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Abstract—Cooperative coevolution (CC) algorithms based on
variable decomposition methods are efficient in solving large-
scale optimization problems (LSOPs). However, many decompo-
sition methods, such as the differential grouping (DG) method
and its variants, are based on the theorem of function addi-
tively separable, which may not work well on problems that
are not additively separable and will result in a bottleneck
for CC to solve various LSOPs. This deficiency motivates us
to study how the decomposition method can decompose more
kinds of separable functions, such as the multiplicatively sepa-
rable function, to improve the general problem-solving ability of
CC on LSOPs. With this concern, this article makes the first
attempt to decompose multiplicatively separable functions and
proposes a novel method called dual DG (DDG) for better LSOP
decomposition and optimization. The novelty and advantage of
DDG are that it can be suitable for not only additively sep-
arable functions but also multiplicatively separable functions,
which can considerably expand the application scope of CC. In
this article, we will first define the multiplicatively separable
function, and then mathematically show its relationship to the
additively separable function and how they can be transformed
into each other. Based on this, the DDG can use two kinds of
differences to detect the separable structure of both additively
and multiplicatively separable functions. In addition, the time
complexity of DDG is analyzed and a DDG-based CC algo-
rithm framework is developed for solving LSOPs. To verify the
superiority of DDG, experiments and comparisons with some
state-of-the-art and champion algorithms are conducted not only
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on 30 LSOPs based on the test suite of the IEEE CEC large-scale
global optimization competition, but also on a case study of the
parameter optimization for a neural network-based application.

Index Terms—Cooperative coevolution (CC), differential evolu-
tion, dual differential grouping (DDG), evolutionary computation
(EC), large-scale optimization problem (LSOP), particle swarm
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I. INTRODUCTION

LARGE-SCALE optimization problems (LSOPs), which
are becoming increasingly ubiquitous in the research

community and real-world applications, have attracted increas-
ing attention in recent years [1]–[3]. Due to the “curse
of dimensionality,” a large number of decision variables
make the landscape of LSOPs highly complex and very
difficult to be optimized [4]–[7]. As evolutionary com-
putation (EC) algorithms are efficient tools for solving
various complex optimization problems [8]–[10], such as
multimodal [11], [12]; multi-/many-objective [13], [14]; and
expensive optimization problems [15], [16], many researchers
have also studied powerful EC-based algorithms for solving
LSOPs [17]–[19]. In this direction, the cooperative coevolu-
tion (CC) framework has achieved great success and, therefore,
has been widely studied in recent years [20]–[22].

Inspired by the “divide-and-conquer” mechanism, the
core idea of the CC framework is to decompose the
LSOP into several nonoverlapped subproblems with lower
dimensions and then optimize each subproblem using EC
algorithms [23]–[26]. To better describe the idea of CC,
Fig. 1 presents a general CC framework. As shown in Fig. 1,
the CC framework mainly has three stages: 1) the decom-
position stage, where the problem will be decomposed into
several subproblems by the decomposition method; 2) the
optimization stage, where the subproblems will be optimized
by EC algorithms; and 3) the combination stage, where the
subsolutions for corresponding subproblems will be combined
to form the complete solution. As decomposition is the essen-
tial and critical stage in CC, the quality of decomposition can
greatly influence the optimization results.

Therefore, to better achieve problem decomposition,
many decomposition methods have been proposed and
researched [27]–[30]. Generally speaking, existing decompo-
sition methods can be roughly classified into two categories:
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Fig. 1. General CC framework.

static and dynamic decomposition methods [31]–[33].
Intuitively, static decomposition methods attempt to obtain
satisfactory decomposition results before the optimization
stage and keep the decompositions fixed during the
whole optimization process [34], [35], while dynamic
methods decompose the problem dynamically accord-
ing to the information obtained during the optimization
process [36]–[38]. Among the existing methods, differential
grouping (DG) [27] and its variants have obtained great suc-
cess in decomposing LSOPs, especially additively separable
LSOPs. Therefore, many enhanced DG methods have been
proposed in the literature [28]–[30].

However, as many existing DG-based methods are based on
the theorem of function additively separable, their decompo-
sition abilities will deteriorate if the problem is not additively
separable. For example, (1) presents an objective function of
a minimization problem as

min
x1,x2

gexample (x1, x2) = 2x1x2 + 5x1 + 14x2 + 35

s.t. x1 ∈ [−5, 5], x2 ∈ [−2, 2] (1)

where we know that (1) can be decomposed into two subprob-
lems of x1 and x2 for independent optimization because the
optimal value of x1 is exactly a constant (i.e., –5), regardless
of the value of x2, and the optimal value of x2 is also a con-
stant (i.e., –2), regardless of the value of x1. Therefore, instead
of optimizing the whole (1), we can separate variables x1 and
x2 and then optimize subproblems g1 and g2 independently as

min
x1

g1(x1) = (2x2 + 5) · x1 + 14x2 + 35, x1 ∈ [−5, 5] (2)

min
x2

g2(x2) = (2x1 + 14) · x2 + 5x1 + 35, x2 ∈ [−2, 2] (3)

where in (2), x1 is the variable while x2 is considered a
function parameter with a fixed value belonging to [−2, 2].
Similarly, (3) is a function of x2, while x1 is considered a
function parameter with a fixed value belonging to [−5, 5].
Therefore, after the decomposition, (2) is easy to obtain the
optimal value of x1 = −5, and (3) is also easy to optimize
with x2 = −2 as the optimum. However, the separable problem
in (1) cannot be correctly decomposed by existing DG meth-
ods because the term “2x1x2” is not additively separable [27].
That is, existing DG-based methods will consider x1 and x2 as
interacting and nonseparable and, therefore, group them in the
same group, which is not suitable. The key issue behind this

phenomenon is that the additively separable structure is not the
only separable structure. In other words, even though a separa-
ble problem is not additively separable, it may be decomposed
in other ways. Therefore, it is a potential and promising
direction to explore a more general decomposition method
for further improving the problem-solving ability of CC for
LSOP. In fact, in many real-world applications, optimization
problems can include variables with multiplicative interac-
tions. For example, neural networks (NNs), including deep
NNs and convolutional NNs [39], have become essential in
various applications nowadays [40], where the NNs usually
have a large number of parameters to be optimized to obtain
better performance [41]. However, the large-scale and com-
plex parameter optimization problem of NNs can contain many
multiplicatively separable variables because the input of each
layer will be multiplied by the parameters of the current layer
to generate the input of the next layer. Therefore, besides
the additively separable structure, it will be more promis-
ing to consider the decomposition of more kinds of separable
structures including the multiplicatively separable structure.

With the above concerns, this article proposes a novel dual
DG (DDG) method to achieve a more general and better
problem decomposition. Compared to the existing DG-based
methods, the advantage of DDG is that it can be suitable
for not only additively separable problems but also multi-
plicatively separable problems, which can greatly expand the
application scope of CC from single separable problems (i.e.,
additively) to dual separable problems (i.e., both additively
and/or multiplicatively). For example, the problem given in (1)
is multiplicatively separable and, therefore, it can be decom-
posed by the DDG, which will be described later as an
example in Section III-A. Moreover, in Section III-A, we will
first give the definition of a multiplicatively separable function
and then mathematically show the relationship between the
additively and multiplicatively separable functions and how
they can be transformed into each other. Based on this, the
details of DDG will be provided. After that, we will further
develop a DDG-based CC algorithm for solving LSOPs and
theoretically analyze the time complexity of DDG.

The major novelties and contributions of this article are
summarized as follows.

1) The definition of the multiplicatively separable function
and the relationship between it and the additively separable
function are mathematically provided in this article. More
importantly, two related theorems are then given and
proved, which can guide the detection of the separable
structure in multiplicatively separable problems.

