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Unsupervised Scalable Multimodal Driving
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Yuning Qiu , Student Member, IEEE, Teruhisa Misu , Member, IEEE, and Carlos Busso , Senior Member, IEEE

Abstract—Driving anomaly detection aims to identify objects,
events or actions that can increase the risk of accidents, reducing
road safety. While supervised approaches can effectively identify
aspects related to driving anomalies, it is unfeasible to tabulate
and address all potential driving anomalies. Instead, it is appeal-
ing to design unsupervised approaches that can automatically
identify unexpected driving scenarios. This study formulates the
detection of driving anomalies as a binary-discrimination task
between expected and unexpected driving behaviors. We propose
an unsupervised contrastive method using conditional generative
adversarial networks (GANs) implemented with the attention model
and the triplet loss function. A feature of our framework is its
scalability, where it is easy to add new modalities. We consider
five different modalities: the vehicle’s CAN-Bus signals, driver’s
physiological signals, distance to nearby pedestrians, distance to
nearby vehicles and distance to nearby bicycles. Our approach
trains a conditional GAN to extract latent features from each of
the five modalities. An attention model combines the latent rep-
resentations from the modalities. The entire framework is trained
with the triplet loss function to generate effective representations to
discriminate normal and abnormal driving segments. We conduct
experimental evaluations on the driving anomaly dataset (DAD),
achieving improved performance over alternative approaches.

Index Terms—Driving anomaly detection, conditional generative
adversarial networks, attention mechanism, triplet loss function.

I. INTRODUCTION

IDENTIFYING abnormal driving behaviors is an important
research area with significant societal impact as lives can be

saved by increasing road safety. Multiple rule-based and pattern-
based methods have been proposed for driving anomaly detec-
tion, including monitoring of road conditions [1]–[3], aggressive
driving behaviors [4]–[9], risky driving patterns [10]–[16] and
unusual driving styles (e.g., fatigue and meandering) [17]–[24].
A typical challenge in those driving anomaly detection methods
is that the vehicle’s driving conditions can vary significantly
under different scenarios, which make driving patterns and rules
hard to reliably establish. Furthermore, it is nearly impossi-
ble to exhaustively tabulate all possible actions or situations
that lead to hazardous scenarios. Fig. 1 shows four relevant
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Fig. 1. Examples of abnormal driving scenarios where driver’s maneuvers are
affected by other vehicles or pedestrians: (a) a car drives in the wrong lane in
front of the car, (b) a pedestrian suddenly crosses the street, (c) a bicyclist rushes
across the street, and (d) a vehicle cuts into the vehicle’s lane.

examples of driving scenarios, illustrating the difficulty in build-
ing rule-based systems to detect anomalous scenarios, or creat-
ing specialized approaches to deal with each case. An appealing
approach is to use unsupervised multimodal approaches to detect
driving anomalies by discriminating expected driving behaviors
as normal cases and unexpected driving behaviors as abnormal
cases.

This study proposes an unsupervised contrastive framework
to identify driving anomalies using multiple modalities. The key
principle in our formulation is that anomalous driving scenarios
are characterized by deviations from expected behaviors. Our
approach creates predictions of future frames, conditioned on
the values of these signals observed in previous frames. Then,
it contrasts the predictions with the actual signals, quantifying
their differences. The core feature extraction module relies on
conditional generative adversarial networks (GANs), follow-
ing the ideas presented in our previous study [25]. We build
one conditional GAN per modality, where its generator creates
the predictions of the signals from upcoming frames and the
discriminator determines if the data is real or synthesized by the
generator. Then, we extract the embedding of the penultimate
layer of the discriminator, which is used as the representation
for the modality. A novel contribution in this study is the
fusion of the modalities, where we rely on the self-attention
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mechanism [26]. The weights assigned to the modalities by the
attention mechanism indicate the relative importance of each
modality. A strength of the approach is the contrastive loss used
to train the proposed formulation in an unsupervised manner. We
rely on the triplet loss function [27], where the goal is to reduce
the distance between the predicted data and the observed signals,
while increasing the distance between the predicted data and
the data from a randomly selected segment. After pre-training
the individual conditional GANs, the approach can be jointly
trained, creating effective end-to-end solutions.

The proposed formulation is scalable, with separate GAN
models applied to each of the modalities, avoiding dimension
explosion. The feature embeddings extracted from the GAN
models are fused by the attention model. An advantage of
seamlessly incorporating more modalities is that the system
can respond even when the driver is not aware of hazardous
scenarios. Our previous work only considered the driver’s phys-
iological data and the vehicle’s CAN-Bus data [28], [29]. In
daily urban traffic, unexpected reactions and maneuvers can be
caused by either a pedestrian rushing across the road, another
vehicle abruptly cutting into the lane or mistakes made by the
drivers (see real examples in Fig. 1). If the driver is not aware
of these anomalies, her/his physiological reactions and maneu-
vers will not reflect the anomaly. Therefore, we incorporate
environmental information from vision-based object detection
systems applied to the road. In addition to physiological signals
and CAN-Bus signals, we add three modalities: distances to
nearby cars, pedestrians and bicycles. Our proposed system still
perceives these driving anomalies even though the driver might
have neglected them.

