  the
state  and  fault.  Then,  the  value  of  the  time-varying  estimator
parameter  is  computed  through  minimizing  such  calculated  upper
bound.  In  the  end,  an  illustrative  example  is  presented  to  verify  the
availability of the developed fault estimation method.

Fault  estimation,  which  is  a  significant  research  issue  in  fault
diagnosis  field,  has  gained  an  ever-increasing  research  attention  in
recent  decades.  The  main  purpose  of  fault  estimation  is  to  estimate
the “shape” and “size” for the underlying fault signal according to the
available  information  (e.g.,  system  model,  received  measurements,
priori  knowledge  about  the  faults).  So  far,  many  interesting  results
concerning  the  fault  estimation  problems  of  different  systems  have
been reported in the literature, see e.g., [1]–[3].

Quantization  is  considered  to  be  an  important  source  of  the
network  systems  performance.  Such  a  research  topic  has  attracted
considerable  research  interest  in  recent  years,  see  e.g.,  [4],  [5].  To
date,  two  kinds  of  quantization  methods  (i.e.,  the  uniform-type
quantization  and  the  logarithmic-type  quantization)  have  been
adopted  in  the  past  literatures.  In  engineering  practice,  more  and
more  energy  harvesting  sensors  (EHS)  are  applied  in  practical
systems  for  the  aim  of  reducing  the  restriction  of  limited  battery
capacity  on  communication  networks  and  providing  permanent
energy  supply  for  remote  devices.  Under  the  effects  of  energy
harvesting, a set of “rechargeable batteries” are adopted in sensors to
store  the  energy  absorbing  from  external  environment  (e.g.,  solar
panels  and  wind  mills)  [6].  Nevertheless,  the  utilization  of  energy
harvesting  technique  would  give  rise  to  certain  distinguished
phenomenon. More specifically, the measurement of sensor would be
discarded  if  there  is  no  energy  stored  in  the  sensor.  The  energy
harvesting does result in measurement losses which, if not adequately
tackled,  would  largely  affect  the  filtering/control  performance.  So
far,  some  preliminary  results  concerning  the  state  estimation  (or
filtering) problem subject to EHS have been reported, see e.g., [6], [7].

Compared with the existing results on fault estimation problem, in
this  letter,  we  shall  thoroughly  consider  the  impacts  induced  by  the
energy harvesting mechanism, and discuss the estimation design and
estimation  performance  analysis  issues  according  to  such  impacts.
Two major challenges in this letter are identified as follows: 1) How
to  develop  a  fault  estimation  scheme  to  handle  nonlinearities  and
uniform quantization effects  (UQE) under the EHS constraints? and
2)  How  to  examine  the  transient  behavior  of  the  states  and  fault
estimation  error  for  the  time-varying  nature  of  the  energy  stored  in
the  sensor?  The  main  contributions  of  this  work  are  highlighted  as
follows: 1) The fault estimation issue is, for the first time, studied for
time-varying system (TVS) with EHS and UQE; 2) An upper bound
(UB)  of  the  estimation  error  covariance  (EEC)  is  calculated
recursively  based  on  two  coupled  Riccati-like  difference  equations;
and  3)  The  estimator  gain  matrix  is  calculated  through  minimizing
the trace of the resultant EEC.

Problem formulation:
System model and communication network:

The considered TVS is given with the following form:
 {

xs+1 = l(xs)+Asxs+Bsωs+Fs fs

ys = Gsxs+Dsνs
(1)

ys ∈ Rny xs ∈ Rnx

ωs ∈ Rnω

νs ∈ Rnν

l(·) : Rnx → Rnx

As Bs Gs Ds Fs

where  and   represent  the  measurement  output
vector  and  the  system  state,  respectively;  stands  for  the
process  noise  and  denotes  the  measurement  noise;

 is  a  nonlinear  function  which  will  be  introduced
later. , , ,  and  are time-varying matrices.

