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Abstract—The high temporal resolution and the asymmetric spatial activations are essential attributes of electroencephalogram (EEG)
underlying emotional processes in the brain. To learn the temporal dynamics and spatial asymmetry of EEG towards accurate and
generalized emotion recognition, we propose TSception, a multi-scale convolutional neural network that can classify emotions from EEG.
TSception consists of dynamic temporal, asymmetric spatial, and high-level fusion layers, which learn discriminative representations in the
time and channel dimensions simultaneously. The dynamic temporal layer consists of multi-scale 1D convolutional kernels whose lengths

are related to the sampling rate of EEG, which learns the dynamic temporal and frequency representations of EEG. The asymmetric
spatial layer takes advantage of the asymmetric EEG patterns for emotion, learning the discriminative global and hemisphere
representations. The learned spatial representations will be fused by a high-level fusion layer. Using more generalized cross-validation
settings, the proposed method is evaluated on two publicly available datasets DEAP and MAHNOB-HCI. The performance of the proposed
network is compared with prior reported methods such as SVM, KNN, FBFgMDM, FBTSC, Unsupervised learning, DeepConvNet,
ShallowConvNet, and EEGNet. TSception achieves higher classification accuracies and F1 scores than other methods in most of the
experiments. The codes are available at: https:/github.com/yi-ding-cs/TSception

Index Terms—Deep learning, convolutional neural networks, electroencephalography, emotion recognition

1 INTRODUCTION

MOTIONS are fundamental factors in human beings’ daily

life [1], affecting decision-making, perception, human
interaction, and human intelligence [2]. Emotion recognition
plays an important role in Cognitive Behavioural Therapy
(CBT) [3], Emotion Regulation Therapy (ERT)/Emotion-
Focused Therapy (EFT) [4], [5], [6], and the evaluation of
medical treatment [7] for emotion-related mental disor-
ders, such as Generalized Anxiety Disorder (GAD) [8],
and Depression [9]. With the potential applications in CBT
and EFT, enabling Artificial Intelligence (AI) to identify
human emotions has captured more and more interest
from researchers recently [1].

Electroencephalography (EEG) is one of the widely used
brain imaging technologies, which measures human brain
activity directly. Several electrodes are placed on the surface
of the human head to collect EEG signals. EEG has high
temporal resolution so that it can capture varying brain
states at the sub-second level. A Brain-Computer Interface
(BCI) system can identify human emotions through EEG,
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with the help of machine learning and signal processing
techniques [10].

Recently, using EEG-BCI for emotion recognition has
gained popularity among researchers [1], [11]. Atkinson
et al. [12] improved the SVM classifier accuracy for emotion
detection by selecting features efficiently, with the accuracy
being 73.14%. Zheng et al. [13] used a discriminative graph
regularized extreme learning machine to investigate stable
patterns over time from the differential entropy (DE) fea-
tures of emotional EEG. Li et al. [14] utilized phase-locking
value to construct emotion-related brain networks with
multiple feature fusion to detect emotions from EEG.
Recently, deep learning-based methods have shown prom-
ising results in the BCI domain, such as motor imagery clas-
sification [15], [16], [17], [18], [19], emotion recognition [20],
[21], [22], [23], [24], [25], and mental-task classification [26],
[27], [28]. Yang et al. [20] designed a hierarchical network
structure to perform emotion classification, proposing sub-
network nodes to enhance the performance. Li et al. [21]
constructed EEG into 2D images and proposed a Hierarchi-
cal Convolutional Neural Networks (HCNN) to extract the
spatial patterns of the EEG. Li et al. [22] applied 18 kinds of
linear and non-linear features to solve the cross-subject emo-
tion recognition problems, achieving 59.06% and 83.33% on
two public datasets. Zhang et al. [25] utilized recurrent neu-
ral networks (RNN) to learn the temporal-spatial informa-
tion from the DE features of EEG for emotion recognition.
Although many machine learning methods have been pro-
posed for emotion recognition, most of them highly rely on
hand-crafted features.
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With the ability to learn from EEG directly, the convolu-
tional neural networks (CNN) have shown promising
results in BCI [18], [29], [30]. Schirrmeister et al. [15] pro-
posed deep and shallow convolutional neural networks,
named DeepConvNet and ShallowConvNet, to process
EEG data, combining the feature extraction and classifica-
tion using a two-stage spatial and temporal input convolu-
tion layer. Recently, Lawhern ef al. [18] proposed EEGNet,
which extracts spatial information by the depth-wise convo-
lution kernel whose size is (n, 1). The global spatial depen-
dency can be learned by letting n be the number of
channels. All of those networks apply single-scale 1D con-
volutional kernels along the time and channel dimension to
extract temporal and spatial information from EEG.

In order to effectively learn temporal-spatial information
from EEG for emotion recognition, several neuro-physiologi-
cal signatures should be considered. For temporal dimension,
EEG signal contains abundant brain activity information in
different frequency bands [31]. Due to the non-stationary and
dynamic nature of EEG, we hypothesize that a single-sized
temporal kernel cannot effectively capture the neural proc-
essing underlying emotions that occurs at different time
scales and duration. For spatial dimension, especially for
emotional processes in the brain, the right and left hemi-
spheres have asymmetric responses to emotions [32]. Hence,
we hold the hypothesis that a global spatial kernel has less
ability to effectively extract the distinct asymmetric EEG pat-
tern during emotional processes.

To address the above issues, in this paper, we propose
TSception, a multi-scale temporal-spatial convolutional neu-
ral network to capture temporal dynamics and spatial asym-
metry from EEG to classify emotional states. Different from
the methods using manually extracted features [21], [22],
[25], [33], [34], EEG signals are fed into TSception directly,
which makes it an end-to-end deep learning method that
needs less domain knowledge about the features. A dynamic
temporal layer with different scaled convolutional kernels is
proposed to learn richer time-frequency representations
from EEG instead of using single-sized temporal CNN ker-
nels [15], [18]. This layer is inspired by the inception block of
GoogleNet [35]. Besides the global kernel utilized in [15],
[18], we take the brain emotional asymmetry into the kernel
design. A hemisphere kernel whose length equals the num-
ber of EEG channels located on the right/left hemisphere is
proposed to extract the hemisphere asymmetric pattern. The
effectiveness of multi-scale convolutional neural networks is
preliminarily explored in our previous work [36]. We further
propose a high-level fusion layer after asymmetric spatial
layer to learn from combined hemisphere-global representa-
tions to distinct emotion-class specific information as well as
make the network more compact for online usage in the
future.

