
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023 10359

Partial Consistency for Stabilizing Undiscounted
Reinforcement Learning

Haichuan Gao , Zhile Yang , Tian Tan , Tianren Zhang , Jinsheng Ren , Pengfei Sun,

Shangqi Guo , and Feng Chen , Member, IEEE

Abstract— Undiscounted return is an important setup in rein-
forcement learning (RL) and characterizes many real-world
problems. However, optimizing an undiscounted return often
causes training instability. The causes of this instability problem
have not been analyzed in-depth by existing studies. In this
article, this problem is analyzed from the perspective of value
estimation. The analysis result indicates that the instability
originates from transient traps that are caused by inconsistently
selected actions. However, selecting one consistent action in
the same state limits exploration. For balancing exploration
effectiveness and training stability, a novel sampling method
called last-visit sampling (LVS) is proposed to ensure that a part
of actions is selected consistently in the same state. The LVS
method decomposes the state-action value into two parts, i.e.,
the last-visit (LV) value and the revisit value. The decomposition
ensures that the LV value is determined by consistently selected
actions. We prove that the LVS method can eliminate transient
traps while preserving optimality. Also, we empirically show that
the method can stabilize the training processes of five typical
tasks, including vision-based navigation and manipulation tasks.

Index Terms— Last visit (LV), partial consistency, reinforce-
ment learning (RL), transient trap, undiscounted return.

I. INTRODUCTION

REINFORCEMENT learning (RL) has achieved outstand-
ing performance in many application fields, such as

chess [1] and video games [2]–[4]. Usually, a temporally
discounted return is used to train a policy, but an undiscounted

Manuscript received 31 August 2021; revised 18 December 2021 and
11 February 2022; accepted 1 April 2022. Date of publication 25 April
2022; date of current version 1 December 2023. This work was supported
in part by the National Natural Science Foundation of China under Grant
62176133 and Grant 61836004, in part by the Tsinghua–Guoqiang Research
Program under Grant 2019GQG0006, and in part by the National Key
Research and Development Program of China under Grant 2021ZD0200300.
The work of Shangqi Guo was supported by the Shuimu Tsinghua Scholar
Program. (Haichuan Gao and Zhile Yang contributed equally to this work.)
(Corresponding authors: Shangqi Guo; Feng Chen.)

Haichuan Gao, Zhile Yang, Tianren Zhang, Jinsheng Ren, and Pengfei Sun
are with the Department of Automation, Tsinghua University, Beijing 100084,
China (e-mail: ghc18@mails.tsinghua.edu.cn; yzl18@mails.tsinghua.edu.cn;
zhang-tr19@mails.tsinghua.edu.cn; rjs17@mails.tsinghua.edu.cn; spf16@
mails.tsinghua.edu.cn).

Tian Tan is with the Department of Civil and Environmental Engineering,
Stanford University, Stanford, CA 94305 USA (e-mail: tiantan@stanford.edu).

Shangqi Guo is with the Department of Automation and the Department
of Precision Instrument, Tsinghua University, Beijing 100086, China (e-mail:
shangqi_guo@foxmail.com).

Feng Chen is with the Center for Brain-Inspired Computing Research,
Department of Automation, Tsinghua University, Beijing 100190, China,
and also with the LSBDPA Beijing Key Laboratory, Beijing 100084, China
(e-mail: chenfeng@mail.tsinghua.edu.cn).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2022.3165941.

Digital Object Identifier 10.1109/TNNLS.2022.3165941

return is used to evaluate the final performance of the pol-
icy [1], [2], [5]–[7]. Undiscounted returns can directly express
criteria such as accumulated scores [2] and success probabil-
ity [5], which are objectives commonly used in a wide range
of tasks, especially tasks in robot control [6], [8]–[11]. For
example, warehouse robots are often tasked to reach certain
destinations, for which a 5- or 10-min route is equally good.
In this case, we may evaluate the robot’s task performance
by success probability, which could be expressed by a simple
undiscounted return about goal-reaching rewards [12].

Although undiscounted returns are considered for task
performance, direct optimization of the undiscounted return
is often avoided in RL because the optimization leads to
training instability, i.e., the performance oscillates during the
training process and the training fails to converge [13]–[17].
As a result, discounted returns are commonly used as a
surrogate objective during training to stabilize the learning
process. However, the discounted return induces a bias to
the undiscounted objective, which has been put forward by
prior works [17], [18]. Although this bias does not alter the
optimal policy learned by the agent when the discount factor
is set large enough, the determination of the proper discount
factor is difficult, especially for Markov decision processes
(MDPs) with long horizons [17], [19]. Thus, many researchers
set a discount factor close to 1 to obtain policies with good
performances [18].

To illustrate the suboptimality caused by discount fac-
tor, a Cliff-Walking task [20] shown in Fig. 1 is taken as
an example. This task aims to maximize the probability
(MAXPROB [12], [21]) of reaching the goal state marked
by a star. In particular, the probability needs to be estimated
with the terminal reward that is not temporally discounted.
In this task, the agent can follow two paths to the goal state:
one path is short but risky (length = 5, there are four steps
with falling probability pfall = 0.1), and the other is long
but safe (length = 9). If a commonly used discount factor
is adopted, e.g., γ = 0.9, the learned policy will follow the
shorter path rather than the safer one. Although γ satisfying
γ (9−5) > (1− pfall)

4 can produce the optimal policy, the setting
of γ requires pfall and the lengths of paths that are task-specific
and generally unavailable in complex environments.

The above analysis reveals that undiscounted RL is impor-
tant but has not received much attention from researchers.
Thus, this study aims to directly optimize the undiscounted
return and alleviate the training instability problem. The sig-
nificance of this study is twofold. On the one hand, this study
can scale up undiscounted RL to be applied in many fields

© 2022 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5161-5326
https://orcid.org/0000-0002-7908-9524
https://orcid.org/0000-0001-9173-2984
https://orcid.org/0000-0001-9687-5263
https://orcid.org/0000-0002-5013-1880
https://orcid.org/0000-0003-3181-6881
https://orcid.org/0000-0003-4813-2494

10360 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

Fig. 1. Cliff-Walking example.

for preserving the optimal policy [13], [16], [17], [22]–[24].
On the other hand, similar to the cases with undiscounted
returns [13], [16], [17], [23], [25], γ close to 1 (e.g., γ > 0.99)
also causes the training instability problem. Thus, the analysis
of the instability of undiscounted RL helps to alleviate the
instability of optimizing a discounted return with a large γ .

As for analyzing this instability problem, the research in
RL literature is limited to experimental studies [17], [19],
[26], [27]. These studies show that the discount factor acts
as a low-pass filter [17], [27], i.e., the bigger γ is, the weaker
the ability is for reducing the noise in the learning process.
Although these empirical results facilitate the adjustment of
the discount factor, they lack a theoretical analysis of the cause
of training instability and avoid optimization of undiscounted
returns. As far as we know, the theoretical analysis of the insta-
bility problem only lies in classic dynamic programming (DP)
literature [22]. Andrey Kolobov et al. [22] show that value
iteration under undiscounted return will cause the policy to
be trapped in sets of states with zero rewards, called transient
traps. The limitation is that their analyses in DP are based
on model-based/planning algorithms, and their method needs
to traverse the transition model for the traps to be detected.
However, modern RL algorithms are mostly data-based.

This article is the first to discover that transient trap also
exists in model-free RL fields and provides theoretical analysis
by combining the empirical results in RL and the theoretical
analyzes in DP. Different from the insight of planning in DP,
we analyze transient trap from the perspective of sampling.
To illustrate the formation of transient traps, we present an
example under Monte Carlo estimation [20], as shown in
Fig. 2. The formation consists of the following two stages.

1) Inconsistently selected actions cause an overestimation
of the nonoptimal actions. As shown in Fig. 2(a), the
optimal action in state s is a2, and Qπ (s, a2) = 1. In this
example, the optimal action a2 is a consistent action
for the estimation of Q(s, a1). The nonoptimal a1 is a
recurrent action, i.e., when the agent starts from s and

explores a1 first, the agent will revisit (RV) state s. After
an RV, the agent may sample a2 at this time and reach the
goal state. It can be seen that Qπ (s, a1) will be close to
Qπ (s, a2), and the inconsistency in the action sampling
at s causes Qπ (s, a1) to be overestimated.

2) The overestimation causes transient traps. As shown in
Fig. 2(b), when the value of nonoptimal action Qπ (s, a1)
and the optimal action Qπ (s, a2) becomes close enough,
the noise and randomness in the training process can
make Qπ (s, a1) larger than Qπ (s, a2). In this situation,
the agent following a greedy policy will always choose
a1 and RV state s at test time, forming a trap. The
trap is transient because the update would penalize the
trap trajectory and the suboptimal action. As a result,
a transient trap occurs and disappears during training,
leading to training instability.

