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Abstract—Remote sensing image change detection (RSICD)
is a technique that explores the change of surface coverage
in a certain time series by studying the difference between
multiple remote sensing images (RSIs) collected over the same
area. Traditional RSICD algorithms exhibit poor performance
on complex change detection (CD) tasks. In recent years, deep
learning (DL) techniques have achieved outstanding results in the
fields of RSI segmentation and target recognition. In CD research,
most of the methods treat multitemporal remote sensing data as
one input and directly apply DL-based image segmentation theory
on it while ignoring the spatio-temporal information in these
images. In this article, a new siamese neural network is designed
by combing an attention mechanism (Siamese_AUNet) with UNet
to solve the problems of RSICD algorithms. SiameseNet encodes
the feature extraction of RSIs by two branches in the siamese
network, respectively. The weights are shared between these
two branches in siamese networks. Subsequently, an attention
mechanism is added to the model in order to improve its detection
ability for changed objects. The models are then compared with
conventional neural networks using three benchmark datasets.
The results show that the Siamese_AUNet newly proposed in this
article exhibits better performance than other standard methods
when solving problems related to weak CD and noise suppression.

Index Terms—Attention blocks, change detection (CD), remote
sensing, siamese networks.
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I. INTRODUCTION

R EMOTE sensing image change detection (RSICD) is a
technique to identify interested differences in land char-

acteristics that can obtain real-time and accurate information
on surface changes. Conducting land use type change detec-
tion (CD) surveys is of great significance for better protecting
ecological environments, managing natural resources, studying
social development, and understanding the relationship between
humans and nature [1], [2].

In the early days, the main researches were focused on
medium-resolution remote sensing images (RSIs). As a result,
detectable surface changes were only performed at large spatial
scales, such as land surveys [3], urban studies [4], ecosystem
monitoring [5], disaster monitoring and assessment [6], [7]. In
recent years, with the access to more and more high-quality
RSIs, a large amount of remote sensing data has provided
data support for further exploration of more efficient and ac-
curate RSICD methods. The traditional algorithms applied to
medium-resolution RSIs are no longer satisfied the needs of
current application. Along with the increasing spatial resolution,
the feature information is more abundant, and problems, such
as poor separability, high rate of missed detection and strong
interference brought by the mixing of changed and unchanged
features are intensified. The detection ratio is poor in practical
problems. Therefore, new algorithms with strong robustness, ex-
cellent learning ability and high accuracy of results are urgently
needed.

The traditional methods could be summarized into image
algebraic methods and image transformation methods, focus-
ing on medium resolution data [8], [9]. With the develop-
ment of machine learning (ML), a variety of ML models have
been applied to RSICD. For example, support vector machines
[8], decision trees [9], random forests [10], and long short-
term memory models [11] have been applied, while a vari-
ety of information-assisted classification methods combining
RSIs and GIS have also been applied [12], [13]. Overall, as
a newly developed field, RSICD still suffers from low accuracy,
poor applicability and severely is severely limited by image
noise [14].

In order to exploit high-resolution RSIs in CD while elim-
inating false detection noise, object-oriented methods are of
particular importance. More and more researches combine ML
algorithms with object-oriented data analysis methods to adopt
segmentation before computation to detect changes at the object

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-6965-1256
https://orcid.org/0000-0001-7329-5477
https://orcid.org/0000-0002-2913-3515
https://orcid.org/0000-0002-0059-8458
https://orcid.org/0000-0002-9613-1659
mailto:taochen@cug.edu.cn
mailto:lunayoung1020@cug.edu.cn
mailto:zhangyx@cug.edu.cn
mailto:luzhiyuan@rails.cn
mailto:gunspace@163.com
mailto:aplaza@unex.es