We rely on the recordings from the driving anomaly dataset
(DAD) [28] to evaluate our proposed scalable multimodal ap-
proach. Experimental results show that recordings annotated
with possible abnormal incidents (such as avoiding pedestrians,
bicycles, or other vehicles) have higher anomaly scores than
recordings without events. To validate the results, we implement
perceptual evaluations of video segments, where human annota-
tors were asked to assess the risk level, familiarity level, anomaly
level, and causes of the anomalies of the driving scenarios. We
evaluate our approach with three baselines. The first baseline
is the CNN-LSTM based conditional GAN model proposed by
Qiu et al. [25], which is trained with 2 modalities: the vehicle’s
CAN-Bus signals and the driver’s physiological signals. The
second baseline is the BeatGAN framework proposed by Zhou
et al. [30], which is an unsupervised method using GANs also
trained with CAN-bus and physiological signals. The third base-
line is our proposed attention model trained only with the afore-
mentioned two modalities to further quantify the effectiveness of
adding the three modalities describing external information. The
results show that when trained with CAN-Bus and physiological
data, the proposed attention model leads to better performance
than the CNN-LSTM based conditional GANs and the BeatGAN
models. The discriminative performance of our model increases
when we add contextual information about the road, modeling
the distances to nearby pedestrians, bicycles and vehicles. This
model leads to the best results observed for this task. The main
contributions of our study are:
� Scalable formulation for driving anomaly detection that

seamlessly incorporates new modalities using an attention
model.

� Modeling of contextual information derived from vision-
based object detection systems applied to the road, where

our approach can react even when the driver is unaware of
potential anomalous scenarios.

� Exhaustive evaluations of the proposed approach using
objective and perceptual evaluations on naturalistic record-
ings collected in real road environments.

This study is organized as follows. Section II presents related
studies addressing the detection of driving anomalies. It also
describes background information to understand the proposed
architecture. Section III discusses the details of our proposed
model. Section IV introduces the dataset to train and evaluate
our proposed model, and the implementation details. Section V
evaluates the discriminative performance of our proposed model
with objective and subjective comparisons. Finally, Section VI
summarizes the contributions of this work, discussing future
research directions.

II. RELATED WORK

A. Driving Anomaly Detection

Studies have proposed methods for anomaly detection in
several domains. In the area of in-vehicle safety systems, many
approaches have been proposed for abnormal driving condition
detection, either based on driving rules [1]–[4], [6], [7], [10]–
[16], [18] or driving patterns [5], [8], [9], [17], [19]–[24]. Most of
these studies use the vehicle’s driving information (e.g., speed,
acceleration and yaw angle) to describe the vehicle’s driving
conditions. The approaches based on driving rules detect target
events by either setting a threshold on the vehicle’s driving
information [1]–[4], [6], [7], [10], [14], [16], [18], or calculating
the driving behavior key performance indicators (KPI) using pre-
defined formulas [11]–[13], [15]. The approaches based on driv-
ing patterns determine abnormal conditions utilizing machine
learning methods, including support vector machine (SVM) [8],
[17], [21], [31], neural networks (NN) [20], [23], hidden Markov
models (HMM) [22] and Bayesian classifiers [5]. Chen et al. [8]
extracted statistic features from the vehicle’s acceleration and
orientation, using these features to train a SVM that identifies
six different abnormal driving patterns (i.e. weaving, swerving,
sideslipping, fast U-turn, turning with a wide radius, and sudden
braking). Some studies have utilized the driver’s information,
such as physiological signals [28], [29], [32], eye gaze infor-
mation [33], [34], facial expressions [35], [36], and driving ges-
tures [37], [38] to identify driving anomalies. Köpüklü et al. [38]
used the videos recorded by a frontal camera facing the driver
and a top camera facing the steering wheel to detect the driver’s
abnormal behaviors. To extract spatial-temporal features of the
driver’s behaviors, the authors trained a 3D-convolutional neural
network (CNN) with contrastive loss to maximize the similarity
between normal driving events, and minimize the similarity be-
tween normal and abnormal driving samples. During inferences,
the feature representations of all the normal driving training
clips are normalized using the l2 normalization, using this
representation as a template vector describing normal driving.
For each testing clip, the authors extracted a feature vector using
the 3D-CNN model and calculated the cosine similarity between
the feature vector and the normal driving template vector. The
testing clips with a cosine similarity score with a value below a
preset threshold were considered as anomalies.

With the development of computer vision, many studies have
proposed methods to detect and identify driving anomalies by
using a camera to collect information about the surrounding
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traffic environment [39]–[42]. Yao et al. [41] proposed a vision-
based approach to detect traffic accidents in videos recorded by
a dashboard-mounted camera. The approach localizes detected
traffic participants (e.g., other vehicles and pedestrians) using
bounding boxes, making predictions on their trajectories based
on previous frames. They train their model with only normal
driving videos to detect deviations from predicted behaviors,
under the assumption that moving trajectories in traffic accidents
deviate from expected trajectories. Our study proposes an unsu-
pervised driving anomaly detection system by combining the ve-
hicle’s driving information, driver’s physiological information,
and vision-based surrounding traffic environmental information
to improve the performance of the system.

B. Conditional GANs for Anomaly Detection on Time Series

Generative adversarial networks (GANs) [43] have demon-
strated effectiveness for time series data anomaly detection [28],
[44]–[46]. A GAN consists of a generator (G) that creates
synthetic data from noise, and a discriminator (D) that deter-
mines whether the data is real or produced by the generator. By
training the generator and discriminator with an adversarial loss,
the model creates realistic synthetic data. As a state-of-the-art
generative approach, GANs have been used to detect anomalies
mostly in other domains. Zhou et al. [30] proposed BeatGAN,
which is a GAN-based system that was used for two problems:
to detect anomalous beats from electrocardiogram (ECG) sig-
nals, and to identify unusual human motions (e.g., hopping and
jumping) from normal activities such as walking. The approach
builds a generator with an encoder-decoder structure, using the
reconstructed signals as the generated fake signals to confuse
the discriminator. After training, they used the reconstruction
error between the real signal and the generated fake signal as
the anomalous metric to detect abnormal beats in ECG signals.
Other alternative approaches relying on GANs to detect anoma-
lies in other domains include the methods presented by Hyland
et al. [47], Akcay et al. [48], and Zenati et al. [49].