Therefore, the inconsistency in action sampling needs to be
corrected to eliminate the transient traps and stabilize the train-
ing process. An intuitive solution for eliminating the transient
trap is to only select one consistent action in the same state.
However, this sampling method limits exploration for other
actions in episode [20]; algorithms with inefficient exploration
are commonly not learnable. For balancing learnability and
training stability, we propose to keep partial actions consis-
tently selected, while the other actions can be inconsistently
selected. This is reasonable because eliminating transient traps
only requires a safe margin between the values of the optimal
action and the nonoptimal actions. Based on this, this article
proposes to decompose the undiscounted return into two parts,
i.e., last-visit (LV) return and the RV return. The values of
these two parts are evaluated separately, and they are added to
replace the original value function. As shown in Fig. 3, the LV
return only sums the part of the return after the LV to a state in
each episode, while the RV return sums the remaining return
in the episode. The separated evaluation of the return ensures
that the LV return part will not be affected by inconsistently
selected actions because the same state is not visited again
afterward in the episode, thus correcting the overall estimation.
Besides, as it will be proved in Section V, this decomposition
does not change the optimal policy of the original task. For
brevity, the method is referred to as LV sampling (LVS) in the
rest of the article. LVS is first implemented with a dual-output
neural network. Then, it is tested in various tasks including a
representative grid-world task, a 3-D ViZDoom game [28], and
several challenging robotic tasks based on the CoppeliaSim
simulator [29]. Compared with time-awareness and vanilla
baselines, our method exhibits superiority in sample efficiency
and training stability. This shows that our method is efficient
and effective in resolving the training instability problem.

The rest of this article is organized as follows. In Section II,
the related literature is reviewed, and the drawbacks of major
existing studies are discussed. In Section III, the preliminaries
of our work are introduced. In Section IV, the transient trap
problem is defined, and the cause of this problem is analyzed.
In Section V, the LVS method is proposed to eliminate
transient traps through partial consistency. Also, it is proven
that this method can preserve the optimality of the policy, and
the practical implementations of this method are presented.

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10361

Fig. 2. Two stages of the formation of transient traps. (a) Stage 1: overestimation. (b) Stage 2: transient trap.

Fig. 3. Partial consistency produced by LVS.

In Section VI, the experimental results are provided to demon-
strate the existence of transient traps and the effectiveness of
the proposed LVS method. Section VII discusses the impact
of this work and future research directions. The contributions
are summarized as follows.

1) This article is the first to discover that the transient
trap problem also exists in model-free undiscounted RL
tasks, and it is a cause of the training instability problem.

2) This article performs a theoretical analysis of the for-
mation mechanism of the transient trap problem. The
analysis shows that the existence condition of transient
traps is an overestimation of nonoptimal action caused
by inconsistent action sampling.

3) This article proposes LVS, a new method for solving
the transient trap problem by partially consistent action
sampling. The effectiveness of the proposed method is
demonstrated theoretically and empirically.

II. RELATED WORK

The undiscounted return has been used as the testing
criteria in many application fields [2], [5], [16], [30], [31].
Among them, two criteria are commonly used. One is “sum
of rewards” (total reward [17], [31]); the other is “success
probability of goal-reaching” (MAXPROB [12], [21]), e.g.,
cumulative scores [2], [30] in video games and success rates
of robot tasks [5] [32]. However, undiscounted return is rarely
taken as the learning criterion because it is difficult to optimize
and can make algorithms fail to converge [13], [17].

In many famous algorithms, the undiscounted MDP is
regarded as the “true” MDP, and the discount factor is used
as a variance reduction technique [17], [24], [25]. However,
the discount factor causes an inherent bias for undiscounted
objective, which cannot be eliminated by designing value
estimation, e.g., on-policy value estimation to address the
bias in policy evaluation caused by exploration [33]. It does
converge to the “best” policy that is determined by the discount
factor. However, if the discount factor is inappropriately set,

the converged policy may be nonoptimal for MDPs. Besides,
when used for complex tasks, this technique will suffer from
two problems: 1) tweaking or learning a suitable γ needs many
trials and 2) optimizing the discounted return with a large γ
(γ > 0.99) causes training instability [13], [17], [25]. Some
studies exploit the temporal difference with a fixed horizon to
stabilize RL [19], [20]. However, the representation of a long
horizon or indefinite horizon by setting the fixed [20] needs
task-specific designs of rewards or to learn to tweak the reward
function [17].

Some studies optimized the undiscounted return, but
they did not consider the “transient trap” problem.
Salimans et al. [14] and Mania et al. [15] used evolution
algorithms to learn policies. However, these algorithms require
a complete evaluation before each update of policies, so they
fail to achieve a high sampling efficiency. Cao et al. [16]
and Pardo et al. [23] directly optimized the undiscounted
return by augmenting the state space with the remaining time.
Then, acyclic MDPs were constructed to eliminate transient
traps. Although this method is task-independent, it enlarges
the state space, which reduces the sampling efficiency in
the training process [16]. Different from these methods, the
method proposed in this article does not enlarge the search
space and is more sampling efficient. R-learning [34] is a
good method for solving tasks with an infinite sum of rewards.
However, the tasks considered in this study are assumed to
have a bounded total sum of rewards which are claimed in
Section III. Thus, the core part of R-learning, i.e., the �ρ, σ �
representation, does not work because ρ always converges to
zero. In other words, R-learning is a method for representing
an infinite sum of rewards. It does not modify the evaluation
so that the overestimation of nonoptimal action remains in
the MDPs, which contains finite total rewards and allows the
existence of transient traps.

The “transient trap” problem has been investigated by the
studies of the DP [35]–[38] literature. Especially, in gener-
alized stochastic shortest path (GSSP) [22], the find, revise,

10362 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

eliminate trap (FRET) algorithm was adopted to eliminate
the transient trap. For RL problems, one core limitation of
these works in DP is that they need to establish the transition
model of the environment to detect the traps. Most modern
RL algorithms are mostly data-based, and this characteristic
is extended to data-based algorithms. It is revealed that the
transient trap is the cause of the instability problem in undis-
counted RL. From this perspective, our work has made the
problem analysis in undiscounted returns more complete.

III. PRELIMINARIES

In this section, the setting of undiscounted RL is introduced.
An undiscounted MDP is defined as a tuple �S,A, P, R�,
where S is the state space; A is the action space; R : S×A→
R is the reward function; and P : S ×A× S → [0, 1] is the
transition function. We use Sg to denote the set of terminal
states.

We consider that the horizon is infinite and assume that
the total rewards are bounded. Since the return is bounded,
undiscounted returns can be used without setting the average
rewards [34]. Then, the objective of the undiscounted MDP
is to find a policy π : S → A that maximizes the expected
undiscounted return Uπ = Eπ [�∞t=0 Rt]. The above settings
of bounded rewards together with infinite horizon describe an
MDP with sparse reward, which can characterize many real-
istic and complex problems for scaling up RL literature [17],
[32]. In this setting, the undiscounted return has an obvious
advantage in back-transporting long-term rewards.

IV. TRANSIENT TRAP PROBLEM

In this section, this article first describes the transient trap
problem and analyzes how it causes training instability, i.e., the
performance of policy fluctuates between suboptimality and
optimality. Then, the existence condition of transient traps is
derived. The theoretical analysis is based on the Monte Carlo
estimation [20].

A. Definitions About Transient Trap

As mentioned in Section I, the implication of transient
trap is two folds: 1) “trap” indicates that, during testing, the
agent with the greedy policy will be trapped in a group of
states and 2) “transient” indicates that, as training goes on,
the trap will disappear because the update penalizes the trap
trajectory. Also, the suboptimal action will lead to the trap
since it will terminate before higher total rewards are collected.
In summary, when the policy is tested in different episodes as
training proceeds, the transient trap disappears and reappears,
leading to performance fluctuations and nonconvergence of the
training.

Since the trap is related to the topology structure of the
transition model, the concept of “policy graph” is exploited to
describe transient traps. For convenience, the notations from
the DP literature [22] are adopted. The term “policy graph” is
introduced as follows.

Definition 1 (Policy Graph): A policy graph Gπ =
{Sπ , Eπ } is a directed graph that contains all the states
reachable by the policy π , where Sπ is the set of nodes (states)

Fig. 4. Two-state abstracted MDP.

reachable by policy π , and Eπ is the set of edges Eπ =
{(si , s j)|si , s j ∈ Sπ , p(s j |si , π(si)) > 0}.

Accordingly, a greedy graph is the policy graph Gπ Q
of a

policy that always selects the action with the maximum value,
i.e., π Q(s, a) = argmaxa∈AQπ (s, a).

Based on this, a formal definition of the transient trap is
given. As mentioned above, the transient trap characterizes:
1) a greedy graph consists of groups of communicating states
but not connected to the outside and 2) the agent can move
out of these groups of states by changing its policy. Thus, the
“transient trap” is defined as follows.