2) Based on the given theorems, the DDG is proposed
to achieve a more general decomposition ability for
LSOP. By utilizing two different kinds of differences
to detect separable structures, the DDG can decompose
not only additively separable problems but also multi-
plicatively separable problems efficiently. Moreover, the
time complexity of DDG is also analyzed and given in
this article.

3) A DDG-based CC algorithm for solving LSOPs is fur-
ther developed by combining the DDG with a classical
and widely used CC framework.
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To evaluate the proposed DDG and the DDG-based algo-
rithms, experimental studies are conducted on 30 LSOPs,
which are selected and generated from the widely used
LSOP benchmarks in the latest IEEE CEC 2013 large-
scale global optimization (LSGO) competitions test suite [42].
Furthermore, some state-of-the-art decomposition methods and
algorithms, including the champion algorithm, are employed
in the experimental comparisons to show the superiority of
DDG. In addition, this article also conducts a case study on
the large-scale parameter optimization of an NN-based three-
category classification application, so as to further evaluate the
real-world application potential of the proposed DDG.

The remainder of this article is organized as follows:
Section II briefly introduces the background and related work,
and Section III details the proposed methods and the time
complexity of DDG. Experiments, including the settings, com-
parisons, and analyzes, are provided in Section VI. Finally,
Section V presents the conclusion.

II. BACKGROUND AND RELATED WORK

A. Separable Function and DG

The separable function is defined as follows.
Definition 1 [28]: A function f (x) is partially separable for

minimization with k independent components if and only if

arg min
x

f (x) =
(

arg min
x1

f (x1, ∗ ∗ ∗)

arg min
x2

f (∗ ∗ ∗, x2, ∗ ∗ ∗), . . . , arg min
xk

f (∗ ∗ ∗, xk)

)

(4)

where x1, . . . , and xk are k nonoverlapped subvectors of x,
and the “***” in the parentheses can be any value in the
corresponding search space. Note that according to (4), the
optimal value of xi (1 ≤ i ≤ k) should be the same no matter
what the value of “***” is, and the combination of all optimal
nonoverlapped subvectors should be the optimal solution to
the original problem. Based on the above, if xi and xj (i �= j)
are two nonoverlapped subvectors of x that satisfy (4), any
variable in xi and that in xj are separable and do not interact
with each other. In addition, note that the “argmin” should be
“argmax” for maximization problems.

As a special type of partially separable function, the addi-
tively separable function is defined as follows.

Definition 2 [28]: A function f is partially additively
separable if it has the following form:

f (x) =
k∑

i=1

fi(xi), 1 < k ≤ D (5)

where x1, x2, . . . , and xk are k nonoverlapped subvectors of
x, functions f1, f2, . . . , and fk are subfunctions of function f,
and D is the total dimension of x. Specifically, the function f
is also called fully additively separable if k equals D, while it
is regarded as fully nonseparable if k = 1. In (5), we can see
that the change of a subvector xi will only change the value of
fi and then change the original function f, but will not change
the value on other subfunctions fj(i �= j) because xi is not the
variable in fj. Based on this, we have the following theorem:

Theorem 1 [27]: Given an additively separable function f (x)
with D-dimensional decision variable x = (x1, x2, . . . , xD), for
any real value a, b, c = b + δ(δ �= 0), and d(b �= d), if the
following condition holds for two variables xi and xj:

f (x)
∣∣xi=a,xj=b − f (x)

∣∣
xi=c,xj=b

�= f (x)
∣∣xi=a,xj=d − f (x)

∣∣
xi=c,xj=d

(6)

where

f (x)
∣∣xi=a,xj=b = f

(∗ ∗ ∗, xi = a, ∗ ∗ ∗, xj = b, ∗ ∗ ∗) (7)

then xi and xj are additively nonseparable.
Based on this theorem, the idea of DG is to check

whether (6) holds for every two variables to determine
the additively separable structure of an objective function.
Specifically, if (6) is satisfied, then xi and xj are additively non-
separable, which will be regarded as interacting variables and
grouped together. Due to the calculation error and the com-
putational precision of the computer system, the DG method
checks (8) instead of (6) in practical implementations.∣∣∣[f (x)

∣∣xi=a,xj=b − f (x)
∣∣
xi=c,xj=b

]

−
[
f (x)

∣∣xi=a,xj=d − f (x)
∣∣
xi=c,xj=d

]∣∣∣ ≤ εaddi (8)

where εaddi is the acceptance threshold for detecting additively
separable variables.

B. Related Work

In this section, we briefly review the related work
about variable interaction within the EC community. As
briefly mentioned in Section I, decomposition methods
can be roughly divided into two categories: 1) static
decomposition methods [34] and 2) dynamic decomposi-
tion methods [36]–[41]. In general, both static and dynamic
decomposition methods have advantages and disadvan-
tages. Therefore, these researches are suitable for different
situations [20]. As the proposed DDG in this article is a
static decomposition method, the following contents primarily
describe the related work on static decomposition methods.

Usually, a good decomposition requires the appropriate
separable structure of the objective function. To analyze
the separable structure, detecting and learning the interac-
tions among decision variables are essential. Therefore, many
variable interaction learning methods have been proposed.
Chen et al. [43] proposed a variable interaction learning strat-
egy for problem decompositions. In this strategy, each variable
is initially considered as a separate group, and then the groups
that affect each other are merged, which finally obtains the
groups that are independent of each other. Omidvar et al. [27]
proposed the classical DG method, which was for detecting the
interactions among variables in additively separable functions.

To date, DG has shown great efficiency in problem decom-
position because it can capture the interactions among vari-
ables in additively separable functions. However, DG cannot
detect the indirect interactions between variables. For this
problem, Mei et al. [30] proposed global DG (GDG) to detect
the indirect interactions between variables. GDG uses a matrix
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to denote the interactions among variables, where each ele-
ment in the matrix represents the interaction degree between
two variables. After obtaining the matrix by checking (8),
GDG performs the breadth-first or depth-first technique to
identify the direct and indirect interactions between variables.
Similarly, Sun et al. [29] proposed extended DG (XDG),
which iteratively detected the interactions between every two
variables and accordingly divided the variables into several
groups.

Although the above methods are powerful for detecting
variable interactions, these methods require a large num-
ber of fitness evaluations (FEs), which can be an expensive
cost in solving LSOPs. To address this issue, many studies
have been proposed for detecting variable detections using
fewer FEs [28], [31]. For example, Hu et al. [34] proposed
a fast interdependency identification mechanism to save many
FEs. Furthermore, Omidvar et al. [28] proposed DG2, which
reused some sample points to reduce the need of FEs in
the original DG. In addition, Sun et al. [31] were inspired
by a binary search and proposed a recursive DG (RDG),
where the detections of variable interactions were performed
in a binary recursive manner. Moreover, the improved RDG
method, called RDG3, has also been proposed and studied for
overlapping functions [32].

In addition to the above DG-based methods, other decom-
position methods have also been studied in recent years.
For instance, Ge et al. [33] proposed a two-stage vari-
able interaction method, where a learning model was first
employed to explore some knowledge and then a marginalized
denoising model was adopted to obtain the overall variable
interactions based on the knowledge obtained in the first
stage. Wang et al. [44] proposed a formula-based group-
ing that assumed the formula of the objective function was
known before the optimization. Liu et al. [45] proposed a
hybrid deep grouping method that not only considered variable
interaction but also variable essentials, which was suitable for
decomposing nonseparable problems.

