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Abstract— The developments of electric vehicle (EV) technol-
ogy and mobile internet technology have made the EV-oriented
ride-hailing service a trend in smart cities. In the service
scenario, a high-quality order allocation approach is in great
need to quickly process a series of customer request orders,
so as to reduce total customer waiting time and transportation
cost. To simulate real-world customer-EV allocation scenar-
ios, in this paper, a dynamic EV dispatch (DEVD) model is
established by considering multi-source data association from
five sources, including customer, vehicle, charging, station, and
service. To solve the proposed multi-source data associated
DEVD model, a memory-based ant colony optimization (MACO)
approach is developed. MACO maintains a memory archive to
store the historically good solutions, which not only can be used
to update pheromone to guide the search, but also can be used
to help the reactions to environmental changes. In response to
dynamic changes, a partial reassignment strategy is also proposed
to re-optimize some of the assigned customer-EV pairs in the
historically best solution. Moreover, an exchange or replace local
search procedure is designed to enhance the performance. The
MACO algorithm is applied to a set of dynamic test cases with
different customer request and EV sizes. Experimental results
show that MACO generally outperforms the first-come-first-
served approach and some state-of-the-art ACO-based dynamic
optimization algorithms.

Index Terms— Dynamic electric vehicle dispatch (DEVD),
memory-based ant colony optimization (MACO), intelligent
transportation, multi-source data association.
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I. INTRODUCTION

W ITH the development of mobile internet technology,
online car hailing services (e.g., Didi and Uber) have

become popular in people’s travel in smart cities [1]. More-
over, electric vehicles (EVs) are gradually being promoted
as an alternative to fuel vehicles in smart cities due to
the increasing green energy requirements in society [2] and
the low energy consumption and environmental protection
of EVs [3]. For example, Didi Chuxing, China’s largest
online ride-hailing platform, launched the first customized
car, an EV called D1, in 2020 through cooperation with
the BYD company [4]. Also, a recent study based on Uber
shows that the use of EVs in online ride-hailing services is
greatly beneficial for reducing emissions and has no statis-
tical difference for services when compared with using fuel
vehicles [5]. Therefore, nowadays EVs have gradually become
an important part of the online ride-hailing services. The
significance of online ride-hailing services and the univer-
sality of EVs raise the urgent need for research into EVs
operations.

Compared to the research on fuel vehicles [6], [7], the
research into EVs operations mainly includes energy man-
agement [8], [9], charging station allocation [10], power and
charging system [11], [12], and EV route planning [13]–[15].
Traditional fuel vehicles use diesel or petrol as energy, while
EVs rely on electricity [16]. For traditional fuel vehicles,
due to the large capacity fuel tank and the quick refueling
speed, the influence of tank capacity and refueling is always
negligible in research. However, for EVs, they have relatively
small battery capacity and slow recharging speed, which
cannot be ignored in practical applications. These differences
between fuel vehicles and EVs make it more complicated to
dispatch EVs in vehicle dispatch problems of online ride-
hailing service, due to the need for considering multi-source
data, such as the EV battery status and the charging station
information.

Many studies have been made in solving vehicle dispatch
problem. Some of them are on traditional fuel vehicle dispatch,
and some of them are on EV dispatch. For solving vehicle
dispatch problem, a simple way is dispatching the nearest
vehicle to the customer who makes a request, based on the
first-come-first-served (FCFS) approach [17], [18]. However,
this approach only focuses on individual customer satisfaction
and cannot provide a satisfactory solution at the global level.
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As described in [19], during peak demand periods, Didi
Chuxing [20] needs to match over a hundred thousand orders
every second in China. Therefore, for the ride-hailing service
platform, a global dispatch scheme is in great need. To this
aim, some studies are conducted by considering the dispatch
of vehicles to customers in a global view. Seow et al. [21]
proposed a multiagent system called NTuCab to assign taxis to
all customer requests made in a given time window. The agents
on behalf of drivers cooperatively negotiate the assignment of
customer requests in a distributed fashion. Zhang et al. [19]
modeled the taxi order dispatch as a combinatorial opti-
mization problem (COP). They predicted the probability of
a customer request accepted by a driver based on various
factors and used a hill-climbing method to maximize the
global success rate. Miao et al. [22] presented a dynamic taxi
dispatch problem based on real-time sensing data. A receding
horizon control approach is applied to allocate vacant taxis to
different regions for matching the passenger demands. Hu and
Dong [23] proposed an optimization-based dispatch model
that considered both the taxi system efficiency and customer
equity. Moreover, an artificial-neural-network-based model is
proposed and trained using the optimization model’s dispatch
solutions to learn the optimal dispatch strategies.

Different from the traditional fuel vehicle dispatch prob-
lem that only needs to consider the customer data (e.g.,
location and destination) and the vehicle data (e.g., location,
velocity, and service status), the EV dispatch (EVD) problem
needs to consider more data from other sources such as the
charging data (e.g., remaining battery capacity and charging
information) and the station data (e.g., location and available
status). For example, Shi et al. [24] regarded the scheduling
of an EV with insufficient battery to complete the service as
an infeasible action and developed a reinforcement learning
based algorithm to solve a community owned EVD problem
for providing ride-hailing services to local residents. In [25],
we studied to solve the EVD problem in static environment.
However, in the real-world real-time service environment of
EVD, dynamic changes may always occur such as the arrival
of new customer requests, the cancellation of old customer
requests, or the entry and exit of EVs. In order to make
our EVD model more practical for real-world application,
a dynamic EVD (DEVD) model is proposed in this paper,
so that the real-time dynamic information about new and
cancelled customer requests can be considered. Therefore,
the DEVD model is a practical dispatch model associated
with multi-source (i.e., five sources) data from the customer,
vehicle, charging, station, and service.

In order to efficiently solve the multi-source data associated
DEVD problem, a swarm intelligence algorithm named ant
colony optimization (ACO) [26]–[28] is adopted in this paper
because swarm intelligence algorithms have shown promising
performance in many kinds of optimization and scheduling
problems [29]–[32]. The ACO is a meta-heuristic search algo-
rithm inspired by the foraging behavior of ants in nature. Real
ants cooperate to find the shortest path from their nest to the
food via pheromone. In recent years, ACO and its ant colony
system (ACS) variant [33] have been successfully applied to

many COPs, such as cloud resource scheduling [34], [35],
scheduling problems [36], [37], personalized trip recommen-
dation [38], disassembly planning problems [39], vehicle rout-
ing problem [40]–[42], and taxi dispatch problems [43]. Since
the DEVD problem studied in this paper is a COP extended
from taxi order dispatch, ACO can be a promising solver.
In fact, in our previous study [25], an ACS-based approach
has shown its effectiveness and efficiency in the static EVD
problem, showing the potential of ACO in dealing with the
DEVD problem.