Definition 2 (Transient Trap): A trap in a policy graph is
a maximal strongly connected component (SCC), where there
are no outgoing edges: C = {SC, EC } � Gπ , s.t. SC ∩Sg = ∅

and ∀si ∈ SC , s j ∈ S \ SC , (si , s j) /∈ Eπ . A transient trap
indicates that the agent can move out of the trap by changing
its policy: ∃si ∈ SC , s j ∈ S \ SC , a ∈ A, s.t. p(s j |si , a) > 0.

Based on the definitions of policy graph and transient trap,
the training instability problem caused by transient traps can
be clearly described. Specifically, the instability problem is
reflected by the policy graph oscillating between the optimal
policy graph Gπ Q∗

and the nonoptimal policy graph Gπ Q

containing transient traps.

B. Existence Condition of Transient Trap

In this section, this article analyzes the two stages in trap
formation under the Monte Carlo estimation. In one stage,
the inconsistently selected actions cause overestimation; in the
other stage, the overestimation causes transient traps.

Stage 1 (Inconsistently Selected Actions Cause Overes-
timation): To find the part of the state-action value that
causes overestimation of a nonoptimal state-action pair, the
state-action value is decomposed by a two-state abstraction
method proposed by Singh and Sutton [39].

This method abstracts the whole state space into state s (that
is to be analyzed) and terminal state sg , and it considers that
the policy π at other states in the original MDP to be fixed.
The trajectories of the agent involve several visits to s and
the final termination at sg . The abstracted MDP is shown in
Fig. 4, where Rrv is the reward obtained between RVs s; Rlv is
the reward obtained between the LV to s and the termination;
and Prv and Plv are the abstracted transition probabilities.

In this way, the state-action value is decomposed according
to the transitions to terminal states and those to an RV. Then,
the following lemma can be formulated.

Lemma 1 (Value Function Decomposition): Let “lv”
denote the LV of s and “rv, k” denote the kth RV to s. Also,
note that Vrv,k(s) = V (s) due to infinite horizon. Then, for
each state s, the value function satisfies

Qπ (s, a) = Plv Rlv + Prv[Rrv + V π (s)].
Proof: The proof is provided in the Supplementary

Material. �

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10363

The above decomposition shows that, for s ∈ S and a ∈ A,
the state-action value Qπ (st , at) depends on the state values
of its RVs V π (s), as shown in Fig. 4.

During training, when different actions (e.g., a greedy action
and an exploration action) are selected at different visits in the
same state, the values of former visits would be changed by
mistake. For a nonoptimal action, this mistake will cause the
optimal action value to be added to the nonoptimal action’s
value, resulting in the overestimation of the nonoptimal action.
Although, in discounted RL, this mistake can be eliminated by
γ , it is still prominent in undiscounted RL. The above analysis
indicates that, for a nonoptimal action, the probability of Prv

leading to an RV determines the severity of overestimation.
The higher the probability, the more severe the overestimation,
and the less distinguishable the nonoptimal and optimal action
values. As will be introduced in Section V, when Prv becomes
large, the nonoptimal action value can become close to the
optimal action value. In this case, the optimal policy graph is
fragile, and some noises can cause the optimal action to be
replaced with the nonoptimal action, forming a transient trap.

Stage 2 (Overestimation Causes Transient Trap): Here, the
formation of a transient trap by overestimation is analyzed.
According to its definition, a transient trap is an SCC without
outgoing edges, indicating that Prv = 1. However, Prv =
1 does not strictly hold in practice due to the stochastic
policy and the transition model. For clarity, the formation
of a transient trap is first analyzed based on Prv = 1 under
deterministic MDP. Then, in the rest part, the assumption of
Prv = 1 is relaxed to show the suboptimality in general cases
with Prv < 1.

Here, it will be proved that the optimal action will be
replaced by a nonoptimal action with Prv(s, a) = 1, leading
to a transient trap. This is because the nonoptimal action and
the optimal action tend to have the same values. Thus, a little
noise in the learning process can make the optimal action be
replaced with a nonoptimal one. As a result, the agent will
always choose the recurrent actions during testing and, thus,
be trapped in a group of states. Based on Lemma 1, we analyze
the policy on state s and fix the policy on the other states ŝ to
be greedy, which is necessary for Prv(s, a) = 1. The analysis
result is summarized in the following theorem.

Theorem 1 (Transient Trap in a Deterministic MDP): Given
an optimal Q-function Q∗, let the state to be considered be
s and its optimal action be a∗. We only consider the policy
update on s and fix the policy on the other states ŝ to be
greedy, i.e., π Q∗(ŝ). Also, an arbitrarily small noise δ in the
training is considered. Then, a transient trap will be formed
in the subsequent policy graph if and only if there exists a
nonoptimal action a �= a∗ in the current greedy graph of Q∗
such that Prv(s, a) = 1.

Proof: The proof is provided in the Supplementary
Material. �

The above theorem reveals that the optimal action will be
replaced by a nonoptimal action that causes a transient trap.
Then, we give a typical example to describe the cases in which
nonoptimal action with Prv = 1 can exist.

Example 1 (Zero-Reward Cycles): As shown in Fig. 2(a),
the zero-reward cycle is an SCC consisting of two states with

no rewards inside. The state-action transition probabilities in
the two states are deterministic. This SCC can have outgoing
edges under appropriate policies, but the agent can change
its policy to make the SCC closed. It should be noted
that most MDPs with sparse rewards contain zero-reward
cycles [22].

Then, we release the assumption of Prv = 1 because,
in practice, the policy is commonly stochastic. However, the
overestimation of nonoptimal actions still commonly exists.
This overestimation can still cause the values of nonoptimal
actions to be larger than those of the optimal due to the noise
in the learning process. Formally, the estimated state-action
value is denoted as Q̂(s, a) = Q(s, a) + δ, where Q(s, a)
is the expected value and δ is the noise in value estimation
during training, including the noises caused by sample vari-
ance, learning rate, and computation accuracy. The analysis is
performed also based on Lemma 1: we analyze the policy on
state s and fix the policy on other states to be �-greedy policy.
In this case, Prv < 1 commonly holds. Then, we provide the
condition for the overestimation to cause a nonoptimal action
to replace the optimal action on s.

Theorem 2 (Training Instability Under the Value Noise):
Given an optimal Q-function Q∗, let the state considered be
s and its optimal action be a∗, and a nonoptimal action be a.
We only consider the policy update on s and fix the policy
on the other states ŝ to be �-greedy. Then, the following two
propositions are equivalent.

1) During testing, the greedy policy π Q(s) is suboptimal.
2) During training, one of the following two cases occurs:

Prv(s, a) >
Q∗(s, a∗)− Rlv − δ

V ∗(s)+ Rrv − Rlv

when V ∗(s)+ Rrv − Rlv > 0, Q∗(s, a∗)− Rlv > 0, or

Prv(s, a) <
Q∗(s, a∗)− Rlv − δ

V ∗(s)+ Rrv − Rlv

when V ∗(s) + Rrv − Rlv < 0 and Q∗(s, a∗) − Rrv −
V ∗(s) > 0.

Proof: The proof is provided in the Supplementary
Material. �

The above theorem reveals that, in practice, Prv = 1 is not
a necessity to achieve suboptimality, and the actual condition
is weaker

Prv(s, a) >
Q∗(s, a∗)− Rlv − δ

V ∗(s)+ Rrv − Rlv
.

When γ < 1, V ∗(s) can be decayed, and thus, the right
term in the above inequality is large. In this case, the learning
process is resistant to relatively large noise. Meanwhile, the
smaller γ is, the larger noise the training process can with-
stand. When γ = 1, V ∗(s) cannot be decayed. Note that
Q∗(s, a∗) and V ∗(s) get close because �−greedy is a soft
policy about π Q∗ , i.e., V ∗(s) = �((

�
Q(s, â))/N) + (1 −

�)Q(s, a∗), where N is the number of nonoptimal actions â.
In this case, a relatively small noise can make

Q∗(s, a∗)− Rlv − δ

V ∗(s)+ Rrv − Rlv
< 1

10364 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

Fig. 5. Illustration of Plv and Prv. Circles indicate different visits to the state
s in a trajectory.

such that, if the Prv is larger than the above value, nonoptimal
action will replace the optimal action.

Besides, the second case in Theorem 2 indicates that,
under value noises, there exists another situation that the
suboptimal action replaces the optimal one due to inconsistent
action sampling, that is, when Rlv is large and Prv is small.
Interestingly, this case has less impact on the optimal value
than the first one because the difference between optimal and
suboptimal state-action values is Prv(V ∗(s)−V π (s)), as shown
in (1). The degree of impact depends on the probability of
RVs Prv. This theorem identifies more scenarios leading to
training instability than transient traps, which has made the
problem analysis in the training instability of undiscounted
return more complete.

This analysis indicates that the inconsistently selected
actions cause the overestimation of nonoptimal action value
first; then, the overestimation causes the values of nonoptimal
actions to be larger than those of the optimal action when the
policy deduces a large Prv(s, a), and suboptimality is caused.
In the most serious cases, Prv(s, a) = 1 causes a transient
trap. Thus, the action inconsistency needs to be alleviated to
eliminate the transient traps so that the training process can be
stabilized. In Section V, a method will be proposed to solve
this problem.