In conclusion, a considerable number of the above methods
are DG variants or are based on Theorem 1, which are only
suitable for additively separable problems [46], [47]. Different
from these methods, the DDG proposed in this article is
useful for not only additively separable problems but also
multiplicatively separable problems.

III. PROPOSED DDG

A. Multiplicatively Separable Function

The definition of a multiplicatively separable function is
given in this article as follows.

Definition 3: A function g is partially multiplicatively
separable if it has the following form:

g(x) =
k∏

i=1

gi(xi), 1 < k ≤ D (9)

where x1, x2, . . . , and xk are k nonoverlapped subvectors of
x, functions g1, g2, . . . , and gk are subfunctions of function
g, and D is the total dimension of x. Specifically, function
g is also considered as fully multiplicatively separable if k

equals D, while it is regarded as multiplicatively nonseparable
if k = 1.

Then, for the relationship between the additively separable
function and the multiplicatively separable function, we can
have two theorems, which are Theorem 2 and Theorem 3 as
follows.

Theorem 2: Every additively separable function can be
transformed into a multiplicatively separable function.

Proof: Given a partially additively separable function f (x)
as defined in Definition 2, letting g(x) = ef (x), then g(x) can
be rewritten as

g(x) = ef (x)

= e
∑k

i=1 fi(xi)

=
k∏

i=1

efi(xi), 1 < k ≤ D. (10)

According to Definition 3 and (10), g(x) is multiplicatively
separable and, therefore, the proof is finished.

Theorem 3: Every multiplicatively separable function,
where the minimum value is larger than 0, can be transformed
into an additively separable function.

Proof: Given a multiplicatively separable function g(x) as
defined in Definition 3 and with the minimum value larger
than 0, let f (x) = ln g(x), then, f (x) can be rewritten as

f (x) = ln g(x)

= ln
k∏

i=1

gi(xi)

=
k∑

i=1

ln gi(xi), 1 < k ≤ D. (11)

According to Definition 2, f (x) is additively separable and,
therefore, the proof is finished. That is, the logarithmic oper-
ation can transform a multiplicatively separable function into
an additively separable function. It may be argued that some
gi(xi) may be negative in (11). However, as g(x) is positive, the
number of negative subfunctions [e.g., gi(xi)], must be even,
and we can always find the same number of positive subfunc-
tions to substitute the negative subfunctions. For example, for
any subfunction gi(xi), where gi(xi) �= 0 because the minimum
of g(x) is larger than 0, we can use a new function newgi(xi)

instead of gi(xi), as

newgi(xi) =
{

gi(xi), if gi(xi) > 0
−gi(xi), otherwise

(12)

where newgi(xi) is guaranteed to be positive.
In addition, to make Theorem 3 easier to understand and to

illustrate what it can do, we take the problem in (1) again as
an example here. By using the logarithmic operation like (11),
we can have

fexample(x1, x2) = ln gexample(x1, x2)

= ln(2x1x2 + 5x1 + 14x2 + 35)

= ln [(x1 + 7)(2x2 + 5)]

= ln(x1 + 7)+ ln(2x2 + 5) (13)
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where x1 and x2 belong to [−5, 5] and [−2, 2], respectively,
as defined in (1).

According to Definition 2, fexample is actually an additively
separable function, which can be decomposed by DG-based
methods. In other words, Theorem 3 shows that we can use a
novel method modified/enhanced from the additive difference
to detect the separable structure in multiplicatively separa-
ble functions. To be more specific, with Theorem 1 and
Theorem 3, we can determine the multiplicatively separable
variables by checking whether the following equation holds:

ln(f (x))
∣∣xi=a,xj=b − ln(f (x))

∣∣
xi=c,xj=b

�= ln(f (x))
∣∣xi=a,xj=d − ln(f (x))

∣∣
xi=c,xj=d

(14)

where f (x) should be positive. In practical implementations,
we can use the (15) instead of (14)∣∣∣[ln(f (x))

∣∣xi=a,xj=b − ln(f (x))
∣∣
xi=c,xj=b

]

−
[
ln(f (x))

∣∣xi=a,xj=d − ln(f (x))
∣∣
xi=c,xj=d

]∣∣∣ ≤ εmulti (15)

where εmulti is the acceptance threshold for detecting multi-
plicatively separable variables.

Based on the above, we can propose the DDG method to
obtain better decomposition for both additively and multiplica-
tively separable problems, which is described in the following
contents.

B. DDG

As mentioned before, the idea of DDG is to detect whether
variables are additively or multiplicatively separable and
then select the best way to partition them into different
groups accordingly. The pseudocode of DDG is presented as
Algorithm 1. Note that the only difference between DDG and
DG lies in lines 20–27, which aim to detect not only additively
but also multiplicatively separable variables. That is, DG only
uses �addi > εaddi while DDG uses both �addi > εaddi and
�multi > εmulti as conditions in the If-statement in line 25 of
Algorithm 1. Therefore, the DDG is also as easy to use as
DG because it does not consume more FEs than DG and only
adds a slight computational burden as line 21 of Algorithm 1.

In general, Algorithm 1 adopts a sequential fashion to detect
the possible separable structure between each variable and the
other variables. To be specific, Algorithm 1 will use a nested
loop, that is, lines 7–35, to check whether each dimension
variable is separable from other variables and then group the
nonseparable variables together. The novel and key operations
of Algorithm 1 lie in lines 20–27, which compute the dual dif-
ferences for detecting additively or multiplicatively separable
structures of variables.

For the additively separable structure, we can calculate the
additive difference, that is, �addi, to detect interactions as

�addi =
∣∣∣[f (x)

∣∣xi=a,xj=b − f (x)
∣∣
xi=c,xj=b

]

−
[
f (x)

∣∣xi=a,xj=d − f (x)
∣∣
xi=c,xj=d

]∣∣∣ (16)

where a, b, c, and d are real numbers within the search
domain, and x = (x1, x2, . . . , xD) is a D-dimensional solu-
tion. In Algorithm 1, as suggested in the literature [27], a, b,

Algorithm 1: Dual Differential Grouping
Input: func-the objective function;

D-the problem dimension;
lb-the D-dimensional array of lower bounds;
ub-the D-dimensional array of upper bounds.
εaddi-the threshold for additively separable detection.
εmulti-the threshold for multiplicatively separable detection.

Output: allgroups-the identified groups containing the index of
variables.

1 Begin
2 dims ← {1, 2, . . . , D}; // the index set of undetected variables
3 seps ← {}; // initialize the index set for separable variables
4 allgroups ← {}; // initialize the set for all groups
5 x1 ← lb; //all variables in x1 is set as their lower bounds
6 fit1← func (x1);
7 For i ∈ dims Do
8 tempgroup ← {i}; // the group includes variable index i
9 x2← x1;

10 x2,i ← ubi; //variable i in x2 is set as its upper bound
11 fit2 ← func(x2);
12 For j ∈ dims and i �= j Do
13 x3 ← x1; // variable i in x3 is its lower bound
14 x3, j ← (lbj +ubj)/2; //variable j in x3 is its domain

center
15 fit3 ← func (x3);
16 x4 ← x2; // variable i in x4 is its upper bound
17 x4, j ← (lbj +ubj)/2; //variable j in x4 is its domain

center
18 fit4 ← func (x4);
19 �addi ← |(fit1 – fit2) – (fit3 – fit4)|; // see Eq.(16)
20 If fit1, fit2, fit3, and fit4 are all positive Then
21 �multi ←|(ln(fit1) – ln(fit2)) – (ln(fit3) –

ln(fit4))|;//Eq.(17)
22 Else
23 �multi ←1×105; //a large enough value to make

�multi > εmulti
24 End if
25 If �addi > εaddi and �multi > εmulti Then //

non-separable
26 tempgroup ← tempgroup ∪ j; // j should be grouped

with i
27 End if
28 End for
29 If length(tempgroup)==1 Then // variable i is

separable
30 seps ← seps∪tempgroup;
31 Else // variable i is non-separable with the

variables in tempgroup
32 allgroups ←allgroups∪{tempgroup};
33 End if
34 dims ← dims–tempgroup; // remove the detected variable

indexes
35 End for
36 allgroups ← allgroups∪{seps};
37 End

c, and d are set as the lower bound of xi, the lower bound of
xj, the upper bound of xi, and the center of the search domain
of xj, respectively. It should be noted that these four variables
can also be set with other values, and the settings adopted
in this article are just conventional choices in the literature.
For simplicity, x with xi = a and xj = b, x with xi = c
and xj = b, x with xi = a and xj = d, and x with xi = c
and xj = d are denoted as x1, x2, x3, and x4 respectively, in
Algorithm 1.