Emotion classification experiments on two publicly avail-
able benchmark datasets, a Database for Emotion Analysis
using Physiological signals (DEAP) [33], and a multimodal
database for affect recognition and implicit tagging (MAH-
NOB-HCI) [37] were conducted to evaluate the performance
of TSception. The generalized cross-validation settings are
utilized to avoid potential data leakage and biased evalua-
tion. TSception is compared with several deep and non-
deep state-of-the-art methods in the BCI domain, namely
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SVM [33], KNN [34], DeepConvNet [15], ShallowConvNet
[15], EEGNet [18], Unsupervised learning [38], FBFgMDM
[39], and FBTSC [39]. In most of the experiments, the perfor-
mance of TSception in terms of accuracy and F1 score is
higher than the other methods while having a relatively
lesser number of network parameters. After statistical anal-
ysis, extensive ablation studies are conducted to analyze the
contribution of each module in TSception. The saliency map
method [45] is utilized to get the most informative part of
the EEG data identified by the network. The maps show
that the network mainly learns from frontal, temporal, and
parietal areas. Frontal, parietal and temporal are commonly
known as the functional brain areas related to the emotional
processes in the brain [1].

The major contributions of this work can be summarised
as:

e  We propose TSception, a novel multi-scale temporal-
spatial convolutional neural network, for EEG emo-
tion recognition tasks. Several neuro-physiological
signatures are involved in the network design. The
proposed multi-scale temporal/spatial convolution
kernels can capture temporal dynamics and spatial
asymmetry from EEG to classify emotions. A high-
level fusion layer is proposed to further learn from
hemisphere-global representations and to make the
network more compact, which can benefit the online
usage of TSception in the future.

e Extensive ablation studies and interpretability experi-
ments are conducted to understand the importance of
each module in TSception and what it learns using
saliency maps.

The PyTorch implementation of TSception is available at

https:[/github.com/yi-ding-cs/T Sception

The remainder of this article is organized as follows. A

summary of related works is introduced in Section 2. In Sec-
tion 3 the details of TSception are introduced. Section 4
describes the datasets and experiment settings. The result
and analysis are given in Section 5, Finally, we discuss the
significance of our results in Section 6.

2 MuULTI-ScALE CONVOLUTIONAL NEURAL
NETWORKS

The detailed instruction of the proposed TSception, a multi-
scale convolutional neural network, is presented in this sec-
tion. EEG data can be treated as 2D time series, whose
dimensions are channels (EEG electrodes) and time respec-
tively. The time dimension reflects the brain activity changes
from time to time. The spatial dimension can show the brain
activation patterns across different functional areas due to
the different locations of the electrodes on the brain. EEG sig-
nals contain abundant information in different frequency
bands [31]. TSception is proposed to identify the most dis-
tinct time-frequency-channel specific EEG features corre-
sponding to the emotional states of the user. TSception
incorporates specially designed network modules namely,
dynamic temporal layer, asymmetric spatial layer, and high-
level fusion layer. To extract more discriminative time-fre-
quency representations, multi-scale 1D convolutional ker-
nels are utilized in the dynamic temporal layer to enrich the
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Fig. 1. Structure of TSception. In the figure, f; is the sampling rate of the EEG signals, C' is the number of channels, BN stands for batch normaliza-
tion, AP is the average pooling operation, and GAP represents global average pooling. TSception has four main parts: the dynamic temporal layer,
the asymmetric spatial layer, the high-level fusion layer, and the classifier. The dynamic temporal layer will first learn the dynamic temporal/frequency
representations from EEG data channel by channel. After getting the learned representations for each channel, the asymmetric spatial layer will be
applied to learn the global spatial representations and the emotional asymmetry pattern using different scale convolutional kernels. To fuse the infor-
mation from hemisphere and global representations, a high-level fusion layer is utilized. Finally, the fused representation will be passed to the fully

connected layers with the softmax as the activation function.

learned time-frequency representations. As for the asymmet-
ric spatial layer, it takes the advantage of neuroscience find-
ings [32] which indicate the brain activities in right and left
hemispheres are not symmetrically related to emotions. A
hemisphere kernel is proposed to learn the asymmetric rep-
resentations between two hemispheres. A high-level fusion
layer is further proposed to learn from the learned represen-
tations of both the hemisphere and global kernels and make
the network more compact for real-time usage. The network
structure of TSception is shown in Fig. 1. A detailed descrip-
tion of the temporal, spatial, and high-level fusion layers will
be discussed in this section.

2.1 Dynamic Temporal Layer
The dynamic temporal layer consists of multi-scale 1D tem-
poral kernels (T kernels). In order to enable the neural net-
work to learn dynamic temporal representations, we set the
length of the temporal kernels as the specific ratios of sam-
pling rate fs of EEG. These ratios are defined as o' € R,
where i is the level of the dynamic temporal layer. ¢ will vary
from 1 to L, if the dynamic temporal layer has L levels. Hence
siT, the size of T kernels in i-th level, can be defined as:
sh=(1,a' - fs),i€[1,2,3]. (1)
From the frequency perspective, the length of the T kernel
is set as half the sampling rate in EEGNet, allowing for cap-
turing frequency information at 2 Hz and above [18]. Activa-
tions related to emotions are observed in Alpha (8-12 Hz),
Beta (12-30 Hz), and Gamma (> 30 Hz) bands [1]. In this
work, we expand the temporal receptive-field, letting L =
3,1=1to 3, and o = 0.5, the ratio coefficients will become
[0.5, 0.25, 0.125], learning diversified frequency representa-
tions. We hypothesize that the multi-scale temporal kernels
can enrich the learned dynamic frequency representations
from EEG, providing more emotion-related information.