V. PARTIAL CONSISTENCY FOR ELIMINATING

TRANSIENT TRAPS

In Section IV, the analysis has shown that transient traps
are formed by inconsistently selected actions. In this section,
for eliminating transient traps, a novel sampling method is
proposed to eliminate transient traps and keep partial action
selections consistent.

A. Method

As the inconsistency needs to be addressed to eliminate
transient traps, the selected actions should be consistent. For
deterministic policies, consistent action selecting indicates that
the agent can only explore one action in the same state of each
episode. That is, if the agent selects an action for exploration
in a state, it should select this action whenever it returns to this
state; otherwise, all the samples with inconsistently selected
actions should be discarded. However, it is emphasized by

Sutton and Barto [20] that keeping all selected actions con-
sistent in episodes is severely inefficient for exploration and
sampling.

Based on this analysis, this article proposes to achieve
“partial consistency” instead of selecting consistent actions.
The “partial consistency” implies that consistency is ensured
in a subset of samples. This is reasonable because alle-
viating overestimation only requires Qπ (st , at) to be not
close to Qπ (st , a∗t) when Prv(st , at) is large, instead of an
accurate estimation of Qπ (st , at). “Partial consistency” can
provide a safe margin between Qπ (st , at) and Qπ (st , a∗t).
However, in this case, the return will be changed and dif-
ferent from the commonly used first-visit return or every-visit
return [39], which may lead to suboptimal policies. There-
fore, our proposed method needs to preserve the unbiased
estimation of the original state-action values. Two condi-
tions for effective selection of the subset of samples are
summarized.

1) Effectiveness for Eliminating Traps: The subset should
not contain rewards between RVs; otherwise, it will
count the returns from inconsistently selected actions
after revisiting a state.

2) Optimality Preservation: The subset should ensure that
the rest part of the return can be transformed into
a conditional expectation. That is, when a return is
separately evaluated under some conditions, what we
evaluate is a conditional expected return.

Under the first condition, the part of the return that has
followed the LV to the state is chosen for separate sampling
and evaluation because there is no RV after the last time of
visiting a state in a trial. Accordingly, we call it LV return, i.e.,
Qπ

lv(s, a) = Eπ [�∞i=tlv
Ri], where tlv is the time of LV. After

the LV return is deducted from the total expected return, the
remaining part is the average of the returns between (re)visits
to the state, and it is called RV return, i.e., Qπ

rv(s, a) =
Eπ [�tlv−1

i=t Ri]. In this article, this sampling method is referred
to as LVS. Similar to (1), the state-action value function in “k,
rv” of LVS is expressed as

Qπ
rv,k(s, a)

= Plv Rlv + Prv

⎡
⎢⎣Rrv + Qπ

lv(s, a)� �� 	
Partial consistency

+

�

�
Qπ

rv,k+1(s, â)

N

+ (1− �)Qπ
rv,k+1(s, a∗)

�⎤
⎥⎦.

LVS constrains that the LV return in “rv, k + 1” must be
generated by the consistency action (without exploring other
actions), while the other part of the return can be generated
by inconsistently selected actions.

Under the second condition, a conditional expectation is
evaluated, which is called LV conditioned expected return, i.e.,
Qπ

lv(s, a) = Eπ [�∞i=tlv
Ri |s is lv]. However, the unweighted

LV conditioned expected return and RV return may not be
summed directly, probably leading to a biased evaluation of the

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10365

Fig. 6. Dual-output network structure and division of samples for implementing LVS.

optimal policy. Fortunately, it is noted that the prior probability
of last-visiting a state might be equal to 1 because any trial
has a termination, and the same states must be last-visited
once. Formally, an expected return can be divided into two
parts, i.e., RV expected return and LV conditioned expected
return.

Theorem 3 (Optimality of LVS): For deterministic policies,
the state-action value function Qπ (s, a) can be transformed to
the sum of the RV return and the LV conditioned return

Qπ (s, a) = Eπ

�
tlv−1�
k=t

Rk |st = s, a

�
� �� 	

revisit

+Eπ

� ∞�
i=tlv

Ri |s is lv, a

�
� �� 	

last-visit conditioned

.

Proof: As shown in Fig. 5, Qπ (s, a) can be divided
according to the RV times. By expanding it in regard to the
number of RVs before the LV, “rv, k,” we have

Eπ

� ∞�
i=t

Ri

�

=
� �

τlv∈	lv

p(τlv|rv, 0)+
�

τrv∈	rv

p(τrv|rv, 0)

� ∞�
i=trv,0

Ri

+ Prv,1

� �
τlv∈	lv

p(τlv|rv, 1)+
�

τrv∈	rv

p(τrv|rv, 1)

� ∞�
i=trv,1

Ri

+ Prv,1 Prv,2

� �
τlv∈	lv

p(τlv|rv, 2)+
�

τrv∈	rv

p(τrv|rv, 2)

� ∞�
i=trv,2

Ri

+ · · ·
where 	lv is the set of trajectories without RVs to s and
	rv is the set of trajectories that will RV s. At every RV,
we consider the term

�
τlv∈	lv

p(τlv|rv, k)
�∞

i=trv,k
Ri . With the

Markov property and infinite-horizon assumption, we have the
following results.

1) Prv,1(s) = Prv,2(s) = Prv,3(s) = · · ·
2)

�
τ∈	lv

p(τ |rv, 0)
�∞

i=trv,0
Ri =�

τ∈	lv
p(τ |rv, 1)

�∞
i=trv,1

Ri = · · ·
Therefore, we have the following results:

Eπ

� ∞�
i=tlv

Ri

�
= �

1+ Prv + P2
rv + · · ·

� �
τ∈	lv

p(τ |lv)

∞�
i=tlv

Ri .

Then, we are going to show that the LV part of the return can
be estimated under the condition that s is last visited. We make
a transformation of the last two-terms from simple summation

to the conditional expectation�
τ∈	lv

p(τ |lv)

∞�
i=tlv

Ri = P(τ ∈ 	lv)
�
τ∈	lv

p(τ |lv)
�∞

i=tlv
Ri

P(τ ∈ 	lv)

= [1− Prv(s)]E
� ∞�

i=tlv

Ri |s is lv

�
.

Accordingly, we have

Eπ

� ∞�
i=tlv

Ri

�
= [1− Prv(s)]

�
1+ Prv + P2

rv + · · ·
�

×E

� ∞�
i=tlv

Ri |s is lv

�
.

Note that (1− Prv)(1+ Prv + P2
rv + · · ·) = 1 due to the long-

horizon assumption of the episodes. Finally, we find that

Eπ

�
tlv�

i=t

Ri

�
=

�
τrv∈	rv

p(τrv|rv, 0)

∞�
i=trv,0

Ri

+ Prv,1

�
τrv∈	rv

p(τrv|rv, 1)

∞�
i=trv,1

Ri

+ Prv,1 Prv,2

�
τrv∈	rv

p(τrv|rv, 2)]
∞�

i=trv,2

Ri + · · ·

define the expected return between t and tlv. Therefore, the
Q-function can be divided as shown in the following equation:

Qπ (s, a) = Eπ

�
tlv−1�
k=t

Rk |st = s, a

�
� �� 	

revisit

+Eπ

� ∞�
i=tlv

Ri |s is lv, a

�
� �� 	

last-visit conditioned

which completes the proof. �
The above theorem reveals that the original value func-

tion is preserved in LVS. Based on this equivalence, the
value of Qπ (s, a) can be calculated by directly summing the
unweighted RV return and the LV conditioned return. It should
be noted that, in this section, we do not assume the environ-
ment to be stochastic or deterministic, i.e., the above theorem
holds in both stochastic and deterministic environments.

Next, the elimination of transient traps by LVS is described.
The separated evaluation of Qπ

lv(s, a) and Qπ
rv(s, a) implies

that, within the same trajectory, different parts of the trajec-
tories are used to estimate different state-action values. The
LV part selects states that are last-visited from the trajectories
and then counts the returns that have followed these states. The
RV part counts the returns of the other states with the first or
every-visit estimation. Since the part Qπ

lv(s, a) is obtained by

10366 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

consistently selected actions, the case in which the nonoptimal
action value is too close to the optimal action value can be
avoided to eliminate the transient trap. As for the effectiveness
of our method, a theorem is presented under the most severe
case of Prv(s, a) = 1.

Theorem 4 (Effectiveness of LVS for Eliminating Traps):
For the greedy graph G Q∗ of an optimal Q-function Q∗, under
LVS, there is no transient trap even if there exists a state-action
pair (s, a) s.t. Prv(s, a) = 1.