The DEVD is also a dynamic optimization problem (DOP)
and is challenging for traditional ACO/ACS algorithms.
In the literature, the research into ACO-based approaches
for solving DOP and dynamic COP has also raised great
attention [44]–[47]. The simplest way is to restart the
algorithm once a dynamic change occurs [48]. However,
the re-optimization process is time-consuming for the
re-convergence, resulting in poor efficiency for most DOPs that
are with smooth/slight changes [49]. Therefore, some studies
have been made to better solve dynamic COP. Guntsch and
Middendorf [50] proposed a population-based ACO (P-ACO)
to solve dynamic traveling salesman problem (TSP) and also
extended the P-ACO to solve dynamic quadratic assignment
problem [51]. Inspired by [51], Montemanni et al. [52] fur-
ther designed a pheromone conservation parameter to man-
age the information transfer from the previous environment
to the new environment, so as to solve dynamic vehicle
routing problem (DVRP), resulting in the ACS-DVRP algo-
rithm. Mavrovouniotis and Yang [53] studied the dynamic
TSP with traffic factors and proposed an ACO framework
with three immigrant schemes to increase the diversity,
including random immigrant, elitism-based immigrant, and
memory-based immigrant. Their experimental results show
that the elitism-based immigrant ACO (EIACO) performs
best in random dynamic environments and the memory-based
immigrant ACO (MIACO) performs best in cyclic dynamic
environments.

In this paper, we propose a novel and more realistic
memory-based ACO (MACO) approach for efficiently solving
the DEVD problem. The MACO uses a memory archive to
record the solutions that perform well in previous environ-
ments. These well-performing solutions can be utilized to
help fast indicate the new global optimal solution in the new
environment. Moreover, two special strategies are designed to
further help MACO better solve the DEVD problem. Firstly,
in response to dynamic changes, we design a partial reas-
signment (PR) strategy to re-optimize some of the customer
requests instead of re-optimizing all valid customer requests
in the new environment. Secondly, a local search procedure
called exchange or replace (EoR) strategy is designed to
enhance the performance. We conduct experiments on a set
of dynamic test cases with different customer and EV sizes
and compare MACO algorithm with not only the FCFS
approach, but also some state-of-the-art and recent ACO-based
dynamic optimization algorithms. Experimental results show
that MACO has generally better performance than the com-
pared algorithms on the DEVD problem.
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Therefore, the main contributions of this paper are summa-
rized as follows:

(1) Firstly, we establish a dynamic EV dispatch model
for simulating real-world dynamic EV dispatch application
scenarios, by associating multi-source data from five sources,
including customer, vehicle, charging, station, and service.

(2) Secondly, we propose a memory-based ACO approach
for efficiently solving the DEVD problem by enhancing the
adaptability in dynamic environments via pheromone transfer
through archived solutions.

(3) Thirdly, we propose a partial reassignment strategy to
optimize partial requests in the new environment to better
respond to the dynamic environment, and a new local search
procedure to enhance the performance. The proposed strategies
help the MACO algorithm obtain a better balance between the
performance and execution time, being more suitable for the
DEVD real-world application.

The rest of this paper is organized as follows. Section II
introduces the multi-source data associated DEVD model.
Section III describes the MACO algorithm in detail.
Section IV presents the experimental results, comparisons, and
analysis. Finally, Section V concludes this paper.

II. ELECTRIC VEHICLE DISPATCH PROBLEM

A. Static EV Dispatch Problem
In a dispatch scenario, a number of EVs and charging

stations are distributed within a certain geographical region.
The dispatch center monitors the activity of EVs and the status
of charging stations (whether available or not) in real time
via GPS and wireless communication network. In a small
time window, multiple customers send out service requests.
The dispatch center arranges suitable EVs for these customers
simultaneously, so as to maximize total service quality. The
basic notations for the EVD problem that is modeled by
multi-source data are listed in Table I.

The service process of EVD is illustrated in Fig.1, which is
divided into two stages: 1) EV goes to the customer location;
and 2) EV delivers the customer to the destination. When
the dispatch center selects a candidate EV for a customer,
it needs to consider both the locations of the customer and
the EV. Furthermore, the remaining power of the EV battery
should also be taken into account. That is, the EV’s remaining
battery capacity should be ‘sufficient’ to deliver the customer
to the destination. To ensure the availability of EV after
reaching the destination, ‘sufficient’ is defined as that the
remaining battery capacity can support the EV to reach at least
one charging station after completing a customer’s service
request. If the remaining battery capacity of an EV is not
sufficient, this EV needs to be recharged during the service
process.

In an actual EV service scenario, there are three types of
service routes for EVs as shown in Fig.1. The selection of
route type depends on the remaining battery capacity of the
EV: 1) if the remaining battery capacity of an EV is sufficient,
then the route for this EV is R1 + R2; 2) if the remaining
battery capacity is not sufficient to support this EV to reach the
customer location or reach any charging station after reaching

TABLE I

BASIC NOTATIONS FOR THE ASSOCIATED DATA IN EVD PROBLEM

Fig. 1. Illustration of EV serving process.

the location of the customer. That is, in this service, the EV
needs to be recharged in the first stage of the service process,
so the route is x1 + x2 + R2; 3) if the remaining battery
capacity is not sufficient but can support this EV to reach at
least one charging station after reaching the customer location.
In this case, this EV can be recharged in the first stage or the
second stage, so it is necessary to judge in which stage the
transportation cost is lower, so as to select route x1 + x2 + R2
or route R1 + x3 + x4 for this customer-EV pair. It is assumed
that if an EV is needed to be recharged, it is only recharged
once during the service. Moreover, to avoid too long charging
time, the charging process stops once the remaining battery
capacity is sufficient to support the EV to complete the service,
without having to fully recharge the battery. It should be noted
that when a low-power EV completes a service during which
it needs to recharge, it will stop accepting request, which is
controlled by the dispatch center. The EV will be recharged at
the charging station until it is fully recharged or the charging
process is terminated by the owner, and then the EV could
continue to serve. This can avoid the situation where the EV
is always in low-power status and has to be recharged again
and again. Also note that how to manage EV charging may
vary due to different policies on different platforms. The policy
considered herein is just an example.

Fig.2 illustrates how to select the charging station when the
remaining battery capacity of the EV is not sufficient, taking
recharging in the first stage as an example. First, the range
that the remaining battery capacity of the EV can support its
arrival is calculated and signed by the dashed circle in Fig.2.
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Fig. 2. Illustration of charging station selection.