To  further  characterize  the  considered  TVS,  we  introduce  the
following assumptions.

l(·)
ℑ l(0) = 0

∥l(ᴊ)− l(ı)∥ ≤ ℑ∥ᴊ− ı∥ ᴊ, ı ∈ Rnı

Assumption 1 [8]:  Considering the nonlinearity ,  there exists a
positive  constant  such  that  the  conditions  and

 holds for all .
x0 ωs νsAssumption  2:  The  initial  value ,  the  noises  and   are

mutually independent with the following statistical properties:
 

E{ω j} = E{ν j} = 0, E{x0} = x̄0, E{x0xT
0 } = P0|0

E{ωiω
T
j } = δ(i− j)Wi, E{νiνTj } = δ(i− j)Vi (2)

Wi > 0 Vi > 0 P0|0 > 0

Wi Vi P0|0

where ,  and  are known matrices, which have
the  appropriate  dimensions.  In  practical  applications,  the  values  of

,  and  are obtained according to the preliminary knowledge
of  the  process  noise,  measurement  noise  and  the  initial  state.
Sometimes  it  is  difficult  to  obtain  the  exact  values  of  these
covariance  matrices.  In  this  situation,  some  relatively  conservative
matrices  can  be  utilized  to  give  the  upper-bounds  for  the  unknown
covariance matrices.

fs ∈ Rn f ∆(∆( fs)) = 0
E{ f0} = E{∆( f0)} = 0 ∆( fs) ≜ fs+1− fs

Assumption 3 [9]: The fault signal  satisfies ,
 with .

Taking the UQE into account, the uniform quantization process is
written as
 

y⃗s = Y(ys) ≜
[
(ℓR y1,s

ℓ )T · · · (ℓR
yny ,s

ℓ )T
]T

(3)
yi,s i = 1,2, . . . ,ny ys ℓ

R(·)

σs ≜ Y(ys)− ys ∥σs∥∞ ≤ ℓ/2

where  ( ) is the i-th entry in  and  is referred as
the quantization level. The function  rounds a real-number to the
nearest integer number. The uniform quantization error is defined as

. It is easy to see that .
Energy harvesting model:

zr
s ∈ {S r,S r−1, ...,0} hr

s ∈ N+
r ∈ {1,2, . . . ,ny}

S r
i ∈ {1,2, . . . ,ny}

{hi
s}s≥0

Let  and  be the energy level stored in
sensor  and the energy units that sensor r can harvest
at  time  instant s ,  respectively,  in  which  indicates  the  maximum
limit  for  the  energy  storage  of  sensor r .  For  any ,

 is  assumed  to  be  a  sequence  of  independent  identically
distributed  random variables  whose  probability  distribution  is  given
by
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Prob{hi
s = j} = p j, j = 0,1,2 . . . (4)

p j 0 ≤ p j ≤ 1
∑+∞

j=0 p j = 1where  satisfies  and .
ΥsDefine the indicator variable  as

 

Υs ≜ diag{Υ1,{z1
s>0},Υ2,{z2

s>0}, . . . ,Υny,{z
ny
s >0}} (5)

Υi,{zi
s>0} ≜

1, zi
s > 0

0, otherwise.
where 

zi
s

Under the  energy  harvesting  mechanism,  a  sensor  would  harvest
the  energy  from  external  environment  and  store  it  in  the  battery.
When the  stored unit  energy is  non-zero,  the  sensor  would  transmit
its  current  measurement  signal  to  the  fault  estimator  and  consume
one unit energy. Accordingly, the dynamics of  can be written as
 zi

s+1 =max{min{zi
s+hi

s−Υi,{zi
s>0},S i},0}

zi
0 ≤ S i

(6)

ỹs = Υsy⃗sand  is  the  measurement  received  by  the  remote  fault
estimator.
Fault estimator:

x̄s ≜
[
xT

s f T
s ∆T ( fs)

]T
Define . Based on (1), we formulate an

augmented system of the following form:
 x̄s+1 = Ās x̄s+ l(x̄s)+ B̄sωs

ys = Ḡs x̄s+ D̄sνs
(7)

where
 

Ās ≜

As Fs 0
0 I I
0 0 I

 , B̄s ≜

Bs

0
0

 , l(x̄s) ≜

l(xs)
0
0


Ḡs ≜ [Gs 0 0] , D̄s ≜Ds.