For the multiplicatively separable problem, as seen in
line 21, the algorithm first uses the logarithmic function ln(x)
to transform the original function into an additively separable
function (similar to how (11) works) and then computes the
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multiplicative difference �multi for interaction detections as

�multi =
∣∣[ln(

f (x)
∣∣xi=a,xj=b

)− ln
(
f (x)

∣∣xi=c,xj=b
)]

− [
ln

(
f (x)

∣∣xi=a,xj=d
)− ln

(
f (x)

∣∣xi=c,xj=d
)]∣∣. (17)

It should be noted that if ln(f (x)) encounters calculation errors
due to the nonpositive value of f (x), the algorithm will directly
set �multi with a value larger than εmulti, as shown in line 23 of
Algorithm 1. This can ensure that the following procedure
will not mistake the corresponding variables as multiplicatively
separable due to the calculation error.

After computing �addi and �multi, if they are both larger
than their corresponding threshold εaddi and εmulti, respec-
tively, then the variables xi and xj are neither additively
separable nor multiplicatively separable. In this situation, xi

and xj are considered as nonseparable, and xj will be grouped
into the same group of xi, as shown in line 26. Otherwise,
xi and xj are separable and will not be grouped into the
same group.

The detection operations, that is, lines 12–28, will be
repeated until the interactions between xi and all the remaining
variables are checked. After detecting the interaction between
xi and all the remaining variables, DDG checks whether the
temporal group of xi (i.e., tempgroup) has other variables. If
no, then xi is a fully separable variable, and its index will be
stored in the fully separable group seps. Otherwise, the whole
group tempgroup is stored as a new index set in allgroups.
After this, DDG removes the index of detected variables (i.e.,
those in tempgroup) from the index set dims, and then selects
an index of the rest of the variables in dims as the next vari-
able for checking its interactions with the other rest variables
in dims.

The above procedures will repeat until there is no variable
index left in dims. Then, the seps, which includes the indices
of all detected fully separable variables, will also be stored
as an index set in allgroups. Finally, the DDG will output
the allgroups, which contain the decomposition results that
include both nonseparable and separable groups.

C. Complete DDG-Based CC Algorithm

As the decomposition method aims to divide the LSOP for
better optimization, this part describes how the proposed DDG
can be used in a CC framework for solving the LSOP.

Fig. 2 presents the flowchart of the complete algorithm
framework, and Algorithm 2 shows the pseudocode. Note that
the main novelty of Algorithm 2 lies in that the decomposi-
tion stage uses DDG to decompose the problems, as shown in
line 3. Algorithm 2 is developed by adopting the proposed
DDG method in the classical CC framework [26], [27].
Although many CC frameworks have been proposed [48]–
[50], the focus of this article is on the decomposition method
but not on the CC framework. Therefore, without loss of gener-
ality, the most classical and widely used CC framework (i.e.,
the one used in [26], [27]) is adopted in this article as an
example to develop the DDG-based CC algorithm. Similar
to other existing decomposition-based algorithms [27]–[29],
Algorithm 2 mainly has three procedures: the decomposition
stage, the optimization stage, and the combination stage. The

Fig. 2. Flowchart of the complete DDG-based algorithm.

Algorithm 2: Complete DDG-based Algorithm
Input: func-the objective function;

D-the problem dimension;
lbounds-the array of lower bounds;
ubounds-the array of upper bounds;
NP-the number of individuals in population;
MaxFEs-the maximum number of available FEs.

Output: solbest -the best solution.
1 Begin
2 //decomposition stage using Algorithm 1
3 Obtain separable groups allgroups by DDG;
4 ngroup ← the total number of groupings in allgroups;
5 FEs ← the consumed FEs in decomposition stage;
6 //optimization stage
7 Initialize the population pop;
8 fitness ← func(pop); // evaluate the fitness of individuals
9 solbest ← the best solution in pop; //record the best solution so far

10 FEs ←FEs + NP; // update the consumed FEs
11 While FEs< MaxFEs Do // loop until the FEs are

run out
12 For i ← 1 to ngroup Do // optimize each

decomposed group
13 indicies ← allgroups[i]; // the variable indices in ith

group
14 subpopi ← pop[:, indicies]; //form sub-populations
15 Update subpopi, newfitnessi by optimizing subpopi;
16 FEs ← FEs + NP; // update the consumed FEs
17 //combination stage to form updated complete solutions
18 pop[:, indicies] ← subpop; //update the population
19 fitness ← newfitnessi; //update the corresponding fitness
20 solbest ← the best solution in pop; //update the best

solution
21 End for
22 End while
23 End

decomposition stage employs the proposed DDG to partition
the problem, where the details can be found in Algorithm 1.
In the optimization stage, different subpopulation are formed
according to the results from the decomposition stage. Then,
each subpopulation will be iteratively optimized for the corre-
sponding subproblem in a round-robin fashion by an optimizer,
where the optimizer can be any EC algorithm [50]–[53]. In
this article, the self-adaptive differential evolution with neigh-
borhood search (SaNSDE) [53], which is also the classical
optimizer in decomposition-based studies [28], is adopted to
work together with DDG to develop the complete CC algo-
rithm. After the optimization stage, the combination stage
forms the complete solutions with updated subsolutions, as
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shown in line 18 of Algorithm 2. The above optimization and
combination stages will repeat until the MaxFEs are totally
consumed. Finally, Algorithm 2 outputs the complete solution
and terminates.

D. Analysis of Time Complexity

As the FE is the most time-consuming operation in decom-
position methods, this part discusses the time complexity of
DDG by analyzing the upper bound for the total number of
FEs required by DDG. Without loss of generality, we assume
that the problem is a D-dimensional problem with k separable
subcomponents, where the subcomponents are nonoverlapped
and each of them contains m = D/k variables. In addition,
without loss of generality, we assume that variables x(i−1)·m+1
to xi·m belong to the ith subcomponent (i.e., group). As seen
in Algorithm 1, only four lines will consume the FEs, which
are lines 15 and 18 in the innermost For loop, line 11 in the
outer For loop, and line 6 outside the loop. Therefore, the total
time for executing these lines will be analyzed one by one in
the following contents.