Charging stations s2 and s3 located in this range are candidate
charging stations. Then based on the minimal increase in
transportation cost, s3 in the candidate set is selected as the
best charging station. In this case, although s2 is closer to
v j , s3 is selected because the total driving distances from v
to c via s3(i.e., d(v, s3) + d(s3, c)) is smaller than the total
driving distances from v to c via s2(i.e., d(v, s2) + d(s2, c)).
If the charging station selection occurs in the second stage,
the selection mechanism is the same as that in the first stage.
That is, among all the charging stations reachable by the EV,
the one with the minimal increase in transportation cost is
selected.

Therefore, if an EV v j is assigned to a customer ci to drive
to the destination gi , its driving distance l(ci , v j ) is calculated
as:

l(ci , v j ) =

⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

d(v j , ci ) + d(ci , gi ), if
q j

r
≥ d(v j , ci )

+d(ci , gi ) + d(gi , nsgi )

min(d(v j , s1) + d(s1, ci ) + d(ci , gi ), d(v j , ci )

+ d(ci , s2) + d(s2, gi )),

else if
q j

r
≥ d(v j , ci ) + d(ci , nsci )

d(v j , s1) + d(s1, ci ) + d(ci , gi ),

else if
q j

r
≥ d(v j , nsv j )

NA, otherwise

(1)

where nsgi , nsci , and nsv j represent the nearest charging
stations to gi , ci , and v j , respectively; q j is the remaining
battery capacity of v j ; r is the electricity consumption per
kilometer; s1 and s2 represent the charging stations selected
in the first stage and the second stage, respectively. It should
be noted that s1 and s2 are not necessarily nsv j and nsci .
“NA” means that the remaining battery capacity of an EV
is not enough to reach any charging stations, so it is not
available and not considered in the dispatch process. In the
description below, we only discuss EVs that can reach at
least one charging station according to their remaining battery
capacity.

To improve the service quality, the time cost of a service
process should be considered, including driving time and
charging time. The driving time dt(ci , v j ) is calculated as

dt (ci , v j ) = l(ci , v j )

vel
(2)

where vel is the EV velocity. The charging time ct(ci , v j ) is
calculated as

ct (ci , v j )

=

⎧⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎩

0, if
q j

r
≥ d(v j , ci )

+ d(ci , gi)

+ d(gi , nsgi )�
l(ci , v j ) + d(gi , nsgi )

� · r − q j

P
, otherwise

(3)

where P is the EV charging power. Therefore, the time cost
of one service process between ci and v j is

tc(ci , v j ) = dt (ci , v j ) + ct (ci , v j ) (4)

For a customer ci , the distance d(ci , gi ) between the
starting position and the destination is fixed, regardless of
which EV is assigned. It has no influence on the evaluation
of dispatch results but may have a negative impact on the
optimization process because of the relatively large value.
Therefore, d(ci , gi) is not considered in the proposed model.
In addition, to avoid excessive charging time and improve
customer’s using experience, a penalty for the charging time
is set. That is, if the charging time exceeds a threshold T , extra
charging time will be penalized. Therefore, the time cost in (4)
is updated as

tc(ci , v j ) =

⎧⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎩

dt (ci , v j ) − d(ci , gi)

vel
+ ct (ci , v j ),

if ct (ci , v j ) ≤ T

dt (ci , v j )−d(ci , gi )

vel
+T + �

ct (ci , v j ) − T
� · f,

otherwise

(5)

where T is the charging time threshold and f is the penalty
factor. Equation (5) indicates that for a customer ci , an EV,
that is closer to the customer and has more remaining battery
capacity, has a lower time cost. Thus, it is more likely to be
assigned to this customer. It should be noted that our model
is generic that it can consider both the situations of allowing
and not-allowing recharging during the service. That is, we can
simply set T = 0 and f = infinity so that the low-power EV
cannot be considered to be assigned to the customer.

The objective of the EV dispatch problem is to minimize
the time cost formulated as

minimize
N�

i=1

M�
j=1

xi j · tc(ci , v j ) (6)

subject to xi j =
	

1, if v j is assigned to ci

0, otherwise
(7)

∀i ∈ [1, N],
M�

j=1

xi j = 1 (8)

∀ j ∈ [1, M],
N�

i=1

xi j ≤ 1 (9)

where xi j is an indicator variable. Constraint (8) guarantees
that every customer will be assigned an EV and constraint (9)
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Fig. 3. Illustration of the DEVD dispatch process.

ensures that an EV is assigned to at most a customer. In this
paper, it is supposed that the number of EVs to be assigned
is not smaller than the number of customers, so that all the
requests can be satisfied.

B. Dynamic EV Dispatch Problem
During the working time of the dispatch center, the dis-

patch algorithm is repeated carried out again and again. Each
execution of the dispatch algorithm is regarded as a segment,
which is a complete dispatch process that includes two phases:
the request acquisition phase and the optimization phase. The
customers in each segment can obtain the dispatch results only
after the current segment is completed.

In our previous work that uses ACS to solve the EVD
problem [25], the algorithm is carried out at the optimization
phase after the customer requests are obtained in the request
acquisition phase. However, in a real-time service environ-
ment, dynamic changes can occur during the optimization
phase. Therefore, in this paper, we build the DEVD model to
consider the dynamic information that occurs during the opti-
mization phase, including the new customer requests coming
and the old requests cancellation. Specifically, we divide the
optimization phase into several cycles and execute them one
after one, so that the new coming requests and the cancelled
requests during one optimization cycle can be considered in
the next optimization cycle.

Fig.3 illustrates the dispatch process of the DEVD model,
in which optimization cycles of the optimization phase are
carried out after the request acquisition phase. In the request
acquisition phase, the dispatch center receives customers’
requests. In the optimization phase, these requests (customers)
are dispatched by an optimization algorithm to assign appro-
priate EVs. However, as new requests may come and old
requests may be cancelled during the optimization phase,
the DEVD model treats the dispatch as a DOP and divides
the optimization phase into several cycles. In the first cycle, the
optimization algorithm only considers the requests acquired
in the request acquisition phase. Then, new requests and
cancelled requests during the first cycle are put into the
buffer pool and will be considered in the second cycle.
Note that the first cycle is not aware of these new and
cancelled requests. Moreover, the second cycle carries out
the optimization algorithm by considering all these requests,

that is, the requests acquired in the request acquisition phase
and the requests acquired and cancelled in the first cycle.
Similarly, the third cycle considers all the requests dispatched
in the second cycle and those new/cancelled requests appeared
during the second cycle. This way, after the optimization of
the last cycle, the algorithm obtains the dispatch solution,
which considered the dynamic changes in the optimization
phase, and will send the results to both the customers and
EVs. Because the requests to be optimized in each cycle are
different from each other, each cycle can be regarded as being
in a different environment. These different environments also
reflect the dynamicity of DEVD problem.