C. Attention Mechanism for Multimodal Fusion

Our study uses attention networks [26] implemented with the
triplet loss function [27] to jointly learn discriminative embed-
dings for driving anomaly detection. Hori et al. [50] proposed
an attention-based feature fusion approach to incorporate audio,
motion and image features to describe the content of videos. The
approach calculates the attention weights of the input features
from different modalities, estimating the linear combination of
the embeddings of individual modalities using these attention
weights. The attention mechanism allows the relative weights of
each modality to change based on the context, showing that this
combination approach is effective to improve the description
accuracy. Chen et al. [51] utilized the self-attention mecha-
nism to fuse audiovisual features for an affect recognition task.
Song et al. [39] combined attention mechanism and triplet loss
function to learn effective representations from speech audio
for speaker diarization. The authors used an attention model to
calculate feature embeddings directly from Mel-frequency cep-
stral coefficients (MFCCs) obtained from the speech segments.
Then, they input the extracted features to the subsequent network
to learn a similarity metric with the triplet loss function. The
triplet loss function [27] has been widely used in discrimination
tasks facilitating contrastive learning solutions to learn more

Fig. 2. Training procedure of the conditional GAN model. The generator G
predicts plausible data of the upcoming driving segment based on the observed
signals. The discriminator D determines if the data is real or created by G.

discriminant representations. Inspired by these studies, our pro-
posed methods combine the attention models with the triplet loss
function.

D. Relation to Prior Work

In our previous work [52], we found that features extracted
from the vehicle’s CAN-Bus signals and the driver’s physiolog-
ical signals can be used to discriminate different driving maneu-
vers. Utilizing the driver’s physiological data and the vehicle’s
CAN-Bus data, we proposed an unsupervised driving anomaly
detection approach based on conditional generative adversarial
networks (GANs) [25], [28], [29]. The driving anomalies were
defined as the events that deviate from normal or expected driv-
ing patterns that may lead to dangerous situations. Fig. 2 shows
the strategy for detecting driving anomalies using a conditional
GAN. We used the generator of the GAN to make predictions
on the vehicle’s CAN-Bus signals and the driver’s physiological
signals, conditioned on the data from previous driving segments.
The discriminator of the GAN was trained to identify whether the
input data was real or synthesized by the generator. The absolute
value of the difference between the discriminator outputs of
the predicted data and the upcoming real signal was regarded
as the anomaly metric, manomaly , which indicates the abnormal
level of the driving condition. An abnormal driving condition
was expected to have a higher value for manomaly than a normal
driving condition. Qiu et al. [29] extended the approach by
defining a new metric based on the triplet loss function. Based
on the conditional GAN model, the study proposed a triplet-loss
neural network which took the intermediate layer embeddings
of the discriminator as the input [29]. This triplet network was
trained to decrease the distance between the embeddings of the
prediction and real data, while increasing the distance between
the embeddings of the real data and an unpaired prediction
(i.e., predicted from unrelated segments). Compared with the
conditional GAN-based model, the triplet-loss neural network
increases the discrimination performance by contrasting the
differences between predicted and real features. This process
requires no label, leading to an appealing unsupervised approach
to detect driving anomalies.

Our previous approaches have two major limitations [25],
[28], [29]. First, the system responds only when the driver is
aware of the anomalies. The driver’s physiological signals and
the vehicle’s CAN-Bus data describe the driver’s reactions. The
system would fail to detect potential anomalies when the driver is
not aware of them (e.g., presence of a pedestrian on the road that
the driver has overlooked). Second, it is not easy for the system to
extend the approach to include more modalities. Increasing the
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Fig. 3. Proposed unsupervised, scalable, multimodal architecture to detect driving anomalies. The feature representations are obtained with a conditional GAN
for each of the modalities. In the figure, the variable Gi represents the generator of the i modality, and Di represents the discriminator of the i modality. The
attention model weights the modalities using a triplet loss function.

dimension of the inputs would prevent the convergence during
the training process of the GAN model.

Building upon our previous work, this study addresses these
two challenges by proposing an unsupervised scalable multi-
modal driving anomaly detection system. The modalities are
fused using an attention model, which provides a principled
approach to scale our formulation to include more modalities.
We can seamlessly incorporate information about nearby pedes-
trians, bicycles and other vehicles. This is a contrastive approach
implemented with the triplet loss function, which does not re-
quire labeled data. These features are fundamental contributions
that make our approach more appealing for real applications.

III. PROPOSED MODEL

This study proposes a novel unsupervised driving anomaly
detection framework that has three main blocks. Fig. 3 shows an
overview of our framework. The first block extracts embeddings
from multiple modalities with conditional generative adversar-
ial networks (GANs). The second block fuses the modalities
with the attention mechanism, learning from the data how to
weight the representations from each modality. The third block
is the triplet loss function that is used to train the model, learning
a contrastive-based metric that indicates the anomaly level of the
target recording.

Our proposed implementation has five modalities: the vehi-
cle’s CAN-Bus signals, the driver’s physiological signals, the
distances to nearby vehicles, the distances to nearby bicyclists
and the distances to nearby pedestrians. By combining the
conditional GAN models, self-attention mechanism and triplet
loss function, we aim to create a framework that is (1) scalable,
making it easy to add more modalities if needed, and (2) ef-
fective, learning representations of the features extracted from
different modalities. This section describes the details about the
three building blocks of our proposed method.