First, we analyze the total time for executing lines 15
and 18 in Algorithm 1, where both of them consume one
FE. Instead of directly obtaining the total time for execut-
ing them, we can count how many times the algorithm will
compute the differences (i.e., lines 19–24 in Algorithm 1)
because each difference calculation exactly corresponds to one
execution of both lines 15 and 18. For the sake of simplic-
ity, we denote the upper bound as S for how many times
the algorithm will compute the differences. According to the
above assumptions andAlgorithm 1, after each loop for cal-
culating the differences between a variable xi and all the
remaining variables in dims, m variables (including xi) will be
removed from dims. For example, for finding the first subcom-
ponents of interacted variables, the algorithm will calculate
the difference for D–1 times (between x1 and the remaining
D–1 variables) and find that variables x2 to xm interact with
x1. Then, the m variables x1, x2, . . . , and xm, (i.e., the first
one of the k nonoverlapped separable subcomponents), will
be removed from dims. Similarly, for finding the second sub-
components, the algorithm will only calculate the difference
for D–m–1 times (between xm+1 and the remaining D–m–
1 variables); and for the ith subcomponent, only calculate the
difference for D − (i − 1) · m − 1 times (between x(i−1)·m+1
and the remaining D− (i−1) ·m−1 variables). As there are k
subcomponents in total, the upper bound S can be calculated
as

S = (D− 1)+ (D− m− 1)+ · · · + (D− (k − 1)× m− 1)

= (D− 1)+ (D− m− 1)+ · · · + (m− 1)

= k

2
(D+ m− 2)

= D

2m
(D+ m− 2) (18)

where D will not be less than m. Then, the total number for
executing lines 15 and 18 is 2S.

Second, we analyze the total time for executing line 11 in
Algorithm 1, which also requires one corresponding FE. Every

time line 11 is executed, Algorithm 1 will determine a sub-
component (refer to lines 12–34 in Algorithm 1). As there are
k different subcomponents to be identified, the total time for
executing line 11 is k, and the total needed number of FEs is
also k.

Third, as line 6 of Algorithm 1 costs one FE and is out-
side the loop, the total time for executing line 6 is 1, which
corresponds to one FE.

Therefore, based on the above, the total number of FEs
required by DDG is 2S+ k + 1. That is, the time complexity
of DDG with respect to the needed number of FEs is

O(FEs) = O(2S+ k + 1) = O

(
D2

m

)
(19)

where m and k are not larger than D. Note that the time com-
plexity of DDG, that is, (19), is the same as that of DG [27].
Therefore, the DDG is not time expensive when compared to
other DG-based methods.

IV. EXPERIMENTAL STUDIES

A. Benchmark Functions and Comparison Methods

To evaluate the proposed DDG, 30 LSOPs are adopted
as the test suite in this article, which are all minimization
problems. In these LSOPs, 15 of them are the original test
functions from the widely used IEEE CEC 2013 benchmark
set for the LSGO competition [42], including additively sepa-
rable functions and fully nonseparable functions. In addition,
since there are no multiplicatively separable functions in the
original IEEE CEC 2013 benchmark set, 15 multiplicatively
separable functions are construed herein based on the functions
in this benchmark set.

The adopted 30 test functions are shown in Table I. In
Table I, f1, f2, . . . , and f15 are the corresponding 15 original
functions in the CEC 2013 benchmark, while the remaining
15 multiplicatively separable functions are generated based
on additively separable functions f 1–f 3 and fully nonsepara-
ble functions f 13-f 15. Specifically, T16–T30 are generated by
multiplying two of the 6 functions, that is, f 1–f 3 and f 13–f 15.
For simplicity, we use the notation “fa ⊗ fb” to denote how
T16–T30 are constructed. For example, if both fa and fb are
1000-D functions, fa ⊗ fb will result in a 2000-D problem as

fa ⊗ fb(x1:2000) = fa(x1:1000)× fb(x1001:2000) (20)

where x1:2000 means the 2000-D variable vector, and x1:1000
and x1001:2000 are the first 1000 dimension values and the last
1000 dimension values of x, respectively. Furthermore, as the
optimal minimum value of each function in the IEEE CEC
2013 benchmark is 0, the test function T generated by (20)
can obtain the optimum value (i.e., 0) as long as one of the
fa and fb (or both) have been optimized to their optimal value
0. Therefore, if the test functions generated by (20) can be
decomposed correctly, the optimization difficulties will greatly
decrease. This is very suitable for evaluating the effective-
ness of different decomposition methods on multiplicatively
separable functions.

To further clarify the function characteristics in Table I,
the symbols “A,” “O,” “N,” and “M” are used to represent
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TABLE I
CHARACTERISTICS OF THE 30 TEST FUNCTIONS

the function type as “additively separable,” “overlap,” “non-
separable,” and “multiplicatively separable,” respectively. As
shown in Table I, the 30 test functions have various charac-
teristics and, therefore, they can provide in-depth observations
about how the proposed DDG may behave on different kinds
of problems.

To compare the decomposition ability of DDG, some pop-
ular and state-of-the-art decomposition methods are adopted
for comparisons of decomposition accuracies. These methods
are DG [27], DG2 [28], XDG [29], and GDG [30], as briefly
described in the related work in Section II-B. In addition,
these decomposition methods are implemented based on their
open available source code and are adopted in Algorithm 2 to
replace the DDG to develop their corresponding versions of
the CC algorithm. That is, all different decomposition meth-
ods work with the same optimizer, so as to achieve a fair
comparison.

B. Experimental Settings and Evaluation Metrics

In the experiment, the parameters of all decomposition
methods are configured according to their original papers.
In DDG, the value of εaddi for detecting additively separa-
ble variables is configured as 10−3, which is recommended in
the literature for detecting additively separable problems [28].
For the εmulti, the value is set as εmulti = 10−8, where
the corresponding parameter study will be given later in
Section IV-H. Moreover, to obtain a fair optimization compari-
son, the CC algorithms using different decomposition methods
will adopt the same optimizer SaNSDE [28] as described in

Section III-C. The population size of SaNSDE is set as 50,
as suggested in [27], [28]. Note that the population size in
the original SaNSDE [53] is 100 and the population size may
influence the algorithm performance. However, the influence
of population size is not the focus of this article. Therefore,
the population size is set as the frequently used value (i.e., 50)
in the LSOP literature [27], [28]. In addition, the maximum
number of available FEs, that is, MaxFEs, is 3 × 106 for
all algorithms on each problem of T01–T15 according to
the literature [42], and is 6 × 106 for all algorithms on each
problem of T16–T30 because each of them is construed by
two problems in T01–T15.

To compare the decomposition ability of different decompo-
sition methods, three evaluation metrics proposed in [30] are
adopted in this article. The definitions of these metrics are as
follows:

ρoverall =
∑D

i=1
∑D

j=1,j �=i(1D×D − |�−�ideal|)i,j

D(D− 1)
× 100% (21)

ρsep =
∑D

i=1
∑D

j=1,j �=i((1D×D −�) ◦ (1D×D −�ideal))i,j∑D
i=1

∑D
j=1,j �=i(1D×D −�ideal)i,j

× 100%

(22)

ρinter =
∑D

i=1
∑D

j=1,j �=i(� ◦�ideal)i,j∑D
i=1

∑D
j=1,j �=i(�ideal)i,j

× 100% (23)

where D is the problem dimension, � is the interaction matrix
obtained by the decomposition method, (�)i,j equals 1 if
variable i and variable j have interaction and 0 otherwise,
�ideal is the ideal interaction matrix for a problem, and oper-
ator “◦” is the entrywise product of two matrices. Based
on their definitions, ρoverall measures the overall accuracy of
the decomposition method, ρsep only measures the accuracy
of separable variable detection, and ρinter only measures the
accuracy of interaction detection [30]. Note that T01–T15 are
from existing benchmark problems and have their correspond-
ing ideal interaction matrix [28], denoted as �ideal1, . . . , and
�ideal15, respectively. Based on this, the interaction matrix
of T16–T30 can be constituted by �ideal1, . . . , and �ideal15.
For example, T16 is the multiplication of T01 and T02 and,
therefore, its interaction matrix �ideal16 is

�ideal16 =
[

�ideal1 0
0 �ideal2

]
. (24)

To reduce the statistical error, 25 independent runs of each
CC algorithm are carried out on each problem, and the aver-
age results are used for comparison. In addition, the Wilcoxon
rank-sum test with a significance level α = 0.05 is adopted to
statistically compare the optimization results, where the sym-
bols “+,” “≈”and “−” are used to show that the proposed
algorithm is significantly better than, similar to, or significantly
worse than the compared algorithm, respectively.