III. MACO FOR SOLVING THE DEVD PROBLEM

As mentioned above, to efficiently solve the DEVD prob-
lem, the proposed MACO approach is executed on the
optimization phase in a DEVD dispatch process, and the opti-
mization phase is divided into several optimization cycles so
that each cycle can consider the dynamic service information
that occurred in the previous cycle. Therefore, without loss of
generality, the optimization process described in the follows
is based on the t th optimization cycle in a DEVD dispatch
process, named the environment Et in this paper.

A. Encoding of MACO for DEVD

Each ant in MACO is encoded as a matrix, as shown in

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · · · · · · · x1,M
...

. . .
...

... xi, j
...

...
. . .

...
xNt ,1 · · · · · · · · · xNt ,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where the number of rows and columns of the matrix are the
number of valid requests in current environment Et , denoted
by Nt , and the number of available EVs, denoted by M ,
respectively. Each element xi, j in the matrix refers to whether
the customer i is assigned the EV j . If the value is 1, it means
that customer i has been assigned EV j , while value 0 means
not assigned, as shown in (7).

B. Initialization State Configurations

In ACO-based algorithms, pheromone records accumulated
experience in the colony, which affects the path construction
of ants. For the DEVD problem, the pheromone value τ (i, j)
is set between customers and EVs to indicate the preference
that an EVv j is assigned to a customer ci , and its initial value
τ0 is set as

τ0 = (Nt · Tnn)−1 (11)

where Nt is the number of customers to be assigned in the
current environment Et and Tnn is the time cost (i.e., the fitness
value calculated by (6)) of the solution obtained by the FCFS
approach. The FCFS approach works simply as that, when a
customer request is received, an EV with the lowest time cost
among the currently available EVs is assigned to it.
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C. Solution Construction

The solution construction process in MACO is the same
as that in the traditional ACS algorithm, where ants iteratively
construct solutions by using a state transition rule. To increase
the diversity of solutions, the order of customers to be assigned
is shuffled randomly before construction. Each ant searches
for feasible solutions by assigning EVs to customers one by
one, according to the order in which customers are shuffled.
The search behavior is influenced by pheromone (swarm
knowledge) and heuristic information (individual knowledge).
Similar to TSP [33], heuristic information in the DEVD
problem is given by

η(i, j) = 1

tc(ci , v j )
(12)

where η(i, j) represents the heuristic information between
customer i and EV j . Based on the pheromone and heuristic
information, the probability that an unassigned EV j is selected
for customer i is calculated as

p(i, j) =

⎧⎨⎨⎨
⎨⎨⎩

[τ (i, j)] · [η(i, j)]β�
u∈Ji

[τ (i, u)] · [η(i, u)]β , if j ∈ Ji

0, otherwise

(13)

where Ji is the set of EVs that have not been assigned and
β (β >0) is a predetermined parameter that determines the
relative importance of heuristic information.

The state transition rule is as follows: for customer i , an EV
j is dispatched by applying the rule given by

j =
⎧⎨
⎩

arg max
u∈Ji

{[τ (i, u)] · [η(i, u)]β}, if q ≤ q0

J, otherwise
(14)

where q is a random variable uniformly distributed in [0,1],
J is a random number selected by roulette wheel selection
according to the probability calculated in (13), and q0(0 ≤
q0 ≤ 1) is a parameter to control the exploitation and explo-
ration behaviors of ants. For the customer i , if q ≤ q0, then the
ant greedily chooses the EV with the maximal pheromone and
heuristic information, measured by τ (i, u)·η(i, u)β . Otherwise,
the EV is determined as J .

D. Memory-Based Pheromone Updating Rule

In MACO, the best solution of the current iteration and the
historically best solution (i.e., the global optimal solution from
the beginning of the current environment) are denoted as Sb

and Sgb, respectively. In every iteration, the Sb is added into
the memory archive. Furthermore, if the Sb is better than the
Sgb, the Sgb will be updated by the Sb in every iteration. With
the help of the memory archive, the pheromone can be updated
when a solution enters or leaves the memory.

The memory archive is with the size of K and uses a first-in-
first-out fashion to keep the latest best solutions information.
For the first K iterations, solutions can be stored in the
memory archive one by one during the iterations. Therefore,
when the iteration index g ≤ K , the pheromone is positive

updated according to the stored solution at the end of the gth

iteration as

τ (i, j) = τ (i, j) + �τ(i, j), ∀(i, j) ∈ Sb (15)

where �τ(i, j) = (τmax − τ0)/K and τmax denotes the max-
imum pheromone value, which is a predetermined parameter.
Note that the τ0 obtained in (11) will be re-calculated in every
environmental change, as described later in Section III-E-2).

From the (K + 1)th iteration, the oldest (i.e., the first-in)
solution in the memory archive is removed (i.e., first-out)
before the new solution is added and the pheromone infor-
mation is negative updated according to the removed solution
as

τ (i, j) = τ (i, j) − �τ(i, j), ∀(i, j) ∈ Soldest (16)

where Soldest is the oldest solution in the memory archive
(i.e., the removed solution) and �τ is the same as defined
in (15). After (16), the new solution enters the memory
archive and the pheromone is positive updated according to
this newly entered solution via (15). The pheromone values
are maintained between τ0 and τmax during the optimization
process.

E. Strategies Reacting to Dynamic Change Based on Memory
During the optimization process, some old customers may

cancel requests and some new customers may send requests.
The solutions obtained in the previous environment (i.e., the
previous optimization cycle) may no longer be feasible in the
current environment, and the requests to be optimized may be
different from those in the previous environment. In this paper,
partial reassignment (PR) strategy and pheromone transfer
operation are performed after the environment changes (i.e.,
when entering the next optimization cycle). The PR strategy
is used to update the requests to be optimized in the new
environment. The pheromone transfer operation is used to
repair the solutions in the memory archive and update the
pheromone.

1) Partial Reassignment: When the environment changes,
new coming customer requests and cancelled requests are
considered. The first thing to do is to invalidate the cancelled
requests. Then, for all currently valid customer requests,
a simple method is re-assigning EVs for all requests, no matter
whether they have been assigned before or not [49]. However,
such a method discards matching information in previous
environments and is not suitable for slightly changing envi-
ronments. Another method is to optimize the new coming
customer requests independently once a change occurs, based
on the incremental (INC) optimization method [54], which can
reduce response time but may easily fall into local optima.
In the customer-EV dispatch service, the environment often
changes slightly due to short optimization time. Therefore,
the restart strategy may be computationally expensive by
considering all the valid customer requests, while the INC
strategy may trap into local optimum by only considering the
new/cancelled customer requests. Thus, this paper proposed
a new PR strategy, different from the restart strategy and the
INC strategy, to respond to the environmental change. PR strat-
egy considers both the new/cancelled customer requests and
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Fig. 4. Illustration of the partial reassignment strategy. (a) The globally
best solution in the previous environment. (b) Release matched customer-EV
pairs near new customer cnew with Ninit = 3, Nnew = 1, and R = 0.3.
(c) One dispatch results in the new environment. The dotted line refers to the
customer-EV pairs that participate in the optimization in the new environment.

previously assigned requests. However, not all the previously
assigned requests, but only some of them are considered.
Therefore, the number of customer requests to be assigned in
the new environment is between that of INC and restart, so as
to make a trade-off between reducing computational time and
improving solution quality.