From the time perspective, multi-scale T kernels can capture
long short-term temporal patterns, and learn more diverse
representations. The higher level T kernel has a smaller ratio
coefficient, which gives a shorter convolutional kernel length
and vice versa. The long temporal kernel can learn long-term
temporal and low-frequency diverse representations. The
short kernel extracts short-term temporal and high-fre-
quency representations. Let X denote EEG input samples.
X =[X" X' ..., X", X" € R®!, where n is the number of
EEG samples, c is the number of channels, [ is the length of
each sample. The dynamic temporal representations can be
generated by parallelly applying the multi-scale temporal
kernels on the input EEG samples. After LeakyReLU(-) acti-
vation function, the feature map is further down-sampled by
average pooling (AP). The reason for using average pooling
is to reduce the effect of the noise as well as the feature
dimension since EEG signals are of high dimensions with a
low signal-noise ratio. Let Ziempoml denote the output of the
i-th level temporal kernel, Z; ... € R™exfi where n is
the number of samples, ¢ is the number of each level’s T ker-
nel, cis the number of channels, and f; is the length of the fea-

ture after i-th level convolution operation. Z iempoml is defined
as:
iemporal = AP(qDL*R(ELU(CO’n'UlD(Xv SZT)))a (2

where si. is the T kernel size, X is the input EEG sample
array, ConvlD(-) is the 1D convolution operation with the
kernel size being s, step being (1,1), and ®_pgerp(-) is the
LeakyReLU(-) activation function.

The output of each level’s T kernel will be concatenated
along the feature dimension. In order to reduce the internal
covariate shift problems in neural networks, we added
batch normalization [40] after the dynamic temporal layer.
Hence the final output of the dynamic temporal layer, Zr,
Zr € R™*2_1i s defined as:
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1 .
Zr = flm ( [Ztemporal? ) Z;e,mpoml])

i €[1,2,3], 3

where f3, is the batch normalization operation, and [-] stands
for concatenation operation along the feature (f) dimension.

2.2 Asymmetric Spatial Layer

The asymmetric spatial layer has multi-scale 1D convolu-
tional kernels whose sizes are related to the location of the
EEG channels. There are two types of spatial kernels: global
kernel and hemisphere kernel.

The global kernel has a size of (¢, 1), where c is the num-
ber of channels. Since the length of the kernel is the same as
the channel dimension of the input EEG segment, it can
learn the global spatial information.

In this work, we further combine the frontal area of brain
emotional asymmetry [41] into the kernel design. The hemi-
sphere kernel is used to extract the relations between the
left and right hemispheres by sharing the convolutional ker-
nels. The size of the hemisphere kernel is (0.5 - ¢, 1), and the
step is (0.5 - ¢, 1), where c is the total number of channels.
The hemisphere kernel is shared by two hemispheres with-
out overlapping so that the asymmetric pattern can be
extracted. The size of the spatial kernel s{ can be defined as:

sé:(Sj-c,l),jG[O,l}, 4

where § = 0.5 is the coefficient to control the ratio between
the spatial kernel length and the total number of channels.
Let Z ..., denote the output of the j-th type spatial ker-
nel, Z, i € R™*¢*/ where n is the number of samples, s
is the number of each type S kernel, ¢; is the number of
channels after j-th spatial convolution, and f is the length of
the feature after each spatial convolution operation. Z/,;.,,
is defined as:
VA

'spatial =

AP((I)L_RCLU(CO’H,UID(ZT,S‘g))), (5)

where sfg is the S kernel size, Z7 is the output of dynamic
temporal layer, Convl1D(:) is the 1D convolution operation
with the kernel size being s, the step being (1,1) for the
global kernels and (0.5-¢,1) for the hemisphere kernels,
and ®;_p.1y() is the LeakyReLU(-) activation function.

In order to apply hemisphere kernels, the sequence of
channels in the input EEG samples should be arranged in
a particular way. The order of the channels should be
[channely i, channelyign:|, where the channely s are the chan-
nels located in the left hemisphere, the channel,.y, are the
ones on the right hemisphere. The order for channels on each
hemisphere should also be rearranged to make each kernel
weight shared between pairs of symmetrically located elec-
trodes on two hemispheres because the step of the hemi-
sphere kernel is also (0.5 - ¢,1). Fig. 2 shows the electrode
locations of DEAP dataset. The final output of the asymmet-
ric spatial layer, Zg, Zs € R™> 2%/ is defined as:

ZS = fbn([ngatia,ﬁ o Zﬁ‘pathD7j € [O’ 1}’ (©)

where f;,, is the batch normalization operation, and [-] stands
for concatenation operation along the channel (c) dimension.
The output of hemisphere kernel have a length of two in the
spatial dimension, which refers to two hemispheres respec-
tively. The output of global kernel is only a vector whose
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Fig. 2. The location map of 32 channels cap. The electrodes can be
divided into 3 groups: electrodes on the left hemisphere (in orange),
electrodes on the right hemisphere (in blue), and the electrodes on the
central line (in black). For the electrodes located on the central line of
the head, Fz, Cz, Pz, and Oz, which can not be paired on the left and
right hemispheres, we further removed them to let TSception learn the
asymmetric pattern of left and right hemispheres better.

length in the channel dimension is one. After concatenation,
the channel dimensionis ) ¢; = 3.

2.3 High-Level Fusion Layer

In order to learn high-level spatial representations by fusing
the learned information from global and hemispheres, a
high-level fusion layer is further proposed. Given the out-
put of asymmetric spatial layer, Zg € R$*3%f 4 1D convo-
lutional layer whose kernel size is (3,1) is utilized to fuse
the information along the spatial dimension. After LeakyR-
eLU(.), average pooling, and batch normalization, a global
average pooling layer (GAP) is added to overcome over-fit-
ting and reduce the model size. The final learned global-
hemisphere fusion representations will be generated by:

qus’ion = GAP(fbn(AP((I)L,RULU(COTLUID(Z& (3, 1))))))
@)

Finally, the latent representation of Z ., Will be fed into
fully connected layers. The final output layer is activated by
the softmax function, @, e (-). Hence the final output can
be calculated by:

Output = D, 00 (W' Dy (P ey (W (T(Z fusion)) + b)) + 1),
®)

where the I'(-) is the squeeze operation, W and W’ are the
trainable weight matrix, b and b’ are the bias terms.
The proposed TSception is summarised in Algorithm 1.
The structure of the proposed TSception is shown in
Table 2.

