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MS-YOLO: Object Detection Based on
YOLOv5 Optimized Fusion Millimeter-Wave

Radar and Machine Vision
Yunyun Song , Zhengyu Xie, Xinwei Wang, and Yingquan Zou

Abstract—Millimeter-wave radar and machine vision are
both important means for intelligent vehicles to perceive the
surrounding environment. Aiming at the problem of multi-
sensor fusion, this paper proposes the object detection
method of millimeter-wave radar and vision fusion. Radar
and camera complement each other, and radar data fusion
in machine vision network can effectively reduce the rate
of missed detection under insufficient light conditions, and
improve the accuracy of remote small object detection. The
radar information is processed by mapping transformation
neural network to obtain the mask map, so that radar infor-
mation and visual information in the same scale. A multi-data
source deep learning object detection network (MS-YOLO)
based on millimeter-wave radar and vision fusion was proposed. Homemade datasets were used for training and testing.
This maximized the use of sensor information and improved the detection accuracy under the premise of ensuring the
detection speed. Compared with the original YOLOv5 (the fifth version of the You Only Look Once) network, the results
show that the MS-YOLO network meets the accuracy requirements better. Among the models, the large model of MS-YOLO
has the highest accuracy with an mAP reaching 0.888. The small model of MS-YOLO has good accuracy and speed, and
the mAP reaches 0.841 while maintaining a high frame rate of 65 fps.

Index Terms— MS-YOLO, object detection, multi-sensor fusion, deep learning.

I. INTRODUCTION

W ITH the development of autonomous vehicles, various
autonomous driving technologies are gradually matur-

ing. Among them, environmental perception, as the most criti-
cal step of autonomous driving, is the basis of decision-making
and control, and many researchers are conducting further
research in this area. At present, there are many sensors
commonly used by researchers for intelligent vehicle environ-
ment perception, but a single sensor can only obtain partial
characteristics of the surrounding environment, which makes
it difficult to meet the needs of intelligent vehicle environment
perception. Multi-sensor fusion can maximize the use of the
information obtained by different sensors and provide more
comprehensive and accurate characteristics of the surround-
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ing environment; therefore, multi-sensor fusion has gradually
become the mainstream intelligent vehicle environmental per-
ception field.

Machine vision has become an indispensable means of
object detection in intelligent driving. It can perform well in
a series of different scenes. However, vision requires certain
lighting conditions, and monocular devices cannot accurately
obtain the position information of a object. Millimeter-wave
radar, another commonly used sensor for intelligent driving,
has strong complementarity with vision. It is robust to weather
changes and can obtain object position information and speed
information. However, millimeter-wave radar cannot classify
objects, and it is difficult to determine the object size. Many
studies have shown that the fusion of two sensors is more
accurate than the use of vision alone in object detection.

Considering comprehensively, radar data processing and
visual deep learning networks are researched in this paper to
conduct object detection. On the premise of ensuring a certain
detection speed, the object detection accuracy is improved
to meet the environmental detection requirements of intelli-
gent vehicles. The main work of this paper is as follows:
(1) The mapping transformation neural network is constructed
to process the millimeter-wave radar information. The network
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Fig. 1. The entire process of multi-sensor information fusion object detection. First, the radar data are processed to form the corresponding mask
map, the mask map and the original camera image are input to MS-YOLO at the same time, and MS-YOLO conducts feature extraction on the two
types of data. Then, feature fusion is conducted, and the final detection is conducted.

can generate the mask map that contains object information
and unify the information of the two sensors. (2) A multi-data
source deep learning object detection network (MS-YOLO)
based on millimeter-wave radar and vision fusion was con-
structed: optimized on the basis of YOLOv5 (the fifth ver-
sion of the You Only Look Once) network, double backbone
network was used to extract the information features of two
sensors respectively, and the radar feature fusion path was
appropriately added. The network is trained and tested using
homemade dataset (MSDataset). (3) The small, medium and
large models of MS-YOLO were used for training and testing
and compared with the corresponding size of the original
YOLOv5 network model.

The experimental results show that the performance of the
two sensor data fusion networks proposed in this paper is
higher than that of the original image detection network. Fig. 1
shows the entire process of multi-sensor information fusion
object detection proposed in this paper.

