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Abstract— Road traffic safety has attracted increasing research
attention, in particular in the current transition from
human-driven vehicles to autonomous vehicles. Surrogate mea-
sures of safety are widely used to assess traffic safety but they
typically ignore motion uncertainties and are inflexible in dealing
with two-dimensional motion. Meanwhile, learning-based lane-
change and trajectory prediction models have shown potential
to provide accurate prediction results. We therefore propose a
prediction-based driving risk metric for two-dimensional motion
on multi-lane highways, expressed by the maximum risk value
over different time instants within a prediction horizon. At each
time instant, the risk of the vehicle is estimated as the sum of
weighted risks over each mode in a finite set of lane-change
maneuver possibilities. Under each maneuver mode, the risk is
calculated as the product of three factors: lane-change maneu-
ver mode probability, collision probability and expected crash
severity. The three factors are estimated leveraging two-stage
multi-modal trajectory predictions for surrounding vehicles: first
a lane-change intention prediction module is invoked to provide
lane-change maneuver mode possibilities, and then the mode
possibilities are used as partial input for a multi-modal trajectory
prediction module. Working with the empirical trajectory dataset
highD and simulated highway scenarios, the proposed two-stage
model achieves superior performance compared to a state-of-the-
art prediction model. The proposed risk metric is computationally
efficient for real-time applications, and effective to identify poten-
tial crashes earlier thanks to the employed prediction model.

Index Terms— Lane-change intention prediction, probabilistic
collision calculation, risk assessment, trajectory prediction.

I. INTRODUCTION

ALTHOUGH the total number of road fatalities has
dropped by 23% from 2010 to 2019 across the EU, over

20,000 people lost their lives and over one million people
were seriously injured each year [1]. Meanwhile, innovations
in automated vehicles (AVs) are boosting future transport
and mobility. Ensuring safety of automated driving is one
of the prerequisites for introducing AVs to consumers and
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communities [2]. As a result, road traffic safety has attracted
continuously increasing research attention, in particular in the
current transition from human-driven vehicles to AVs [3].

Systematic traffic safety analysis is crucial to identify the
risk faced by road users and refine design of automated driving
systems. One of the key components in safety analysis is
the safety/risk metric that quantifies the risk level. While fre-
quency and severity of crashes, injuries and fatalities are direct
measures of safety, they are rare events and crash records are
difficult to access [4]. In line with the assumption that crashes
result from temporal sequential events in which conflict events
occur prior to a crash event, the frequency of the conflict events
can be considered to predict the crashes [5]. More specifically,
the initial conditions of a regular non-crash event are used to
calculate a “surrogate” to represent the likelihood of future
possible crash events. Thus, this type of analysis approaches
are characterised as Surrogate Measures of Safety (SMoS),
and typically calculated in a time-series manner. For instance,
Time To Collision (TTC) [6], [7], the time that remains until a
collision between two vehicles would occur if they keep their
current speeds, has been widely utilized to measure the driving
risk for vehicle collision warning or avoidance. The definition
of TTC is further extended in [8], [9] when the vehicle relative
velocity is negative. Other SMoS, e.g., Time Headway [10],
Time to Lane Crossing [11], have also been broadly adopted
for traffic evaluations. This paper focuses on the development
of a new SMoS.

A. Related Work

One major shortcoming of the current SMoS is that they
are mostly deterministic, which neglects motion uncertainties
that are inherent from behaviors of surrounding road users
or the perception and actuation of driving support/automation
systems. Moreover, many SMoS are based on the assump-
tion that interacting vehicles move with unchanged velocity/
acceleration [3]. Consequently, such SMoS may fail to pro-
vide proactive and timely risk assessment in this case, since
they cannot anticipate the uncertain motion dynamics [12].
To address the motion uncertainties, several probabilistic
approaches have been integrated to calculate SMoS. Based on
causal analysis, Davis et al. [13] addressed the motion uncer-
tainties with different initial conditions. The crash probability
was expressed as a mixture of probabilities over different sets
of initial vehicle conditions and braking decelerations, and
the mixing probabilities are governed by the evasive action
of subject vehicle. Following [13], Kuang et al. [14] further
developed an Aggregated Crash Index by adding disturbances
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into the initial conditions. The motion uncertainties have been
also considered with future dynamic motions. For instance,
Saunier and Sayed [15] defined a set of motion patterns for
both subject and surrounding vehicles and obtained corre-
sponding likelihood in terms of the collision time using a
learning based model. Similarly, Jansson [16] generated a
set of motion predictions of the subject vehicle as a tree of
possible trajectories using collision avoidance theory. How-
ever, their method suffers from computational complexity,
especially for long-term horizon predictions. Besides, the
majority of SMoS do not consider the crash severity (notable
exceptions, e.g. [3], [17]), which could significantly impact
the driving risk assessment [18].

Recently, the artificial potential field, where a surrounding
object to the vehicle is modelled as a potential field, has been
applied to model driving risk considering the influence of
driver, vehicle and road characteristics [17]. Inspired by the
paradigm of artificial field theory, Mullakkal-Babu et al. [3]
further developed a probabilistic driving risk field (PDRF)
metric to assess the driving risk for on-road vehicles,
where a normal distribution of acceleration is pre-defined to
approximate the motion uncertainty of surrounding vehicles;
the pre-defined parameters may impact the adaptability of the
proposed risk metric. Moreover, the interactions between sub-
ject and surrounding vehicles are not considered in PDRF [3],
which could impact the collision probability calculation. How
to provide more accurate prediction of surrounding vehicle
motion and integrate them into a driving risk metric still
remains unexplored.

The motion uncertainties are mainly formed by the stochas-
tic behaviors of surrounding objects, corresponding to trajec-
tory and lane-change prediction problems [12]. Traditionally
trajectory predictions are categorized as three types: physics-
based [19], [20], maneuver-based [21], [22], and interaction-
aware ones [23], [24]. A comprehensive survey of trajectory
predictions is provided in [25]. Vehicle lane-change intention
prediction also plays an important role to anticipate uncertain
behaviors of surrounding vehicles, especially on highways
with a structured environment. Various lane-change intention
prediction models have been proposed [26], and can be divided
into four categories, i.e., generative model [27], [28], cognitive
model [29], [30], discriminative model [31], [32] and deep
learning [33]–[35]. Recently, due to the development of deep
learning theories and parallel computation hardware, tremen-
dous achievements for lane-change intention predictions have
been made through deep learning approaches, especially Long
Short-Term Memory (LSTM) networks which are capable
of handling time series forecasting problems. For instance,
Scheel et al. [33] developed an attention-based LSTM model,
where the heading angle of the surrounding vehicle is used
as input. A driver intention inference model based on LSTM
ensemble was designed for highway lane-change maneuvers,
while a facial features detection system was developed to
obtain drivers’ head gesture and eye gaze dynamics [34]. How-
ever, these features typically are not provided in naturalistic
driving datasets (NDD), e.g., NGSIM [36] and highD [37].
Huang et al. [35] proposed an LSTM-based model for lane-
change intention prediction in highways, and further integrated

it into a risk assessment framework, while the crash severity
is not considered.