To get the requests to be optimized in the new environment,
the PR strategy is implemented. The PR strategy releases
some matched customer-EV pairs to get customers and EVs
that need to be re-dispatched, so as to avoid local optimal
to some extent. The specific operation of PR strategy is as
follows. It should be noted that all operations of PR are
performed on the historically best solution Sgb. First, for the
cancelled requests, their assigned EVs are released. Second,
for each new customer (i.e., request), find its nearest R·

�
Ninit
Nnew

�
customers (measured by Euclidean distance) and release those
customer-EV pairs. The R is a predefined parameter, Ninit

represents the number of customer requests received in the
request acquisition phase, and Nnew is the number of new
requests in the new environment. The more initial requests than
new requests, the more customer-EV pairs will be released for
optimization, so as to effectively avoid local optima. Fig. 4
shows an example of the two steps of the PR process. After
the PR process, we can obtain the requests that need to be
optimized in the new environment, that is, all new requests and
released requests. The task of DEVD in the new environment
(i.e., the next optimization cycle in Fig.3) is to assign currently
idle EVs to these new and released customer requests. Note
that the solution in the new environment should consider both
the new dispatched and previous remained customer-EV pairs
to calculate its fitness value.

2) Pheromone Transfer: In this section, we discuss how to
transfer pheromone from the previous environment to the new
environment. In MACO, the pheromone updating operation is
performed based on the solutions in the memory archive as
described in Section III-D. However, when an environmental
change occurs, these solutions may be infeasible, because
some customers may cancel requests. Hence, solutions in
the memory archive need to be repaired and re-evaluated.
As suggested in [51], a principle called KeepElite [55] is
adopted to repair solutions after a change. That is, for each
solution in the memory, the cancelled customer-EV pairs are
released and the new customer-EV pairs are added, where
each new customer will be assigned an EV that minimizes

Fig. 5. Illustration of the EoR local search.

the increase of total time cost. Then re-evaluate each solution
in the memory.

After repairing and re-evaluating all the solutions in
the memory, conduct the pheromone transfer as follows.
Firstly, re-initialize pheromone between all customers and EVs
by (11). Then, update pheromone positively based on all these
repaired solutions in the memory archive according to (15).

F. EoR Local Search Procedure
To improve solution quality, the EoR local search is carried

on the historically best solution Sgb before updating the
memory archive and pheromone in every iteration. In order
to reduce the extra computational time caused by local search
and to improve the solution quality as much as possible, the
EoR is conducted on the customer-EV pair with the maximal
time cost in Sgb, denoted by πmax . The EoR includes two
components: “exchange” and “replace”. The example of the
EoR local search procedure is shown in Fig.5.

1) Exchange Operation: The exchange operation swaps
EVs between πmax and other customer-EV pairs in Sgb. For
each customer-EV pair in Sgb, if the total time cost is reduced
after swapping the EV with πmax , put this pair into an
exchange list exl.

exl = {(i, j)|tc(cmax, vmax) + tc(ci , v j ) > tc(cmax, v j )

+tc(ci , vmax)} (17)

where cmax and vmax represent the customer and EV of πmax .
The pair with the largest value of � in exl is the selected pair
to be exchanged, where � is defined by

�= tc(cmax, vmax)+tc(ci , v j )−tc(cmax, v j )−tc(ci , vmax)

(18)

2) Replace Operation: The replace operation replaces vmax

with idle EVs, so that the total time cost is reduced. The idle
EV that reduces the total time cost the most is the selected
EV to be replaced.

The EoR local search chooses the better operation between
“exchange” and “replace” to perform. That is, the “exchange”
or the “replace” operation that reduces more total time cost
is performed. It should be noted that if there is no idle
EV (i.e., the number of available EVs is not larger than
the number of currently valid customer requests), only the
exchange operation is performed.



17498 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

Fig. 6. Flowchart of the MACO algorithm.

G. Complete MACO Algorithm and Complexity Analysis

The flowchart and the pseudocode of the whole MACO
algorithm are shown in Fig. 6 and Algorithm 1, respectively.
Moreover, the complexity analysis of MACO is given as
followings.

Herein, we denote the total number of customer requests
and the number of available EVs as N and M , respectively.
The number of ants in MACO is NP. First, the time complexity
of initializing pheromone is O(N × M), as obtained by line 1
in Algorithm 1. Then, as for constructing solution for NP ants
and updating the historically best solution, the time complexity
is O(N P ×N

�
t ×M) in every iteration, as obtained by lines 3-7

in Algorithm 1. The Nt ’ is the number of customer requests to
be dispatched in the environment Et . In the first optimization
cycle, Nt ’ is the initial number of customer requests Ninit ;
and in other cycles, Nt ’ is the sum of new customer requests
Nnew and released customer requests Nrels , computed by

R ·
�

Ninit
Nnew

�
. The EoR local search procedure includes exchange

operation and replace operation, so the time complexity of
EoR is O(NG × N) + O(NG × M), as obtained by line 8
in Algorithm 1. Next, the memory archive is updated, and the
time complexity is O(NG × N), as obtained by lines 9-14
in Algorithm 1. When a dynamic change occurs, the PR

Algorithm 1 MACO
Input: customer requests to be matched, available EVs
Output: historically best matching solution Sgb

Begin
1: Initialize pheromone according to (11); g = 1;
2: While g <= NG Do
3: For each ant a Do
4: Ant a constructs the customer-EV assignment by (12)-(14);
5: Evaluate the fitness of ant a;
6: End For
7: Update the historically best solution Sgb ;
8: Perform the EoR local search;
9: If g > K Do

10: Remove the oldest solution in the memory;
11: Update pheromone based on the removed solution by (16);
12: End If
13: Put the best solution of current iteration Sb into the memory;
14: Update pheromone based on the inserted solution by (15);
15: If dynamic change occurs Do
16: Get the requests to be optimized in the new environment by PR;
17: Repair and re-evaluate solutions in the memory;
18: Re-initialize pheromone by (11);
19: Update pheromone based on the solutions in memory by (15);
20: End If
21: g = g + 1;
22: End While
End

strategy and pheromone transfer are performed, as obtained
by lines 16-19 in Algorithm 1. The PR strategy needs to find
the nearest customer requests for each new customer request,
so the time complexity is O(NG×Nnew ×N). The pheromone
transfer procedure includes repairing solutions in the memory
archive and updating pheromone, whose time complexities are
O(NG × K × Nnew × M) and O(NG × N × M), respectively,
where K is the size of the memory. Therefore, the overall time
complexity of MACO is O(NG × N P × N

�
t × M)+ O(NG ×

Nnew ×N)+O(NG×K ×Nnew ×M)+O(NG×N ×M). The
comparison of the time complexity between MACO and other
algorithms (listed in Section IV-A) can be seen in Table II.