The remainder of this paper is organized as follows.
Section II gives the related work on object detection based
on images and object detection based on radar and image
fusion. The radar data processing is described in Section III.
Section IV mainly introduces the proposed multi-sensor data
fusion network, including the network architecture, datasets
and some training details. The experimental results are given
in Section V, and the work of this paper is summarized in
Section VI.

II. RELATED WORK
A. Object Detection Based On Images

A camera records rich original information and has a strong
object classification ability. The traditional machine visual
object detection algorithm [1], [2] can achieve a good effect
under certain conditions. In 2020, Chiman Kwan et al. [3]
combined flow methods with contrast enhancement, connected
component analysis, and object association to detect small
moving objects in long-range infrared videos. In 2021, Chiman
Kwan et al. [4] proposed two unsupervised approaches using
change detection algorithms for small moving object detection

in IR videos. The Result shows that the module can detect
objects quite effectively. His research group [5] proposed
a high-performance approach to detecting small objects in
long-range and low-quality infrared videos, he used a system
consist of a video resolution enhancement module, a proven
small object detector based on local intensity and gradient
(LIG), a connected component (CC) analysis module, and
a track association module. However, traditional algorithm
has a large amount of computation, poor robustness and is
prone to redundancy. After 2012, the field entered the stage
of deep learning object detection [6]. In recent years, image
processing algorithms have become increasingly mature, and
machine vision has been widely used in various fields. Deep
learning-based object detection algorithms can be divided into
two-stage detection and single-stage detection. Among them,
the two-stage detection is represented by the R-CNN [7] and
SPP-Net [8]. The idea is to first detect the position and then
classify it; however, the real-time detection is poor. Further-
more, single-stage detection is represented by YOLO [9] and
SSD [10]. The idea is to directly take an entire image as input
and directly return the object category and position, which has
obvious real-time advantages.

With the development of the YOLO network, YOLO has
become as accurate as some two-stage detection methods.
The YOLO (you only look once) [9] algorithm was first
proposed by Joseph Redmon et al. in 2016. Then, the improved
YOLOv1 algorithm, YOLOv2 [11] and YOLOv3 [12] were
proposed. With the follow-up of more researchers, in April
2020, the YOLOv4 algorithm was proposed by Alexey
Bochkovskiy’s team [13], and the effect was significantly
improved. A month later, Glenn Jocher released the YOLOv5
algorithm via open source access. YOLOv5 has four networks
with different depths and widths. The larger the model is,
the slower its speed, and the greater its accuracy. The mAP
and reasoning speed of YOLOv5 on the COCO dataset show
that YOLOv5 has excellent performance and has an obvious
speed advantage while ensuring certain accuracy. Mohammad
Shahab Uddin et.al [14] propsed attention GAN model to
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generate more stable IR images and get a better result when
they used YOLO algorithm to detect the objects. Chiman
Kwan proposed [15] a deep learning approach that directly
performs object tracking and classification in the compressive
measurement domain without any frame reconstruction. This
methond using YOLO can be developed on processing and
control element cameras. However, images obtained by cam-
eras are easily affected by the environment, and it is difficult
to obtain monocular depth information; therefore, this paper
selects the YOLOv5 network for corresponding research and
improvement.