2358 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

level in RSIs. Lefebvre et al. [15] proposed an object-oriented
analysis method combining RSIs, geometric features, and tex-
ture analysis methods for surface CD. Gamanya et al. [16] used
a hierarchical image segmentation method to extract objects
from multitemporal RSIs and applied a standardized, fuzzy
logic-based, automatic object-oriented classification method to
successfully obtain changes in the Harela region of Zimbabwe.
Bontemps et al. [17] proposed an automatic probabilistic CD
method and applied it to detect long time series changes in the
tropical forest environment of the state of Lonja, Brazil, between
2001 and 2004. In addition, there are some other methods that
consider the relationship between pixels in the neighborhood
space and combine those adjacent pixels for analysis. For ex-
ample, Hao et al. [18] carried out unsupervised CD using level
sets. Bruzzone and Prieto [19] performed automatic unsuper-
vised CD by Markov random fields. The conditional random
field method used by Zhou et al. [20] in their CD study on
high resolution RSIs. The above three methods are successfully
applied to perform object-oriented CD, which further introduce
spatial information into the spectral information and improves
the accuracy of object-oriented CD. After early exploration,
CD has achieved increasingly higher accuracy high accuracy.
However, there are too many human interventions and threshold
adjustments, which leads to a poor robustness of the model.
Although for specific problems it can achieve good results, there
are problems, such as a low degree of automation, poor noise
suppression, complex features, poor accuracy.

The emergence of deep learning (DL) has brought in a new
direction to the research on RS, and associated research has
been carried out in numerous fields, such as ecological evalua-
tion [21], [22], RS segmentation [23], landslide detection [24],
[25], image classification [26]–[28], etc. In the field of CD,
researchers exploit DL to alleviate the problems of complex
feature detection, strong noise interference, poor separability,
and low automation in RSICD. Various DL-based methods for
RSICD have emerged in the last few years. Amin et al. [29]
proposed a new convolutional neural network (CNN) feature CD
method based on high-resolution RSIs, which uses pretrained
CNN to generate change result maps directly from pair images.
Varghese et al. [30] proposed a parallel CNN architecture for
locating and identifying changes between street scene image
pairs. Gao et al. [31] proposed a deep cascade network (DCNet)
for synthetic aperture radar (SAR) image CD to extract features,
and introduced residual learning to solve the blast gradient prob-
lem. Song et al. [32] proposed a DL model integrating a sample
generator and a fully CNN on hyperspectral data. Peng et al.
[33] proposed a new end-to-end CD method on high-resolution
RSIs in order to release the error accumulation problem in the
training process.

However, most of the above methods are based on tradi-
tional RSI segmentation algorithms. Multitemporal data are
often simply overlaid to serve as training data for DL algo-
rithms, which ignores the characteristics of changed ground
features itself caused by spatial, temporal, and other factors.
Satisfactory results are often not achieved in complex scenes,
such as seasonal and/or lighting changes. In order to solve
this problem, it is necessary to pay attention to the correlation

Fig. 1. Challenges in change detection.

properties between multi-temporal data. siamese networks can
be used for image comparison by multiple inputs [34], which
is suitable for RSICD. Du et al. [35] proposed a Deep slow
feature analysis CD algorithm for multitemporal RSIs based
on deep networks and slow feature analysis theory. Guo et
al. [36] proposed a new fully convolutional siamese metric
network and used a custom contrast loss method to improve the
variability of changing scenes while reducing the variability of
invariant scenes. Chen et al. [37] proposed a new dual-attentional
fully convolutional siamese network (DASNet) for RSICD in
high-resolution RSIs, which captured long-range dependencies,
obtained more discriminative feature representations, and im-
proved the recognition performance of the model through a
dual-attention mechanism. Sakurada et al. [38] constructed a
semisupervised scene CD network to reduce the errors caused by
camera point-of-view differences during multitemporal remote
sensing imaging. Chen et al. [39] proposed a neural network
model relying on siamese network and self-attentive mechanism
to solve the error effects and alignment errors in dual-temporal
RSICD studies.

Several of the above methods focus only on the siamese
structure or the combination of siamese structure with other the-
ories. However, relatively simple methods are only appropriate
for reducing differences from features extracted from siamese
structure. The models are not pure neural network models and
often require additional processing. In order to further improve
the CD accuracy, two important problems must be solved, which
are mixed changes and weak changes. For easy understanding,
these two cases are given in Fig. 1. Mixed changes indicate
that there may be a variety of change scenarios interfering
with the task, e.g., wasteland to house change is noticed, while
wasteland to concrete surface change is ignored. Weak changes
indicate that a change has occurred, but it is intuitively difficult
to distinguish. An example is the reclamation of wasteland.
The land may be bare before, however after reclamation, no
significant change can be detected from the RSIs.

In order to address the above-mentioned problems, we pro-
pose a new RSICD framework based on siamese networks,
named Siamese_AUNet. The two main contribution of the article
can be summarized as follows.