As more NDD, e.g. NGSIM [36] and highD [37], have
been collected to underpin data-driven approaches, a num-
ber of deep learning studies for multi-modal trajectory pre-
diction have been conducted [38]–[40]. One advantage of
the multi-modal trajectory prediction models is that they
cannot only provide multiple predicted trajectories, but also
output probabilities for each pre-defined maneuver mode,
e.g., the lane-change maneuver categories. In particular, Deo
and Trivedi [38] defined three lane-change modes to categorize
the lane-keeping, turning-left and -right maneuvers, and the
trajectory was then predicted respectively for each mode.
In doing so, the vehicle lane-change intentions have been
also predicted simultaneously. However, to realize superior
performance of trajectory prediction, the location information
of surrounding vehicles in [38] is aggregated by convolutional
and maxpool layers in the designed deep neural network,
which in turn could have negative impacts on distinguishing
the lane locations (we will further discuss this issue later).
This motivates us to further develop a more accurate two-
stage multi-modal prediction model based on [38], to better
address the motion uncertainties for risk assessment.

B. Objective and Contributions

In this work, we aim to develop a probabilistic driving
risk metric on highways leveraging two-stage multi-modal
trajectory predictions for both online and offline applications.
Here the multi-modes refer to different lane-change maneu-
vers, e.g., lane-keeping and turning-left/-right on highways.
The proposed driving risk metric is measured by the maximum
risk value over different time instants within a prediction
horizon. At each time instant, the risk of the subject vehicle
is estimated as the sum of weighted risks over each maneuver
mode in a finite set of maneuver possibilities. Under each
mode, the risk is calculated as the product of three factors:
lane-change maneuver mode probability, collision probability
and expected crash severity. To achieve accurate estimation
of these three factors, we establish an LSTM-based two-stage
multi-modal prediction model that consists of a lane-change
intention prediction module and a trajectory prediction mod-
ule. The predicted trajectory results are represented as bivariate
normal distributions under each maneuver mode to address
two-dimensional motion uncertainties.

The contributions in this work are:
• Leveraging the multi-modal trajectory prediction model,

the proposed driving risk metric can anticipate risk in the
future, and does not rely on a system dynamics model,
and a known normal distribution of surrounding vehicles.
Based on the empirical trajectory dataset highD [37] and
simulated highway scenarios, the proposed safety risk
metric is validated to be capable of real-time and offline
applications, and able to correctly classify crash and non-
crash events. Moreover, it is verified to be effective to
identify potential crashes earlier thanks to the employed
prediction model.

• Two prediction models with different input features are
employed for the lane-change prediction module and the
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trajectory prediction module, respectively. Unlike exist-
ing multi-modal trajectory prediction models [38]–[40],
we first specifically design a LSTM based lane-change
intention mode considering not only historic subject and
surrounding vehicle trajectories, but also additional sub-
ject features, e.g., lane related information and lateral
deviation that we will define later. Then we adopted a
trajectory prediction model in [38]. The two-stage struc-
ture including two different prediction modules provides
more accurate prediction results compared to a state-of-
the-art prediction model. The proposed prediction model
is trained and tested with highD, and achieves superior
performance in terms of both lane-change and trajectory
predictions.

The remainder of the paper is organized as follows:
Section II introduces an existing driving risk assessment metric
PDRF and identifies its shortcomings. Then we propose a
driving risk metric on highways, which leverages two-stage
multi-modal trajectory predictions to address vehicle motion
uncertainties; Section III details the proposed LSTM-based
multi-modal prediction model, consisting of a lane-change and
a trajectory prediction module. Simulations are conducted in
Section IV to verify the superior performance of the proposed
multi-modal prediction model; besides, the prediction accu-
racy, timeliness, and computational efficiency of the proposed
driving risk metric have been validated in Section V; finally,
conclusions are drawn in Section VI to highlight the important
contributions of our work and potential future directions.

II. DRIVING RISK METRIC ON HIGHWAYS

In this section, we first introduce an existing probabilis-
tic driving risk field metric, i.e., PDRF in [3] and iden-
tify its shortcomings. We then propose a new risk metric
P-PDRF leveraging a two-stage multi-modal trajectory pre-
diction model, which we will introduce later.

A. Probabilistic Driving Risk Field

Assuming that crashes results from a temporal sequence of
events including conflict events prior to a crash [5], the driving
risk is commonly described by the SMoS. This is because
SMoSs can characterize initial conditions of a regular (non-
crash) event as a surrogate for the likelihood of crash events.
However, uncertainties are inherent components of driving risk
assessment, while SMoSs do not typically account for uncer-
tainties, assuming deterministic motion of interacting vehicles
with unchanged velocity/acceleration. To address the motion
uncertainties, Mullakkal-Babu et al. [3] follow the vehicle
functional safety ISO 26262-1 [41] and define the driving
risk as the consequence of the subject vehicle maintaining
its planned trajectory, despite the unknown motion of the
surrounding vehicle. The general idea of PDRF can thus be
summarised as follows: the driving risk is estimated with a
risk field at the subject vehicle’s future location, and then at
the end of prediction horizon, the driving risk is formulated as
the product of two factors: a collision probability considering
unknown future motion of the surrounding vehicle, and an
expected crash severity.

Since the calculation of collision probability in the proposed
risk metric is different from that in PDRF, here we only
provide a brief description of collision probability calculation,
and point out its shortcomings. To calculate the collision
probability in PDRF, the motion prediction of subject and
surrounding vehicles are modelled separately. For the subject
vehicle, we assume that its future motion is known in advance:
at each time step, the subject initially has an originally planned
trajectory. The risk metric can be employed as one of the
indicators to decide whether the previously planned subject
trajectory is still suitable at the current time. If yes, the subject
continues the planned trajectory; otherwise, an updated future
subject trajectory should be generated via the motion planning
module, which is out of the scope of this work.

The dynamic state of a surrounding vehicle is denoted by
the position (x, y) of its center of mass and the velocity
(vx , vy) along the longitudinal and lateral directions, resulting
in Eq. (1).⎧⎪⎪⎨⎪⎪⎩

d
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where ax and ay are the accelerations along with the longitudi-
nal and lateral directions respectively. The dynamic state is to
be propagated from the current time instant t to a future time
t+t f . The surrounding vehicle motion is also subject to several
physical constraints, including non-holonomic behavior, back-
ward motion prohibition, and acceleration range limitation [3].

Given the predicted future motions of the surrounding vehi-
cles, PDRF further assumes their accelerations have a normal
distribution under a specific mean (typically set as 0 since we
do not have trajectory planning information of the surrounding
vehicle) and standard deviation. For a single future time
instant, the collision probability can now be calculated as the
double integral of the probability density functions (PDF) of
the surrounding vehicle within the intersection area.

The expected crash severity s considering the vehicle mass
and velocity is constructed as

s = 0.5Mβ2(�V )2 (2)

where M is the mass of subject vehicle, β = Msur
Msur +M the

mass ratio with Msur denotes the mass of surrounding vehicle,
and �V the relative velocity between subject and surrounding
vehicle. The establishment of crash severity in Eq. (2) is under
an assumption that the collision is inelastic, indicating both
the vehicles would move together after the crash. Besides, the
relative velocity between the vehicles is calculated using the
current velocities at time instant t , rather than the velocities
at a future time t + t f .