B. Object Detection Based on Radar and Image Fusion
Intelligent vehicle object detection based on multi-sensor

fusion has important theoretical value and practical signifi-
cance. Using camera and millimeter-wave radar fusion, the two
sensors complement each other to obtain the positioning infor-
mation and relative speed to classify the detected objects. The
dual sensors can also improve reliability. Domestic and foreign
scholars have performed a considerable amount of research
on object detection based on visual and millimeter-wave radar
fusion. In 2000, Lakshmanan et al. [16] used radar and visual
information to detect vehicles and lanes. The basic method was
traditional and possessed great limitations. The Fade proposed
by Steux’s [17] team can detect vehicles in the left and right
lanes in real time and predict vehicle behavior by detecting
turn signals, but it needs to be improved to detect other
objects such as pedestrians. The fusion algorithm proposed
by Bombini [18] in 2006 uses radar data to locate the region
of interest, and the visual system is used to verify and improve
the accuracy. This algorithm cannot detect and distinguish
between multiple similar vehicles. Wang et al. [19] proposed
mapping radar data to images and comparing the image detec-
tion results, combined with radar data and tracking algorithms,
to improve the vehicle detection accuracy in bad weather.
However, it is still challenging to accurately detect vehicles
when the camera is heavily jammed. In 2019, John [20]
proposed a deep learning-based sensor fusion framework RV-
Net, which effectively integrates image and radar features and
can detect obstacles in real time. In 2020, he [21] proposed
an RV-Net extended learning framework called SO-Net, which
added a semantic segmentation branch to reduce the computa-
tional complexity and realize spatial segmentation and vehicle
detection. Nobis et al. [22] proposed CRF-Net that used a
logistic regression method to automatically locate the optimal
fusion layer. The results indicated that the detection effect of
the fusion network was better than that of the image network
only, and the authors concluded that further exploration of
the optimized network structure was needed. In the 2020,
YOdar proposed by Kowol et al. [23], two networks are used
to process image and radar data, and the results are used for
joint prediction, which significantly improves the detection
performance. In the process, the features of the data of the two
sensors are not fused. Dong et al. [24] feed radar detection
results with original images for fusion detection after trans-
forming them to the same scale and designed the loss caused
by labeling error; however, the network structure is relatively
simple.

III. RADAR DATA PREPROCESSING

The millimeter-wave radar used in this paper is ARS 408-
21 manufactured by German Continental. ARS 408-21 has
a pseudorandom coding design, which can avoid the inter-
ference caused by multiple radars working at the same time
and is very suitable for the environmental sensing sensors
of intelligent vehicles. The ARS sensor uses radar radiation
to analyze its surroundings. After the reflected signals are
processed by the algorithm of the radar module, they become
available and output through CAN(Controller Area Network).
The CAN protocol is used to parse the radar data and obtain
information about each object detected. In this paper, the radar
is configured to generate the position, speed, length, width, and
possible category of each object in each frame.

Since the data collected by cameras and millimeter-wave
radar belong to different coordinate systems, to achieve infor-
mation fusion, it is necessary to ensure the spatial unity of the
two types of information. That is, the conversion relationship
between the two kinds of information needs to be determined.

Common spatial transformation methods are as follows:
(1) The traditional coordinate transformation [25], [26] uses
each parameters and derives the radar coordinate and pixel
coordinate conversion formula through the transformation of
each coordinate system. (2) To calibrate multiple groups of
data, the least square method is used to fit the transformation
process [27]. (3) Training a neural network to simulate the
spatial transformation process. While the first two methods can
only achieve different point-to-point mapping, the last method
can extract advanced features and directly obtain the radar
information mapped object box. In order to strengthen the
fusion effect, this paper adopts the third method, construct
the corresponding datasets and design the neural network to
map the millimeter-wave radar information into the image to
obtain the corresponding mask to conduct the subsequent data
fusion work.

A. Mapping Transformation Neural Network Description
Neural networks are widely used in all types of fitting prob-

lems and prediction problems. In this paper, the corresponding
dataset was constructed and optimized based on the typical BP
(Back Propagation) neural network: convolution and residual
modules are added. The constructed network processes the
millimeter-wave radar data and converts the objects informa-
tion detected by the radar into the pixel reference frame.

The overall design of the mapping transformation neural
network is shown in Fig. 2. Seven kinds of object state infor-
mation can be obtained by parsing CAN information output
by the radar module. Namely, longitudinal distance, transverse
distance, longitudinal velocity, transverse velocity, category,
length and width, therefore, the input layer of the network is
set to 7. The network output needs to obtain the bounding box
of the object in the image corresponding to the object detected
by radar, therefore, the output layer is set to 4, which is the
pixel coordinates of the upper left corner and the lower right
corner of the bounding box. The network structure is optimized
based on the traditional BP neural network: (1) The first step
is to add the convolution operation. The one-dimensional con-
volution operation usually involves convolution along a certain
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Fig. 2. Mapping transformation neural network structure.

direction, that is, extracting features in a certain direction. The
network input is a one-dimensional vector with a length of
7 to represent the millimeter-wave radar data, and the data
are extended above to ensure normal convolution. The added
convolution is a one-dimensional convolution with 1 input
channel, 4 output channels, a 1 × 2 convolution kernel and
a step size of 2. (2) The second step is to design the residual
module [28]. By adding residual module into the network,
the deep-level features can be integrated with the shallow-
level features. Therefore, the deep-level feature map and the
shallow-level feature map are superimposed so that the number
of parameters can be reduced whereas the network perfor-
mance does not degrade as the network depth increases.