1) Conventional CD models use image overlay analysis,
which ignores the temporal variability between data. In
this article, the siamese structure is used to extract features
from images of two different periods separately, with
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both spatial correlation and temporal variability between
images.

2) Then atrous spatial pyramid pooling (ASPP) [40] was
subsequently computed on the feature matrix to increase
the multiscale feature detection capability of the model.
In addition, the feature attention model (FAM) was added
to increase the detection capability of the model as well
as the noise suppression capability.

The rest of the article is organized as follows. Section II
introduces the related theories and methods. Section III describes
the parameters, accuracy evaluation indexes, the three datasets
used in this article, and the experimental results. Section IV
discusses the experimental contents. Section V concludes the
article with and gives some plausible future research lines.

II. PROPOSED SIAMESE_AUNET

A. Siamese Networks

Siamese networks are a coupled network architecture built
on two artificial neural networks [34]. It computes two input
samples separately with the same network weights and outputs
their representations embedded in a high-dimensional space to
compare the degree of similarity of the two samples. During the
training process, one sample is computationally encoded by the
convolutional network to obtain a set of features, after which
the weights and bias parameters of this network are maintained
and the same computational encoding is performed on another
sample. Finally, the similarity of these two sets of features is
subsequently compared by training learning.

By processing the two sets of samples with the same network
parameters, it can better reduce the distance of sample values
between unchanged regions and increase the distance of samples
in changed regions.

B. Feature Attention Module

In this article, we use an FAM for spatial and channel attention
on the deep feature layer. The construction strategy of the FAM
refers to both the nonlocal attention module (nonlocal AM)
as well as the convolutional block attention module (CBAM)
attention module. To introduce the FAM in more detail, the
principles of nonlocal AM and CBAM are explained separately
below.

1) Nonlocal AM: The Nonlocal AM is used to capture the
long-range dependencies of an image directly by computing
the interaction between any two positions of the image [41].
Its computational principle can be represented by (1), where x
denotes the input signal and y denotes the output signal with the
same sample volume as the input x. f(xi, xj) is used to compute
the combinatorial relationship between all possible positions j
associated with i. g(xj) is used to compute the eigenvalues of the
input signal at position j. C(x) is the normalization parameter.
The i represents the corresponding current position, and j is a
nonlocal response obtained by weighting, which can be regarded
as the global response

yi =
1

C (x)

∑
∀j f (xi, xj) g (xj). (1)

Fig. 2. Structure of Nonlocal AM.

Fig. 3. Structure of CBAM.

Fig. 4. Structure of CAM.

It can be seen from Fig. 2 that nonlocal AM is essentially
a complex convolution operation that preserves the spatial in-
formation of the original input signal as well as extracts the
dependencies between the inter-internals of the input signal. Its
structure is shown in Fig. 2.

2) CBAM: It consists of two blocks, which are the channel
attention module (CAM) and the spatial attention module (SAM)
[42]. These two blocks are connected in sequence to form a new
attention network model, and the structure is shown in Fig. 3.

The interchannel relationship and inter-spatial relationship of
the input features are captured by CAM and SAM, respectively.
Finally, the feature matrix after the attention process is obtained
by multiple matrix operations. The CAM module focuses on
learning the feature relationships between different channels and
using the inter-channel relationships of the features to create a
channel attention map. To compute channel attention efficiently,
the module compresses the spatial dimensions of the input
feature maps. The input features are processed using average
pooling and maximum pooling together and computed through
a weight sharing network as shown in Fig. 4.
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Fig. 5. Structure of SAM.

Fig. 6. Structure of FAM.

Fig. 7. Structure of A&B in FAM. (a) A block. (b) B block.

Different from CAM, SAM mainly performs global maxi-
mum pooling and average pooling operations for pixel values
at the same location on different feature layers in the axial
direction, and obtains two spatial attention feature layers as
shown in Fig. 5.

3) Feature Attention Model: In FAM, we replace the maxi-
mum pooling and average pooling methods in CBAM with the
convolution operation in nonlocal AM, so that it can process the
input signal in spatial and channel dimensions, respectively. The
structure of FAM is shown in Fig. 6.

In Fig. 6, A and B represent a matrix operation, respectively.
Processing details of A and B are shown in Fig. 7(a) and (b).