A. Feature Extraction Using Conditional GANs

The first block in the system extracts a discriminative feature
representation for each of the modalities. This feature extraction
module is implemented with the conditional GANs used in the
unsupervised driving anomaly detection system proposed by
Qiu et al. [25]. Instead of adopting an early fusion approach by
building one GAN model that takes all the multimodal signals
as input, we adopt a model-level fusion approach by building

separate GANs for each modality, which are later combined
using the attention mechanism. As mentioned in Section II-D,
the key purpose of using a GAN for this task is to generate
predictions that are compared with the observed signals. Fig. 3
shows the architecture of the generator and discriminator of the
conditional GANs, which is the same architecture proposed in
Qiu et al. [25]. We use CNNs and recurrent neural networks
(RNNs) implemented with long-short term memory (LSTM)
cells [53]. The CNNs extract feature embeddings from the orig-
inal input signals without relying on hand crafted features. The
output of the CNNs are then processed by the LSTM network to
leverage temporal information in the time series sequence. For
each modality, the generator (G) predicts plausible data of the
upcoming 6-second driving segments based on the previous 30
seconds signals, and the discriminator D determines whether the
data is real or fake. Equations 1 and 2 show the cost function of
this adversarial task, where x is the data sample, z is the noise
sample, pdata is the distribution of data and pz is the distribution
of the noise.

max
D

V (D) = Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))] (1)

min
G

V (G) = Ez∼pz(z) [log(1−D(G(z)))] (2)

From each conditional GAN model, we extract the embedding
of the penultimate layer of D as the feature embedding of the
modality. By building separate GANs for each modality, our
proposed system is easy to scale when more modalities are avail-
able. Section IV-B discusses implementation details, including
pre-training each GAN before jointly training the entire system.

B. Self-Attention Model for Multimodal Fusion

The combination of features from multiple modalities is
expected to effectively improve the model performance. This
section describes the self-attention network used to implement
the fusion of N modalities, each of which has its own feature
embedding, extracted from the penultimate layer of its D. The
key idea is to linearly combine the individual embedding by
dynamically defining the modality weights using the attention
mechanism. For a driving segment, the attention model takes
N embeddings as input features. Fig. 4 shows the structure of
the attention network used in this work. The core component
of the attention network is the multi-head module from the
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Fig. 4. Details of the architecture used for the attention module. The output of this model is the output embedding used for the triplet loss function.

self-attention mechanism [26]. More specifically, we stack the
features of each modality as the input of the attention model,
which we denoted X . For each head, we estimate the matrices
WQ, WK and WV . These matrices are trainable parameters
to map the input X into Q (query), K (key), and V (value),
respectively. We map X into these three subspaces by mul-
tiplying these matrices with X (i.e., Q = XWQ, K = XWK

and V = XWV ). We compute the scaled dot-product attention
based on the attention matrices. Then, the dot product of Q and
K are activated by the softmax function as the attention weights.
The matrix of attention representation is computed as:

W = softmax

(
QKT

√
dk

)
(3)

Attention(Q,K, V ) = WV (4)

where dk = 256 is the dimension of the attention matrix K.
The attention weight matrix W describes the interaction among
the N input modalities by computing the scaled inner prod-
uct between pairs of modalities. The number of multi-head
attentions is denoted by H . The attention representations are
computed using H parallel sets of attention matrices, denoted
as heads. The reason for assigning different matrices to each
attention head (WQ, WK , WV ) is that the model pay attention
to the relationship among different modalities. We concate-
nate the resulting H attention representations together as an
ensemble of attention representations. Multi-head attention pre-
vents the model from focusing on only one modality by jointly
considering information from multiple representations. This
multi-head attention module can be stacked multiple times for
a deeper structure. We denote the number of stacked attention
modules by L. The connection between two modules is a feed
forward network (FFN) implemented with two fully connected
layers, where the activation function of the first layer is the
rectified linear unit (ReLU). In (5), W1 and W2 are the weight
matrices, and b1 and b2 are the bias terms of the FFN.

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

C. Triplet Loss for Metric Learning

Inspired by the work of Qiu et al. [29], the representations
from the attention model are then used to learn a similarity
metric with the triplet loss function. The use of this contrastive
loss aims to build embeddings that are discriminative for the
driving anomaly detection task using an unsupervised strategy.
In a triplet network, each input is constructed as a set of three
samples: sp, sa, and sn. The sample sa denotes an anchor, sp
denotes a positive sample belonging to the same class as sa, and
sn denotes a negative sample from a different class. The goal of
the triplet loss function is to create an embedding that minimizes
the distance between the anchor and the positive sample while
increasing the distance between the anchor and the negative

Fig. 5. Attention network trained with the triplet loss function. The penul-
timate layer embeddings of the discriminators are extracted as input of the
attention model. During inferences, we estimate the absolute difference between
EActual and EPredicted, which is used as the anomaly score.

sample. This study considers the real data to be predicted
as the anchor example sa, and the prediction conditioned on
the previous frames as the positive example sp. The negative
example sn corresponds to the predicted data from another
randomly selected driving segment (i.e., unpaired data). Fig. 5(a)
shows the training procedure. The samples are processed by the
separate GAN models (Section III-A) and the attention model
(Section III-B). The corresponding outputs are referred to as
Ea for the anchor, Ep for the positive sample, and En for the
negative sample. We use the Euclidian distance between these
vectors to estimate the cost function, which is defined in (8). The
distance between Ea and Ep is minimized, while the distance
between Ea and En is maximized to be larger than a preset
margin α.