The fault estimator for the augmented system (7) with the available
measurement is constructed as follows:
 

x̂s+1|s = Ās x̂s|s+ l(x̂s|s)

x̂s+1|s+1 = x̂s+1|s+Ks+1(ỹs+1−Λs+1Ḡs+1 x̂s+1|s)

x̂0|0 =
[
x̄T

0 0 0
]T (8)

x̂s+1|s x̂s|s
xs Ks+1

Λs ≜ E{Υs}

where  and  represent the one-step prediction (OSP) and the
estimate  of  at  time s ,  respectively;  is  the  time-varying
estimator gain to be designed; and .

es+1|s ≜ x̄s+1− x̂s+1|s es+1|s+1 ≜
x̄s+1− x̂s+1|s+1

Letting  be  the  OSP  error  and 
 be the estimation error, we have

 es+1|s = Āses|s+ l(es|s)+ B̄sωs

es+1|s+1 = es+1|s−Ks+1(ỹs+1−Λs+1Ḡs+1 x̂s+1|s)
(9)

l(es|s) ≜ l(x̄s)− l(x̂s|s)where .
Our  objective  in  this  letter  is  to  construct  a  fault  estimator

according to (8) such that:
ℵ̄s|s Γs|s ≜ E{es|seT

s|s}1) An UB  of the EEC  can be guaranteed;
Ks+1

ℵ̄s|s
2)  An appropriate  gain  of  fault  estimator  is  designed  recur-

sively to minimize the trace of the UB .
Main results: In this section, we shall calculate the UB of the EEC

firstly. Then, we are going to compute the value of the fault estimator
gain matrix through minimizing such an UB.

The following lemmas are necessary for the derivation of our main
results.

{zi
s}s≥0

θis ≜
[Prob(zi

s = 0) Prob(zi
s = 1) · · · Prob(zi

s = S i)]T

Lemma  1  [10]:  Consider  the  energy  level  with  the
probability  distribution  given  by  (6).  Then,  by  letting 

, we have
 


θis+1 = δi+Ωiθ

i
s

θi0 = [0 · · · 0︸    ︷︷    ︸
zi
0

1 0 · · · 0︸    ︷︷    ︸
S i−zi

0

]T (10)

δi ≜ [0 · · · 0︸    ︷︷    ︸
S i

1]Twhere  and
 

Ωi = −



−p0 −p0 0 · · · 0
−p1 −p1 −p0 · · · 0
−p2 −p2 −p1 · · · 0
...

...
...

. . .
...

−pS i−1 −pS i−1 −pS i−2 · · · −p0∑S i−1
j=0 p j

∑S i−1
j=0 p j

∑S i−2
j=0 p j · · · p0


. (11)

Λs ≜ diag{λ1,s,λ2,s, ...,λny,s} λi,s ≜ Prob(Υi,{zi
s} = 1) =

[0 1 · · · 1︸  ︷︷  ︸
S i

]θis

From Lemma 1, it is easy to see that the transmission probability of
the  measurement  at  time  instant s  can  be  calculated  by

 in  which 

.

Next, according to the estimation error dynamics (9), we are going
to derive the covariances of the OSP error and estimation error. Then,
an UB of the EEC would be given.

β1 β2 β3 β4 β5
{ℵ̄s+1|s}s≥0 {ℵ̄s+1|s+1}s≥0

Theorem 1: Given four positive scalars , , , ,  and γ, let
us  calculate  the  matrices  and   recursively
as follows:
 

ℵ̄s+1|s = (1+β1)Āsℵ̄s|sĀT
s + B̄sWsB̄T

s

+ (1+β−1
1 )ℑ2tr{ℵ̄s|s}I (12)

 

ℵ̄s+1|s+1 = (1+β2+β3)(I−Ks+1Λs+1Ḡs+1)ℵ̄s+1|s

× (I−Ks+1Λs+1Ḡs+1)T + (1+β−1
2 +β4+β5)

×Ks+1
(
Λs+1 ◦ (nyℓ

2/4)I
)KT

s+1+ (1+γ)

× (1+β−1
3 +β

−1
4 )Ks+1

(
(Λs+1−Λ2

s+1)◦ Ḡs+1

×ℵ̄s+1|sḠT
s+1
)KT

s+1+ (1+β−1
3 +β

−1
4 )

× (1+γ−1)Ks+1
(
(Λs+1−Λ2

s+1)◦ Ḡs+1

× x̂s+1|s x̂T
s+1|sḠ

T
s+1
)KT

s+1+ (1+β−1
5 )

×Ks+1
(
Λs+1 ◦D̄s+1Vs+1D̄T

s+1
)KT

s+1 (13)
ℵ̄0|0 ≜ diag{P0|0,0,0} ◦

ℵ̄s+1|s+1

Γs+1|s+1 ≜ E{es+1|s+1eT
s+1|s+1}

with the initial matrix , where  represents the
Hadamard  product.  Then,  is  an  UB  of  the  EEC

.
Γs+1|s ≜ E{es+1|seT

s+1|s}Proof: From (9), the OSP error covariance 
can be computed as follows:
 