Since the network output is two coordinate points, the loss
calculation adopts the mean square error, which represents the
distance and is more suitable for this paper compared with
other losses. The loss function can be expressed as:

E = 1

n

n∑

i=1

(yi − ŷi )
2 (1)

where E is the average error of this batch of data, n is the
number of this batch of data, yi is the correct value of the ith
data in the batch, ŷi is the predicted value given by the neural
network.

The initial learning rate of the network is set to 0.000002,
and setting a small learning rate for the sake of avoiding gradi-
ent explosion. The Adam optimizer [29] is adopted to reduce
the loss quickly, which can make the network find the optimal
solution quickly. In this paper, the PyTorch network framework
is used to build the neural network, the linear module is used
to build each layer in the network, and LeakyReLU is used as
the activation function.

B. Datasets
The data obtained by millimeter-wave radar after processing

by the underlying algorithm communication protocol parsing
are the seven types of state information of the objects detected
in each frame, including longitudinal distance, transverse dis-
tance, longitudinal velocity, transverse velocity, possible cat-
egory, length and width. Objects with obvious features can
be labeled with categories, including people, car, bicycle and

bus. Visualizing the radar information and comparing it with
the optical image, there are obvious corresponding objects.
Labeling the position of the object bounding box in the image.
The radar data of the object and the pixel coordinates of the
bounding box together form a data point. A total of 800 objects
are labeled in this homemade dataset for training the mapping
transformation neural network. Of these objects, 700 data
points are used as the training set and 100 data points are
used as the test set.

C. The Training Results
The standard error between the network output and the

label, which is regarded as the number of predicted error
pixels, is used as the performance index. The average predicted
speed of the trained network was 0.360ms per data, and the
standard error of the test was dropped to 13.57 pixels. After
the radar data of an object is processed by the network,
the coordinates of the corresponding pixel bounding box are
obtained. Form a mask according to the coordinates. The gray
value of the mask is determined by the speed value of the
object through amplitude limiting and normalization so that
the speed information is reflected in the mask. A mask map
consists of the masks of all detected objects in a frame of
radar data. Algorithm 1 is the process of transforming a frame
of radar data into a radar mask map.

The mapping transformation neural network obtained by
training in this section has certain adaptability and robustness
in different scenes. Fig. 3 shows the transformative effect of
the mapping transformation neural network model in three
scenes of daytime crossroads, daytime curve and night straight
road. Among the three groups of images, each group includes
the original image collected by the camera, the vector map of
radar information in the corresponding frame, visualization of
radar data label, and the mask map of radar data. Label the
objects that correspond to the image and radar data, which
form a visual diagram of the radar data label. The mask map
is composed of masks formed by the mapping transformation
neural network.

IV. PROPOSED NETWORK

The deep learning object detection algorithm of multi-data
source fusion proposed in this paper is based on the
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Fig. 3. Effect of the mapping transform neural network model. (a) Daytime crossroad scene original image. (b) Daytime crossroad scene radar
vector map. (c) Visualization of radar data label numbered 1b, 06, 36, 14. (d) Daytime crossroad scene radar mask map. (e) Daytime curve scene
original image. (f) Daytime curve scene radar vector map. (g) Visualization of radar data label numbered 2c, 42. (h) Daytime curve scene radar mask
map. (i) Night straight scene original image. (j) Night straight scene radar vector map. (k) Visualization of radar data label numbered 0d. (l) Night
straight scene radar mask map.

multi-source improvement of the YOLOv5 network, so it
is named the MS-YOLO network. This section covers the
MS-YOLO network structure, datasets, and parameter setting.

The MS-YOLO network designs two backbone networks
to extract the features of image and millimeter-wave radar
information and fuses the feature map with different depths in
the two backbones in the middle layer. Finally, three detection
layers are used for detection. The network achieve the fusion
of the information of the two different sensors through these
steps.