Dap = ‖Ea − Ep‖2 (6)

Dan = ‖Ea − En‖2 (7)

LTriplet = max(0, D2
ap −D2

an + α) (8)

This loss function maps the embedding of the predicted data,
closer to the embedding of the corresponding actual data and
far away from the embedding of the unpaired data. This whole
process is fully unsupervised, requiring no labels.

Fig. 5(b) shows the inference procedure. For a driving seg-
ment, we process the real data, obtaining EActual and the pre-
dicted data by the generator, obtaining EPredicted . Equation 9
shows the final anomaly score, which consists of the difference
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between EActual and EPredicted . A high value of Sanomaly in-
dicates that the driving segment is more unexpected, suggesting
a higher degree of anomaly.

Sanomaly = |EActual − EPredicted| (9)

IV. EXPERIMENTAL SETTING

A. Driving Anomaly Dataset (DAD)

The experiments in this study rely on the driving anomaly
dataset (DAD) [28] collected by Honda Research Institute (HRI)
in an Asian city. The dataset contains 250 hours of naturalistic
driving recordings, where 84 hours are used in this study. The
data is collected during day time, and most of the driving scenar-
ios are under urban driving environments, including residential,
school area, and downtown area. The data includes very little
segments with highway driving. We rely on the vehicle’s CAN-
Bus signals, which consist of the vehicle’s speed, yaw angle,
steer angle, steer speed, pedal pressure and pedal angle (6D
vector). We also use the driver’s physiological signals, which are
collected using a chest band (heart rate and breath rate - Zephyer
BioHarness 3 chestband) and a wristband (skin conductance
and sphygmus - Empatica E4). From these sensors, we use the
following three signals: heart rate (HR), breath rate (BR), and
electrodermal activity (EDA). We also leverage road information
extracted with a vision-based object detection system. The object
distance information includes the distance to nearby vehicles,
pedestrians, and bicyclists. The objects are detected by a smart
camera mounted on the interior side of the windshield, utilizing
Mobileye technology. This system measures the distances to
nearby pedestrians, bicyclists, vehicles and lane markings. Mo-
bileye’s algorithm can simultaneously detect multiple objects.
For this study, we only consider the two closest pedestrians,
bicyclists, and vehicles. Each of these modalities is represented
with a 4D vector including the horizontal and vertical distances
from the car of the two closest pedestrians, bicyclists, or vehicles.
All the considered signals are synchronized at the sampling rate
of 30 Hz.

The dataset is manually annotated using the camera recording
of the road. The annotation process followed the same protocol
used in the collection of the Honda Research Institute driving
dataset (HDD) [54], [55]. The annotation includes the presence
of several events and maneuvers. Regular driving maneuvers,
such as turns and lane changes, are defined as goal-oriented
operations, while the maneuvers that are influenced by other
traffic participants are defined as stimuli-driven operations (e.g.,
avoid pedestrian near ego lane and avoid on-road bicyclist).
More detailed information about this dataset is provided by
the studies of Qiu et al. [28], [29]. In this work, we group
the driving segments into two sets according to the annotations
provided by the annotators. The driving segments that overlap
with no annotations are considered as the normal set. The driving
segments that overlap with stimuli-driven operation, driver’s
error and traffic rule violation annotations are grouped as the
candidate set. These segments can potentially be associated
with driving anomalies. Table I shows the details with the
annotations included in these two sets. The candidate driving
set represents only 1.69% of the recordings. This ratio is similar
across partitions with 1.57% for the train set, 1.53% for the
development set and 2.44% for the test set. This study considers
89 sessions, which correspond to approximately 84 hours of
urban driving recordings. We split these recordings into 3 sets:

TABLE I
DEFINITION OF CANDIDATE AND NORMAL SETS. THE ANNOTATIONS

CORRESPOND TO THE LABELS INCLUDED IN THE DAD CORPUS

train (72 sessions, approx. 70 hours), development (3 sessions,
approx. 4 hours), and test (14 sessions, approx. 10 hours) sets.

B. Implementation Details

This section introduces the implementation details of our
approach. Our proposed model includes the conditional GANs,
to derive discriminative feature representations, and the self-
attention networks, to fuse the modalities. We implement the
conditional GANs with convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). The generator consists
of six convolutional layers, implemented with 64, 64, 128, 128,
64 and 1 channels, respectively. We use batch normalization
and a leaky ReLU function [56] for each layer except the output
layer. The output of the CNNs is fed into the RNNs, which
are implemented with two layers of long short-term memory
(LSTM) cells. The number of units in each LSTM cell is 64. The
output of the LSTM cells goes through a single fully connected
layer, where its dimension is equal to the corresponding input
modality. Similarly, the discriminator consists of four convolu-
tional layers, implemented with 64, 128, 128 and 64 channels,
respectively, followed by two layers of LSTM cells. Each LSTM
layer is implemented with 64 units. The output of the LSTM
is fed into the feed forward networks, which has three layers
with dimensions 1024, 1024, and 1, respectively. The first two
layers are activated with the leaky ReLU function, while the last
layer is activated with a sigmoid function. The 1024-dimensional
embedding of the second layer will be extracted as the unimodal
feature representation of each modality.