Proof: The proof is provided in the Supplementary
Material. �

Our theorem reveals that, if there is already an optimal pol-
icy, unlike first-visit return or every-visit return, LVS will not
generate transient traps in the policy graph. Thus, LVS should
be an effective improvement to eliminate traps and improve
training stability in undiscounted RL. Note that LVS does not
penalize trajectories with transient traps, which may introduce
a bias to the value estimation. Instead, LVS eliminates tran-
sient traps by enhancing the consistency in action sampling.
Because an action that causes transient traps is suboptimal,
its value is lower than the value of an optimal action under
consistent action sampling. Thus, the enhancement of action
sampling consistency provided by LVS offers a safe margin,
also called action gap [40], between the values of nonoptimal
actions and the values of optimal actions.

B. Implementation With Function Approximation

In this section, the implementation of our method with
parameterized function approximators is described in detail.
The neural networks used to implement LVS and the LV
return, as well as the RV return, are illustrated in Fig. 6. LVS
requires an estimation method that estimates the LV condi-
tioned return separately. To this end, Monte Carlo is selected as
the estimation method. Other mainstream estimation methods,
such as temporal difference, are not selected by this study
because they use bootstrapping and may count the returns of
greedy actions on that of nongreedy actions after revisiting a
state.

1) Monte Carlo With LVS: For each state in a roll-out,
the transitions of each state are divided into two parts: the
RV part

�tlv−1
i=t ri and the LV part

�∞
i=tlv

ri . First, the
RV Q-function Qξ

rv(s, a) parameterized by ξ is
used to estimate the RV expected return, i.e.,
Lξ (s, a) = ||Qξ

rv(s, a) − �tlv−1
i=t ri ||22. Then, the LV

Q-function Qθ
lv(slv, alv) parameterized by θ is used

to estimate the LV conditional expected returns, i.e.,
Lθ (slv, alv) = ||Qθ

lv(slv, alv) − �∞
i=tlv

ri ||22. Next, the two
Q-functions are combined to obtain the overall Q-function

Qξ,θ (s, a) = Qξ
rv(s, a)+ Qθ

lv(s, a).

In the experiments introduced in Section VI, this algo-
rithm is used in the tasks of Cliff-Walking, Gathering, and
ViZDoom navigation. These tasks differ in the implementation
of the value estimators. Specifically, a Q-table is used for the
Cliff-Walking and the Gathering task, and a Q-network is used
for the ViZDoom task.

Algorithm 1 LVS-Based Actor–Critic
Input: last-visit Q-function Qlv, revisit Q function Qrv,
policy π , episode buffer D, last-visit buffer Dlv

for episode= 1 to M do
Reset buffer D and Dlv; get initial observation s1

for t = 1 to T do
Sample an action a from the distribution π(a|s)
Execute at , get (st , at , rt , st+1), and store in D

end for
for each transition (st , at , rt , st+1) in D do

if ∃i ∈ {t + 1, . . . , T } s.t. si = st then
Copy (st , at , rt , st+1) to Dlv

end if
end for
for each transition (st , at , rt , st+1) in Dlv do

yt,lv ←�∞
i=t ri

end for
for each transition (st , at , rt , st+1) in D do

yt,rv ←�∞
i=t ri

if ∃(si , ai , ri , si+1) ∈ Dlv s.t. st = si then
yt,rv ← yt,rv − yi,lv

end if
end for
Update Qlv with loss

��yt,lv − Qlv(st , at)
��

2
Update Qrv with loss

��yt,rv − Qrv(st , at)
��

2
Update π with ac loss or PPO loss

end for

2) REINFORCE With LVS: Although the above theoretical
analysis assumes a deterministic policy, the performance of
LVS is evaluated under popular stochastic policies, includ-
ing A3C [41] and proximal policy optimization (PPO) [42].
It should be noted that the critic part of the original PPO
and A3C policies is implemented with advantage functions.
Similar to the REINFORCE algorithm [20], the Monte Carlo
estimation is adopted to implement the critic in the actor–critic
framework in this work. For fairness, the Monte Carlo esti-
mation is taken as the baseline. πζ parameterized by ζ is
used to show the loss functions of REINFORCE-AC and
REINFORCE-PPO

Lac(s, a) ∝ −Eπ
�
Qξ,θ (s, a) log(πζ (a|s))�

LPPO(s, a) ∝ −Eπ

�
min

�
Qξ,θ (s, a)

πζ (a|s)
π

ζ
old(a|s)

,

Qξ,θ (s, a)clip

�
πζ (a|s)
π

ζ
old(a|s)

���

where Qξ,θ (s, a) is estimated by Monte Carlo estimation,
i.e., Qξ,θ (s, a) = Qθ

lv(s, a) + Qξ
rv(s, a). The estimations of

Qθ
lv(s, a) and Qξ

rv(s, a) are the same as those of the above
deterministic policies.

Accordingly, several algorithms are designed for stochastic
policies within the actor–critic framework. As a representative
algorithm, the algorithm of LVS actor–critic is presented in
Algorithm 1.

3) Recognition of LV: One challenge to implement LVS is
to measure the “state similarity” in MDPs with continuous

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10367

Fig. 7. Overview of the environments and the agent’s observations in the five tasks. (a) Cliff-Walking: reach the star. (b) Gathering: collect the green
diamonds. (c) ViZDoom navigation: navigate to the target place. (d) Jaco grasping: grasp the red object. (e) Youbot covering: cover the whole room. The
gray shaded areas in (a) and (b) indicate randomness in the environments. Randomness in (c)–(e) is produced by simulators. (a) Cliff-Walking. (b) Gathering.
(c) ViZDoom navigation. (d) Jaco grasping (left: overview; right: agent’s observations). (e) Youbot covering (left: overview; right: agent’s observations).

state spaces. Similar to curiosity-driven exploration [43], the
self-supervised prediction [44], [45] or successor feature [46],
[47] can be exploited to measure the state similarities in
continuous cases in the future work. The analysis of the
experimental results in this work just uses the position infor-
mation provided by the simulator. Meanwhile, thresholds are
set to perform the recognition. Details are in the experimental
settings.

VI. EXPERIMENTS

In this section, the experimental results are presented. The
changes in training stability with a discount factor γ are
shown first. Also, the transient traps that exist in the training
process with γ = 1 are visualized. Then, the effectiveness
of our LVS method in eliminating the transient trap problem
and stabilizing the training process is demonstrated. Finally,
it is shown that LVS is effective for both deterministic and
stochastic policies.

A. Environmental Settings

Two types of tasks were considered in the experiment, i.e.,
the tasks with discrete state space and the tasks with con-
tinuous state space. The former is convenient for visualizing
the agent’s policy and trajectories, while the latter verifies the
algorithms’ capability to solve complex tasks.

The first type of task includes a Cliff-Walking task [as
shown in Fig. 7(a)] and a Gathering task [as shown in
Fig. 7(b)], which, respectively, represents the tasks with a
single reward and multiple rewards. The second type of
tasks includes a navigation task in a ViZDoom game envi-
ronment [28] [as shown in Fig. 7(c)], a commonly used

manipulator grasping task [48] in the CoppeliaSim simulator
[as shown in Fig. 7(d)], and a robot floor-covering task [49] [as
shown in Fig. 7(e)]. In the first type of task, the agent perceives
its current position; in the second type of task, the agent
perceives an RGB image of the environment. For all the above
five tasks, the environmental rewards are set to be sparse,
and the horizons are set to be much longer than required
for an approximate expression of the infinite horizon. Note
that, in these tasks, finding the shortest path is not required.
Instead, every path that obtains the maximum total reward in
a certain timeframe is acceptable. Specifically, the objectives
of Cliff-Walking, VIZDoom navigation, and Jaco grasping are
MAXPROB [34], where a positive reward is assigned to the
goal state, zero rewards are assigned for other states, and
an undiscounted form of return is adopted. The objectives
of Gathering and YouBot covering are to maximize the total
reward [17], where some positive rewards are assigned to a
certain set of states, and zero rewards are assigned for other
states. Note that step penalty is not included in the reward
function for unbiased expression of the original task objective.
To simulate the infinite horizon, the maximum length of
episodes was set to be more than ten times, which is required
by the trajectory of optimal policy. The details are provided
as follows.

1) Cliff-Walking Task: The objective of the agent is to walk
from the origin state marked with a triangle to the target state
marked with a star. The area marked with red crosses is the
cliff: if the agent moves to this area, the episode will terminate,
and the agent receives a reward of 0. The “slip” gray-shaded
area winds with a certain probability pslip = 0.4, making the
agent uncontrollably move randomly. As mentioned above,

10368 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

we set a very long horizon to 100, which is about ten times the
step number required by the optimal policy. The observation
of the agent is the position tuple (x, y), and the action space
of the agent is {move down, move up, move left, move right}.
We set a binary sparse reward function as one for the target
state and zero for the other states.