IV. EXPERIMENTS

In this section, experimental tests are conducted to investi-
gate the performance of MACO on DEVD. All the algorithms
are implemented in C + + and run on a PC with a Core
quad-core CPU i7 and 8.0GB RAM.

A. Experimental Settings

We compare MACO with the FCFS approach and
five dynamic optimization algorithms, including restart
ACS (RSACS), incremental (INC) method-based [54] ACS
(INCACS), ACS-DVRP [52], P-ACO [50], and EIACO [53].

1) FCFS: Assign EVs with the minimum time cost for
all valid customer requests according to their orders of
arriving at the dispatch center.

2) RSACS: Re-initialize the pheromone and re-optimize all
customer requests when a dynamic change occurs. The
optimizer is ACS [33] and the algorithm is termed as
restart ACS (RSACS).

3) INCACS: Once a dynamic change occurs, it only
focuses on the new coming and cancelled cus-
tomer requests and assigns suitable EVs for newly
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TABLE II

COMPARISON OF THE TIME COMPLEXITY BETWEEN
MACO AND OTHER ALGORITHMS

TABLE III

PARAMETER SETTINGS OF SIX DYNAMIC OPTIMIZATION ALGORITHMS

added requests. The optimized result will be directly
attached to the globally best solution of the previous
environment. The optimizer is ACS and the algorithm is
termed as incremental ACS (INCACS).

4) ACS-DVRP [52]: ACS-DVRP introduces a parameter to
transfer pheromone from the previous environment to the
new environment for solving DVRP. When ACS-DVRP
is adopted to solve DEVD problem, the optimization
process is similar to that of RSACS. Except that when
a dynamic change occurs, the migration of pheromone
is carried out and controlled by a parameter.

5) P-ACO [50]: In every iteration, P-ACO stores the iter-
ative best solution Sb found by the ant colony into a
population list of size K for solving dynamic TSP. When
a change occurs in DEVD problem, P-ACO repairs the
solutions in the population list by releasing the cancelled
customer-EV pairs and re-assigning EVs to new coming
customer requests and then re-optimizes all currently
valid customer requests.

6) EIACO [53]: EIACO is an improved variant of
P-ACO to solve the dynamic TSP, which introduces
elitism-based immigrants to replace the worst ants in
the population list in every iteration. The immigrants
are generated based on the best solution in the previous
iteration, using the inver-over operator [56].

Some parameter settings of EVs and DEVD have been given
in Table I, where the EV technical parameters are based on
the BYD e6 product parameters [57], [58]. The parameters
settings of the six compared algorithms are listed in Table III.

The EV dispatch is conducted in a physical area covering
100 km × 100 km. The position of all objects is generated
uniformly, including EV, customer (request), destination, and
charging station. The remaining battery capacity of the EV is
randomly generated within [1 kWh, 60 kWh]. The requests to
be cancelled are randomly selected from all customer requests.

TABLE IV

DEVD TEST CASES

The specific data of the test cases can be downloaded from
https://zhanapollo.github.io/zhanzhh/resources.htm.

For DEVD model, we design various test cases (i.e., A1 to
A8) by considering different EV sizes and customer request
sizes, ranging from 100 to 500 and from 50 to 500, respec-
tively, shown in Table IV. The W is the number of charging
stations. The N is the total number of customer requests
(including valid and cancelled requests) and the M is the
number of available EVs which can reach at least one charging
station with the remaining battery capacity. Initial requests in
the table refer to requests acquired in the request acquisition
phase. After the request acquisition phase, the optimization
phase starts, from the 1th iteration. For dynamic changes, it is
assumed that new customer requests and cancelled requests are
processed every 25 iterations. Thus, the environment changes
are considered after the 25th, 50th, 75th, 100th, and 125th

iterations. Changes that occur between the 125th and 150th

iterations are not considered in current dispatch process and
are postponed to the next dispatch process. In each environ-
mental change, new requests are taken from the buffer pool and
�γ × Nt� customer requests are randomly cancelled, where Nt

is the number of valid requests in current environment Et and
γ is set to 0.01 herein. The numbers of new requests and
cancelled requests for each change are listed in the “Number
of new requests” column and the “Number of cancelled
requests” column, respectively. For example, on the test case
A8, the numbers of charging stations, available EVs, and
initial customer requests in the initial iteration are 50, 500,
and 400, respectively. After the 25th iteration, 4 old requests
are cancelled and 20 new requests arrive. So after the first
dynamic change, the number of valid customer requests is
416. The same changes also occur after the 50th, 75th, 100th,
and 125thiterations, according to Table IV.

In the experiments, all the stochastic algorithms perform 30
independent runs on each case, with their mean values com-
pared. The best results are marked in boldface. Moreover,
Wilcoxon’s rank-sum test is conducted at a 0.05 significance
level. The results marked with “+”, “≈”, and “−” indicate
that MACO is significantly better than, similar with, and
significantly worse than the compared algorithm, respectively.

B. Experimental Results

Table V lists the fitness values (i.e., the average time cost in
minutes required for completing all valid customer requests,
calculated by (6)) obtained by MACO, FCFS, and other five
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TABLE V

COMPARISONS OF THE FITNESS VALUES AND THE RUNTIME (SECOND) BETWEEN MACO AND OTHER ALGORITHMS

Fig. 7. Performance comparison via histogram.

dynamic optimization algorithms. The histogram comparisons
of Table V are illustrated in Fig. 7(a). It can be observed that:

1) FCFS performs the worst, because it solves the prob-
lem from a local perspective and cannot guarantee the
solution quality at the global level.

2) INCACS performs better than FCFS, but performs the
worst among the six dynamic optimization algorithms.
This may be due to that INCACS only optimizes the
new requests when an environmental change occurs.
Therefore, it only focuses on the new information, but
is regardless of the previous information, being easy to
fall into local optima.

3) RSACS and ACS-DVRP have a similar performance,
and perform worse than MACO. This means that simply
transferring pheromone by a parameter cannot improve
the solution quality very efficiently.

4) EIACO, which introduces elite immigrant ants, has
no significant improvement compared to the original
P-ACO. This means that the immigrants generated by
the inver-over operator designed for TSP have no sig-
nificant effect on the DEVD problem.