During the training process, we train the generator and dis-
criminator for 20 epochs. We use the Adam optimizer, with a
learning rate set to 0.001. After training the GANs, we freeze
the GANs’ parameters and extract an unimodal feature rep-
resentation for each modality, which we denote zCAN−Bus ,
zphysiological , zpedestrian , zvehicle , and zbicyclist . We map these
vectors into a subspace with a trainable projection implemented
with the Tanh activation to produce the vector representations
xCAN−Bus , xphysiological , xpedestrian , xvehicle , and xbicyclist .
These transformations compensate for the differences in magni-
tude. Then, we stack the vector embeddings of the five modalities
as the input of the attention networks. We denote this matrix as
X ∈ RN×dmodel , whereN = 5 and dmodel = 512. As introduced
in Section III-B, we apply multi-head attention mechanism to
attend to information from different representation subspaces as
following:

MultiHead(Q,K, V ) = Concat(head1, . . ., headH)WO (10)

headi = Attention(XWQ
i , XWK

i , XWV
i )

(11)

where the parameter matrices are WQ
i ∈ Rdmodel×dQ , WK

i ∈
Rdmodel×dK , WV

i ∈ Rdmodel×dV , and WO
i ∈ Rdmodel×dV . We
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use five heads (i.e., H = 5), setting the dimensions of the query,
key and value to 256 (i.e., dQ = dK = dV = 256). Section V-A
discusses results with different number of heads. The attention
module is stacked L times, setting L = 2. The feed forward
network in the attention model is implemented with three fully
connected layers with dimension equal to dmodel to facilitate the
residual connections.

The parameters of the attention networks are trained with
the triplet loss function introduced in Section III-C. We use the
Adam optimizer with a learning rate equal to 0.001. After ten
epochs, we jointly train the parameters of the GANs and the
attention networks for another five epochs, where all the param-
eters are optimized to improve the proposed driving anomaly
detection system (i.e., end-to-end solution). We use a constant
margin for the triplet loss function (α in (8)). The value of α
needs to be adjusted during training. On the one hand, the loss
of the model will be very large if the margin is too large. Under
this setting, the model may not converge during the training
process. A benefit of having a large margin is that the model
will be more confident distinguishing similar samples. On the
other hand, the loss easily converges to 0 if the margin is too
small, which makes it more difficult for the model to distinguish
between similar samples. We implement the training process
with different values for this margin, varying α from 2 to 25.
We evaluate the results on the development set, using the binary
classes normal and candidate sets. We set α = 8, which led to
the best performance on the development set.

V. EXPERIMENTAL RESULTS

This section describes the experimental results of our pro-
posed unsupervised scalable multimodal driving anomaly de-
tection system. We also use subjective perceptual evaluation to
evaluate the model performance.

A. Driving Anomaly Detection

We evaluate model performance by comparing the anomaly
scores of the driving segments in candidate and normal sets
(Sec. IV-A). The annotations included in the videos from the
candidate set suggest something abnormal in the video, due to
the driver’s maneuvers, or the presence of other people, objects
or events (e.g., pedestrian crossing the street). Therefore, the
segments from the candidate set are expected to have higher
anomaly scores than the segments from the normal set, which
do not overlap with any annotation.

We compare the performance of our proposed model with
three baseline models. The first baseline is the CNN-LSTM con-
ditional GANs proposed by Qiu et al. [25], which is trained with
two modalities: the vehicle’s CAN-Bus signals and the driver’s
physiological signals. We refer to this method as CNN-LSTM
GANs with 2 modalities. This model concatenates the modalities
training a single conditional GAN model. This formulation
increases the dimension of the embeddings since it uses a single
concatenated representation. As we increase its dimension, the
model will require more data to effectively train this high di-
mensional feature representation. The convergence of the model
during training is compromised, as the dimension of the input
increases. Therefore, the approach is not scalable. In contrast, the
proposed method builds a separate GAN model for each modal-
ity, making it easier to train. It adopts an attention mechanism to
fuse separate embeddings from each modality. This formulation

Fig. 6. DET curves for the models by formulating the problem as a binary
classification task using the candidate and normal sets.

allows us to include more modalities if needed. The second
baseline is the BeatGAN proposed by Zhou et al. [30], which
is a GAN-based unsupervised method (see Sec. II-B). The gen-
erator of the BeatGAN model is built with an encoder-decoder
structure, and is trained to reconstruct 6-sec long signals as fake
data to confuse the discriminator. The discriminator is trained
to discriminate the real 6-sec signals and the generated fake
6-sec signals, following the regular adversarial training strat-
egy of GANs. For inference, the reconstruction error between
the real and fake signal is regarded as the anomalous metric
to discriminate abnormal events. In this work, for each 6-sec
long driving segment, we implement the BeatGAN framework
using the CAN-Bus and physiological data as input, using the
reconstruction error as the anomalous metric of the driving
segment. We refer to this method as BeatGAN 2 modalities. The
third baseline is the proposed attention model implemented with
only the CAN-Bus and the physiological signals. This baseline
is implemented to evaluate the effectiveness of the additional
modalities describing the external information. We refer to this
method as attention with 2 modalities. For the evaluation, we
formulate the driving anomaly detection problem as a binary
classification task. We calculate the false positive rate (FPR) and
false negative rate (FNR) as we change the decision threshold,
creating detection error tradeoff (DET) curves of the proposed
model and baseline models. This curve uses the FPR and FNR
as its axes. A DET curve that lies closer to the axes indicates
lower errors, and, therefore, better binary classification results.

Fig. 6 shows the DET curves of the proposed model and the
three baselines. The dashed line represents the operation point
where the FPR and FNR are equal. Fig. 6 indicates that the
proposed approach based on the attention model, implemented
with either two or five modalities, achieves better discriminative
performance than the CNN-LSTM GANs and BeatGAN models
for most of the operation points. Our proposed approach imple-
mented with the five modalities achieves the best performance,
indicating that adding the contextual information about the
road is extremely useful to improve the detection of driving
anomalies.