Fig. 8. Structure of Siamese_AUNet.

The position attention and channel attention are represented,
respectively. The position attention aims to use the associa-
tion between any two points features to mutually enhance the
representation of the features. Channel attention, on the other
hand, can highlight interdependent feature maps by mining the
interdependencies between channel maps to enhance the feature
representation of specific semantics. Then, the two outputs are
summed and fused to obtain the final features for pixel point
classification.

C. Atrous Spatial Pyramid Pooling

The ASPP structure was first proposed by Google’s
DeepLabv2 segmentation network [44]. Inspired by spatial pyra-
mid pooling [40], a similar structure was designed that samples
a given input sample in parallel with an atrous convolution at
different sampling rates, equivalent to capturing the contextual
information of the image at multiple scales.

In RSICD, multiscale feature mixing is a very common
phenomenon. However, the detection capability of the model
decreases when the change objects differ greatly in scale. In
this article, we adopt the ASPP mechanism to enhance the
multiscale feature learning capability of the model and improve
the detection performance of multiscale change objects.

D. Siamese_AUNet Network Architecture and Formulation

The Siamese_AUNet is a siamese feature extraction self-
organizing network based on UNet network by improving the
structure on the left feature extraction end of the network. UNet
is a DL network for image segmentation modified from a fully
CNN [43]. The FAM is then applied to each feature layer to
perform the attention operation to obtain the combination of the
noted features. An ASPP module is added to the bottom end of
the siamese network to enhance the multiscale feature learning
capability of the network. On the right side of the model is the
decoding end, and the change binary map is finally obtained after
decoding process. In order to represent the network structure
features more intuitively, the parameters are given in Table I,
and the structure is shown in Fig. 8.

As shown in Fig. 8, Siamese_AUNet consists of two main
parts: the feature extraction siamese network structure for
processing multitemporal data and the decoding network for
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TABLE I
PARAMETERS OF THE SIAMESE_AUNET

analyzing feature differences, both of which are constructed
from visual geometry group (VGG) networks [41]. In the feature
extraction part, the data of different time phases are processed
by different branches of the siamese network, and each branch
shares the weight parameters. Through the siamese network, the
remote sensing data of each time phase are mapped into shallow
or deep features. At each layer of the siamese network there is an
attention module, which pays attention to the extracted features
for subsequent decoding of the network and enriching the feature
information. The deep-level features extracted by the siamese
network are subsequently enhanced for multi-scale feature
representation by an ASPP module, which also uses shared
parameters for multi-feature data processing. In the feature dif-
ference analysis network, the noted feature matrix is combined
with the deep-level feature matrix to characterize the variation of
the sample after multiple convolutions and upsampling layers.

In the study of the problem of RSICD, the essence is to
identify the semantic information of change. In Table I, Conv4-2,
Conv5-2 get the deep semantic information, which can reflect the
deep features of the image. However, in the VGG network, the
resolution of the original image is reduced by 16 times due to the
large number of pooling downsampling operations. In order to
solve this problem, we combine the shallow features of Conv1-2,
Conv2-2, and Conv3-2, which retain the image details, with the
deep features for semantic difference analysis after attention

TABLE II
TRAINING PROCEDURE OF THE PROPOSED SIAMESE_AUNET

Fig. 9. Structure of SiameseNet.

mechanism, to retain the detail information and obtain the deep
semantic difference information of the image to a certain extent.
It is worth noting that, in order to ensure that each feature layer
is in the same range for variation detection, batch normalization
is used in each convolutional module in the network.

In the proposed Siamese_AUNet, the siamese structure fa-
cilitates the extraction of shallow and deep features between
multi-temporal RSIs. The multitemporal phase data processed
by the same network structure at the same time have the same
size and similar properties for each output. The whole detailed
process of training and generating binary change maps for
Siamese_AUNet is given in Table II.

In order to evaluate the effect of FAM and the siamese
structure, this article improves the UNet and constructs a pure
siamese UNet, which we named SiameseNet, and the structure
is shown in Fig. 9. Subsequently, AUNet was constructed by
adding the same FAM as in the Siamese_AUNet. The structure
of AUNet is shown in Fig. 10.