The PDRF metric is then calculated as the product of the
collision probability and the expected crash severity,

PDRF = c(t+t f ) · s (3)

where c(t+t f ) is the obtained collision probability at time
t + t f [3].

Remark 1: Although PDRF is effective to identify the fac-
tors influencing driving safety, several shortcomings exist.
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Fig. 1. P-PDRF calculation leveraging the proposed two-stage multi-modal
trajectory prediction model. The superscript (t + �t) of the three factors are
omitted for the sake of brevity.

First, the crash severity is estimated using the velocity at the
current time, as the future velocity of the surrounding vehicle is
not predicted. Second, the accelerations are assumed to have a
normal distribution, and the corresponding parameters need to
pre-defined; this may impact the adaptability of the proposed
risk metric. Third, the interactions between the subject and
surrounding vehicles are not considered in PDRF, which could
also impact the collision probability calculation.

B. Prediction Based Driving Risk Metric

Several shortcomings identified in PDRF above motivate
us to develop a prediction based risk metric P-PDRF on
highways in this section. The proposed driving risk metric is
given by the maximum risk value over different time instants
within a prediction horizon. At each time instant, the risk is
estimated as the sum of weighted risks over each maneuver
mode, and each weighted risk is calculated as the product
of three factors, i.e., lane-change maneuver mode probability,
collision probability and expected crash severity. The three
factors are accurately estimated leveraging the proposed two-
stage multi-modal trajectory prediction model in Section III.
An overview of P-PDRF calculation leveraging the proposed
prediction model is illustrated in Fig 1.

Given a current time t and future time instance t + t f to be
predicted, the risk metric P-PDRF is expressed as

P-PDRF = max
�t

{
|m|∑
i=1

m(t+�t)
i c(t+�t)

i s(t+�t)
i } (4)

where m(t+�t)
i , c(t+�t)

i and s(t+�t)
i (i = 1, 2, 3; �t =

δt, 2δt, . . . ) denote the lane-change maneuver mode probabil-
ity, collision probability and expected crash severity at a future
time t + �t under discrete modes. t + �t is the time instance
within the prediction horizon (t, t + t f ] with an increment δt ,
and |m| denotes the number of maneuver modes. In highway
driving, there are typically three lane-change maneuver modes,
including lane-keeping, turning-left and turning-right.

The maneuver mode probability is obtained from the
lane-change intention prediction module, as shown at the top
of Fig. 2. For each maneuver mode at each future time instant,
the prediction model outputs a bivariate normal distribution,
i.e., the mean, standard deviation and correlation of the
surrounding vehicles positions (in total five parameters in

a two-dimensional plane), and the vehicle velocity can be pre-
dicted with the interpolation of the predicted mean positions.
The predicted subject vehicle velocity is directly obtained
under the assumption that the future motion of the subject
vehicle is known in advance.

The collision probability between vehicles is calculated
under each maneuver mode. Given a predicted maneuver
mode i , the PDF of surrounding vehicle position is assumed
with a bivariate normal distribution:
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= 1
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where the five parameters μ
(t+�t)
x,i , μ

(t+�t)
y,i , σ

(t+�t)
x,i ,

σ
(t+�t)
y,i , ρ

(t+�t)
i denote the predicted mean and standard

deviation along the longitudinal and lateral directions, and the
correlation at future time instant t + �t for each maneuver
mode i , respectively. These parameters are obtained from the
multi-modal trajectory prediction model in Section III-B. The
superscript (t +�t) and subscript i of the five parameters are
omitted hereafter for the sake of brevity.

The above PDF of surrounding vehicle position is adopted
to address objective motion uncertainties. When the subject
vehicle is driven by a human driver, the driver perceives
driving risk not only with objective motion uncertainties, but
also with a subjective risk caused by surrounding vehicles
[42], [43]. Thus, when the proposed risk metric is applied
to understand human-driver behaviors, an additional bivariate
normal distribution is contributed as a subjective risk factor.
Assuming that the two bivariate normal distributions are
independent and have the same values of mean and correlation,
the PDF of surrounding vehicle position for human drivers is

f̃ (t+�t)
i (x, y)

= 1

2πσ̃x σ̃y

√
1 − ρ2

· exp

(
− 1

2(1 − ρ)2
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(6)

where σ̃x = σx + σ h
x , σ̃y = σy + σ h

y , σ h
x and σ h

y are standard
deviations of the additional bivariate normal distribution along
two directions, respectively.

As the future motion of subject vehicle is assumed known
in advance, the occupancy of subject vehicle at future time
instant t +�t can be expressed as a rectangle, whose center is
determined by its future position (x (t+�t)

s , y(t+�t)
s ) and size by

vehicle length and width. Therefore, the collision probability
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Fig. 2. Overview of the proposed prediction model. It has a two-stage architecture, consisting of a lane-change intention prediction module as well as a
trajectory prediction module (denoted as LC and T respectively in the figure). The two modules both have a encoder-decoder structure, but adopting and
processing historical information as input in different ways. Both of the encoders are LSTMs that learn vehicle dynamics and surrounding environments based
on historic information. The output of the lane-change intention model is the probability for each pre-defined lane-change maneuver mode, and services as
additional input for the trajectory prediction. Abbreviations concat and fc stand for the concatenation operation and fully connect layer respectively.

at future time t + �t is constructed as a double integral

c(t+�t)
i =

∫ y

y

∫ x

x
f (t+�t)
i (x, y)dxdy (7)

where x, x = x (t+�t)
s ± (Lsub + Lsur )/2, y, y = y(t+�t)

s ±
(Wsub + Wsur )/2, and Lsub, Lsur , Wsub, Wsur are the length
and width of subject and surrounding vehicle, respectively.
When estimating the collision probability for a human driver,
the PDF f (t+�t)

i (x, y) in Eq. (7) is replaced by f̃ (t+�t)
i (x, y).

Compared to the calculation of collision probability with
pre-defined distribution parameters in PDRF [3], the surround-
ing vehicle position in the proposed risk metric is represented
using specific output values from a predictor. Specifically, the
predicted motion position of surrounding vehicle is with a
bivariate normal distribution, i.e., Eq. (5) or Eq. (6), which
can lead to an efficient double integral as in Eq. (7).

The severity crash at each future time instant can now be
more accurately estimated as

s(t+�t)
i = 0.5Mβ2(�V t+�t

i )2 (8)

where �V t+�t
i denotes the predicted relative velocity at time

t +�t under maneuver mode i , and �V t+�t
i is obtained from

the prediction model using trajectory interpolation.
Through constructing the proposed prediction based risk

metric P-PDRF, the first two shortcomings of PDRF have
been addressed. The third one is considered in the pro-
posed prediction model, which simultaneously employs sub-
ject and surrounding vehicle information to address the vehicle
interactions.