QIU et al.: UNSUPERVISED SCALABLE MULTIMODAL DRIVING ANOMALY DETECTION 3161

B. Subjective Perceptual Evaluation

This section relies on subjective perceptual evaluations to
assess more precisely the performance of the proposed approach.
Collectively, the videos from the candidate set are expected
to have more anomalies than the videos from the normal set.
However, it is possible that some of the videos in the normal set
may present some level of driving anomaly, while samples from
the candidate set may be normal. Therefore, we select videos in
the corpus to be directly annotated with anomaly scores.

We randomly select 200 segments from the candidate set and
200 segments from the normal set. The recording of each seg-
ments is six seconds long. Three annotators joined the perceptual
evaluation, who were asked to judge all the recordings after
watching the camera recordings showing the road. In addition
to annotating the driving anomalies, we are also interested on
the level of risk and familiarity perceived in the recordings.
Fig. 7 shows the graphical user interface (GUI). For each
driving segment, the annotators answered four questions about
the driving scenario shown in the video: (1) how risky is the
driving condition in the video? (safe; slightly risky; risky; very
risky), (2) how often do you see similar driving condition on the
road? (never; almost never; sometimes; quite often; regularly),
(3) Is the driving condition in the video normal or abnormal
(normal; abnormal), and (4) what causes the anomaly in the
video? (pedestrian; bicyclist; motorcyclist; other vehicle; bad
maneuver of our driver; no anomalies). The first three questions
consider a single choice. We estimate the inter-evaluator agree-
ment using the Krippendorff’s Alpha Coefficient, since these
questions have interval options. The agreement across the three
evaluators are 0.737 for question one (risky level), 0.509 for
question two (familiarity level), and 0.895 for question three
(normal/abnormal). The last question allows the annotators to
provide multiple choices as possible causes of the anomalies.
We estimate the inter-evaluator agreement using the Cohen’s
Kappa coefficient, since this question is multiple choice. This
metric is calculated between two raters, so we average the results
calculated from the three pairs of raters as the final agreement
level. The agreement for question four (possible causes) is 0.759.
These levels of agreements are considered very high. According
to the answers of the third question (i.e., Is the driving condition
in the video normal or abnormal?), we regroup the selected
400 driving segments into two sets: normal and abnormal. We
aggregate the responses of the annotators using the majority vote
rule, assigning a class if two out of the three evaluators select
that class. In total, we have 175 segments labeled as abnormal,
and 225 segments labeled as normal.

We analyze the risk level perceived in the annotated videos.
From the 400 segments, we select the top 100 segments with the
highest anomaly scores and the bottom 100 videos with the low-
est anomaly scores. A more discriminative model should have
more segments evaluated as very risky with fewer safe segments
in the Top 100 group, and more safe segments with fewer very
risky segments in the bottom 100 group. Table II shows that the
top 100 group for the proposed attention model implemented
with five modalities has 45 segments labeled as either risky
or very risky. This number is higher than the corresponding
segments identified by the baselines: 38 for CNN-LSTM GANs,
42 for BeatGAN, and 40 for Attention with 2 modalities. Only
34 segments are selected as safe, which is less than the number
of segments selected by the other methods.

Fig. 7. User interface of the subjective perceptual evaluation. After watching
the video, the evaluators answer four questions to assess the risk, familiarity and
anomaly levels (single choice). The questionnaire also asks for possible causes
of anomalies (multiple choice).

TABLE II
ANALYSIS OF THE RISK LEVEL OF THE TOP 100 VIDEOS WITH THE HIGHEST

ANOMALY SCORES AND THE BOTTOM 100 VIDEOS WITH THE LOWEST

ANOMALY SCORES (IN BRACKET). THE ANALYSIS CORRESPONDS TO THE

RESPONSES TO THE FIRST QUESTION IN THE PERCEPTUAL EVALUATION

(FIG. 7). WE INDICATE IN BOLD THE MOST DESIRABLE

RESULTS FOR THE EXTREME CASES
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Fig. 8. DET curves for the models by formulating the problem as a binary
classification task using the labels from the perceptual evaluations. The analysis
relies on the responses to the third question in the perceptual evaluation (Fig. 7).

We also evaluate the familiarity level assigned to the annotated
videos. We expect that videos with high anomaly scores are
perceived as less frequently observed on the roads. From the
top 100 videos with the highest anomaly scores, we observe
that the proposed model implemented with five modalities has
49 videos labeled as either never or rarely. This number is
also higher the corresponding values for the baselines: 38 for
CNN-LSTM GANs, 46 for BeatGAN, and 39 for Attention with 2
modalities. The proposed approach is also the method with teh
lowest number of videos perceived as regularly observed on the
roads (31 segments).

Fig. 8 shows the DET curves using the normal and abnormal
labels obtained from the perceptual evaluation. In contrast to
results on Fig. 6, which rely on annotations indirectly linked to
driving anomaly, the results in Fig. 8 leverage the annotations
conducted in this study to directly assess driving anomaly. The
figure shows that our proposed model achieves the best per-
formance. The proposed attention-based approach implemented
with two modalities is better than the baseline method using
only the conditional GAN model. These results confirm the
observations made in Section V-A.

C. Ablation Study

This section presents an ablation study to understand the
contributions of different parts of the proposed model in the
overall results. We report the performance by using the results
from the perceptual evaluations, formulating the task as a binary
classification task (i.e., normal versus abnormal).