In this section, the model-related structure, theory and al-
gorithms are introduced. The VHR RSIs bring richer detail
information, which has an impact on the amount of image infor-
mation, the amount of GPU operations and the scale of model
detection. This article addresses this issue and aims to build a
model that is applicable to multiple resolutions and multi-scale
detection capability, from the following three aspects.
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Fig. 10. Structure of AUNet.

1) The siamese network structure is used to minimize the
model parameters, and the images at different times share
the model parameters for feature extraction separately,
which preserves the temporal variability among the data
and the difference features.

2) The ASPP structure increases the multiscale feature learn-
ing capability of the model. This alleviates the problem of
poor multiscale detection caused by the shrinking cover-
age of VHR images in the same size region and the variable
objects with irregular scales.

3) When the image information increases, the uninterested
interference information increases as well. Applying FAM
can effectively avoid the model to focus too much on
useless objects.

Based on the above three points, we expect the constructed
model to achieve better results in VHR image CD.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this article, a total of three public datasets of high quality
are selected for the experiment. These three datasets include
LEVIR dataset [39], WHU building dataset [45], and SZTAKI
Air change benchmark dataset [46]. Due to the different spatial
resolutions of these datasets and the different scales of the
research objects involved, different cropping size are chosen for
each dataset during the training process to ensure the optimal
efficiency and accuracy. All datasets are 8bit RGB images, and
the labels are 8bit grayscale images. The same hyperparameters:
“EPOCH;” “BATCH_SIZE;” and “LEARNING_RATE” are set
for each network for the same dataset, to determine the perfor-
mance of different models for the same dataset. It is important
to emphasize that each dataset is partially selected in advance
as a test set, which is not involved in training and validation
datasets. For the training and validation sets, they are randomly
divided according to a fixed ratio during the training process. As
an indicator, Time is used to record the time spent in training the
model.

Meanwhile, to make the experiment results more reasonable,
a SOTA model comparison experiment was added. Chen et al.
[37] carried out better work, and their proposed DASNet is one
of the best models among many CD models. The comparison

experiment with them can greatly increase the reliability of
Siamese_AUNet constructed in this article.

BCEWithLogitsLoss was chosen as the loss function for the
experiments. This is because in the CD dataset, the ratio of
positive and negative samples is very disparate, and the con-
ventional loss function does not work well in dealing with such
problems. The BCEWithLogitsLoss can amplify the positive
sample weights, which is more conducive to detecting changes.

Four evaluation metrics (EMs) are used to evaluate the accu-
racy of the results, including Precision, Recall, F1, and Dice. The
prediction label is determined by judging the difference between
the pixel values of the predicted value and the true value of the
same location. The calculations of each EM are as follows.

1) Precision is an indicator to evaluate the proportion of
positive samples correctly predicted by the model to all
positive samples predicted, and is calculated as follows:

Precision =
TP

TP + FP
. (2)

2) Recall is an index to evaluate the proportion of positive
samples correctly predicted by the model to all true posi-
tive (TP) samples, expressed as

Recall =
TP

TP + FN
. (3)

3) The F1 value is the summed average of the precision and
recall rates, expressed as follows:

F1 =
2

1
precision+

1
recall

=
2× precision× recall

precision + recall
. (4)

4) The Dice is commonly used to measure the similarity of
two samples and is expressed as follows:

Dice =
2× TP

2× TP + FP + FN
. (5)

Where TP/TN is the positive/negative samples which are
correctly predicted by the model, FN means the positive samples
which are incorrectly predicted as negative samples by the
model, FP is the situation that the negative samples which are
incorrectly predicted as positive samples by the model.

A. LEVIR Dataset

In LEVIR dataset, a total of 4923 pairs of samples are involved
in model training, of which 10% are randomly chosen as valida-
tion samples, which are not involved in model training and are
only used to evaluate the network training process. Each training
Batch contains 12 sets of samples, and the training samples are
all iterated once for one Epoch, with a total of ten iterations. The
initial learning rate of training is 0.001, and the learning rate is
dynamically optimized according to the training process.

In the training process, a python script was constructed to
train multiple networks one by one, which realized the sequential
experiments of different networks with the same parameters for
this dataset. The network models involved were UNet, AUNet,
SiameseNet, and Siamese_AUNet. The model was validated and
evaluated after using each 640 pairs of images for training. The
experimental accuracy of LEVIR dataset was given in Table III.
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TABLE III
EXPERIMENTAL ACCURACY OF LEVIR DATASET

Fig. 11. Experimental results of LEVIR dataset (The rendered colors represent
TPs (Green), FPs (red), and FNs (Blue)).