III. TWO-STAGE MULTI-MODAL

TRAJECTORY PREDICTION

The computation of P-PDRF requires future trajectory pre-
dictions of surrounding vehicles, which are challenging at

interactive scenarios involving maneuver decisions. In this
section, to underpin the P-PDRF calculation, we propose a
two-stage multi-modal prediction model as illustrated in Fig. 2,
which consists of a lane-change intention prediction module
and a trajectory prediction module. Here the multi-modes refer
to different lane-change maneuver modes being predicted by
the lane-change intention prediction module. Unlike existing
multi-modal trajectory prediction models [38]–[40], we first
predict the lane-change maneuver mode and then predict
the corresponding trajectories for each maneuver mode at
the second stage. The output of the lane-change intention
prediction model is the probability for each pre-defined lane-
change maneuver mode, and services as additional input for
the trajectory prediction model. The output of the trajectory
prediction model are time-series probabilistic trajectory, where
the motion uncertainties have been considered in the pre-
dicted bivariate normal distribution parameters. We will show
in the experimental section that such a separate prediction
architecture results in better prediction results. The details of
the two-stage prediction model and their training process are
introduced as follows.

A. Lane-Change Maneuver Prediction Model

Generally the lane-change maneuver prediction model is
formulated to estimate the probability distribution of the future
lane-change maneuver mode of a vehicle k at each time
instant from t + 1 to t + t f , based on historic information of
vehicle k and its neighbors Nk := {1, 2, . . . , |Nk |} from time
t − th to t . Note that the vehicle k in the prediction model
corresponds to a surrounding vehicle when estimating the
driving risk in Section II. As shown in Fig. 2, we use vehicle
k to denote the vehicle being predicted, and name its sur-
rounding vehicles as neighbors Nk to avoid confusions in this
section.
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The input of the lane-change intention prediction model
contains several components. First, the historic positions of
vehicle k are considered. The positions are recorded from
time t − th to t , along longitudinal and lateral directions
respectively, using a stationary coordinate with the origin
fixed at the mass center of vehicle k at time t [38]. Second,
two binary values, which indicate whether vehicle k can
turn left or turn right, has been added as additional input
features [35]. This is because when the vehicle is on the
most left/right lane, clearly it cannot further turn left/right
and the additional lane related information could improve
the prediction accuracy. Third, the lateral deviation between
vehicle k and its current lane center is also an important
indicator for lane-change intention prediction [33], [44]. The
deviation value is normalized between 0 to 1, where 0/1
represents that the vehicle is at the most left/right of the
current lane, and 0.5 at the lane center. Fourth, the historic
positions of neighbors Nk are applied as well to represent the
vehicle interactions. The location relations between vehicle
k and its neighbors can be classified as eight categories:
preceding, following, left/right preceding, left/right alongside
and left/right following, corresponding to eight coloured areas
shown in Fig. 2. Thus eight LC-LSTM encoders are employed
to process each trajectory from the eight categories. A masking
layer is added before sending historic trajectories of the
neighbors to the LC-LSTM encoders, in case there is no
neighbor vehicle for certain categories. The input of the model
is then represented as

X = [x(t−th), . . . , x(t−1), x(t)] (9)

where x(t) = [xT
(t), b(t), d(t)] denotes all input features

at time t . xT
(t) = [x (t)

k , y(t)
k , x (t)

1 , y(t)
1 , . . . , x (t)

|Nk |, y(t)
|Nk |] are

the longitudinal and lateral positions for vehicle k and its
neighbors from vehicle 1 to |Nk |, b(t) the two binary values
to check whether vehicle k can turn left/ right, and d(t) the
deviation value from the current lane center.

The output of the model is a probability distribution for
each lane-change maneuver mode from time t + 1 to t + t f .

P(mi |X) = [P(t+1)(mi |X), . . . , P(t+t f )(mi |X)] (10)

where mi is the i th maneuver mode. Notice that at each time
instant, the sum of the probabilities for each maneuver mode
is one.

In our work, to enhance the trajectory prediction accuracy
at the second stage, three lane-change maneuver modes, lane-
keeping and turning left/right are defined as follows. Given a
time instant t and future time instance t + t f to be predicted,
check the lateral locations of vehicle k between the two time
instants: if the vehicle is in the same lane, then the maneuver
mode is labelled as lane-keeping; if vehicle k at t + t f has
crossed the left/right lane marking, then the maneuver mode is
labelled as turning left/right. Same choices of such lane-change
definitions are referred to [33], [45]. One advantage of the
above maneuver definition is that the labelling process is
simple and straightforward. Besides, the vehicle locations in
the future can be more accurately predicted, since the defined
lane-change maneuver modes provide information whether
vehicle k has moved to another lane in the prediction horizon.

The LC encoder illustrated in Fig. 2 is designed to learn the
dynamics and interactions of vehicle motions. At each time
instant t , the historic information X from time t − th to t
is provided as input. The LC-LSTM encoders have the same
parameters after training. The obtained encoding of vehicle
k and its neighbors is then passed to the fully connected
layers and concatenated together. Finally, in the LC decoder
component, an LSTM decoder (i.e., LC-LSTM decoder) com-
bining with a Softmax output layer [46] is designed to generate
maneuver probabilities, which serve as part of input of the
trajectory prediction model.

B. Trajectory Prediction Model

The designed multi-modal trajectory prediction model is
shown at the bottom of Fig. 2, including an LSTM-based
encoder (i.e., T Encoder), convolutional social pooling layers
and a maneuver-based LSTM decoder. Compared to the work
in [38], the output of the decoder in our work is generated
using the maneuver probabilities from the first-stage lane-
change intention prediction model. Besides, we only consider
three lane-change maneuver modes, while two longitudinal
modes are classified in [38] as well.

The input of the trajectory prediction encoder is the historic
trajectories of the subject and the surrounding vehicles

XT = [xT
(t−th), . . . , xT

(t−1), xT
(t)] (11)

Here we have XT ⊂ X, since besides the historic trajecto-
ries, the input of lane-change intention prediction also contains
other features. To simplify the expression, X is to be used as
input for both two modules thereafter.

The output P(Y|X) is a conditional trajectory distribution
over

Y = [y(t+1), . . . , y(t+t f )] (12)

where y(·) = [x (·)
k , y(·)

k ] are the predicted positions of vehicle k
within the prediction horizon.

Given the three defined lane-change maneuvers mi (i =
1, 2, 3), the probabilistic multi-modal distributions are
calculated as

P(Y|X) =
∑

i

P�(Y|mi , X)P(mi |X) (13)

where outputs � = [�(t+1), . . . ,�(t+t f )] are a time-series
bivariate normal distributions at each future time instant,
corresponding to the means and variances of future locations.

The input of the trajectory prediction model is processed
differently compared to that of the lane-change intention
prediction model. In line with [38], the areas around vehicle
k is divided into a spatial 13 × 3 grid, where each column
corresponds to a single lane, and the rows are separated by
a distance of 15 feet (≈4.57 meters) which approximately
equals the length of one car. The social tensor is formed by
populating this grid with the locations of neighbors, and then
processed by two convolutional layers and one maxpool layer.
For vehicle k, a fully connected layer is directly applied to
represent the vehicle dynamics, and then concatenated with
the convolutional social pooling results. Here the convolutional
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social pooling procedure is mainly designed to address the
following issue: the grids adjacent to each other become
equivalent to ones far away from each other in the fully
connected layer. This can lead to problems in generalization to
a test set especially if the vehicles can be in various different
spatial configurations. Finally, the maneuver-based decoder
outputs a multi-modal predictive distribution for the future
motion of vehicle k.