2) Gathering Task: The objective is to gather all the items
marked with green diamonds. The areas marked with red
crosses are the dead areas and gray-shaded areas are “slip”
areas, of which the settings are the same as those in the Cliff-
Walking task. We set the horizon to 150, which is about
ten times the step number required by the optimal policy.
The observation of the agent is the tuple (x, y,

�
r), where�

r is the number of items that have been collected. Adding�
r maintains the Markovian property of this environment

and avoids the partial observation problem. The action space
of the agent is {move down, move up, move left, move right}.
As for the setup of the reward function, we let the environment
only offer the agent reward of 1 when the agent gathers a new
green diamond with an item and 0 otherwise.

3) ViZDoom Navigation: The objective of the agent is to
reach the “Target.” The “Dead Zone” is an area in which the
agent will be attacked by the monsters. Since the shooting of
the monsters has randomness, the agent can be killed with
some probability, which depends on the time of the agent
staying in the area and the distance between the agent and
the monsters. To represent the indefinite horizon in this task,
we set the horizon to 300 which is about six times the step
number required by the optimal policy. The observations of
the agent are RGB inputs. The action space of the agent
is {move forward, turn left, turn right}. We set binary sparse
reward as one for moving to the target state and zero for the
other states.

4) Jaco Grasping: The objective of the agent is
to grasp the red square. The robot arm must avoid
collision with the obstacle, i.e., the gray wall. We set
the motor with a certain noise when the robot arm is
in a straight line, making the end-effector uncontrollably
move randomly with the probability P(s, arandom) = 0.4.
To represent the indefinite horizon in this task, we set
the horizon to 100, which is about ten times the step
number of the optimal policy. The observation of the
agent is an RGB image. The action space of the agent is
{moving forward, moving back, moving left, moving right}.
We set binary sparse reward as one for grasping the object
and otherwise zero.

5) Youbot Covering: The objective of the agent is to cover
as much area as possible without collision with the wall.
To represent the indefinite horizon in this task, we set the
horizon to 200, which is about ten times the step num-
ber required by the optimal policy. The observation of the
agent is an RGB image. The action space of the agent is
{turn left, turn right, move forward}. As for the setup of the
reward function, we split the ground area into six grids to
allocate reward signals: in each episode, once the agent reaches
a new grid, it receives a +1 reward; once the agent collides

with the wall, it receives a −0.1 reward. Also, we add
�

r
into the state channels to alleviate partial observation.

B. Algorithm Settings

To verify the effectiveness of LVS in data-based fields,
model-free RL and model-based RL are considered. Under
model-free RL, the agent learns its policy directly by estimat-
ing the value function on data sampled from the interaction
with the environment. Under model-based RL, the agent first
learns a model of the environment’s dynamics (world model)
on the sampled data and then learns the policy based on the
world model. This article uses the popular dreamer frame-
work [50] for the model-based RL. The dreamer framework
learns a reward model, a function representation model, and a
transition model. Thus, the policy can be updated in multiple
steps only through interactions with the world model, which
obviously accelerates the learning process. Model-free and
model-based agents take Crude Monte Carlo, REINFORCE-
PPO, and REINFORCE-A3C as the basic algorithms for policy
learning. This has been introduced in Section V-B.

1) LVS—Measurement of State Similarity: As for the mea-
surement of state similarity in the tasks where the state space is
continuous, we use the position-angle tuple (x, y, α). (x, y)
is the displacement relative to the initial position, and α
is the rotation angle relative to the initial position. In the
ViZDoom navigation tasks, we approximate (x, y) with a
precision of 20 points of size and α with a precision of
20◦. The approximations are used to compare whether two
states are the same to determine the occurrence of RVs. In the
Jaco grasping task, we use the position tuple (x, y), which
is the displacement of the end-effector relative to the initial
position. We approximate the position with a precision of
0.1 m and use the approximation to determine whether an
RV happens: if and only if the approximation of a state is
the same as the approximation of a previous state, we regard
that an RV happens. In the Youbot Covering task, we use the
position-angle tuple (x, y, α), where x, y is the displacement
relative to the initial position. We approximate the position
with a precision of 0.1 m and α with a precision of 10◦ and
use the approximation to determine whether RVs happen.

2) Baselines: We selected two baselines for our experiment.
The first one is the vanilla algorithm. It was selected to test
whether our core design of LVS improves the training stability.
The second one is the time-awareness algorithm. In model-
free undiscounted RL literature, there are mainly two types of
methods for solving the training instability problem—policy
search with no value function estimation [14], [15] or using
prior task knowledge to tweak a discounted reward function so
that the undiscounted objective is transformed to an alternative
discounted return that expresses the same optimal policy.
In this article, we aim to directly optimize the undiscounted
return with RL and solve the instability problem without
prior task knowledge. In the prior works, time-awareness is
the only method that can directly optimize the undiscounted
return [23]. Thus, the method was adopted as another baseline,
and it was compared with LVS in terms of sampling efficiency.
In the following content, the prefixes “LVS-” and “TA-” are,

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10369

Fig. 8. Performance of the final policy under different choices of γ . The chosen γ are unevenly spaced, and the curves are divided into three regions, including
0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, and 0.995, 0.999, 1.0. For illustrating the training instability, we plot the learning curve of vanilla MC and LVS-MC
under a large γ (0.995 for Cliff-Walking and 1 for other tasks). The learning curves are smoothed with a 0.99-exponential moving average. (a) Cliff-Walking.
(b) Gathering. (c) ViZDoom navigation. (d) Jaco grasping. (e) YouBot covering.

respectively, used to denote the RL algorithms with LVS
and time-awareness. Concretely, in the grid-world tasks, the
state spaces are low dimensional; thus, adding 1-D time-step
information to the state space is easy for the agent to notice
the time information. Accordingly, we directly enlarge the
state space as (s, t), where t is the step number, which is
discrete. In the video game and the robot control tasks, the
state spaces are high dimensional, for which the augmented
time information seems to be “small.” We adopt a classic
method for the agent to “notice” the time information, which
is to augment the time information by adding a channel
that represents the time-step to the original RGB channels.
This method can enhance the attention of the agent to the
low-dimensional information in high-dimensional state spaces
in many previous works.

3) Hyperparameter Settings: In the Cliff-Walking task and
the Gathering task, we use Monte Carlo estimation with
�-greedy exploration method for LVS and baselines: 1) as
for the baselines, the agent makes decision according to a =
argmaxa[Q(s, a)] with the probability P(s, agreedy) = � and
a random action with the probability P(s, arandom) = 1 − �
and 2) as for LVS, the agent makes a decision according
to a = argmaxa[Qrv(s, a) + Qlv(s, a)] with the probability
P(s, agreedy) = � and a random action with the probabil-
ity P(s, arandom) = 1 − �. The Q-functions of the base-
lines and LVS are updated when every episode terminates.
In the ViZDoom navigation task, we use Monte Carlo estima-
tion with deep neural networks and the ε-greedy exploration
method for LVS and baselines in this vision-based task: the
sampling methods of the baselines and LVS are the same as
those in the Cliff-Walking example. The Q-functions of the
baseline and ours are updated when every episode terminates.
In the Jaco grasping task and the Youbot covering task, we use
actor–critic framework. As mentioned above, we use Monte

Carlo estimation as the critic. The actions are sampled from
the distribution of actions π(a|s), which is represented by
deep neural networks. These actors and critics are updated
when every episode terminates. The main hyperparameters in
our experiments include the learning rate and the exploration
rate, which are determined from a grid search. The ranges
of the hyperparameters for attempts are selected according to
the popular choices in RL community [23], [31], [41], [42].
Specifically, the range of exploration rate in value-based RL
algorithms [MC and deep Monte Carlo (DMC)] is [0.1, 0.6],
and the range of coefficient of policy entropy in policy-based
RL algorithms (A3C and PPO) is [0.0005, 0.02]. The range of
learning rate in tabular algorithms (MC) is [0.005, 0.1], and the
range of learning rate in algorithms with neural networks as
function approximators (DMC, A3C, and PPO) is [0.00001,
0.01]. We discretized these ranges, tested the mean episode
return of the LVS method over 100 episodes after training
under each setting, and selected the one with the best perfor-
mance. Tables I and II present the tried hyperparameters and
the performances of the Gathering task and the Jaco Grasping
task. Experiments show that our algorithm is robust to the
selection of hyperparameters, and it can obtain good results for
hyperparameters in a certain range. In the dreamer framework,
we set the same learning rate of dynamics prediction as that
of policy learning. The other hyperparameters are the same as
those of [50], i.e., the imagination horizon is ten and the batch
size is 50. In these five tasks, we set the same hyperparameters
for the algorithms of LVS and the baselines. The learning rate
and the exploration rate are shown in Table III.

C. Policy Performances Under Different Choices of γ

In this section, the training stability under different values
of γ in Monte Carlo estimation is studied. With each choice
of γ , ten training were performed under different random

10370 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

Fig. 9. Visualization of transient traps, when vanilla MC is used, and trajectories of LVS that do not suffer from transient traps. (a) Cliff-Walking. (b) ViZDoom
navigation. (c) Jaco grasping. (d) Youbot covering.