3 EXPERIMENTS

3.1 Datasets

To evaluate the proposed TSception, we conducted several
experiments on two publicly available benchmark datasets,
a Database for Emotion Analysis using Physiological signals
(DEAP)' [33], and a multimodal database for affect recogni-
tion and implicit tagging (MAHNOB-HCI)* [37]. Table 1
summarizes the related information of the two datasets

1. http:/ /www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
2. https:/ /mahnob-db.eu/hci-tagging /
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TABLE 1
Summary of Related Information of the Datasets
Used in the Experiments

Factor DEAP MAHNOB-HCI
Subjects 32 27
Stimuli Music videos Emotional videos
Trials/subject 40 20
Trial duration 1 min 35-117s
EEG channels 32 32
Sampling rate 512Hz 256Hz
Label V/A V/A

V: valence; A: arousal.

used in our experiments. Arousal and valence dimensions
on both datasets were utilized as reported in [39].

DEAP is a multi-modal human affective states dataset,
including EEG, facial expressions, and galvanic skin response
(GSR). There are 32 subjects watching music video clips while
their EEG, facial expression, and GSR are recorded. Each of
the subjects participates in 40 trials in total. The duration of
each trial is 1 minute with a 3 seconds pre-trial baseline. After
each trial, the subject will be given a questionnaire to provide
their own emotional state in arousal, valence, dominance,
and liking with each dimension having 9 discrete levels. The
EEG is collected using 32 channels device, with the sampling
rate being 512Hz.

Algorithm 1. TSception

Input: EEG data X" € R®*/; ground truth label y;
Output: , the prediction of TSception

1 Initialization;

2 do in sequential

3 # get the output of the dynamic temporal layer

4 fori—1to3do

5 get i-th temporal kernel size by Eq. 1;

6

7

8

getzi,,.... by Eq. 2 using X" as input;
end
get Zr by Eq. 3;
9 # get the output of the asymmetric spatial layer
10 forj«< Oto1ldo
11 get j-th temporal kernel size by Eq. 4;
12 get Zi’pn,tial by Eq. 2 using Zr as input;
13 end
14 getZsbyEq.6;
15 # get the output of the high-level fusion layer
16 get Zjs0n by Eq. 7;
17 end
18 get y using Eq. §;
Return y

MAHNOB-HCI [37] is another multi-modal dataset simi-
lar to the DEAP dataset. There are 30 subjects watching
movie clips while their facial expression, audio signals, eye
gaze data, EEG signal, and other physiological signals are
recorded. Note that Subject 12, 15, and 26 failed to finish the
data collection, therefore, the remaining 27 out of 30 subjects
were used in this work. The movie clips are between 35 and
117 seconds long. The EEG signals are acquired from 32
electrodes on the 10-20 international system. The sampling
frequency is 256 Hz. For each trial, four integers ranged
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from 1 to 9 and self-reported by the subjects are used to
label the valence, arousal, dominance, and emotional key-
words, respectively.

3.2 Pre-Processing
For DEAP, the 3 seconds pre-trial baseline was removed for
each trial. Then the data was down-sampled from 512Hz to
128Hz, after which the electrooculogram (EOG) was removed
with a blind source separation method as [33]. To remove the
low and high-frequency noise, a band-pass filter from 4.0-
45Hz was applied to the original EEG as [33]. Finally, the
EEG channels were averaged to the common reference. The
class label for each dimension is from 1 to 9, hence 5 was
selected as a threshold to project the 9 discrete values into
low and high classes in each dimension as [33], [39]. In line
with [39], only arousal and valence dimensions are used in
this study. The deep neural networks have a higher number
of trainable parameters hence to optimally learn emotion
state representations in EEG a large number of labelled data
samples are required. However, as listed in Table 1, the num-
ber of trials is very small in the selected datasets. To overcome
this challenge, a data augmentation step by splitting each trial
into smaller non-overlapping 4s segments was applied. The
segments were then used to train the deep neural network.
For MAHNOB-HCI, the pre-processing was much the
same as that for the DEAP dataset except for the following.
First, the 30 seconds pre-trial and post-trial baselines were
removed for each trial, so that the remaining corresponds to
the event of emotion elicitation [37]. Second, to remove the
low-high frequency noise, a band-pass filter from 0.3-45Hz
was applied to the original EEG as [36]. Note that the delta
band 0.3-4Hz is included since it also contributes to an indi-
vidual’s affective state [42], [43].

3.3 Performance Evaluation Metrics

The first type of metric is accuracy. It is one of the most com-
monly used evaluation metrics in classification problems
[36]. It is the ratio of the correctly predicted samples and the
total number of the samples. For binary classification prob-
lems, the accuracy can also be defined as:

TP +TN

A - 9
Y = rp L FP+ TN + FN' ©

where TP is the true positive, TN is the true negative, and
FP is the false positive, and FN is the false negative.
Accuracy can measure how precise the prediction is for
the class-balanced dataset. However, after the pre-process-
ing of the labels mentioned in the pre-processing section,
the labels become imbalanced. To better evaluate the perfor-
mance of a classifier on class-imbalanced datasets, the F1
score is added as [33], [38]. It combines the precision and
recall of the classifier, and it is defined as the harmonic
mean of the classifier’s precision and recall. F1 is defined by:

Precision x Recall _ TP

F1=2 =
* Precision + Recall TP+ 1(FP + FN)’

(10)

where TP is the true positive, TN is the true negative, and
FP is the false positive, and F'N is the false negative.
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TABLE 2
Structure of the Proposed TSception
Model Layers Input Output
structure
Block1 3 branches Conv2d, LK-ReLU, AP((1,8)) (-1,1,28,512) (-1, 15, 28, 56)
(in parallel) Kernel=15@(1, 64)
Conv2d, LK-ReLU, AP((1,)) (-1,1,28,512) (-1, 15, 28, 60)
Kernel=15@(1, 32)
Conv2d, LK-ReLU, AP((1,)) (-1, 1, 28,512) (-1, 15, 28, 62)
Kernel=15@(1, 16)
Concatenate, BN (-1, 15, 28, 178)
Block2 2 branches Conv2d, LK-ReLU, AP((1,2)) (-1, 15, 28, 178) (-1,15,1, 89)
(in parallel) Kernel=15@(28, 1)
Conv2d, LK-ReLU, AP((1,2)) (-1, 15, 28, 178) (-1, 15,2, 89)
Kernel=15@(14, 1), Stride=(14, 1)
Concatenate, BN (-1, 15, 3, 89)
Block3 Conv2d, LK-ReLU, AP((1,4)), BN, GAP (-1, 15, 3, 89) (-1,15,1)
Kernel=15@(3, 1)
Flatten (-1,15, 1) (-1,15,)
Fully Linear(32), ReLU (-1, 15, (-1, 32,
connected dropout(0.5) (-1, 32, (-1, 32)
layers Linear(2) (-1, 32,) (-1,2,)
softmax (-1,2) (-1,2)

LK-ReLU is the Leaky-ReLU activation function. AP is the average pooling operation. BN stands for batch normalization. GAP is the global average pooling. -1’
in the tensor size stands for the number of samples within one mini-batch. The strides of CNNs are (1, 1) if not specified, and the one for pooling layers is the

same as the pooling step.