We note that the proposed prediction model could be
modified for conflict prediction through developing a series of
conflict identification criteria and infusing additional relevant
input features. However, traffic conflict identification itself is
not trivial [47]. A traffic conflict could be defined when a
risk metric (e.g., TTC) crosses a pre-defined threshold while
it largely ignores other factors that influence traffic conflicts
such as speed variance, traffic density, speed and weather
conditions. Besides, our aim is to accurately estimate the colli-
sion probability based on trajectory predictions of surrounding
vehicles; modifying the model for conflict prediction is beyond
the research scope of this work.

C. Model Training

In existing literature [38], [40], when a single neural net-
work is established for the multi-modal trajectory prediction,
the network is typically trained to minimize the negative log
likelihood (NLL) of its conditional distributions as

min
θ

∑
{⋃

i
mi ,X}∈D

−log

(∑
i

P�(Y|mi , X)P(mi |X)

)
(14)

where {⋃
i

mi , X} is a training sample, D is the entire training

dataset, and θ denotes the network parameters to be trained.
Since the training dataset can only provide the actual

realization of one lane-change maneuver mode, we minimize
the NLL as

min
θ

∑
{mtrue ,X}∈D

−log (P�(Y|mtrue, X)P(mtrue|X)) (15)

where mtrue denotes the actual lane-change maneuver mode
for each sample in the training dataset.

Note that we do not directly employ (15) to train our pre-
diction model. Instead, given the established two independent
neural networks in our work, we can separate the minimization
objective as

min
θT,θL

∑
{mtrue ,X}∈D

−log (P�(Y|mtrue, X)P(mtrue|X))

= min
θT,θL

∑
{mtrue ,X}∈D

−(log (P�(Y|mtrue, X))

+ log (P(mtrue|X)))

= min
θT

∑
{mtrue ,X}∈D

−log (P�(Y|mtrue, X)

+ min
θL

∑
{mtrue ,X}∈D

−log (P(mtrue|X)) (16)

where θT and θL are independent network parameters for
the trajectory module and lane-change intention module,

respectively. Therefore, the two prediction modules can be
separated trained. For the trajectory prediction module, it is
trained as min

θT

∑
{mtrue ,X}∈D −log (P�(Y|mtrue, X). For the

lane-change intention prediction module, it is trained as
min
θL

∑
{mtrue ,X}∈D −log (P(mtrue|X). More detailed implemen-

tations of the proposed prediction model are described in the
experimental setup in Section IV.

IV. EXPERIMENTS FOR PREDICTION MODELS

In this section, we first introduce the highD dataset and
experimental setups for prediction model training and testing.
Then the multi-modal trajectory prediction model (denoted as
M-C-LSTM) is tested through ablation studies and compar-
isons with a state-of-the-art prediction model.

A. Dataset and Experimental Setup

We utilize the highD dataset [37], which contains bird-view
naturalistic driving data on German highways, to train and
test the prediction model. Compared to previously widely
applied NGSIM dataset [36], the recent highD dataset was
collected by drones with a high-resolution camera and contains
smoother vehicle trajectories. We collect the first 20 subdataset
and randomly split it into train and test sets. The prediction
is conducted at each time instant along a trajectory, which
means one trajectory at different time instants corresponds to
different sample data. Moreover, the collected data is naturally
imbalanced as in most cases, the vehicle maneuver is predicted
as the lane-keeping mode. To deal with this, in the default
setting, we randomly select equal cases for the three different
lane-change categories. In the end, 168390 (56130 for each
maneuver mode) and 25113 (8371 for each mode) samples
for the training and testing data are selected respectively. The
original dataset sampling rate is 25 Hz, and we downsample
by a factor of 2 before feeding them to the LSTMs, to reduce
the model complexity. We use 2 seconds of historic trajectories
and to predict the maneuver mode within a 3-second horizon
by default.

The prediction models are trained using Adam with learning
rate 0.001. The sizes of encoder and decoder LSTMs are
64 and 128 respectively. A fully connected layer is employed
to obtaining the vehicle information encoding and its size is 32.
The convolutional social pooling layers consist of a social
tensor layer, two convolutional layers, and a max pooling
layer. Specifically, the social tensor layer is first formed by
populating the spatial grid configuration with the locations of
the vehicle being predicted. To learn locally useful features
within the spatial grid of the social tensor, a 3×3 convolutional
layer with 64 filters (each 3 × 3 filter slides over the input
and performs an element-wise multiplication) in addition to a
3×1 convolutional layer with 16 filters is then applied. In the
end, a max pooling layer, which slides a 2 × 1 filter to take
the maximum value of each 2 × 1 grid region from the input,
is applied. More detailed descriptions of the convolutional
social pooling layers can be found in [38]. The leaky-ReLU
activation with α = 0.1 is applied for all layers, and the batch
size is set as 128. The model is implemented using PyTorch,
and the proposed drving risk metric is coded in MATLAB.
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B. Lane-Change Intention Prediction

As illustrated in Fig. 2, the proposed multi-modal trajectory
prediction model includes a lane-change intention prediction
module. The prediction accuracy of the lane-change intention
module is crucial, since it provides maneuver mode probabil-
ities as input to the trajectory prediction module.

To validate the performance of the proposed lane-change
intention model, an ablation study is processed as follows.
First, an LSTM-based decoder-encoder network, which only
utilizes historic track positions of the vehicle being predicted
without considering surrounding information, is tested as
a baseline method. Given its LSTM-based decoder-encoder
structure, this prediction model is regarded as a typical Vanilla
LSTM (V-LSTM) [48]. Then in line with [35], two binary
values, which indicate whether the vehicle being predicted can
turn left or turn right, has been added as additional input fea-
tures. Potentially the additional lane related information could
improve the prediction accuracy. The LSTM with additional
lane information is denoted as L-LSTM. On the other hand,
based on V-LSTM, the surrounding vehicle information can
be considered using an LSTM encoder and a fully connected
layer, which is the same as the vehicle dynamic representation
of the vehicle being predicted (denoted as S-LSTM). We also
consider combining the lane information and surrounding
information together, and denote the model as LS-LSTM.
Moreover, the lateral deviation between the vehicle being
predicted and its current lane center is also an important
indicator for lane-change intention prediction [33]. Then the
proposed lane-change intention prediction model is referred
as C-LSTM, which considers binary lane information of the
vehicle being predicted, surrounding information using the
fully connected layer, and lateral deviation from the current
lane center. Besides, a state-of-the-art trajectory prediction
model SC-LSTM [38], which also provides maneuver mode
probabilities, is implemented as well for comparisons. A sum-
mary of the LSTM-based lane-change intention prediction
models is provided in Table I.