TABLE I

HYPERPARAMETER TUNING (FOR GATHERING)

TABLE II

HYPERPARAMETER TUNING (FOR JACO GRASPING)

TABLE III

HYPERPARAMETER SETTINGS

seeds, and the final performance was plotted as a function
of γ in Fig. 8. The final performance was evaluated by
averaging the episode return in the last 100 episodes in the
ten tasks. The shaded area in the figure indicates the standard
deviation. Although the agent is trained with γ < 1, it was
evaluated with an undiscounted total reward. The behaviors
of the agent can be divided into three regions, i.e., γ < 0.9,
0.9 < γ < 0.98, and γ > 0.98. For γ < 0.9, the discount rate
was too small to satisfy the optimality, and the performance
increased with γ ; for 0.9 < γ < 0.98, the performance did
not continue increasing with γ due to the training instability;

for γ > 0.98, the learning process became seriously unstable,
and the performance degraded fast. To concretely illustrate
the training oscillation, the learning curves of γ = 0.995 and
γ = 1.0 were plotted. By contrast, the performance of the
LVS policy increased stably even if γ > 0.9, indicating the
effectiveness of our method.

D. Visualization of Transient Traps

In this section, the transient trap problem that occurs in the
learning process under a large γ is illustrated. Without loss of
generality, γ was set to 1. In the Cliff-Walking task, Crude
Monte Carlo [20] was taken as the base algorithm, and the
agent’s policy was visualized at a late period in the training
process. The policy is marked as arrows in Fig. 9(a), and the
agent’s greedy action is shown in each state. As marked with
orange circles, there are many traps in the environment. If the
agent moves into one of these traps, the agent cannot move out
and receive zero rewards. In contrast, as shown in Fig. 9(a),
there were no traps when the LVS-MC method was used, and
the agent can successfully reach the target state.

Next, the ViZDoom navigation, the Jaco grasping, and the
Youbot covering tasks were used to show the trap problem
in the tasks with continuous state spaces. For these tasks,
DMC, REINFORCE-AC, and REINFORCE-PPO algorithms
were, respectively, taken as the base algorithm, and the agent’s
trajectories were visualized in a late period of the training
process. The trajectories are illustrated as a series of arrows in
Fig. 9(b)–(d). As illustrated by the annotations, the trajectories
contain cycles in which the agent fails to move out and
complete the task. In contrast, as shown in Fig. 9(b)–(d), the
trajectories do not contain cycles, and the agent can complete
the tasks successfully.

The above results indicate the existence of transient traps in
the environment with discrete state space and the environment
with continuous state space. Also, the effectiveness of the LVS
method in eliminating the transient traps is demonstrated.

E. Effectiveness in Improving Training Stability

The training curves and numeric results are presented, and
meanwhile, the overall performance of the LVS method is

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10371

Fig. 10. Learning curves of the model-free algorithms. (a) Cliff-Walking. (b) Gathering. (c) ViZDoom navigation. (d) Jaco grasping. (e) YouBot covering.

TABLE IV

TRAINING RESULTS (MEAN ± STANDARD DEVIATION)

Fig. 11. Learning curves of the model-based algorithms. (a) Cliff-Walking. (b) Gathering. (c) ViZDoom navigation. (d) Jaco grasping. (e) YouBot covering.

Fig. 12. CV of the basic algorithm, TA, and LVS in all the five tasks. (a) Model-free algorithms. (b) Model-based algorithms.

compared with that of the baselines. The training curves of
the five tasks are plotted in Figs. 10(a)–(e) and 11(a)–(e). Each
curve and its shaded region represent the mean episode reward
and standard deviation of the mean, respectively, averaged over
ten experiments with different random seeds. The curves are
drawn by selecting the data at equal intervals of 50 and are
smoothed with a 0.7-exponential moving average for clarity.
The final performance was calculated by averaging the episode
return of the last 100 episodes, and the results are shown in
the format of mean ± standard deviation (see Table IV). It can
be seen that, in all the tasks, the training of base algorithms
presents a large variance, while the training of algorithms with
the TA and LVS method is more stable. Also, the algorithms
with the TA method completed training slowly, and the final
performances were worse than that of the algorithms with the
LVS method.

To illustrate the convergence performance, we use the
coefficient of variation (CV) [51] as a normalized measure
of the dispersion of probability distribution, which is defined
as the ratio of standard deviation to mean. As shown in Fig. 12,
the CVs of the LVS algorithm are smaller than 0.2 in all
the five tasks, which demonstrates strong stability of training.
Furthermore, the CVs of the LVS algorithm are lower than
those of the compared methods, especially in complex tasks,
including the ViZDoom navigation and the Jaco grasping.
This shows that LVS achieves better training stability than the
compared methods. Overall, the algorithms with LVS achieve
the best training stability and final performance among the
comparing methods. It should be noted that the above results
are obtained from different types of tasks. The Gathering and
Youbot covering are tasks with multiple rewards, while the
others are tasks with a single positive reward. Especially, the

10372 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

ViZDoom, Jaco, and Youbot tasks have continuous state space,
while the others have discrete state space. The algorithms used
in Jaco and Youbot tasks employ stochastic policies, while the
algorithms used in the other three tasks employ deterministic
policies. These results indicate that the effectiveness of the
LVS method in stabilizing training is independent of the
considered form of the reward function, state space, and policy.

VII. CONCLUSION AND DISCUSSION

The transient trap problem can cause training instability
in undiscounted RL. This article analyzes the transient trap
problem and proposes the LVS method to eliminate transient
traps and improve the training stability. Also, the analysis of
the existence condition of transient trap in this article can
explain the training instability in discounted RL with large
discount factors: the bigger the γ , the weaker its ability to
decay the values of inconsistently selected actions. Meanwhile,
it can cause the value of nonoptimal actions to be close to that
of the optimal actions, thus forming transient traps when there
are noises in the training process. For this problem, the LVS
method should also be conducive to improve training stability.

In future work, the convergence of our method will be
analyzed and verified theoretically. One difficulty is that the
undiscounted RL is not a contraction mapping. However,
the experimental results in this article have shown that our
method has good convergence and can achieve ideal results in
various tasks. Besides, we plan to relax the assumption of a
deterministic policy in the theoretical analysis in future work
because the effectiveness of the LVS method in stochastic
algorithms has been shown empirically.

REFERENCES

[1] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354–359, Oct. 2017.

[2] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[3] J. Ren, S. Guo, and F. Chen, “Orientation-preserving Rewards’ balancing
in reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., early
access, Jun. 11, 2021, doi: 10.1109/TNNLS.2021.3080521.

[4] S. Pateria, B. Subagdja, A.-H. Tan, and C. Quek, “End-to-end hierar-
chical reinforcement learning with integrated subgoal discovery,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Jun. 22, 2021, doi:
10.1109/TNNLS.2021.3087733.

[5] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1–8.

[6] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without a
single real image,” in Proc. Robot., Sci. Syst. XIII, Jul. 2017, pp. 1–10.

[7] D. Liu, H. Li, and D. Wang, “Error bounds of adaptive dynamic
programming algorithms for solving undiscounted optimal control
problems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1323–1334, Jun. 2015.

[8] W. Zhao, H. Liu, and F. L. Lewis, “Robust formation control for
cooperative underactuated quadrotors via reinforcement learning,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 10, pp. 4577–4587,
Oct. 2020.

[9] G. Peng, C. L. P. Chen, and C. Yang, “Neural networks enhanced optimal
admittance control of robot-environment interaction using reinforce-
ment learning,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Mar. 2, 2021, doi: 10.1109/TNNLS.2021.3057958.

[10] Y. Hu, W. Wang, H. Liu, and L. Liu, “Reinforcement learning tracking
control for robotic manipulator with kernel-based dynamic model,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3570–3578,
Sep. 2020.

[11] P. Jiang, S. Song, and G. Huang, “Attention-based meta-reinforcement
learning for tracking control of AUV with time-varying dynamics,” IEEE
Trans. Neural Netw. Learn. Syst., early access, May 25, 2021, doi:
10.1109/TNNLS.2021.3079148.

[12] A. Camacho, C. J. Muise, and S. A. McIlraith, “From FOND to
robust probabilistic planning: Computing compact policies that bypass
avoidable deadends,” in Proc. 26th Int. Conf. Automated Planning
Scheduling, 2016, pp. 65–69.

[13] Z. Xu, H. P. van Hasselt, M. Hessel, J. Oh, S. Singh, and D. Silver,
“Meta-gradient reinforcement learning with an objective discovered
online,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2020,
pp. 15254–15264.

[14] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies as a
scalable alternative to reinforcement learning,” 2017, arXiv:1703.03864.

[15] H. Mania, A. Guy, and B. Recht, “Simple random search provides a com-
petitive approach to reinforcement learning,” 2018, arXiv:1803.07055.

[16] Z. Cao, H. Guo, J. Zhang, F. A. Oliehoek, and U. Fastenrath, “Maximiz-
ing the probability of arriving on time: A practical Q-learning method,”
in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4481–4487.