3.4 Experiment Settings

There are two types of experiment settings in this paper: I)
trial-wise 10-fold cross-validation and II) leave-one-trial-out
cross-validation. Each of them is introduced in the follow-
ing paragraphs.

In the first experiment setting, we split each trial into 4’s
non-overlapping segments, also know as cropped experi-
ments [15], and a trial-wise 10-fold cross-validation is uti-
lized for each subject to prevent potential data leakage
issues. The reason for doing cropped experiments is that the
predictions of shorter segments are preferred than the trial-
wise predictions that are evaluated in [33], [38], [39] for an
efficient real-time BCI system. Besides, a decoding model
with a good generalization capability is needed for the real-
world situation where the testing data is unseen to the
model. In each trial, the subject was asked to watch or hear
a certain stimulus that is supposed to evoke a certain type
of emotion. Because emotion is one of the continuous cogni-
tive processes in the brain, the data segments within a single
trial are highly correlated. Hence, randomly shuffle the seg-
ments among trials before the training-testing split of the
data could make the adjacent segments be in training and
testing data, which will give high classification results. But
the accuracy will drop when the highly correlated segments
are never seen by the model in the real-world situation. To
get the more generalized evaluation, the 10 folds are split
among trials, which will make sure the adjacent segments
in one trial will not appear in both training and testing data.
In each step of 10-fold cross-validation, one fold is selected
as testing data, the rest 9 folds are utilized as training data.
Among the 9 training folds, the data is randomly divided
into 80% training data and 20% validation data. During the
training process, we train the network on training data for
500 epochs and evaluate the network on validation data in
each epoch. The model with the highest accuracy on valida-
tion data among those 500 epochs is saved and tested on the
testing data. The above process is repeated 10 times for each
subject till each fold has been the testing fold once. In each

fold, the test data remains completely unseen in all stages of
training and validation. The mean accuracy and F1 score of
all subjects are reported as the final results.

In the second experiment setting, a leave-one-trial-out
cross-validation is adopted for each subject to further com-
pare our methods with the recently proposed methods in
[39] and [38]. In each cross-validation step, one trial is
selected as testing data and the rest are selected as training
data. For each step of the leave-one-trial-out cross-valida-
tion, the training data is also split into 80% training and 20%
validation data. The process is repeated till every trial is
selected as testing data once for each subject. The average
accuracy and F1 score of all subjects are reported as the final
evaluation criterion as [38]. The features extracted from the
entire trial’s data are utilized as one input sample to the
classifier in [33], [38], [39]. To compare our deep learning
methods trained from segmented EEG data with those
papers, a voting mechanism is utilized for the segment pre-
dictions in each testing trial as:

N {0 n;/\:() > nzj\:l a1
Y = ~ ~
1 "y:1 > ny:O

where 7, is the prediction of one testing trial, » is the num-
ber of the predictions of the segments in each trial under
each condition indicated in the sub-script.

3.5 Implementation Details
The code is implemented using the PyTorch library, the
source code can be found via this link>.

The ratio coefficients of T kernel length are [0.5, 0.25,
0.125] for DEAP. The sampling rate of the data in DEAP is
128Hz, hence, the temporal kernel lengths are 64, 32, and 16
according to Eq. 1. When training TSception on MAHNOB-
HCI, we found that using [0.25, 0.125, 0.0625] as the ratio

3. https://github.com/yi-ding-cs/TSception
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Fig. 3. Mean accuracy of each subject for arousal and valence on DEAP using TSception.
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Fig. 4. Mean F1 score of each subject for arousal and valence on DEAP using TSception.
TABLE 3
Trial-Wise 10-Fold Cross-Validation Classification Results of SVM, KNN, EEGNet,
ShallowConvNet, DeepConvNet, and TSception on DEAP
Arousal Valence
Method ACC std F1 std ACC std F1 std Parameters
SVM 60.37% 12.25% 57.33% 26.61% 55.19% ** 6.97% 57.87%** 11.36% NA
KNN 59.48% 12.34% 57.49% 24.96% 53.03% ** 9.14% 55.12%** 16.27% NA
EEGNet 58.29% 8.60% 60.60% 15.20% 54.56% ** 8.14% 57.61%** 10.42% 2,162
SCN 61.19% 10.28% 61.19% 20.08% 59.42% 8.30% 62.26% 11.49% 48,162
DCN 61.03% 8.58% 62.58% 17.40% 59.92% 7.82% 62.04% 10.23% 151,252
TSception 61.57% 11.04% 63.24% 16.60% 59.14% 7.60% 62.33% 9.03% 12,563

p-value between the method and TSception:
SCN: ShallowConvNet.
DCN: DeepConvNet.

coefficients achieved higher mean accuracy on validation
set. The sampling rate of MAHNOB-HCI is 256Hz, which
gives the temporal kernel lengths of 64, 32, and 16 as well.
The number of temporal and spatial kernels in dynamic
temporal, asymmetric spatial, and high-level fusion layers
is equal to 15. The number of hidden nodes in the first
fully connected layer is chosen as 32. For model training,
the maximum training epoch is 500. The batch size on the
DEAP dataset is set as 64 which will be reduced to 32 on
the MAHNOB-HCI dataset because the trials in MAH-
NOB-HCI are half of the ones in DEAP. All the other
hyper-parameters (including the structure hyper-parame-
ters as well as the training hyper-parameters), except batch
size, are the same for DEAP and MAHNOB-HCI to test the
generalization ability of TSception. The hyper-parameters
are the same for all the subjects. Adam optimizer is uti-
lized to optimize the training process with the initial learn-
ing rate being le-3. Cross-entropy loss is selected as the
loss function to guide the training process. For more
details, please refer to the open-access GitHub repository
for TSception.

*indicating (p < 0.05), ** indicating (p < 0.01), ** indicating (p < 0.001).