5) In the cases that the number of EVs is more than
the number of customer requests (i.e., A1, A2, A4,
A5, and A7 with rich EV resources), MACO can get
results that are similar to the best values obtained by the
other six algorithms, although slightly better or worse
in some cases. However, MACO performs significantly
better than the other six algorithms when the number of
requests is the same as the number of EVs (i.e., A3, A6,
and A8 with limited EV resources).

Moreover, to compare the computational efficiency of the
six dynamic optimization algorithms, the average CPU runtime
(in second) of each algorithm over 30 independent runs is

also presented in Table V and the histogram is compared in
Fig. 7(b). Notice that the runtime of FCFS is not presented
because it is a kind of greedy algorithm that consumes very
little CPU time. From the results, we can see that INCACS
runs fastest because it only optimizes new customer requests.
The runtime of RSACS and ACS-DVRP is similar, which
is reasonable because ACS-DVRP runs the same mechanism
as RSACS except for transferring pheromone from the pre-
vious environment by a parameter. The runtime of P-ACO
is similar to that of RSACS and ACS-DVRP, indicating
that the operation of the embedded population-list does not
cause excessive computational time consumption. Compared
to P-ACO, EIACO runs slightly longer because of the extra
time spent by its elitism-based immigrant replacement strategy.

The MACO algorithm runs faster than other algorithms
except INCACS. This means when new customer requests
arrive, releasing some of the assigned customer requests
around them can significantly reduce the runtime compared to
the approaches that re-optimize all requests (e.g., the RSACS).
Taking both fitness values and the runtime in Table V into
consideration, it can be concluded that MACO can effectively
make a trade-off between improving the solution quality and
reducing computational time.

C. Necessity of Power Awareness and Recharging
In this paper, we consider that there are low-power EVs

and they can be recharged during the service. To verify the
necessity of vehicle recharging in the service, we design a
comparative experiment. The experiment is designed based
on two variants of the DEVD model: not considering the
remaining power of the EV battery and not allowing the EV
recharging. In the first model variant, the algorithm variant
is denoted as MACO-full-power, where the remaining power
of the EV battery is always regarded as sufficient no matter
how much it remains. In the second model variant, the
algorithm variant is denoted as MACO-w/o-recharging, where
the recharging is not allowed for EVs during the service, that
is, if the remaining power of an EV battery is not sufficient
to complete a customer request, this EV will not be assigned
to this customer. We compare MACO, MACO-full-power, and
MACO-w/o-recharging in terms of fitness values, SatPercen,
and UnsatPercen. The SatPercen (i.e., satisfied percentage)
is the percentage of requests that can be served by EVs.
However, in these customer-EV pairs, some pairs obtained by
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TABLE VI

COMPARISONS OF THE FITNESS VALUES, SATPERCEN, AND
UNSATPERCEN OF MACO, MACO-FULL-POWER,

AND MACO-W/O-RECHARGING

the MACO-full-power variant may be invalid. For example,
for a low-power EV, the remaining power of its battery is
regarded as sufficient in the MACO-full-power variant, but in
the practical application, its remaining battery capacity is not
sufficient to let it serve its assigned customer to the destination.
In this case, the assignment is invalid and unsatisfied, and
therefore the UnsatPercen (i.e., unsatisfied percentage) is the
percentage of unsatisfied customer requests in all assigned
customer requests. The results are given in Table VI.

It can be observed that MACO-full-power can get better fit-
ness values than MACO does on all test cases, but has at least
25% unsatisfied percentage. It means that not all assigned EVs
have enough power to serve the assigned customer requests.
So when we dispatch EVs to customer requests, we need to
consider the remaining power of the EV battery to avoid the
invalid assignments. MACO-w/o-recharging obtains a worse
global service quality (i.e., considering both the fitness values
and satisfied percentage) than MACO does. On A1, A2, A4,
A5, and A7, MACO-w/o-recharging can satisfy all customer
requests, but has worse fitness values than MACO. On A3,
A6, and A8, the fitness values of MACO-w/o-recharging are
better than those of MACO, but not all customer requests can
be assigned with an EV. It means that if the EV is not allowed
to recharge in the service, some customer requests may not be
served or take more time to complete. So it is necessary to
consider the remaining power of the EV battery and recharging
in the service for EVs.

D. Effectiveness of EoR Local Search and PR Strategy

To validate the effectiveness of the EoR local search,
we integrate the EoR into the five compared dynamic opti-
mization algorithms (i.e., except FCFS), termed RSACS-
EoR, INCACS-EoR, ACS-DVRP-EoR, PACO-EoR, and
EIACO-EoR, respectively. The fitness values obtained by these
five algorithms are given in Table VII. To show the effi-
ciency more directly, the fitness values of the EoR-enhanced
algorithms are plotted as color bars in Fig. 8. Moreover, the
improved performance brought by EoR is also plotted as the
shaded bar. It can be observed that the EoR local search can
improve the performance of all the five dynamic optimization
algorithms to varying degrees. Nevertheless, the results in
Table VII show that MACO is still the best algorithms among
all the EoR algorithm variants.

Fig. 8. Performance of EoR on different algorithms via histogram.

Fig. 9. Convergence curves of MACO, RSACS, INCACS, and P-ACO on A8.

To further investigate the effectiveness of EoR and PR
strategies, we compare MACO with the MACO variants with-
out the PR or EoR. There is no PR but EoR in MACO-w/o-PR,
no EoR but PR in MACO-w/o-EoR, and no PR or EoR in
MACO-w/o-PR-EoR. Table VIII lists the mean fitness values
and runtime of the four algorithms over 30 independent runs.
For the solution quality, it can be observed that MACO
obtains similar results to MACO-w/o-PR, while outperforms
MACO-w/o-EoR and MACO-w/o-PR-EoR. This means that
the EoR local search helps MACO improve the solution
quality. On the runtime, MACO runs slightly slower than
MACO-w/o-EoR, which indicates the EoR local search con-
sumes only a little computational time. Moreover, MACO runs
much faster than MACO-w/o-PR and MACO-w/o-PR-EoR.
It means the PR strategy helps improve computational effi-
ciency on running time. Therefore, both EoR and PR help
the MACO algorithm quickly find promising solutions in a
short time. Based on the above, both EoR and PR have
their contributions to the promising performance of MACO,
and removing any of them will has bad influence on the
performance of MACO.