A. Proposed Network Description
The performance of YOLOv5 on the COCO dataset shows

that YOLOv5 can guarantee certain accuracy and has an
obvious speed advantage. Therefore, this paper selects the
YOLOv5 network for the corresponding research and improve-
ment. The entire YOLOv5 network is divided into the back-
bone network (Backbone), the middle layer (Neck), and the
detection layer (Head). YOLOv5 uses CSPDarknet [30] as
the backbone network, and the middle layer contains both
the FPN (Feature Pyramid Networks) structure and PAN
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Fig. 4. Schematic diagram of the overall network structure of MS-YOLO.

Algorithm 1 Framework of Forming a Radar Mask Map
Require:

The status information of all detected objects in a frame of
radar data, Dn ;
The mapping transformation neural network, M;

Ensure:
A radar mask map, Img;

1: Initialize a 1024 × 1280 array Img with all 0 values;
2: for all Di such that Di ∈ Dn do
3: Calculate the velocity si from the velocity component

information in Di ;
4: si ⇐ si × 25 ;
5: if si < 5 then
6: si ⇐ 5 ;
7: else if si > 255 then
8: si ⇐ 255;
9: end if

10: Feed Di into M and get the bounding box Bi correspond-
ing to the image;

11: Set all values of Bi in Img to si ;
12: end for
13: return Img;

(Spatial Pyramid Pooling) structure. Features are obtained
from different backbone layers for feature fusion so that
the feature information of the detection layer is greatly
enhanced.

Referring to the idea of the YOLOv5 model framework,
a multi-source object detection network (MS-YOLO) is pro-
posed in this paper. The purpose of the MS-YOLO network
is to fuse the information of two sensors, so the data fea-
tures of the two sensors need to be combined in the specific
implementation of the MS-YOLO object detection model. The
MS-YOLO network is improved based on YOLOv5 in the
two following aspects: (1) a dual backbone network, (2) a

feature guidance structure of millimeter-wave radar features
in the middle layer. The MS-YOLO network constructs a
double backbone structure based on an image feature extrac-
tion backbone network and conducts feature extraction for
millimeter-wave radar and camera data in the early stage,
which is used for later fusion and improves the detection
accuracy.

Fig. 4 shows a simple framework of the MS-YOLO net-
work. The inputs of the network are image and the mask map
generated by the corresponding frame radar data. The net-
work constructs two backbone networks for feature extraction.
CSPDarknet-vision and CSPDarknet-MMW, which extract the
shallow features of the image and millimeter-wave radar infor-
mation, respectively. After the backbone features are extracted,
the features of the double backbone are fused to obtain F1,
which is input into the first detection layer. The fusion here
fuses the advanced features of the radar mask map with the
advanced features of the image. F1 is upsampled and then
fused with feature maps, which have the same resolution and
are in two CSPDarknet networks, and then F2 is obtained
through convolution and other operations after fusion. F2 is
upsampled and then fused with feature maps, which have the
same resolution and are in two CSPDarknet networks, and
then F3 is obtained through convolution and other operation.
F1, F2 and F3 then obtain S1, S2 and S3, respectively, through
convolution and other operations, which serve as the inputs of
the three detection layers.

Fig. 5 is the schematic diagram of the network module
composition and connection of MS-YOLO. The black connec-
tion blocks are all modules of the original YOLOv5 network,
the blue connection blocks are the backbone network for
processing the radar mask map, and the orange connection
blocks are the added radar data feature fusion paths. Focus
is a slicing operation, which halves the width and height of
the feature map and increases the number of channels by four
times. Fig. 6(a) shows the structure of the Focus. SPP (Spatial
Pyramid Pooling) [31] can combine local features with global
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Fig. 5. Schematic diagram of the network module composition and connection of MS-YOLO.

features, which is beneficial to image detection with the large
object size differences. Fig. 6(b) shows the structure of the
SPP. CBL is the standard convolution layer, consisting of
two-dimensional convolution, Batch Normalization [32] and
activation function, which here uses LeakyReLU. CSP (Cross
Stage Partial Network) consists of several Bottleneck [28]
and several standard convolution layers. Fig. 5 shows the
structure of the CSP, and the red font under the blocks in the
figure represents the number of blocks. The entire network is
divided into the dual backbone network (Backbone), middle
layer (Neck), and detection layer (Detect). The Backbone is
an orderly combination of several modules, such as Focus,
CBL, CSP and SPP. The main function of the Backbone is
feature extraction. The radar branch MMV and the image
branch Image form the Backbone of the network together. The
middle layer (Neck) is an ordered combination of CSP, CBL
and Upsampling modules; and its main function is feature
fusion. The left and right sides of Neck are the FPN struc-
ture [33] and PAN structure [34], respectively, which receive