C. Comparisons on Decomposition Accuracy

The decomposition accuracy of DDG and other decompo-
sition methods are compared in terms of the three evaluation
metrics. The results are provided in Table II for the first met-
ric and Table S.I in the supplementary material for the second
and third metrics. The best results are marked in boldface.
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TABLE II
OVERALL DECOMPOSITION ACCURACY OF DDG, DG, DG2, XDG, AND

GDG ON 30 LARGE-SCALE OPTIMIZATION PROBLEMS

Moreover, to give a clearer understanding of DDG, the detailed
grouping results of DDG on T04, T13, T19, and T29 are shown
in Tables S.II–S.V in the supplementary material, which are
representative additively separable function, overlapping func-
tion, multiplicatively separable function generated by fully
separable function and overlapping function, and multiplica-
tively separable function generated by overlapping function
and nonseparable function, respectively.

First, the decomposition results show that the DDG is com-
petitive with other decomposition methods on the additively
separable problem. As shown in Table II, the DDG, in term of
the overall decomposition accuracy, can generate results that
are competitive with DG on additively separable functions and
correctly decompose the 3 fully additively separable functions
(i.e., T01–T03). This verifies the ability of DDG to decompose
the additively separable problem.

Second, the results in Table II show that the DDG can per-
form significantly better than other decomposition methods
on the multiplicatively separable problem. It can be seen that
on multiplicatively separable test functions (e.g., T16–T27),
the decomposition accuracy of DDG is more promising than
those obtained by other decomposition methods. Moreover,
DDG can achieve significantly better decomposition accuracy
than both DG2 and XDG on all the 15 generated multiplica-
tively separable functions, that is, T16–T30. In addition, on
T16–T27, the DDG can perform significantly better than DG
and GDG on 11 and 11 problems, respectively. For T28–T30,

the decomposition accuracy of DDG is not as good as that of
GDG. This may be due to that T28–T30 are all constructed
by two nonseparable problems or overlapping problems. In
such situations, although the problem can be decomposed
correctly into two nonseparable or overlapping problems by
checking the multiplicative difference, the additive difference
cannot work well to decompose the nonseparable or overlap-
ping problems correctly, for example, the original DG also
works poorly on T28–T30. However, when compared to DG,
the DDG actually works better on T28–T30, which suggests
the effectiveness of multiplicative difference in DDG.

Third, Table S.I in the supplementary material shows that
the main advantage of DDG is the detection of multiplicatively
separable variables. As shown on the left side of Table S.I in
the supplementary material, the DDG obtains 100% accuracy
on detecting the separable variables in T16–T27, while DG,
DG2, and XDG only have much lower accuracy. For the GDG,
although it can also obtain high accuracy on detecting the sepa-
rable variables of T16–T30, similar to DDG, it can only have
low decomposition accuracy for the interacted variables (as
shown on the right side of Table S.I in the supplementary mate-
rial), and its overall detection accuracy therefore decreases. In
addition, Table S.I in the supplementary material shows that
on the multiplicatively separable problems T16–T30, the XDG
has high accuracy on interacting variables but very poor accu-
racy on separable variables. This may be because the XDG
fails to detect the separable structures in T16–T30 and mis-
takes many variables as interacting, resulting in high accuracy
on the interacting variables but nearly zero accuracy on the
separable variables. However, the DDG proposed in this article
does not have this problem because it can detect the separable
structure in not only additively separable problems but also
multiplicatively separable problems.

In conclusion, the comparisons on decomposition results
have shown the great effectiveness of DDG on both the
additively and multiplicatively separable problem.

D. Comparisons on Optimization Results

To investigate the advantage of the DDG-based CC
algorithm in optimizing LSOPs, this section compares the
optimization results. The comparisons are made among the
CC algorithms that use different decomposition methods,
including DG, DG2, XDG, and GDG. Also, the random
decomposition (RD) method is adopted to evaluate the effec-
tiveness of DDG, where the RD groups variables randomly
into five groups at the beginning of each run. For simplicity,
the CC algorithm with the decomposition method X is denoted
as “CC-X” in the following contents.

The comparison results are provided in Table III and
the detailed results are given in Table S.VI of the sup-
plementary material. According to the Wilcoxon rank-sum
test, CC-DDG significantly outperforms CC-DG, CC-DG2,
CC-XDG, CC-GDG, and CC-RD on 15, 16, 16, 16, and
15 problems, respectively. Furthermore, CC-DDG can obtain
the best results on most multiplicatively separable problems
(i.e., T21–T26 and T28–T30), showing its strong effective-
ness in solving large-scale multiplicatively separable problems.
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TABLE III
COMPARISON RESULTS OF CC ALGORITHM WITH DIFFERENT DECOMPOSITION METHODS ON THE 30 LARGE-SCALE OPTIMIZATION PROBLEMS

TABLE IV
COMPARISONS OF OVERALL DECOMPOSITION ACCURACY AMONG RDDG3, DDG, AND RDG3 AND OPTIMIZATION RESULTS AMONG

CBCC-RDDG3, CBCC-DDG, AND CBCC-RDG3 ON 30 LARGE-SCALE OPTIMIZATION PROBLEMS

In addition, on additively separable functions (T01–T11) and
nonseparable functions (T12–T15), CC-DDG can also per-
form similarly to CC-DG and obtain the best results on T03,
T06, and T10 among the six CC algorithms with different
decomposition methods, which suggests that CC-DDG can
also have competitive performance on additively separable
LSOPs. In conclusion, CC-DDG is effective for optimizing
both additively and multiplicatively separable LSOPs.

E. Comparisons With the Champion Algorithm

This part compares the DDG-based algorithm with the
champion algorithm on IEEE CEC 2019 LSGO competitions,
that is, the RDG3-based algorithm [32]. As the champion algo-
rithm adopts the contribution-based CC framework (CBCC)
as its optimization framework [32] and the covariance matrix
adaptation with evolutionary strategy (CMA-ES) [54] as its
optimizer, the DDG-based algorithm is also integrated with
CCBC and CMA-ES for a fair comparison. Moreover, as the
RDG3 is an enhanced extension of DG (i.e., the 3rd ver-
sion of recursive DG) for solving overlapping problems, we
should also extend the DDG with the 3rd version of recur-
sive strategy to obtain the RDDG3 for a fair comparison. The
extension is very easy by replacing DG with DDG, where the
modification of RDDG3 over RDG3 is given in Algorithm
S.1 (lines 9–15) of the supplementary material. This way,
the RDDG3 is expected to be suitable for additively separa-
ble, multiplicatively separable, and overlapping problems. The
three algorithms are called CBCC-RDDG3, CCBC-DDG, and
CCBC-RDG3, where the settings of CBCC and CMA-ES in
the three algorithms are configured the same according to the
original paper of CCBC-RDG3 [32].

The comparison results of grouping accuracy among
RDDG3, DDG, and RDG3 are provided on the left side of
Table IV, where the corresponding detailed results can be seen
in Table S.VII of the supplementary material. As shown in
Table IV, the RDDG3 and DDG can obtain better grouping
accuracy than the RDG3, especially on the 15 multiplicatively
separable problems (i.e., the T16 to T30). To be specific, on
the problems T01–T15, the RDDG3, DDG, and RDG3 obtain
the best grouping results on 8, 11, and 6 problems, respec-
tively. On the 15 multiplicatively separable problems (i.e.,
the T16 to T30), the RDDG3 and DDG can obtain the best
grouping results on nine and ten problems, respectively, while
the RDG3 has the best results on none of these problems.