4 RESULTS AND ANALYSIS

In this section, we first report and statistically compare the
results in terms of accuracy and F1 score for ours against
the state-of-the-art methods. The ablation studies are then
presented to reveal the contribution of each component in
TSception. Finally, saliency maps are presented to visualize
how the brain areas contribute to the arousal and valence
dimensions.

4.1 Statistical Analysis

The experiment results: include I) the per-subject accuracy
and F1 score on DEAP dataset (see Figs. 3 and 4), II) the overall
accuracy and F1 score on DEAP dataset (see Table 3) MAH-
NOB-HCI data set (see Table 4), and III) the comparison
against the results from existing literatures (see Table 5). To
conduct statistical analysis, a two-tailed Wilcoxon Signed-
Rank Test is utilized. Compared to accuracy, F1 score is a
more reliable metric to quantify the performance of classifica-
tion methods when a dataset has imbalanced classes. Based
on the results we have the following observation and analysis.
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TABLE 4
Trial-Wise 10-Fold Cross-Validation Classification Results of SVM, KNN, EEGNet,
ShallowConvNet, DeepConvNet, TSception on MAHNOB-HCI
Arousal Valence
Method ACC std F1 std ACC std F1 std Parameters
SVM 58.25% * 14.09% 33.40% 21.87% 58.44% * 9.39% 40.27% 12.73% NA
KNN 60.95% 17.11% 28.65% 24.94% 60.32% 12.28% 28.62%*** 20.26% NA
EEGNet 59.98% 16.16% 30.47% 23.68% 56.43% *** 11.12% 33.98%** 15.27% 2,674
SCN 59.85% 16.02% 30.60% 22.20% 59.57% 11.25% 36.41%** 15.27% 50,882
DCN 57.29% 15.69% 32.37% 23.69% 60.29% 12.38% 36.09%* 17.64% 153,652
TSception 60.61% 14.88% 33.06% 23.35% 61.27% 10.05% 40.66% 16.52% 12,563

p-value between the method and TSception: * indicating (p < 0.05), ** indicating (p < 0.01), *** indicating (p < 0.001).

SCN: ShallowConvNet.
DCN: DeepConvNet.

On DEAP, deep learning methods generally outperform
non-deep learning methods, whereas, on MAHNOB-HCI,
the SVM outperforms EEGNet, ShallowConvNet, and Deep-
ConvNet, and is comparable to our method. On DEAP, ours
outperforms SVM and KNN on all the experiments. Ours
has a 1.2% higher accuracy and a 5.91% higher F1 score than
SVM for the arousal dimension. For valence, ours outper-
form SVM with the improvement in accuracy and F1 score
being 3.95% (p < 0.05) and 4.46% (p < 0.05) respectively.
Compared with KNN, ours achieves 2.09%/5.91% higher
accuracy/F1 score for arousal and 3.95% (p < 0.05)/7.21%
(p < 0.05) higher accuracy/F1 score for valence. On MAH-
NOB-HCI, ours achieves the best accuracy and F1 score on
valence, while the best accuracy on arousal is achieved by
KNN classifier and the best F1 score is the one using SVM.
But TSception still achieves a 4.41% higher F1 score than
KNN (p = 0.07186) and a 2.36% higher accuracy than SVM
(p < 0.05) for arousal dimension. Although the other three
deep learning methods have higher classification results the
SVM and KNN on DEAP, they have lower accuracy or F1
score than those non-deep learning methods. SVM defeats
EEGNet, ShallowConvNet, and DeepConvINet on F1 scores
for both arousal and valence dimensions. And KNN achieves
better accuracies than those three deep learning methods for
both arousal and valence. It further suggests that except for
ours, most of the deep learning methods demonstrate less
cross-dataset generality comparing to SVM and KNN.

Among the four deep learning methods, ours achieves
the highest accuracy and F1 score in most of the experi-
ments on DEAP. In particular, our TSception (12,563) has
only a quarter and one-tenth of the parameters compared to
ShallowConvNet (48,162) and DeepConvNet (151,252),
respectively. TSception achieves the highest accuracy and
F1 score on arousal as well as the highest F1 score on
valence, with the accuracy being 61.57% for arousal, 59.14%
for valence, and the F1 score being 63.24% for arousal,
62.33% for valence respectively. DeepConvINet achieves sec-
ond place compared with the other methods (accuracy:
61.03% for arousal, 59.92% for valence, F1: 62.58% for
arousal, 62.04% for valence). ShallowConvNet gets the
third-highest results among all the compared methods,
achieving 61.19%/59.42% for arousal/valence in terms of
accuracy, and 61.19%/62.26% for arousal/valence in terms
of F1 score. The accuracy of TSception for arousal is 3.28%
higher than EEGNet (p = 0.05118), the one for valence has a

4.58% improvement over EEGNet (p < 0.01). For the F1
score, TSception has a 2.64% higher F1 score than EEGNet
for arousal (p = 0.05614), and a 5.72% higher F1 score for
valence (p < 0.01).

On MAHNOB-HCI, ours achieves the highest accuracy
and F1 score among four deep learning methods. For accu-
racy metrics, TSception is 3.32% (p = 0.0536) and 0.98%
(p = 0.35238) higher than DeepConvNet for arousal and
valence respectively. Compared with ShallowConvNet,
TSception has higher accuracies for arousal (0.76%) and
valence (1.7%) with the p-value being 0.48392 and 0.12356.
TSception is 0.63% (p= 0.87288) and 4.84% (p < 0.001)
higher than EEGNet for arousal and valence in terms of accu-
racy. For F1 scores, TSception achieves much higher results
than the other three deep learning methods. Especially for
valence dimension, TSception achieves 4.57% (p < 0.05),
425% (p < 0.01), and 6.68% (p < 0.01) higher F1 score than
DeepConvNet, ShallowConvNet, and EEGNet.

Interestingly, we also notice that the difficulty to predict
the two emotional dimensions are not consistent for the two
datasets. Considering the trade-off of accuracy and F1 score,
we find that the valence is harder to predict for DEAP while
the arousal is harder to predict for MAHNOB-HCI.