fusion features of different depths from the Backbone and then
conduct all-round feature fusion and generate three groups of
features with different resolutions. The detection layer (Detect)
is composed of the convolution block, receives three groups
of features from the Neck, and generates three groups of
detection results with resolutions of 20 × 20, 40 × 40 and
80 × 80 through the convolution operation. The depth is
6 category numbers plus 4 positional parameters and a con-
fidence level, the sum is 11. Through the above process,
millimeter-wave radar and image fusion detection can be
conducted.

B. Training Details
1) Loss Function: A good loss function can make the net-

work converge quickly and perform better. The part of the loss
function of the MS-YOLO model in this paper is similar to
that of YOLOv5, and it includes three parts: the classification
loss Lcls , the position loss Lbox and the confidence loss Lobj .
Each loss function is as follows:
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Fig. 6. (a) Structure of Ffocus. (b) Structure of SPP.

The position loss can be expressed as:

Lbox = λcoord

s×s∑

i=1

b∑

j=1

I obj
i j (2 − wi × hi )

× [(xi − x̂i )
2 + (yi − ŷi )

2]

+ λcoord

s×s∑

i=1

b∑

j=1

I obj
i j (2 − wi × hi )

× [(wi − ŵi )
2 + (hi − ĥi )

2] (2)

The confidence loss can be expressed as:

Lobj =
s×s∑

i=1

b∑

j=1

I obj
i j [Ĉi log(Ci )

+ (1 − Ĉi )(1 − log(Ci ))]

− λnoobj

s×s∑

i=1

b∑

j=1

I noobj
i j [Ĉi log(Ci )

+ (1 − Ĉi )(1 − log(Ci ))] (3)

The classification loss can be expressed as:

Lcls =
s×s∑

i=1

b∑

j=1

I noobj
i j

∑

c∈classes

[ p̂i (c)log(pi (c))

+ (1 + p̂i(c))log(1 − pi(c))] (4)

where s × s is the partition of the image; b is the number of
anchors corresponding to each grid; c is the number of cate-
gories; p is the probability of categories; xi , yi , wi , and hi are
the horizontal and vertical coordinates and width and height at
the center point of the bounding box in the grid, respectively;
λcoord is the weight of the predicted loss of bounding box coor-
dinates; and λnoobj is the weight of the predicted loss of confi-
dence of bounding box without an object; Ci is the confidence
of the category, and Ĉi is the predicted confidence of the cate-
gory. When the object center falls into the grid, the confidence
loss and classification loss need to be calculated. The position

TABLE I
depth_multiple AND width_multiple SETTINGS

loss is calculated only when the intersection between the
prediction box and the actual box is greater than the specified
threshold.

2) Parameter Configuration: This section describes the key
parameters to be configured. The number of object categories
nc is determined according to the number of dataset categories
and is set to 6. The model depth (depth_multiple) represents
the number of modules which control the size of the model,
and the model width (width_multiple) controls the number of
channels in the module. Table I shows the values of these two
parameters for three different size models. There are 9 anchors
in 3 groups. MS-YOLO extensively uses 3 × 3 convolution
kernels and 1 × 1 convolution kernels. In SPP, four types of
max pooling, 1 × 1, 5 × 5, 9 × 9, and 13 × 13, were used for
multi-scale fusion.

The input image size of the network is 640 times 640. The
batch size in each training epoch was set to 64, the Adam
optimization algorithm was adopted in the training process,
and the learning rate momentum was set to 0.843. The weight
delay is set to 0.00036. There are a total of 300 epochs of
network training, and the learning rate is updated to half of
the original after 64 steps of epoch back propagation. The
pre-training model is loaded in the network training, and
the initial learning rate is set to 0.0032. The trend of the
learning rate first linearly rises and then slowly declines. The
rising process occurs because the network uses the pre-training
rate, which can make the model converge to a local opti-
mum first. The algorithm model is deployed on the PyTorch
framework.