The comparative results for lane-change intention predic-
tion on testing data among SC-LSTM, V-LSTM, L-LSTM,
S-LSTM, LS-LSTM and C-LSTM are reported in Table II. It is
interesting to observe that the SC-LSTM, which utilizes the
surrounding information in a convolutional manner, achieves
the worst performance for lane-change intention prediction;
even the V-LSTM without surrounding information performs
slightly better than SC-LSTM. This indicates that the social
surrounding information after convolutional pooling process
has negative impacts on lane-change intention prediction. This
may be due to that the convolutional and maxpool layers
applied in SC-LSTM aggregate geometry information, and
then the lane location cannot be distinguished. On contrast,
S-LSTM which utilizes surrounding vehicle information with
a fully connected layer achieves 93.96% prediction accuracy
in average. Compared to V-LSTM, L-LSTM with additional
binary lane information shows improved prediction results.
When combining binary lane information and the surround-
ing information that processed with fully connected layers,
LS-LSTM realizes better performance than that of L-LSTM,
especially for the lane keeping cases. This indicates a suitable

TABLE I

SUMMARY OF THE LANE-CHANGE INTENTION PREDICTION
MODELS FOR COMPARISONS

representation of surrounding vehicles information can effec-
tively underpin the lane-change intention predictions. Finally,
the proposed C-LSTM with complete information provides the
overall best prediction results.

As discussed before, the naturalistic driving trajectory data
is imbalanced, in which around 97.5% of the highD data
belongs to the lane-keeping mode. When directly employing
the imbalanced for training and testing, the prediction results
are reported in Table III. Although it achieves an almost
100% prediction accuracy in terms of the lane-keeping mode,
the prediction results for lane-change modes become worse,
especially for the recall metrics. However, the trajectories
belonging to turning-left/-right modes normally correspond
to safety-critical scenarios, where higher prediction accuracy
should be realized. Thus the lane-change intention prediction
model trained with imbalanced data is not desirable.

The prediction horizon could also have a huge impact to the
lane-change intention prediction. Based on C-LSTM, we test
the lane-change intention prediction model with different
prediction horizons (i.e., 1, 2 and 3 seconds) and the results
are listed in Table IV. The results clearly are reasonable; as the
prediction horizon becomes shorter, the prediction accuracy is
increased as well.

We further evaluate the performance of the proposed
lane-change intention prediction model using the default bal-
anced training data and an imbalanced testing data. Over
700000 samples are randomly selected from highD, in which
around 97.5% samples in the imbalanced testing data belong
to the lane-keeping mode. The prediction results with different
prediction horizons and the imbalanced testing data are listed
in Table V. As expected, the recall with respect to different
lane-change modes is similar to that in Table IV using the
balanced testing data, as the recall values do not significantly
change with different sample mode ratios. On the other hand,
the precision of lane-keeping samples is close to 100%,
as around 97.5% imbalanced testing data are lane-keeping.
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TABLE II

COMPARISON RESULTS AMONG LANE-CHANGE INTENTION PREDICTION MODELS USING 3-SECOND PREDICTION HORIZON AND BALANCED TRAINING
DATA. COLUMNS PR, RE, F1 AND WEIAVE STAND FOR THE PRECISION, RECALL, F1 SCORE AND OVERALL WEIGHTED AVERAGE VALUES

RESPECTIVELY. BOLD NUMBERS INDICATE THE BEST PERFORMANCE IN TERMS OF THE CORRESPONDING METRICS

TABLE III

LANE-CHANGE INTENTION PREDICTION RESULTS OF C-LSTM USING 3-SECOND PREDICTION HORIZON AND IMBALANCED TRAINING DATA. COLUMNS

PR, RE, F1 AND WEIAVE STAND FOR THE PRECISION, RECALL, F1 SCORE AND OVERALL WEIGHTED AVERAGE VALUES RESPECTIVELY

TABLE IV

LANE-CHANGE INTENTION PREDICTION RESULTS OF C-LSTM USING DIFFERENT PREDICTION HORIZONS AND BALANCED TRAINING DATA. COLUMNS

PR, RE, F1 AND WEIAVE STAND FOR THE PRECISION, RECALL, F1 SCORE AND OVERALL WEIGHTED AVERAGE VALUES RESPECTIVELY

Due to the same reason, the precision of turning-left/-right
samples decreases. We sacrifice the precision performance
to maintain a more accurate recall for the turning-left/-right
samples in the imbalanced testing data, since cut-in scenarios
frequently occur and are potentially risky on highways [49].

C. Trajectory Prediction

Based on the lane-change intention prediction module
C-LSTM, we test the performance of the proposed two-
stage multi-modal model M-C-LSTM for trajectory predic-
tion. Again, the multi-modal prediction model SC-LSTM
with social pooling layers [38] is introduced for compar-
isons. The experimental results are reported in Table VI,
regarding four evaluation indicators, i.e., root mean square
error (RMSE), average displacement error (ADE), final dis-
placement error (FDE) and NLL of Eq. (15). The first
three indicators are calculated based on the mean values
of predicted trajectories under the maneuver mode with the
highest probability, and a lower NLL corresponds to a better
multi-modal prediction performance. Column Dif (%) denotes
the relative indicator value difference between SC-LSTM and
M-C-LSTM, i.e., Dif = (I VSC − I VM-C) /I VSC × 100%,
where I VSC and I VM-C are the corresponding indicator values
for SC-LSTM and M-C-LSTM, respectively. It is observed

that M-C-LSTM outperforms SC-LSTM in terms of all the
four evaluation indicators with different prediction horizons.
Under a 3-second prediction horizon, the ADE and FDE of
M-C-LSTM are less than 0.5 and 1.4 meters, respectively. The
two-stage structure of M-C-LSTM indeed enables superior
performance. Meanwhile, both of the two models obtain better
prediction results with a smaller prediction horizon. This
finding is similar to the results in Table IV for lane-change
intention prediction.

Since M-C-LSTM predicts multi-modal trajectories using
two separate neural networks, one should also evaluate its
capability for online applications. According to the experi-
ments, the average run time of M-C-LSTM is 7.0 millisec-
onds, while for CS-LSTM, the run time per prediction is
2.7 milliseconds. Although the run time increases over 150%
compared to CS-LSTM, M-C-LSTM is still able to be applied
in a real-time manner.

V. EXPERIMENTS FOR DRIVING RISK METRIC

The proposed multi-modal trajectory prediction model has
been verified in Section IV. Based on the prediction model,
we further test the proposed driving risk metric P-PDRF
with simulated safety-critical scenarios as well as empirical
trajectory dataset highD.



19408 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

TABLE V

LANE-CHANGE INTENTION PREDICTION RESULTS OF C-LSTM USING DIFFERENT PREDICTION HORIZONS, BALANCED TRAINING DATA AND
IMBALANCED TESTING DATA. COLUMNS PR, RE, F1 AND WEIAVE STAND FOR THE PRECISION, RECALL, F1 SCORE

AND OVERALL AVERAGE WEIGHTED VALUES RESPECTIVELY

TABLE VI

TRAJECTORY PREDICTION RESULTS BETWEEN M-C-LSTM AND SC-LSTM. RMSE, ADE, FDE AND NLL ARE THE AVERAGE ROOT MEAN SQUARE
ERROR, DISPLACEMENT ERROR, FINAL DISPLACEMENT ERROR AND NEGATIVE LOG LIKELIHOOD OF EQ. (15) RESPECTIVELY. COLUMN DIF

DENOTES THE RELATIVE DIFFERENCE BETWEEN SC-LSTM AND M-C-LSTM. THE RELATIVE DIFFERENCE

OF NLL IS OMITTED AS IT DOES NOT MAKE SENSE

Fig. 3. Illustration of the simulated cut-in scenario. This scenario is replicated
by varying the initial longitudinal velocities of subject and surrounding
vehicles.