Our method outperforms the results reported in the
existing literatures [33], [38], [39] as well. According to
Table 5, ours achieves the best accuracies for both arousal
and valence dimensions. TSception has 3.15% and 1.18%
improvements over FBTSC [39] on accuracy for arousal and
valence. Compared with UL [38], our method beats it by

TABLE 5
Compare with the Results Reported in the Existing Literatures
Using Leave-One-Trial-Out Cross-Validation on DEAP

Arousal Valence

Method ACC F1 ACC F1
SVM[33] 62.00% 58.30% 57.60% 56.30%
UL[38] 62.34% 60.44% 56.25% 61.25%
CSP[39] 58.26% - 57.59% -
FBCSP[39] 59.13% - 59.19% -
FgMDM]I39] 60.04% - 58.87% -
TSC[39] 60.04% - 59.47% -
FBFgMDM][39] 60.30% - 61.01% -
FBTSC[39] 60.60% - 61.09% -
TSception(ours) 63.75% 63.35% 62.27% 65.37%
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TABLE 6 TABLE 7
Ablation Study Results of Removing Functional Ablation Study Results of Removing Spatial Convolutional
Layers in TSception Using DEAP Kernels in TSception Using DEAP
Arousal Valence Arousal Valence

Method ACC F1 ACC F1 Method ACC F1 ACC F1
w/oT 60.45% 61.29% 58.62% 61.47% w/oH 55.86% 50.38% 51.15% 40.13%
w/0S 60.07% 61.41% 56.90% 60.74% w/oG 57.21% 58.29% 54.22% 57.75%
w/oF 6003%  6085%  5821%  61.14%  Tgeeption  61.57%  63.25%  59.14%  62.33%
TSception 61.57% 63.25% 59.14% 62.33%

T: Dynamic temporal layer; S: Asymmetric spatial layer; F: High-level fusion
layer.
wfo: Without the component.

1.41% for arousal and 6.02% for valence in terms of accu-
racy. The accuracies of ours for arousal and valence are
1.75% and 4.67% higher than the ones of SVM reported in
[33]. For F1 scores, TSception has 5.05% and 2.91% higher
than SVM [33] and UL [38] for arousal and 9.07% and 4.12%
higher for valence, indicating the effectiveness of the pro-
posed method.

According to the extensive comparison against a variety
of methods, the proposed method manifests promising per-
formance on the arousal-valence prediction task, with a
decent extent of generality.

4.2 Ablation Study

The proposed method TSception has a dynamic temporal
layer, asymmetric spatial layer, and high-level fusion layer
three functional parts. The combination of those three parts
leads to the success of classification tasks. Ablation studies
are conducted to further understand which part contributes
more to the improvement of classification results. The classi-
fication results after removing each of the dynamic temporal
layer, asymmetric spatial layer, and high-level fusion layer
from the TSception are reported. DEAP dataset is used for
the ablation study since the overall performance is higher
than MAHNOB-HCI. The results of the ablation study are
shown in Table 6.

All of the accuracies and F1 scores drop after removing
any of the three types of layers, indicating all components
contribute to the improvement of classification results.
Overall, the most significant drops of accuracy for three
dimensions are observed when the asymmetric spatial layer
is removed from TSception with the decrements being
1.5%/1.84% on accuracies for arousal/valence and 1.84%/
1.59% on F1 scores for arousal/valence. This demonstrated
that the asymmetric spatial layer contributes more than the
other two layers, especially for the valence dimension, the
drop is the largest in the ablation study. The high-level
fusion layer contributes more to arousal because the accu-
racy drops by 1.54%, and the F1 score drops by 2.40% for
arousal while the drops of accuracy and F1 score for valence
are smaller (0.93% on accuracy and 1.19% on F1 score) after
removing the high-level fusion layer. The dynamic temporal
layer contributes less than the others, with the drops of
accuracy/F1 score being 1.12%/1.96% for arousal and
0.52%/0.86% for valence.

The kernel-level ablation studies are further conducted to
analyze the effects of two types of spatial kernels in the spa-
tial asymmetric layer because it has more contribution than

H: Hemisphere kernels; G: Global kernels.
wfo: Without the component.

other layers. The weights and biases are set to zeros as [18]
did to study the kernel-level effects. The results are shown
in Table 7.

Hemisphere kernels learn more discriminative represen-
tations than global kernels in TSception, according to the
results in Table 7. The drops of classification results after
removing the hemisphere kernels are all larger than the
ones after removing the global kernels. After removing
either type of the hemisphere and global kernels will down-
grade the performance of TSception for both the arousal
and valence dimensions. This indicates both types of spatial
convolutions help to improve the performance of TSception.

4.3 Interpretability

In this part, the saliency map [45] is utilized to visualize
which parts of the data are more informative and contribute
to classification performance. The saliency map is one of the
most commonly used tools to intuitively show which
regions of the input have the classification-related informa-
tion. To better visualize the saliency map, the original
saliency map is averaged along the time dimension to get
the topological map of the EEG channels. The normalized
saliency maps of different samples of each subject are aver-
aged to get the mean saliency map of the subject for general
visualization. The averaged saliency maps in the DEAP
dataset are shown in Fig. 5. The mean saliency maps of indi-
viduals for arousal are also shown in Fig. 6 to illustrate the
differences across subjects.

The pictures in Fig. 5 are the saliency maps under different
calculation settings. The upper three saliency maps, Figs. 5a,
5b, and 5¢, are the averaged saliency maps for arousal dimen-
sion while the lower three, Figs. 5d, 5e, and 5f, are for valence.
The first column, Figs. 5a and 5d, are the mean saliency map
of all the subjects. The second column, Figs. 5b and 5e, are the
one of subjects who are top 10% for F1 scores, The last col-
umn, Figs. 5c and 5f, are the average saliency map of the sub-
jects whose F1 scores are in bottom 10% for arousal. The
mean saliency map is normalized between -1 and 1 for better
visualization. We choose F1 as the selecting criterion for visu-
alization because it can reflect how precise the predictions
are when the classes are imbalanced.