A key component of the proposed approach is the attention
model used to fuse the modalities. A parameter of the model
is the number of heads (H). This parameter is important, since
it helps the system to attend to more than one modality. We
implement the proposed approach with either one, five, or ten
heads. Fig. 9 shows the corresponding DET curves. The model
gets the best discriminant performance with five attention heads
H = 5. The performance is clearly lower when we use a single
head. In this case, the model can only attend to one of the
modalities at a time, which is not optimal for this task. Adding

Fig. 9. DET curves to compare the discriminant performance of the proposed
model based on attention implemented with different numbers of heads.

Fig. 10. DET curves to compare the discriminant performance of the proposed
approach with and without attention model.

too many heads also is not optimal, especially since we only rely
on five modalities.

To illustrate the effectiveness of the attention module in
our approach, we remove the attention model, replacing the
value with the average of the discriminator embeddings of each
modality. Fig. 10 shows the results of this system with our
full system with the attention model. The model with attention
module outperforms the model without attention.

We explore the contribution of each of the modalities used
in this study by adding one environmental modality to the
proposed model trained with only CAN-Bus and physiological
signals. Fig. 11 shows the corresponding DET curves. Adding
environmental information to this baseline system improves
the discriminative power of the system. Adding the pedestrian
distances leads to more improvements. The figure also shows
that we obtain the best performance when we consider the five
modalities.
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Fig. 11. DET curves to compare the discriminant performance of the proposed
model based on attention implemented with different modalities.

TABLE III
ANALYSIS OF THE FAMILIARITY LEVEL OF THE TOP 100 VIDEOS WITH THE

HIGHEST ANOMALY SCORES AND THE BOTTOM 100 VIDEOS WITH THE

LOWEST ANOMALY SCORES (IN BRACKET). THE ANALYSIS CORRESPONDS TO

THE RESPONSES TO THE SECOND QUESTION IN THE PERCEPTUAL EVALUATION

(FIG. 7). WE INDICATE IN BOLD THE MOST DESIRABLE RESULTS FOR THE

EXTREME CASES

TABLE IV
NUMBER OF MILLIONS OF PARAMETERS WHEN ADDING MORE MODALITIES

(UPTO SIX) TO THE BASE MODEL TRAINED WITH CAN-BUS AND

PHYSIOLOGICAL SIGNALS

D. Scalability of the Model

This section focuses on the scalability of the proposed ap-
proach. We focus on the number of parameters in the models
as we increase the number of modalities. We assume that the
modalities that we add have input dimension equal to four,
similar to the distances to pedestrian, bicycles and other vehicles.
Table IV lists the number of millions of parameters when we add
more modalities to the base model trained with the CAN-Bus
and Physiological signals. Even though we considered three ad-
ditional modalities in this study (distances to pedestrian, bicycles
and other vehicles), we include in the analysis adding up to seven
extra modalities, each of them having a 4D representation. The
table lists the total number of parameters of the entire model,
and the number of parameters of the attention module. As a
reference, we also include the hypothetical scenario in which

we implement the CNN-LSTM GAN model [25] with more
modalities.

When we add four or more modalities, the results show that
the number of parameters is less than the model proposed by Qiu
et al. [25]. Most of the parameters added to our proposed model
correspond to the parameters needed to train a new separate
GAN model. The increase in the number of parameters of the
attention module is very small, as shown in the table. As a
result, the training of this model is scalable. We just need to
train a separate GAN model and retrain the attention model
block, which is minimally impacted by the new modality. In
contrast, the approach presented by Qiu et al. [25] needs to train
a single GAN model after concatenating all the inputs. The high
dimension of the input makes this single GAN difficult to train,
requiring more data to avoid undertraining the models. Because
of the high dimensionality of the model, the convergence of
the approach is also questionable. It is more convenient to train
a small GAN model for each modality than training one huge
GAN model with the concatenated inputs.

VI. CONCLUSION

This study introduced a novel unsupervised scalable mul-
timodal driving anomaly detection system based on the self-
attention mechanism, which is built on conditional GANs and
trained with the triplet loss function. This system builds a
separate conditional GAN model for each available modal-
ity, predicting the signal for the upcoming segment based on
previous data. The feature embeddings for the modalities are
fused by the attention model. The attention model is built based
on the self-attention mechanism and trained with triplet loss
function, where the distance between embeddings from actual
signals are minimized and embeddings from unpaired segments
are maximized. The entire training process does not require
labeled data. Our experimental results indicate that the proposed
model achieves better performance than the baseline models on
discriminating normal versus abnormal driving conditions.

The approach is scalable, where more modalities can be easily
added if needed. Our formulation only requires building separate
conditional GANs for the new modalities and concatenating
the corresponding feature representation to the input of the
attention model. Furthermore, the approach can react to driving
anomalies, even if the driver is not aware of the anomaly, by
incorporating modalities associated with the environment (i.e.,
distances to nearby pedestrians, vehicles and bicycles)

Our future work includes the integration of our approach
with new modalities such as lane keeping information or visual
attention estimation. The proposed approach relies on obtaining
physiological data, which currently requires wearable sensors.
The proposed model will benefit from non-contact technology
to estimate physiological data. Another limitation of the pro-
posed approach is the latency in the prediction. Our model
directly compares predicted and actual signals. This approach
introduces a latency of at least six seconds. A future research
direction is to investigate approaches to reduce the latency of
the model. Another appealing research direction is to increase
the interpretability of the model, identifying why the system
predicted that a given segment was anomalous. We expect that
the embeddings generated by individual GANs, or the join
embedding generated by the attention module can be used to
increase the interpretability of the model.
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