[17] C. Tessler and S. Mannor, “Reward tweaking: Maximizing the total
reward while planning for short horizons,” 2020, arXiv:2002.03327v2.

[18] Z. Xu, H. van Hasselt, and D. Silver, “Meta-gradient reinforcement
learning,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 2402–2413.

[19] K. D. Asis, A. Chan, S. Pitis, R. S. Sutton, and D. Graves, “Fixed-
horizon temporal difference methods for stable reinforcement learning,”
in Proc. 34th AAAI Conf. Artif. Intell., 2020, pp. 3741–3748.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[21] A. Hashavit and S. Markovitch, “Max-prob: An unbiased rational
decision making procedure for multiple-adversary environments,” in
Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 222–227.

[22] A. Kolobov, Mausam, D. S. Weld, and H. Geffner, “Heuristic search
for generalized stochastic shortest path MDPs,” in Proc. 21st Int. Conf.
Automated Planning Scheduling, 2011, pp. 1–8.

[23] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits in
reinforcement learning,” in Proc. 35th Int. Conf. Mach. Learn., vol. 80,
2018, pp. 4042–4051.

[24] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[25] H. van Seijen, M. Fatemi, and A. Tavakoli, “Using a logarithmic
mapping to enable lower discount factors in reinforcement learning,”
in Annu. Conf. Neural Inf. Process. Syst., 2019, pp. 14111–14121.

[26] C. Dann and E. Brunskill, “Sample complexity of episodic fixed-horizon
reinforcement learning,” in Proc. Annu. Conf. Neural Inf. Process. Syst.,
vol. 28, 2015, pp. 2818–2826.

[27] R. Amit, R. Meir, and K. Ciosek, “Discount factor as a regularizer in
reinforcement learning,” in Proc. 37th Int. Conf. Mach. Learn., vol. 119,
2020, pp. 269–278.

[28] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski, “ViZ-
Doom: A doom-based AI research platform for visual reinforcement
learning,” in Proc. IEEE Conf. Comput. Intell. Games (CIG), Sep. 2016,
pp. 1–8.

[29] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Nov. 2013, pp. 1321–1326.

[30] G. Lample and D. S. Chaplot, “Playing FPS games with deep rein-
forcement learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 2140–2146.

[31] H. Gao, Z. Yang, X. Su, T. Tan, and F. Chen, “Adaptability preserving
domain decomposition for stabilizing Sim2Real reinforcement learning,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020,
pp. 4403–4410.

[32] T. Zhang, S. Guo, T. Tan, X. Hu, and F. Chen, “Generating adjacency-
constrained subgoals in hierarchical reinforcement learning,” in Proc.
Annu. Conf. Neural Inf. Process. Syst., 2020, pp. 21579–21590.

[33] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), Denver, CO, USA, 1995, pp. 1–7.

[34] A. Schwartz, “A reinforcement learning method for maximizing undis-
counted rewards,” in Proc. 10th Int. Conf. Mach. Learn., 1993,
pp. 298–305.

[35] D. P. Bertsekas and J. N. Tsitsiklis, “An analysis of stochastic short-
est path problems,” Math. Oper. Res., vol. 16, no. 3, pp. 580–595,
Aug. 1991.

http://dx.doi.org/10.1109/TNNLS.2021.3080521
http://dx.doi.org/10.1109/TNNLS.2021.3087733
http://dx.doi.org/10.1109/TNNLS.2021.3057958
http://dx.doi.org/10.1109/TNNLS.2021.3079148

GAO et al.: PARTIAL CONSISTENCY FOR STABILIZING UNDISCOUNTED REINFORCEMENT LEARNING 10373

[36] H. Yu and D. P. Bertsekas, “On boundedness of Q-learning iterates for
stochastic shortest path problems,” Math. Oper. Res., vol. 38, no. 2,
pp. 209–227, May 2013.

[37] N. Jiang, A. Kulesza, S. P. Singh, and R. L. Lewis, “The dependence of
effective planning horizon on model accuracy,” in Proc. 25th Int. Joint
Conf. Artif. Intell., 2016, pp. 4180–4189.

[38] A. Kolobov, Mausam, and D. S. Weld, “A theory of goal-oriented MDPs
with dead ends,” in Proc. 28th Conf. Uncertainty Artif. Intell., 2012,
pp. 438–447.

[39] S. P. Singh and R. S. Sutton, “Reinforcement learning with replac-
ing eligibility traces,” Mach. Learn., vol. 22, nos. 1–3, pp. 123–158,
Mar. 1996.

[40] M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas, and R. Munos,
“Increasing the action gap: New operators for reinforcement learning,” in
Proc. 13th AAAI Conf. Artif. Intell., D. Schuurmans and M. P. Wellman,
Eds., 2016, pp. 1476–1483.

[41] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Rein-
forcement learning through asynchronous advantage actor-critic on a
GPU,” in Proc. Int. Conf. Learn. Represent., 2017, pp. 1–12.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[43] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 2778–2787.

[44] S. S. Ruan, G. Comanici, P. Panangaden, and D. Precup, “Representation
discovery for MDPs using bisimulation metrics,” in Proc. 29th AAAI
Conf. Artif. Intell., 2015, pp. 3578–3584.

[45] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite Markov
decision processes,” in Proc. 20th Conf. Uncertainty Artif. Intell., 2004,
pp. 162–169.

[46] P. Dayan, “Improving generalization for temporal difference learn-
ing: The successor representation,” Neural Comput., vol. 5, no. 4,
pp. 613–624, Jul. 1993.

[47] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2017, pp. 2371–2378.

[48] Y. Zhu et al., “Reinforcement and imitation learning for diverse visuo-
motor skills,” in Proc. Robot., Sci. Syst. XIV, Jun. 2018, pp. 1–12.

[49] C. Gordón, P. Encalada, H. Lema, D. León, C. Castro, and D. Chicaiza,
“Intelligent autonomous navigation of robot KUKA YouBot,” in Proc.
Intell. Syst. Conf., vol. 1038, 2019, pp. 954–967.

[50] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” in Int. Conf. Learn. Repre-
sent., 2020, pp. 1–20.

[51] Z. Jalilibal, A. Amiri, P. Castagliola, and M. B. C. Khoo, “Monitoring
the coefficient of variation: A literature review,” Comput. Ind. Eng.,
vol. 161, Nov. 2021, Art. no. 107600.

Haichuan Gao received the B.Eng. degree from the
Department of Mechanics, Central South University,
Changsha, China, in 2018. He is currently pursuing
the Ph.D. degree in control science and engineering
with Tsinghua University, Beijing, China.

His current research interests include reinforce-
ment learning and robot learning.

Zhile Yang received the B.Eng. and M.S. degrees
from the Department of Automation, Tsinghua
University, Beijing, China, in 2018 and 2021,
respectively.

His current research interests include reinforce-
ment learning and computational neuroscience.

Tian Tan received the B.S. degree in telecommuni-
cations engineering from the Beijing University of
Posts and Telecommunications, Beijing, China, in
2012, and the M.S. and Ph.D. degrees in engineering
and the Ph.D. degree minor in computer science
from Stanford University, Stanford, CA, USA, in
2015 and 2020, respectively.

His research interests broadly include topics in
machine learning and algorithms, such as reinforce-
ment learning, multitask learning, gradient boosting
decision trees, deep learning, and statistical learning
theory.

Tianren Zhang received the B.Eng. degree from
the Department of Automation, Tsinghua University,
Beijing, China, in 2019, where he is currently pur-
suing the M.S. degree.

His current research interests include reinforce-
ment learning and general machine learning.

Jinsheng Ren received the B.S. degree in automa-
tion from the University of Electronic Science and
Technology of China, Chengdu, China, in 2017.
He is currently pursuing the Ph.D. degree with
the Department of Automation, Tsinghua University,
Beijing, China.

His current research interests include computer
vision, artificial intelligence, lifelong learning, rein-
forcement learning, and learning theory.

Pengfei Sun received the B.Eng. degree in automa-
tion from Northeastern University, Shenyang, China,
in 2016. He is currently pursuing the Ph.D. degree
with the Department of Automation, Tsinghua Uni-
versity, Beijing, China.

His current research interests include computer
vision, artificial intelligence, robot learning, and
learning theory.

Shangqi Guo received the B.S. degree in mathemat-
ics and physics basic science from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2015, and the Ph.D. degree from
the Department of Automation, Tsinghua University,
Beijing, China, in 2021.

His current research interests include inference in
artificial intelligence, brain-inspired computing, and
reinforcement learning.

Feng Chen (Member, IEEE) received the B.S. and
M.S. degrees in automation from Saint-Petersburg
Polytechnic University, Saint Petersburg, Russia, in
1994 and 1996, respectively, and the Ph.D. degree
from the Department of Automation, Tsinghua Uni-
versity, Beijing, China, in 2000.

He is currently a Professor with Tsinghua Univer-
sity. His current research interests include computer
vision, brain-inspired computing, and inference in
graphical models.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