The validation samples result of LEVIR dataset are shown
in Fig. 11 and the precision curve comparison of test samples
results of LEVIR dataset is shown in Fig. 12.

In the process of accuracy evaluation of LEVIR dataset, the
validation samples are not involved in training and are only used
as accuracy evaluation data. The accuracy of each validation was
recorded and the accuracy curve was plotted by the TensorBoard
visualization tool. From Table III and Fig. 12, it can be found that
the Siamese_AUNet model maintains the highest accuracy in F1,
and Dice throughout the training process, while it ranks second
place in Precision metrics. This is because Siamese_AUNet
is more detailed in the detection of changing boundaries
and has a stronger sensitivity to ground difference detection.

Fig. 12. Precision curve comparison of validation samples results of LEVIR
dataset.

But at the same time, it increases the anti-interference ability for
the complex ground feature conditions. From Fig. 11, we can
also see that the Siamese_AUNet model detects more changed
areas, and the boundaries of these detected changed area are
more regular, even the sharp angles of changed areas can be
identified, which also proves the superiority of Siamese_AUNet
compared with the traditional model. From the results, we can
also find that the SiameseNet performs much better than the
UNet. This also shows that the siamese network is more sensitive
to differences, but due to its relatively simple model structure
and poor noise suppression ability, it does not perform as well
as Siamese_AUNet, which incorporates the attention module on
this basis.

B. WHU Building Dataset

In WHU building dataset, there are 1827 pairs of training
samples, due to the large-scale variation in the dataset, the size
of each image block is set to 512 × 512 pixels in the image
cropping step. When the model training, 10% of the data is
randomly selected as the validation sample, and each training
batch contains four groups of samples. The training samples are
all iterated once for one Epoch, 10 iterations in total, and the
initial learning rate is 0.001. The learning rate is dynamically
optimized according to the training process.

The results are given in Table IV.
The validation sample results chart is shown in Fig. 13 and

the validation accuracy curve is shown in Fig. 14.
Analyzing the experimental results, it was found that the

DASNet occupied three highest values among four EMs, which
were recall, F1, and dice, while the highest value of recall was
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TABLE IV
EXPERIMENTAL ACCURACY OF WHU BUILDING DATASET

Fig. 13. Experimental results of WHU building dataset (The rendered colors
represent TPs (Green), FPs (red), and FNs (Blue)).

obtained by UNet. F1 and Dice indicates the overall superiority
or inferiority of the model’s performance on a certain dataset.
A high Precision indicates that the model has a strong ability
to suppress noise during the training of this dataset and a high
detection accuracy for the change region, but in the experiments,
this often leads to a high omission rate, i.e., a low recall.
Conversely, a high “Recall” may appear accompanied by a low
“Precision,” such as SiameseNet.

Both of the DASNet and Siamese_AUNet maintain a good
Recall along with the high Precision metric. The reason DASNet
is better than Siamese_AUNet is that the WHU dataset has a
higher resolution, which is extremely important for DASNet.

Fig. 14. Precision curve comparison of experimental results of WHU building
dataset.

The higher resolution allows it to retain a certain amount of
texture information when extracting deep features, and has the
ability to better depict boundaries when restoring changing ar-
eas. For SiameseNet, which obtained the highest Recall, but very
low Precision, indicating that the network predicted variation
areas with a high commission error. In this dataset, the UNet
model also achieves better results, but from the local results
it can be found that the UNet model is more blurred than
Siamese_AUNet in the edge regions and is not able to permute
the original true change edges; there are also some gaps in the
changed objects, while the SiameseNet and the Siamese_AUNet
effectively reduce this phenomenon.

Compared with our other models, the siamese network not
only improves the detection ability of the changed region, but
also greatly increases the commission error while improving
the detection ability. As a result, the FP of Siamese_AUNet is
effectively suppressed by FAM. The ability that the FAM can
suppress the FP is also confirmed in the comparison of the results
of UNet and AUNet.