V. EXPERIMENTS

The experimental part of the multi-source fusion net-
work includes six experiments in total, including three con-
trast experiments and three improved network experiments.
The contrast experiments are the YOLOv5s experiment,
YOLOv5m experiment and YOLOv5l experiment, which
are small model, medium model and large model, respec-
tively. The improved network experiments are similar. There
are the small model MS-YOLOs, the medium model MS-
YOLOm and the large model MS-YOLOl. In the following,
three multi-source fusion object detection network experi-
ments are analyzed using the index changes in the training
process and the index of the training results and compared
with the contrast experiment networks. The indices involved in
the experiment are the same as those in YOLOv5, including
the precision, recall, average precision (mAP), and F-measure.
In this section, indices such as the precision and mAP are
expressed in the form of percentages, and the percentage sign
is ignored.
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Fig. 7. Millimeter-wave radar and camera installation position diagram.

A. The Experiment Platform
The experimental platform of this paper is an unmanned

driving platform based on millimeter-wave radar and visual
fusion. The autonomous bus used in the experiment is mod-
ified based on an electric bus, as shown in Fig. 7. The car
body part is a new electric bus manufactured by a passenger
transport company in Sichuan Province and includes a power
supply system, actuator, motor and other parts. The central
processing unit of the autonomous bus adopts an ECX-1400
PEG series industrial control computer produced by Taiwan
Vecow Company, and the underlying control unit is a high-
performance STM32F4 series MCU produced by ST company.
Corresponding sensors are installed in all directions of the car
body to sense the surrounding environment in real time.

The millimeter-wave radar used in this paper is the ARS
408-21 radar of Continental and is installed on the central
axis of the autonomous bus at a horizontal height of 80cm.
The camera is an acA130-60gc Basler ace GigE high-speed
industrial camera produced by Basler Company. It is over the
radar and 105cm from the ground. The detection direction of
both sensors is horizontal forward. The installation positions
are shown in Fig. 7.

Because deep learning requires strong computing power in
the training process, the training platform used in this paper is
the comprehensive traffic big data and intelligent computing
platform of Southwest Jiaotong University, which includes
eight NVIDIA RTX TITAN V GPUs. Each RTX TITAN V
has 12 GB of independent memory, and the total memory
is 96 GB. The equipment used for testing is the ECX-1400
PEG computing platform for an autonomous bus industrial
computer, which is equipped with an Intel Core i7 8700H CPU
and an NVIDIA GeForce series RTX2060-SUPER GPU to
provide the hardware foundation for real-time object detection.

B. Dataset
The Dataset used in this paper is the MSDataset made by the

author and is used to train and test the MS-YOLO network and
verify network performance. It contains 6 types of common
road objects. The data collection includes the original data
of millimeter-wave radar and camera and the road surface
data of different sections under different lighting conditions,
which are all video sequences and radar data recorded from
the autonomous bus. There are 7000 images in total, including

Fig. 8. Distribution of various categories.

Fig. 9. Distribution of (a) objects center. (b) objects size.

5600 images of the training set and 1400 images of the test
set; and the size of the collected images is 1280 ×1024. Each
frame of radar corresponds to the image one by one. Since
the application scene does not require a large range of data,
only the data within 40 meters and 100 meters forward are
retained.

Fig. 8 shows the category distribution of detected objects.
The dataset includes 6 common categories including cars,
people, bicycles, motorcycles, buses and trucks. People and
cars account for most of the detected objects. The main reason
is that the data source of this dataset is the environment of
the campus scene, with fewer motorcycles, trucks and buses,
so most of the objects are people and cars.
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Fig. 10. Comparison of mAP trends.

TABLE II
TRAINING PARAMETERS OF MS-YOLO AND YOLOv5 MODELS

TABLE III
PERFORMANCE COMPARISON OF MS-YOLO AND YOLOv5 MODELS

Fig. 11. Daytime scene detection effect. (a) Original camera image. (b) Radar mask map. (c) YOLOv5s test results. (d) MS-YOLOs test results.

Fig. 9 is the distribution of MSDataset. In Fig. 9(a), x and y
represent the center location of the object, which can represent
the center location distribution of the objects of the dataset.