A. Risk Metric on Simulated Safety-Critical Scenarios

To evaluate the proposed risk metric based on the prediction
model M-C-LSTM, we consider simulated safety-critical cut-
in scenarios, since the cut-in scenarios frequently occur and
are potentially risky on highways [49]. Here we assume that
the subject vehicle is autonomous, thus the additional bivariate
normal distribution, which represents human perceived risk,
is not considered.

As shown in Fig. 3, the subject vehicle travels on the
right lane and the surrounding vehicle travels on the left
lane, both on the lane center with a constant longitudinal
velocity. The lane width is 3.75 meters. The surrounding
vehicle is 15 meters ahead of the subject one at t = 1 sec-
ond, and starts to turn right with a constant acceleration
1/3.75 = 0.267 m/s2 before crossing the lane marker at
t = 4.75 seconds. Then the surrounding vehicle decelerates
with 0.267 m/s2 and completes the cut-in at t = 8.5 seconds.
The car length and width of the subject and surrounding
vehicles are set as 4 and 2 meters respectively for collision
probability calculation. This scenario is replicated by varying
the initial subject and surrounding longitudinal velocity Vsub

and Vsur between 20 to 39 m/s with an increment of 1 m/s,

TABLE VII

OVERALL PERFORMANCE OF TTC, PDRF AND P-PDRF
IN SIMULATED CUT-IN SCENARIOS

leading to entirely 20 × 20 = 400 simulations. In line with the
above settings, there are in total 85 crashes cases identified
when 1 ≤ Vsub − Vsur ≤ 5 m/s.

Both PDRF and P-PDRF are repetitively calculated to eval-
uate driving safety for each 0.08 seconds. At each current time
instant t , the risk metrics are calculated based on a prediction
horizon t f = 3 seconds with δt = 0.2 seconds. The risk metric
TTC is also introduced as baseline for comparisons. As shown
in Table VII, the threshold of the three metrics are respectively
calibrated for prediction accuracy. Setting a risk threshold
value 50 and 100 Joules for PDRF and P-PDRF respectively,
all simulated cases have been correctly identified as crash
or non-crash cases with either PDRF and P-PDRF. Note
that PDRF and P-PDRF do not share a same risk threshold,
as their collision probability calculation is different. PDRF
considers the maximum vehicle acceleration/deceleration to
obtain a reachable space, leading to a relatively lower collision
probability before a crash; instead, P-PDRF utilizes a predicted
compact PDF, thus leading to a higher collision probability.
Using a 3-second threshold, TTC achieves its best prediction
accuracy, including 48 out of 400 false negative cases. This is
due to that TTC is not flexible in dealing with two-dimensional
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Fig. 4. Risk assessment for a simulated cut-in scenario with Vsub = 31 m/s and Vsur = 28 m/s. (a) Lateral trajectories of subject and surrounding vehicles.
(b) Collision probabilities for P-PDRF and PDRF. Three probabilities are calculated for P-PDRF under the three maneuver modes respectively. (c) Predicted
probabilities for each maneuver mode of P-PDRF. The black line denotes the actual maneuver mode: 0 for lane-keeping, 0.5 for turning-left and 1 for
turning-right. (d) Actual longitudinal velocities of subject and surrounding vehicles. The blue dashed line is for predicted longitudinal velocity of surrounding
vehicle under the maneuver mode with the highest probability. The plotted prediction results are made at each time t for a future t + t f (t f = 3 seconds) time
instant. (e) Actual and predicted lateral velocities of surrounding vehicles. The blue dashed line is for the predicted lateral velocity of surrounding vehicle.
(f) Risk metrics P-PDRF and PDRF.

cut-in situations. Only when the vehicles are in the same lane,
TTC can be calculated in line with its definition. However, the
crash could already happen during the lane-change process.

Statistically, for the crash cases, the average difference
between the time when TTC reaches the threshold and the
time when crash occurs is 1.31 seconds (i.e., the timeliness of
TTC in Table VII). TTC has the worst performance in terms
of the timeliness, as TTC is invalided when the vehicles are
not in the same lane. The average timeliness is increased to
2.49 seconds using PDRF. P-PDRF has a sharper increasing
curve and reaches 50 and 100 Joules at 2.40 and 2.89 seconds,
respectively. When P-PDRF reaches the 100-Joule threshold,
it can provide an alert 3.43 seconds earlier before crashes.
Even though the threshold of P-PDRF is greater than that of
PDRF, P-PDRF is demonstrated to be more agile and effective
to identify potential crashes thanks to the integrated prediction
model.

The effect of the prediction model on the risk assessment
can also be observed from Table VII. When the prediction
model proposed in Section III is integrated for risk assessment
(i.e., using P-PDRF), the risk assessment outperforms with
respect to different evaluation indicators. When the prediction
model turns off, P-PDRF degrades to PDRF, which uses a
set of pre-defined bivariate normal distribution parameters to
consider trajectory predictions. The performance of PDRF is
then worse than that of P-PDRF. Furthermore, if we do not
consider any prediction approaches/models for risk assessment
(i.e., using TTC), the performance is the worst.

To have a closer look at the risk assessment results, the
simulated cut-in scenario with Vsub = 31 m/s and Vsur =
28 m/s is analysed in Fig. 4. As shown in Fig. 4(b), in the first
4 seconds, the proposed risk metric P-PDRF with the trajectory
prediction model M-C-LSTM provides a highest collision
probability under turning-right maneuver mode, followed by
the collision probability for PDRF. From 4.0 to 7.4 seconds, all
probabilities are close to one, since the vehicles are too close

to avoid crashes, until the subject vehicle has been in front
of the surrounding vehicle at 7.4 seconds. Besides, as seen
in Fig. 4(c), the lane-change intention prediction module
C-LSTM realizes an overall 87.8% prediction accuracy, which
is lower than the average prediction accuracy 95% based on a
testing set from highD. This may be that C-LSTM was trained
on a NDD, i.e., highD; the prediction performance could be
influenced as the simulated trajectory may represent differ-
ent driving behaviors compared to NDD. Nevertheless, the
lane-change intention prediction module C-LSTM successfully
identifies that the surrounding vehicle in this simulated cut-in
scenario is on a turning-right process.

Given the collision and maneuver probabilities, P-PDRF has
a sharper increase and a higher peak value compared to PDRF,
as observed in Fig. 4(f). P-PDRF has a generally decreasing
trend from 2 to 7.4 seconds. This is due to the predicted
velocity of surrounding vehicle in Fig 4(d) and Fig 4(e). While
the predicted longitudinal velocity of surrounding vehicle fluc-
tuates around 28 m/s, the predicted lateral velocity decreases
from 1 to 0 m/s. As for PDRF, it reaches the peak around
4.5 seconds and then slightly decrease (due to crash severity
changes from lateral velocities) until the subject vehicle has
been in front of the surrounding vehicle at 7.4 seconds. In fact,
the crash has happened before at 4.7 seconds if the vehicles
follow the simulated trajectories.

When we set up a 100-Joule threshold for P-PDRF to
execute an emergency brake for the subject vehicle, the
brake will be activated at 1.5 seconds to avoid a potential
crash at 4.7 seconds. While we estimate driving safety using
PDRF with a threshold 50 Joules, the vehicle is to brake
at 1.8 seconds, which indeed falls behind the reaction time
obtained via the P-PDRF threshold.