Γs+1|s = E{es+1|seT
s+1|s}

= ĀsΓs|sĀT
s +E{Āses|slT (es|s)+ B̄sWsB̄T

s

+ l(es|s)eT
s|sĀ

T
s }+E{l(es|s)lT (es|s)}. (14)

Based on Lemma 3 in [8], we have
 

E{Āses|slT (es|s)+ l(es|s)eT
s|sĀ

T
s }

≤ β1ĀsΓs|sĀT
s +β

−1
1 E{l(es|s)lT (es|s)}. (15)

E{l(es|s)l(es|s)T }According  to  Assumption  1,  the  term  can  be
derived as follows:
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E{l(es|s)l(es|s)T } ≤ E{lT (es|s)l(es|s)I}

≤ ℑ2E{eT
s|ses|sI} ≤ ℑ2E{tr(Γs|s)}I. (16)

Then, with (15) and (16), we have
 

Γs+1|s ≤ (1+β1)ĀsΓs|sĀT
s + B̄sWsB̄T

s

+ (1+β−1
1 )ℑ2tr{Γs|s}I. (17)

Γs+1|s ≤ ℵ̄s+1|swhich implies .
Γs+1|s+1Similarly, by using Lemmas 1 and 3 in [11], the EEC  can

be calculated as follows:
 

Γs+1|s+1 = (I−Ks+1Λs+1Ḡs+1)Γs+1|s(I−Ks+1Λs+1Ḡs+1)T

+Ks+1
(
Λs+1 ◦E{σs+1σ

T
s+1}
)KT

s+1+Ks+1

× ((Λs+1−Λ2
s+1)◦ Ḡs+1E{x̄s+1 x̄T

s+1}ḠT
s+1
)KT

s+1

+Ks+1
(
Λs+1 ◦D̄s+1Vs+1D̄T

s+1
)KT

s+1

−L1,s+1−LT
1,s+1−L2,s+1−LT

2,s+1

+L3,s+1+LT
3,s+1+L4,s+1+LT

4,s+1 (18)
where
 

L1,s+1 = E{(I−Ks+1Λs+1Ḡs+1)es+1|s

×σT
s+1Υ

T
s+1KT

s+1}

L2,s+1 = E{(I−Ks+1Λs+1Ḡs+1)es+1|s

× x̄T
s+1ḠT

s+1(Υs+1−Λs+1)TKT
s+1}

L3,s+1 = E{Ks+1Υs+1σs+1

× x̄T
s+1ḠT

s+1(Υs+1−Λs+1)TKT
s+1}

L4,s+1 = E{Ks+1Υsσs+1ν
T
s+1D̄T

s+1Υ
T
s+1KT

s+1}.
Considering  the  constraint  on  the  uniform  quantization  error,  we

have
 

E{σs+1σ
T
s+1} ≤ E{σT

s+1σs+1I} ≤ 0.25nyℓ
2I. (19)

E{x̄s+1 x̄T
s+1}By using Lemma 3 in [8], we can rewrite  as follows:

 

E{x̄s+1 x̄T
s+1} = E{(es+1|s+ x̂s+1|s)(es+1|s+ x̂s+1|s)T }

≤ (1+γ)Γs+1|s+ (1+γ−1)x̂s+1|s x̂T
s+1|s. (20)

By  using  Lemma  3  in  [8]  and  Lemma  3  in  [11]  again  and
combining (18)−(20), we have
 

Γs+1|s+1 ≤ (1+β2+β3)(I−Ks+1Λs+1Ḡs+1)ℵ̄s+1|s

× (I−Ks+1Λs+1Ḡs+1)T + (1+β−1
2 +β4+β5)

×Ks+1
(
Λs+1 ◦ (nyℓ

2/4)I
)KT

s+1+ (1+γ)

× (1+β−1
3 +β

−1
4 )Ks+1

(
(Λs+1−Λ2

s+1)◦ Ḡs+1

×ℵ̄s+1|sḠT
s+1
)KT

s+1+ (1+β−1
3 +β

−1
4 )

× (1+γ−1)Ks+1
(
(Λs+1−Λ2

s+1)◦ Ḡs+1

× x̂s+1|s x̂T
s+1|sḠ

T
s+1
)KT

s+1+ (1+β−1
5 )

×Ks+1
(
Λs+1 ◦D̄s+1Vs+1D̄T

s+1
)KT

s+1. (21)
Γs+1|s+1 ≤

ℵ̄s+1|s+1

Along  the  similar  lines  in  [11],  we  can  obtain  that 
 and the proof is complete. ■

ℵ̄s+1|s+1 Γs+1|s+1

ℵ̄s+1|s+1

By now, we have obtained the UB  for the EEC .
Next,  we intend to compute the desired time-varying estimator  gain
through minimizing the obtained UB  at each time s.