Detected objects are mostly distributed in the lower part of the
field of vision because the dense distribution is on the road sur-
face collected by the camera. The width and height in Fig. 9(b)
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Fig. 12. Night scene detection effect. (a) Original camera image. (b) Radar mask map. (c) YOLOv5s test results. (d) MS-YOLOs test results.

represent the proportion of the width and height of objects to
the width and height of the whole image, respectively, which
can represent the size distribution of the images of objects
in this dataset. Detected objects in this dataset have multi-
scale characteristics, and small objects occupy the majority.
Because the road information collected is complex, and the
scene contains more small objects at a long distance than large
objects at a short distance.

C. Comparison and Analysis
Fig. 10 is the comparison of mAP changes during the train-

ing process between the three MS-YOLO models and the three
YOLOv5 models. Besides, the experimental conditions of the
two types of networks are consistent except for the data source
(MS-YOLO uses both radar and image data sources, YOLOv5
uses a single image data source), and the pre-training model
is used in all tests. Table II shows the training parameters
of these models. The increase of the mAP of the MS-YOLO
network is faster than that of the YOLOv5 network, and the
increase of the mAP of the MS-YOLO series models is stable
after the fusion of the data of the two sensors. Furthermore,

local instability occurs in the training of the YOLOv5 series
models with a single data source.

Table III shows, among the six models, the MS-YOLOl
model with millimeter-wave radar has the best performance,
and the mAP reaches 0.888. The best network for both accu-
racy and speed is the MS-YOLOs model, which achieves an
mAP of 0.841 while maintaining a high frame rate of 65fps.

D. The Experimental Results
It shows from detection results in Fig. 11 that the MS-

YOLOs model has a similar effect as the YOLOv5s model
in the detection of daytime scenes. Sometimes the detection
of small objects at a distance with the YOLOv5s model may
be missed. The possible reason is that the radar data is fused.
Since the radar data contains objects detected from a distance,
the mask map generated by the radar data makes the network
increase object confidence for distant objects during object
detection.

According to the comparison of night scenes in Fig. 12, it is
found that the YOLOv5s model using only image information
has a higher missed detection rate in dark light, especially
for fast objects. In the same scene, the MS-YOLOs model
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using image and radar information fusion can accurately detect
objects regardless of whether the light is good or bad. The
possible reason is that after the location and speed information
are added, the network increases object confidence for the
object at the corresponding position. The car often runs at
night, and the image shooting will be blurred due to the fast
running of itself or the detection object, so obviously MS-
YOLO is more in line with the requirements of intelligent car
driving.

VI. CONCLUSION

In this paper, millimeter-wave radar and cameras are taken
as the research objects and combined with deep learning, and
a multi-data source fusion deep learning object detection net-
work called MS-YOLO is proposed for millimeter-wave radar
and visual information fusion. MS-YOLO mainly adds input
channels and feature extraction and fusion channels based on
the YOLOv5 network. The radar mask map and original image
data are input of the network. First, two backbone networks are
established to extract features, then feature fusion is conducted
in the middle layer, and finally detection is conducted. In addi-
tion, to realize the fusion of millimeter-wave radar information
and visual information, the mapping transformation neural
network is constructed to transform the millimeter-wave radar
information so that the millimeter-wave radar information can
be mapped into a mask map, which is unified to the same scale
as the visual information. Using network models with differ-
ent sizes (MS-YOLOs, MS-YOLOm, and MS-YOLOl) and
compared with the different sized YOLOv5 network models
using a single data source, the object detection performance
is significantly improved, especially in scenes with blurred or
dim light. MS-YOLO greatly improves the detection accuracy
on the premise of ensuring the speed and simultaneously
solves the problem of partial information feature waste when
using multiple sensors to detect the surrounding environment
in automatic driving.

In terms of the environmental perception of unmanned
driving, this paper believes that multi-sensor fusion will be
the future development direction. In this paper, deep learning
is mainly used to achieve the fusion of radar data and image
data for object detection, which is used for an intelligent
vehicle to sense the surrounding environment. However, the
algorithm proposed in this paper does not fully reflect all
the effective information obtained by millimeter-wave radar,
such as accurately obtaining the specific speed of each object.
In addition, in the design of radar data mapping transformation
neural network, it is not sure how many layers are set in the
network and how many neurons are set in each layer, the
performance is better. In the future, we will try to obtain the
radar data corresponding to an object to determine the specific
position and speed of each object and use the automated tuning
method in the design of the network architecture to design a
model more in line with the use scenario.
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