In this experiment, DASNet achieved overall better indicators
than our model, although they are very close. After review
and experiments, we have known that the detection accuracy
is mainly disturbed by pseudochange noise. DASNet only uses
deep features in the training process, which are not affected by
noise, so the result has a very high recall. However, it abandons
the shallow features, which is affected by noise. Its description
of the change boundary will not be perfect, especially when
the change involves a small number of pixels, it is easier to
be ignored as noise. For WHU dataset, its resolution reaches
0.2 m, which will no longer affect DASNet. It not only achieves
higher recall, but also higher Precision. For our model, it obtains
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Fig. 15. Experimental results of SZTAKI Air change benchmark dataset (The rendered colors represent TPs (Green), FPs (red), and FNs (Blue)).

TABLE V
EXPERIMENTAL ACCURACY OF SZTAKI AIR CHANGE BENCHMARK DATASET

semantic information from deep features and texture information
with noise from shallow features. Although we have taken a
variety of ways to mitigate this interference, it has not achieved
the effect of complete removal. Therefore, our model is inferior
to DASNet in terms of overall accuracy.

C. SZTAKI Air Change Benchmark Dataset

SZTAKI Air change benchmark dataset is an earlier dataset
used in DL-based RSICD. The dataset has a slightly lower
image resolution, so it does not focus on detecting changes in
object levels, but instead annotates regional changes in artificial
buildings, forest land, and cultivated land. There are 122 pairs
of samples in this dataset, and the Tiszadob_3 image pair with
the size of 512 × 786 × 3 pixel is used as the verification set.
All samples are finally cut into 256 × 256 pix image patches.
This dataset involves many variations and the amount of data
is small, so 20 epochs were set during the training, and the
validation accuracy was calculated for each epoch. In addition,
the model training process can be monitored in real time by
verifying the accuracy and loss curve to avoid overfitting. Each
batch contains six sets of samples. Because the sample size of
this model is small, the learning rate is fixed at 0.001 to ensure
learning stability. Multimodel experiments were carried out, and
the accuracy index results are given in Table V. The validation
example graph shown in Fig. 15 and the validation accuracy
curve is shown in Fig. 16.

It can be found from the results that Siamese_AUNet achieves
two highest values among the four Ems, which is better than

Fig. 16. Precision curve comparison of experimental results of SZTAKI Air
change benchmark dataset.

the other four models. The highest value of the Precision index
is obtained by the Unet, which means that the model has a
higher detection rate, and the highest value of the Recall in-
dex is obtained by the DASNet, which means that the model
has a lower detect error. From Fig. 15, we can see that the
missed detection area of Siamese_AUNet is concentrated in
the “A” corner of the image. Meanwhile, it can be found that
Siamese_AUNet achieves results that are closer to the real
change situation than the labels, and the impact of label quality
on the model will be discussed in detail in the following section.
In addition, although the proposed models all adopt the means
to preventing overfitting, due to the small sample size of this
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TABLE VI
EXPERIMENTAL ACCURACY OF LEVIR

TABLE VII
EXPERIMENTAL ACCURACY OF WHU

Fig. 17. Ablation experiment accuracy of LEVIR.

dataset, the real-time change of loss values during the training
of the model is recorded using the TensorBoard tool in order to
prevent training overfitting. As seen in Fig. 16, the loss values
continued to decrease and no overfitting occurred. The changes
of the accuracy index of each validation were recorded during
the training process, as shown in Fig. 16. Due to the small
number of validation samples and the fact that some image pairs
were randomly selected from the validation samples for each
validation, there is a wide range of fluctuations in the validation
accuracy (for example, the A marked with yellow in Fig. 15)
when there are image pairs with large differences between the
validation results and the real labels. Observing the accuracy
curve, we can find that Siamese_AUNet maintains a smooth
curve in the later stage, which also proves the stability and
reliability of the model compared with other models.

D. Ablation Experiments

In order to further evaluate the difference between the impact
of FAM and the other two attention blocks on Siamese_AUNet,
ablation experiments were carried out for the LEVIR and WHU
datasets, respectively. The same accuracy metrics were calcu-
lated and the results are given in Tables VI and VII, and the
accuracy curves are shown in Figs. 17 and 18. The STAZKI
dataset was not selected here because this dataset is inappropriate
to differentiate the model accuracy.

Fig. 18 Ablation experiment accuracy of WHU.

Fig. 19. Feature maps of LEVIR.