Therefore, the grouping results have shown the effectiveness
of the RDDG3 and DDG on problem decomposition.

As for the optimization results, the comparison results of
CBCC-RDDG3, CBCC-DDG, and CBCC-RDG3 are given on
the right side of Table IV, where the corresponding detailed
results can be seen in Table S.VII of the supplementary mate-
rial. The results show that, when combining the advantages of
RDG3 and DDG together, the CBCC-RDDG3 can outperform
the CBCC-RDG3 not only on the 15 test functions T01–T15 in
the original IEEE CEC 2013 LSGO benchmark, but also on the
15 generated multiplicatively separable problems T16–T30.
Specifically, according to the Wilcoxon rank-sum test, CBCC-
RDDG3 performs significantly better than CBCC-RDG3 on 6
and 8 problems of T01–T15 and T16–T30, respectively. This
means that the CBCC-RDDG3 has better overall performance
than CBCC-RDG3 on both the additively and multiplica-
tively separable problems. Although CBCC-DDG may be not
superior to CBCC-RDG3 on some overlapping problems, it
performs better than CBCC-RDG3 on 8 out of the 15 multi-
plicatively separable problems (i.e., T16–T21, T24, and T29,
more than a half). Moreover, on the 12 overlapping prob-
lems as indicated in Table I, CBCC-RDDG3 significantly
outperforms CBCC-RDG3 on seven of them (i.e., T12–T14,
T20, T22, T25, and T28, more than a half). These suggest
that the DDG variants (especially the resulted RDDG3) can
be potential for more kinds of problems including the addi-
tively separable, multiplicatively separable, and overlapping
problem. Moreover, as the RDDG3 is the recursive version
of the DDG method and the RDG3 is the recursive version of
the DG method, the superiority of RDDG3 over RDG3 further
indicate that the DDG (i.e., considering not only additively
separable problems but also multiplicatively separable prob-
lems) is more promising than the DG (i.e., considering only
additively separable problems), which is a major motivation
and contribution of the proposed DDG.

F. Comparisons With the State-of-the-Art Nondecomposition
Algorithms

Besides the above comparisons with the decomposition-
based algorithms, this part further compares the DDG-based
CC algorithm with some state-of-the-art nondecomposition
algorithms. In particular, the three well-known algorithms in
the literature, that is: 1) SHADE-ILS [55]; 2) MLSHADE-
SPA [56]; and 3) MOS [57], are adopted in the comparison.
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TABLE V
COMPARISONS OF STATISTICAL RESULTS BETWEEN DIFFERENT CC ALGORITHMS AND STATE-OF-THE-ART NONDECOMPOSITION ALGORITHMS

The SHADE-ILS and MLSHADE-SPA are the winner and
runner-up in the IEEE 2018 LSGO competition, and MOS
is the winner in the IEEE LSGO competitions from 2013 to
2018. In the experiment, the SHADE-ILS is also adopted as
the optimizer in CC-DDG, so that we can see the advantage
of DDG more clearly from the comparisons. Moreover, other
decomposition-based CC algorithms with SHADE-ILS as the
optimizer are also adopted in the comparison to investigate the
effectiveness of CC-DDG.

The comparisons of statistical results are given in Table V,
where the detailed results are provided in Table S.VIII of the
supplementary material. As shown in Table V, the CC-DDG
can have a better overall performance than the compared algo-
rithms including decomposition-based and nondecomposition
algorithms. Specifically, when compared to the state-of-the-
art nondecomposition algorithms, CC-DDG performs signifi-
cantly better than SHADE-ILS, MLSHADE-SPA, and MOS
on 15, 19, 20 problems, similar on 7, 4, and 3 problems,
while significantly worse only on 8, 7, and 7 problems, respec-
tively. That is, the comparisons have shown the effectiveness
of CC-DDG and its potential to integrate with state-of-the-art
nondecomposition algorithms.

G. Component Analysis of DDG

To investigate the component contribution, the DDG is com-
pared with its variants that do not use the additive difference
�addi or the multiplicative difference �multi for detecting sep-
arable structures. For simplicity, these two variants are simply
denoted as DDG-w/o-addi and DDG-w/o-multi, respectively.
Note that the DDG-w/o-multi is the same as DG as it does not
detect the multiplicatively separable structure and only detects
the additively separable structure. The comparison results of
the variants are provided in Table S.IX of the supplementary
material.

First, in term of the overall accuracy, as shown in the left
three columns of Table S.IX in the supplementary material,
the DDG obtains the best results on more problems than
both the DDG-w/o-addi and DDG-w/o-multi. Specifically,
among the 30 tested problems, DDG produces the best
results on 22 problems, while DDG-w/o-addi and DDG-w/o-
multi only obtain the best results on 16 and 9 problems,
respectively. More importantly, among the three methods,
the DDG-w/o-addi performs worst on additively separable
problems (e.g., T01–T11), while DDG-w/o-multi performs
worst on multiplicatively separable problems (e.g., T16–T30),
which suggests the significance of both the additive dif-
ference and multiplicative difference for detecting separable
structures.

Second, considering the accuracy of separable variable
detection, as shown in the middle three columns of Table S.IX

in the supplementary material, the contributions of additive
difference and multiplicative difference are more obvious.
As seen, the DDG-w/o-addi method has very poor accuracy
in finding the separable variables in the additively separa-
ble problem, such as the fully separable problems T02 and
T03. In addition, the DDG-w/o-multi method works very
badly on detecting the separable variables in the multiplica-
tively separable problem, such as T25 and T27. Therefore, the
decomposition ability of DDG will deteriorate if the additive
difference or multiplicative difference is not used.

Third, the accuracy of interaction detection, together with
the overall accuracy, further reveals the poor decomposi-
tion ability of DDG-w/o-multi, showing the effectiveness of
�multi. For example, although DDG-w/o-multi can detect the
interaction structure in T27, it fails to detect the separable
variables in T27, especially multiplicatively separable vari-
ables, and mistakenly characterizes them as interacting. As
a result, most elements in the � obtained by DDG-w/o-multi
for T27 are 1. This leads to the high value of ρinter (i.e., only
on interacted variables) but a very small value on ρsep (i.e., on
separable variables) and ρoverall (i.e., on overall performance).
In other words, in terms of the detection accuracy on sepa-
rable variables and on all variables, DDG-w/o-multi performs
very poorly because it cannot detect the multiplicatively sep-
arable variables correctly. Similar results can be also seen on
other multiplicatively separable problems, e.g., T20–T26, T28,
and T29. These results further verify the great effectiveness
and contribution of �multi for decomposing multiplicatively
separable problems.

From the above, it can be concluded that both the additive
and multiplicative differences have their own contributions to
the effectiveness of DDG, and removing any of them will
decrease the decomposition performance of DDG.

H. Influences of the Threshold for Multiplicatively Separable
Detection

This part studies the influence of the threshold value for
detecting multiplicatively separable variables. For this aim,
we compared the DDG that uses the original setting (i.e.,
εmulti = 10−8) with its variants using εmulti = 10−4, εmulti =
10−12, and εmulti = 10−16, which are denoted as DDG-8 (the
original DDG), DDG-4, DDG-12, and DDG-16, respectively.
The decomposition results are provided in Table S.X of the
supplementary material.