For arousal, the frontal, temporal, and right side of the
parietal and occipital areas of the brain are more informa-
tive according to Figs. 5a and 5b. The averaged saliency
map of all the subjects, Fig. 5a, shows the value of Fp2, F3,
FC2, FC5, T7, T8, C4, P8, and O2 channels are higher than
others. Comparing the saliency maps of the top(Fig. 5b) and
bottom 10% (Fig. 5¢) F1 score subjects, we can see the frontal
(Fp1, AF3, F3 and F4), temporal (T8) and parietal (P7) areas
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Fig. 5. Averaged saliency maps in DEAP dataset. The upper three
saliency maps (a)-(c) are the averaged saliency maps for arousal dimen-
sion while the lower three (d)-(f) are for valence. The first column (a) and
(d) are the mean saliency map of all the subjects. The second column
(b) and (e) are the one of subjects who are top 10% for F1 scores, The
last column (c) and (f) are the average saliency map of the subjects
whose F1 scores are in bottom 10% for arousal. The mean saliency map
is normalized between -1 and 1 for better visualization. F1 is chosen as
the criterion because it can reflect how precise the predictions are by tak-
ing the imbalanced classes issue into consideration. The most informa-
tive region identified by the neural network is the frontal, temporal,
parietal, and regions for high F1 score subjects.

provide more information in Fig. 5b, while the network
mainly learns from parietal (P8) in Fig. 5c. This indicates
frontal, temporal, and parietal areas of the brain provide
more emotion-related information. This is consistent with
previous literatures [46], [47], [48]. Emotion arousal is
mostly reflected in the frontal lobe, temporal lobe, and pari-
etal lobe [46]. Pre-frontal and temporal asymmetry have
close relations to arousal recognition [47].

For valence, the frontal, temporal, and right side of the
parietal and occipital areas of the brain are more informative
according to Figs. 5d and 5e. The same thing happens that the
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Fig. 6. Saliency maps of all 32 subjects for arousal in DEAP dataset. The saliency map is averaged along the time dimension to plot the topological map.
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occipital (O1 and O2) activities provide less classification-
related information than frontal (F8), temporal (T8), and pari-
etal (P7 and P8) activities for the high F1 score subjects
(Fig. 5e). According to previous studies, the asymmetry pat-
terns in pre-frontal, parietal, and temporal regions are
observed for valence recognition [47].

In general, the most informative region identified by the
neural network is the frontal, temporal, parietal, and occipi-
tal regions while the occipital activities are less informative
for the subjects with high F1 scores. This is consistent with
previous works [44], [46], [47], [49], [50], which indicates the
network learns from the proper region. And for both
arousal and valence, the occipital activities provide certain
information. This may be because the stimuli used in DEAP
are music videos.

5 DISCUSSION AND CONCLUSION

Accurate emotion detection can benefit many healthcare
applications including Cognitive Behavioural Therapy (CBT),
Emotion Regulation Therapy (ERT)/Emotion-Focused Ther-
apy (EFT) for emotion-related mental disorder treatment.
Most of the previous works highly rely on the human
extracted features, which requires heavy domain knowledge.
Deep learning, especially the family of convolutional neural
networks, has the auto feature-extracting ability. In this paper,
we propose TSception, a multi-scale convolutional neural net-
work, for EEG emotion recognition tasks. The parallel multi-
scale temporal kernels whose lengths are related to the
sampling rate of EEG are proposed in the temporal convolu-
tional layer of TSception to enrich the learned temporal/fre-
quency representations. To capture the emotional asymmetry
patterns, we propose hemisphere kernels besides the global

Sub 29
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kernels in the asymmetric spatial layer. A high-level fusion
layer is designed to further learn from the hemisphere/global
representations of EEG and reduce the model size.

To get the generalized evaluation of our method, we
adopt the trial-wise cross-validation of cropped trials on
two benchmark datasets. As mentioned in Section 4.4, if one
randomly shuffles the samples among different trials before
dividing the data into training and testing data in cropped
experiments, he can get very high classification results that
will drop when the highly correlated adjacent segments in
one trial are not seen by the model [38], [51]. Hence, the
trial-wise 10-fold cross-validation is utilized to make sure
the highly correlated adjacent segments of each trial don’t
appear in both training and testing data. To further compare
our methods with the ones in the existing literatures that
also use generalized evaluation settings, a leave-one-trial-
out cross-validation is conducted with a voting mechanism
on each trial’s segment predictions. As for evaluating met-
rics, we also follow [38], adding F1 score besides accuracy
to get a better evaluation on imbalanced datasets.

According to the results on two public datasets shown in
Tables 3, 4, and 5, the proposed TSception achieves the high-
est classification results than those from the compared meth-
ods in most of the experiments. Particularly, TSception has
1/4 or 1/10 of the trainable parameters of its counterparts.
Such efficiency and effectiveness may benefit the online
usage of the neural network in real-world BCI applications.

Extensive ablation studies and interpretability experi-
ments suggested that all modules in TSception have posi-
tive contributions to the improvement of classification
results and our method learns from the emotion-related
information. According to Table 6, we find the asymmetric
spatial layer contributes most to the classification results. To
make sure the neural network learns the emotion-related
information instead of irrelevant features, saliency maps are
acquired to visualize the most informative regions identi-
fied by the neural network itself. The mean saliency maps of
all subjects in Figs. 5a and 5d show strong activation in the
frontal, temporal, parietal, and occipital areas. However,
the saliency maps of the subjects with high F1 scores in
Figs. 5b and 5e only show strong activation in the frontal,
temporal, and parietal areas, which is consistent with [1],
[44], [46], [47], [49], [50], [52]. A right hemisphere lateraliza-
tion pattern is also observed in the averaged saliency map
of the top 10% subjects with high F1 scores (Fig. 5e) for
valence, which indicates the right hemisphere is more infor-
mative for valence recognition. Neuroscience studies [53],
[54] suggested that the right hemisphere has a special role in
the emotional process in the brain. However, the right hemi-
sphere lateralization is not present for high F1 subjects for
arousal as shown in Fig. 5b. This could be because the infor-
mation provided in the frontal area is enough for the neural
network to make the decision. Moreover, we find that the
occipital activities also contribute to the inference process of
the neural network for all the subjects, as shown in Figs. 5a
and 5d. A possible reason for high occipital activities is that
music videos are used as stimuli in DEAP. However, the
information provided by occipital activities is less useful for
high F1 subjects (for both arousal and valence). This suggest
occipital is not as informative as other brain regions, such as
frontal and temporal regions, for emotion recognition.
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To conclude, we propose a multi-scale convolutional
neural network, named TSception, to capture temporal
dynamics and spatial asymmetry for EEG emotion recogni-
tion. Using generalized cross-validation strategies, the pro-
posed method and several baseline methods are evaluated
on two publicly available benchmark datasets. The pro-
posed method manifests promising performance on the
arousal-valence prediction task, with a decent extent of gen-
erality. In the future, the generalization ability of TSception
across subjects will be explored. The effect of segment
length in cropped experiments on TSception should also be
considered and studied.
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