The accuracy metrics of the two datasets reflect the difference
in detection accuracy of the model for using different Attention
blocks. Overall, FAM has higher accuracy among the three
Attention blocks. In addition, the accuracy metrics shown for the
three models also confirm that the siamese structure combined
with the Attention module is an effective approach.

In each layer of the model, the attention feature matrix is
processed by a convolution block to obtain a grayscale attention
image, and Figs. 19 and 20 show the recorded grayscale attention
images. From these figures, it can be found that for the shallow
features, such as Layer1 and Layer2, the main response is the
texture information of the image as well as the detail information,
which helps to portray the boundary of the change region. For the
deeper features, such as Layer3 and Layer4, the main response
is the spatial information of the key objects in the image, such
as the location of the change region, while the specific detail
information is lost more. This also explains why the detection
results reflected by DASNet do not reconstruct the boundary
well. After Attention block, the buildings in the image are well
noticed, which is the effect we expect to see, and this also shows
that Attention block has a certain role.
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Fig. 20. Feature maps of WHU.

TABLE VIII
EXPERIMENTAL SUMMARY

E. Experimental Summary

We summarize the performance of each model in the three
datasets. We considered a model successful when its F1 and
Dice accuracy achieved the top three in the experiment, and
both were better than 0.8. We counted the performance of each
model separately and summarized its number of successes. The
results are given in Table VIII.

It can be found that Siamese_AUNet shows stable metrics
for high resolution images (LEVIR), VHR images (WHU),
and medium resolution images (SZTAKI), indicating that our
proposed Siamese_AUNet is more robust.

IV. DISCUSSION

RSICD is an important but arduous and challenging task.
There has been an important trend to use siamese networks for
this task, but there are still some issues that need to be addressed.
In this article, a new RSICD framework based on siamese
network has been proposed. Experiments are carried out on three
commonly used datasets, and the results show that the proposed
framework achieves a good performance. However, some key
issues still need to be discussed in the further application of
Siamese_AUNet.

1) The training cost is huge. In the study for high-resolution
RSICD, not only the number of remote sensing data is
large, but also the resolution is high, both of which bring
exponential increase for the cost of training. In this article,
the model is constructed and trained from the initial state,
and although certain results are achieved, it consumes

a lot of time and resources, which is more difficult to
meet in practical applications. Therefore, exploring how
to build siamese networks using pre-trained models is a
very important direction.

2) Further research on AM is necessary. The FAM used in this
article is improved from nonlocal AM and CBAM, which
achieves better results and also brings a huge amount of
computation compared to both UNet and SiameseNet. It
is important to explore a lightweight and accurate AM for
future research.

3) Manual data labeling often brings more errors, such as
incorrect labeling and omission of labeling. Although data
errors are inevitable, a more objective, scientific, and effi-
cient annotation method to build the dataset is still a direct
solution to improve the model training effect. Therefore, it
is necessary to explore a semisupervised labeling scheme.

4) In the WHU experiment, our method did not achieve
better results than DASNet. The details discussion we have
given in the experimental section, too much focus on the
spatial features is the main reason for this problem. In
fact, the main role of spatial features in the study is to
provide boundary texture information. We will continue
to investigate how to maximize the role of spatial features
while eliminating noise interference.

V. CONCLUSION

This article introduces a new siamese network architec-
ture (which is different from the traditional convolutional
and siamese networks) for RSICD problems. The proposed
Siamese_AUNet incorporate both multibranch weight-share
characteristics of siamese networks and have robust image seg-
mentation ability as VGGNet. The ASPP module and the atten-
tion mechanism are combined, and experiments are conducted
on three public datasets. The following conclusions are drawn
based on the analysis of the experimental data.

1) The siamese structure enhances the detection ability of
the network for weakly changing objects, and the FAM is
adopted to suppress the appearance of interference noise
for better results.

2) Applying ASPP to the SiameseNet network can signifi-
cantly improve the detection ability of multiscale change
units, making the description of the change boundary
closer to the real situation. This proves that the ASPP mod-
ule can effectively solve the multiscale feature detection
problem in the CD problem.

3) Siamese_AUNet has achieved good results in the two
CD challenges of suppressing noise and detecting weak
changes. Experiments on three publicly available datasets
also further confirmed the robustness of the newly pro-
posed model.
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