First, Table S.X in the supplementary material shows that
the threshold setting εmulti for detecting multiplicatively sep-
arable variables does not have a significant influence on the
decomposition accuracy for additively separable problems. It
can be seen that on additively separable functions, for example,
T01–T11, the DDG with different threshold settings obtains
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similar decomposition accuracy. In other words, the settings
of εmulti will not affect the decomposition ability of DDG on
additively separable problems and, therefore, the DDG with
a proper εmulti can be suitable for both additively separable
problems and multiplicatively separable problems.

Second, Table S.X in the supplementary material shows
that different multiplicatively separable problems favor dif-
ferent εmulti. As shown in Table S.X of the supplementary
material, εmulti = 10−8 achieves higher accuracy on T21 and
T24 than other settings, εmulti = 10−12 obtains the best results
on T25–T27, εmulti = 10−16 outperforms other settings on
T19, T20, T22, and T23, and the best results in T28–T30 are
produced by εmulti = 10−4. Generally, when the test functions
are construed by functions f1 − f3, smaller threshold settings
(i.e., εmulti = 10−8, εmulti = 10−12, and εmulti = 10−16) can
have higher decomposition accuracy than the larger setting
εmulti = 10−4, while for problems constructed by T13–T15,
larger threshold settings (e.g., εmulti = 10−4) can produce
better results than other settings. This may be because that dif-
ferent problems require different threshold values to determine
whether the variables are multiplicatively separable. In addi-
tion, although εmulti = 10−4 obtains most of the best results
among the four settings, it has a much worse result on T15 than
other settings, which means that its performance is sensitive to
the problem characteristics and may have a poor generalization
ability. Therefore, it should not be considered a good setting
in this article. Instead, εmulti = 10−8 balances the decompo-
sition accuracy on different problems and is recommended in
this article.

In conclusion, the threshold value εmulti does not have a
significant influence on the decomposition ability of DDG
on the additively separable problem, but a good setting of
εmulti can further improve the ability of DDG to decompose
multiplicatively separable problems.

I. Case Study on the Parameter Optimization for Neural
Network-Based Application

To further study the effectiveness of the proposed DDG, this
part conducts a case study on the NN parameter optimization
application. NN is efficient for classification problems and has
been widely used in many real-world applications [40], [41].
However, the parameters (e.g., weights and bias) of the NN
are essential to the performance, which requires efficient
optimization. Moreover, the NN often contains a great num-
ber of parameters (always more than 1000) to be optimized.
Therefore, the parameters optimization of NN is a typical
LSOP, which is suitable to evaluate the application ability
of DDG.

In this article, we consider an NN-based classification
system for the wine classification task, where the pub-
lic wine dataset is collected from the UCI Machiness
Learning Repository (http://archive.ics.uci.edu/ml/index.php).
The dataset contains 178 samples, and each sample has 13 fea-
tures and belongs to one of the three categories. For such a
classification problem, a widely used three-layer NN model
is adopted in this article, which includes one input, one hid-
den, and one output layer, as shown in Fig. 3. The input layer

Fig. 3. Neural network-based classification system.

has 13 neurons to receive the 13 features. The hidden layer
has 60 neurons, with the activation function of each hidden
neuron being the widely used sigmoid function. Moreover,
three-dimension one-hot encoding is used to encode the three
categories and, therefore, there are three neurons in the output
layer. For each input sample Xi, the target output Yi is a 3-D
vector with Yi,j == 1 if Xi belongs to the jth category and
Yi,j == 0 otherwise (j = 1, 2, 3). Therefore, given NS samples
and their corresponding targeted outputs, the NN parame-
ter optimization problem can be defined as a minimization
optimization problem with the objective function F(θ) as

min F(θ) = 1

NS

NS∑
i=1

‖NN(θ, Xi)− Yi‖2 (25)

where θ represents the parameters of the NN, that is, the
variables to be optimized, NN(θ, Xi) is the output of the
NN, ||NN(θ, Xi)−−Yi||2 computes the square sum of the 3-D
differential vector between NN(θ, Xi) and Yi, and smaller F(θ)

is better.
Based on the above, the number of parameters between the

input and hidden layers is 60 × (13 + 1) = 840 (each of the
60 hidden neurons requires 13 weights for the 13 features
inputs and one bias), and the number of parameters between
the hidden and output layers is 3×(60+1) = 183 (each of the
3 output neurons requires 60 weights for the 60 hidden neu-
rons and one bias). Therefore, the total number of parameters
for optimization is 840 + 183 = 1023, that is, the parameter
optimization problem is with 1023 variables. In addition, for
a fair comparison, all decompositions methods are integrated
with the CC framework and have 3×106 FEs in total for every
independent run (including the FEs consumed for decompo-
sitions). Besides, the first 80% of samples data are used as
training data while the last 20% of samples data are treated as
test data, and the search range of each parameter is [−1, 1].

Table VI gives the comparison result of different
decomposition-based CC algorithms over 25 runs. As can be
seen, the CC-DDG obtains the best training loss and accuracy
among the seven algorithms. Moreover, it is interesting that
only DDG can decompose the problem into different groups,
while all other methods (except the RD) fail to decompose
the problem but still consume considerable unnecessary FEs,
which suggest that this problem is not additively separable
but multiplicatively separable. Therefore, our proposed DDG
method is promising. For better visualization, Fig. 4 provides
the grouping map of the 1023 variables based on the DDG
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TABLE VI
COMPARISONS OF DIFFERENT CC ALGORITHMS FOR PARAMETER

OPTIMIZATION OF THE NEURAL NETWORK-BASED SYSTEM

Fig. 4. Grouping map of 1023 variables based on the DDG, where a pixel
(i, j) with color means the ith and the jth variables are in the same group,
while with white color means not in the same group.

results, where the color of each pixel (i, j) means the ith and
jth variables are in the same group of the corresponding color
except that white color means the ith and jth variables are not
in the same group. As shown in Fig. 4, the groupings have
a regular pattern and similar size after the decomposition by
DDG. Therefore, the superiority of CC-DDG may be due to
that the DDG can decompose the problem appropriately with
a small amount of FEs and then the problem can be opti-
mized more efficiently and with more remainder FEs. Based
on the above, the case study has verified the effectiveness of
the proposed DDG.

V. CONCLUSION

In this article, we attempted to obtain a more general
decomposition method to decompose and optimize more kinds
of LSOPs correctly and efficiently. First, we mathematically
defined the multiplicatively separable function and showed its
relationship with the additively separable function. Then, we
proposed and proved two related theorems that can guide the

detection of the separable structure in multiplicatively separa-
ble problems. Based on the above, the novel DDG method was
proposed to achieve a more general decomposition ability for
LSOP. The DDG can utilize two kinds of differences to detect
the separable structure of the additively and multiplicatively
separable problem. Moreover, the DDG-based CC algorithm
framework is developed for solving LSOP by combining the
DDG with a classical and widely used CC framework. In addi-
tion, the time complexity of DDG is also analyzed with respect
to the number of FEs. Extensive experiments were conducted
on 30 LSOPs and a case study on parameter optimization
for the NN-based application, where state-of-the-art methods
are adopted for comparisons. The experimental results have
verified the effectiveness and efficiency of the DDG and the
DDG-based algorithm.

For future work, the idea of DDG will be further stud-
ied to reduce the FEs cost, improve the detection ability,
and address the disadvantage in handling negative objective
functions. Furthermore, the DDG will be further studied and
extended to solving more kinds of separable problems, such
as multiplicatively separable functions generated by differ-
ent types of functions (e.g., T04–T11). Also, the combination
of different decomposition methods and optimizers is wor-
thy of research to develop more powerful algorithms. Besides,
the DDG-based algorithms with the distributed computation
method [58]–[60] are worthy to be studied and applied to
challenging real-world LSOPs and big data applications.
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