We then analysis the computational efficiency of the risk
metrics. Recall that the risk metrics P-PDRF/PDRF are cal-
culated at every 0.08 seconds. To enable real-time risk metric
calculations, the risk metrics should be efficiently obtained
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Fig. 5. Risk assessment for a cut-in scenario in highD dataset. (a) Lateral trajectories of subject and surrounding vehicles. (b) Actual trajectories of subject
and surrounding vehicles. Red lines connect the vehicle positions at the same time instant. The time interval is 0.4 seconds. (c) Predicted probabilities for
each maneuver mode. The black line denotes the actual maneuver mode: 0 for lane-keeping, 0.5 for turning-left and 1 for turning-right. (d) Actual longitudinal
velocities of subject and surrounding vehicles. The blue dashed line is for the predicted longitudinal velocity of surrounding vehicle under the maneuver mode
with the highest probability. The plotted prediction results are made at each time t for a future t + t f (t f = 3 seconds) time instant. (e) Risk metrics P-PDRF
and PDRF. (f) Actual longitudinal acceleration of human-driving subject vehicle.

at least less than 0.08 seconds. As concluded in Table VII,
the run time for P-PDRF per calculation is 0.018 seconds in
average, including 0.007 seconds for the prediction model.
As for PDRF, the average run time is 0.02 seconds. TTC is far
more efficient, since no efforts are needed to calculate collision
probabilities. In a nutshell, P-PDRF has been verified to be
capable of real-time applications.

B. Risk Metric on NDD

Furthermore, we apply risk metrics to highD, which con-
tains naturalistic human-driving trajectories. One cut-in case in
highD dataset is selected to compare the risk metrics P-PDRF
and PDRF. Detailed results are illustrated in Fig. 5. As shown
in Fig. 5(e), the PDRF without the prediction model has a tiny
value in the beginning and then goes down to zero. This is
because that without considering the lane-change intention of
the surrounding vehicle, the collision probability between the
subject and surrounding vehicles are clearly low, as they were
in different lanes in the first 4 seconds. While the surrounding
vehicle crossed the lane marker afterwards, the longitudinal
space between the vehicles is relatively large, leading to
zero collision probability. Thus the PDRF remains as zero.
However, as shown in Fig. 5(f), the human driver of the subject
vehicle decelerated all the time, and the deceleration reached
the peak when the surrounding vehicle was about to cross the
lane marker. The PDRF value without considering prediction
model failed to explain the driver deceleration behavior.

When the prediction model is integrated in the proposed
risk metric, we can first observe that the lane-change intention
prediction module C-LSTM works well in this cut-in scenario,
and achieved prediction accuracy over 95% as shown in
Fig. 5(c). The velocity of surrounding vehicle is also accu-
rately predicted by the proposed trajectory prediction model
as shown in Fig. 5(d). However, the collision probability

Fig. 6. Risk assessment with different additional deviations. (a) Collision
probability with additional longitudinal deviation σh

x = 5 meters. (b) Collision
probability with σ h

x = 10 meters. (c) Collision probability with σ h
x =

20 meters. (d) P-PDRF with different additional longitudinal deviations. The
additional lateral deviation σ h

y is fixed as 1 meter.

under each maneuver mode is close to zero. This is due to
that the two vehicles kept a sufficient safe distance in line
with Fig. 5(b); even if the subject vehicle did not decelerate,
no crash would occur. Under such driving scenario, the predic-
tion model M-C-LSTM outputs positions of the surrounding
vehicle, aiming to minimize the NLL of the conditional multi-
modal distributions. The human driver’s deceleration behavior
was mainly due to a subjectively perceived risk. The current
position distribution for surrounding vehicle from M-C-LSTM
therefore cannot fully represent the human-perceived motion
uncertainties; an additional bivariate normal distribution is
further needed for a human driver. In doing so, the PDF of
surrounding vehicle position in Eq. (5) utilized to calculate the
collision probability is now replaced by Eq. (6).

The P-PDRF calculated by Eq. (6) is illustrated in Fig. 6.
The P-PDRF values indeed have been changed with different
additional distribution parameters, where the lateral standard
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deviation is fixed as 1 metre, and the longitudinal standard
deviations are set as 5, 10 and 20 meters, respectively.
As expected, the collision probability is increased through
adding additional standard deviations, while it is always below
0.1 under different additional standard deviations. Besides,
with a higher additional deviation, the collision probability and
P-PDRF decrease to zero later. Specifically, when the addi-
tional longitudinal deviation is set as 20 meters, the P-PDRF
is always greater than zero, which can be used to explain the
deceleration behaviors of the human driver. One may also set
additional acceleration deviations for PDRF, while oscillations
are observed from updated PDRF values, which still cannot
correspond to driver behaviors. Nevertheless, the selection of
the additional standard deviation for P-PDRF is relevant to
driving behaviors of the human driver [43]. Tuning suitable
additional standard deviations is left for our future research.

VI. CONCLUSION

A prediction-based probabilistic driving risk field metric
on highways (P-PDRF) has been proposed in this work.
The proposed P-PDRF can anticipate potential risk in the
future through leveraging a two-stage multi-modal trajectory
prediction model, and thus does not rely on a system dynam-
ics model, and a known normal distribution of surrounding
vehicles. Meanwhile, the two-stage structure of the proposed
prediction model can first anticipate the lane-change behaviors
of the surrounding vehicle, and then provide more accurate tra-
jectory prediction results. The prediction model is replaceable
as long as it can provide multi-modal probabilistic trajectory
prediction results with bivariate normal distributions.

The proposed prediction model is trained and tested with
an empirical driving dataset highD. The lane-change intention
prediction module is first tested through ablation studies as
well as comparative experiments, and has achieved a 95% pre-
diction accuracy. Compared to a state-of-the-art approach, the
overall trajectory prediction performance is further validated
in terms of four evaluation indicators. Under a 3-second pre-
diction horizon, the predicted average and final displacement
errors are less than 0.5 and 1.4 meters, respectively. P-PDRF
identifies potential crashes 3.43 seconds earlier in average,
compared to 2.49 seconds with PDRF. The risk metric TTC
has even worse performance in terms of prediction accuracy
and timeliness, since TTC is not flexible dealing with two-
dimensional motion. We also showed that the average compu-
tational time for P-PDRF is less than 0.02 seconds on average.
Moreover, P-PDRF is adopted to analyse cut-in scenarios
in the highD dataset, and the additional standard deviations
representing human perceived risks are demonstrated to be
effective in explaining the human driver behaviors. Both the
effectiveness and efficiency of P-PDRF have been verified.

Future research on driving risk assessment may be ori-
ented to two directions. First, the lane location informa-
tion, e.g., whether vehicles are near ramp areas, can affect
the lane-change intention prediction. How to integrate the
lane location information for better lane-change intention and
trajectory predictions has not been addressed. Second, the
proposed driving risk metric can only separately evaluate

risk between a subject vehicle and each surrounding vehicle.
Whether and how multiple surrounding vehicles can jointly
impact the safety deserves further investigation.
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