ℵ̄s+1|s+1Theorem 2: The trace of the UB of the EEC  is minimized
by the following estimator gain matrix:
 

Ks+1 = (1+β2+β3)ℵ̄s+1|sḠT
s+1Ψ

−1
s+1 (22)

where
 

Ψs+1 ≜ (1+β2+β3)Λ2
s+1Ḡs+1ℵ̄s+1|sḠT

s+1+ (1+γ)

× (1+β−1
3 +β

−1
4 )
(
(Λs+1−Λ2

s+1)◦ Ḡs+1ℵ̄s+1|sḠT
s+1
)

+ (1+β−1
3 +β

−1
4 )(1+γ−1)

(
(Λs+1−Λ2

s+1)◦ Ḡs+1

× x̂s+1|s x̂T
s+1|sḠ

T
s+1
)
+ (1+β−1

2 +β4+β5)

× (Λs+1 ◦ (nyℓ
2/4)I

)
+ (1+β−1

5 )

× (Λs+1 ◦D̄s+1Vs+1|sD̄T
s+1
)
. (23)

Proof:  The  proof  is  straightforward  based  on  Theorem  1  and  is
therefore omitted here for space saving. ■

An  illustrative  example: We  intend  to  provide  a  simulation
example  to  verify  the  availability  of  our  developed  fault  estimation
strategy in this section.

Consider  a  nonlinear  TVS  of  the  form  (1)  with  the  following
parameters:
 

As =

0.380 0.01cos(0.5s) 0.022
0.012 0.490 0.012
0.017 0.025 0.400

 , Bs =

0.02
0.01
0.01


Fs =

 0.35
−0.23
0.21

 , l(xs) =

0.17sin(x1,s)
0.16sin(x2,s)
0.17sin(x3,s)


Gs =

[
2 2+0.1e−0.5s cos(0.5s) 2

]
, Ds = 0.01.

ωs
νs Ws = 0.25I Vs = 0.09I

l(xs)
ℑ = 0.17 fs = −1+0.01s

3
h1

s p0 = 0.200 p1 = 0.346
p2 = 0.454

The  covariances  of  the  process  noise  and  the  measurement
noise  are  selected  as  and  ,  respectively.
The nonlinear function  satisfies the constraint in Assumption 1
with .  Suppose  that  the  additive  fault  is .
The  maximum  limit  for  the  energy  storage  is .  Moreover,  the
probability  distribution  of  is  given  by , 
and .

z0 = 1 S = 3
Λs θs

Set the initial energy unit and the maximum number of unit energy
as  and  ,  respectively.  According  to  (10),  the  values  of

 and the probability distribution of the sensor energy level  are
obtained.

Γ0|0

hs Υs
xs fs

Let  the  initial  value  of  be  I .  The  desired  estimator  gain  is
obtained  by  solving  Theorems  1  and  2,  the  simulation  results  are
presented in Figs. 1−3. Fig. 1 shows the values of  and , Fig. 2
shows the actual state  and their estimates. Fig. 3 plots the fault 
and  the  corresponding  estimate,  which  indicates  that  our  developed
fault estimation performance is satisfactory.
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Fig. 1. The energy harvested and energy consumption.
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Conclusions: In  this  research,  the  problem  of  recursive  fault
estimation has been studied for  nonlinear  TVSs subject  to  EHS and
signal  UQE.  According  to  the  probability  distribution  of  the  energy
harvest  process,  the  probability  of  missing  measurement  has  been
calculated recursively. The fault signal under consideration has been
modeled by a time-varying function whose second order difference is
assumed to  be zero.  A recursive fault  estimator  has  been developed
to generate the state estimates and fault estimate at each time instant.
Then, the UB of the resultant EEC has been derived in terms of two
coupled  differences  equations.  The  required  time-varying  estimator
gain  has  been  computed  recursively  by  minimizing  the  UB  of  the
EEC.  A  numerical  example  has  been  addressed  to  examine  the
availability of the developed fault estimation method. Future research
directions  include  the  fault  estimator  design  issue  over  sensor
networks with EHS [12]–[15].
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