E. Convergence Analysis

In order to conduct the convergence analysis, we plot the
convergence curves of MACO, RSACS, INCACS, and P-ACO
during the optimization process on A8 in Fig. 9. In the figure,
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TABLE VII

COMPARISONS OF THE FITNESS VALUES BETWEEN MACO AND FIVE DYNAMIC OPTIMIZATION ALGORITHMS WITH EOR LOCAL SEARCH

TABLE VIII

COMPARISONS OF THE FITNESS VALUES AND RUNTIME (SECOND) OF MACO, MACO-W/O-PR, MACO-W/O-EOR, AND MACO-W/O-PR-EOR

every time a sharp peak appears, it means that a dynamic
change occurs. In the first 25 iterations, which is the initial
environment, the results obtained by the four algorithms are
similar. In the next iterations, MACO can quickly find new
promising solutions when an environmental change occurs,
compared to the other three algorithms. This may be due to
two advantages brought by the memory archive information
in MACO. Firstly, after being repaired, the solutions in the
memory archive will have good fitness values (i.e., low average
time cost) in the new environment. Since the environment
before and after a dynamic change is relevant in the DEVD
application, such a re-use of the past solutions can help the
algorithm converge faster in the new environment. Secondly,
by transferring pheromone from the previous environment via
the solutions in the memory, the MACO can guide ants to
search promising areas of the new environment quickly. The
fastest convergence speed and best fitness value obtained by
MACO show the good utilization of the memory archive
information of our proposed MACO algorithm.

F. Parameter Analysis of MACO

In this section, we take A3 to A8 as examples to study the
influences of parameters on MACO. The parameters q0 and β
are set according to standard ACO, and then we investigate the
other parameters K , R, and τmax. Note that when performing
analysis of a parameter, the other parameters are consistent
with the settings in Table III.

K represents the size of the memory, that is, the number of
stored solutions that perform well in the previous iterations.
The mean fitness values obtained by MACO with different
K values (i.e., K = 1, 5, 10, 15, 20, and 25) are plotted

in Fig. 10(a). It is shown that the MACO performs slightly
worse on A3 and A6 when K = 1. This indicates that too
little information stored in the memory archive will lead to
inefficient pheromone update. In addition, the performance of
MACO is similar when K is 5 to 25. Therefore, we set K = 10
in this paper.

Then the parameter R is investigated, which determines
the number of customer-EV pairs released in the histori-
cally best solution when the environment changes. We set R
from 0 to 0.7 with an interval of 0.1 and the mean fitness
values are shown in Fig. 10(b). The results when R = 0 are
similar to those obtained by INCACS-EoR in Table VIII. This
is reasonable because they adopt the same mechanism to deal
with dynamic changes, that is, only optimizing new requests.
The fitness values generally decrease with the increase of R,
which indicates that releasing some assigned customer-EV
pairs can help escape from local optima. The performance
improvement is not significant when R is greater than 0.5.
Therefore, to avoid the waste of computational time caused
by releasing too many customer-EV pairs, R is set to 0.5 in
this paper.

Finally, the maximum pheromone value τmax is tested.
We set τmax from 1.0 to 5.0 with a step of 1.0. The tendency
of the curves in Fig. 10(c) shows that the τmax value has little
effect on the performance of MACO. In this paper, τmax is
set to 1.0.

G. Transportation Costs
From the perspective of the enterprises, it is important to

reduce the transportation costs of EV during service. In this
section, we compare the transportation cost obtained by each
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Fig. 10. Influence of the parameters K , R, and τmax on the MACO. (a) Different K values. (b) Different R values. (c) Different τmax values.

TABLE IX

COMPARISONS OF TOTAL DRIVING DISTANCE (km)

algorithm. Table IX lists the total driving distance (km) of all
the EVs, including the distance to pick up the customer and the
distance to deliver the customer to the destination, calculated
according to the dispatch results on all the eight test cases
A1 to A8.

It can be observed from Table IX that MACO can obtain the
minimal transportation cost or the approximate minimal cost
among all the seven algorithms. In particular, MACO performs
significantly better than other algorithms in A6 and A8, which
is consistent with the results in Table V.

Therefore, it can be concluded that MACO can effectively
solve the DEVD problem. It can reduce customers’ waiting
time and improve the quality of service. Meanwhile, it can
reduce the driving distance of EVs during the service process,
so as to reduce operating costs.

H. Comparison on Real-World Dataset

To evaluate the performance of MACO on real-world appli-
cation, a real dataset from Didi Chuxing GAIA Initiative [59]
is adopted. The real-world data include all the customer
requests in a whole day in a China city. Herein, we select the
first 500 customer requests (i.e., the same number of customers
as our test case A8) from the dataset to conduct a real-world
case, termed as DidiTest. However, the data only contain the
original locations and destinations of the customers, which
are located in a 55 km × 30 km physical area. Therefore,
in order to complete the DidiTest case, we further set up
the number of EVs and charging stations as 500 and 50,
respectively, the same as those in A8. Then, the locations
of EVs and the charging stations are generated randomly
within the coordinate range of the customer locations, while
the charging data is generated randomly within the battery

TABLE X

COMPARISONS OF THE FITNESS VALUES AND TOTAL DRIVING

DISTANCE (km) ON THE TEST CASE DIDITEST

capacity of EVs. We compare the mean fitness values and
the transportation costs obtained by each algorithm on this
DidiTest test case. The experimental results are compared
in Table X.

It can be observed that MACO can get the best fitness values
and obtain the minimal transportation costs (i.e., the total
driving distances of all the EVs, including the distances to pick
up the customers and the distances to deliver the customers
to the destinations) among all comparison algorithms on the
real-world test case. Thus, it can be concluded that MACO is
practical and effective in solving the real DEVD problem.

V. CONCLUSION

EV dispatch is a challenging issue due to the charging
characteristics and dynamic scenarios. To simulate real-world
dynamic EV dispatch application scenarios, a dynamic EV
dispatch model is established by considering multi-source data
association from five sources, including customer, vehicle,
charging, station, and service. To solve the DEVD prob-
lem, we propose a memory-based ACO approach MACO
as the optimizer to enhance the adaptability in dynamic
environments. Furthermore, the PR strategy and the EoR local
search procedure are incorporated into MACO to obtain a
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better balance between the performance and execution time.
The PR strategy gets the requests to be optimized in the
new environment to better respond to the dynamic environ-
ment. The EoR local search procedure integrates empirical
knowledge into the search process to enhance the performance
of MACO.

Experimental results show that MACO outperforms the tra-
ditional FCFS approach and some state-of-the-art ACO-based
dynamic optimization algorithms. It has effectively achieved
the objectives of minimizing customer waiting time and trans-
portation costs at the global level. The experimental results on
the real-world dataset also show the practicability of MACO.

In the future work, we can consider the personalized
preferences of both the passengers and drivers on the EV
recharging to make the problem model more practical. Some
other promising future research directions include the schedul-
ing over larger areas by dividing the dispatch area and the
scheduling with more objectives. For these goals, some recent
large-scale optimization algorithms [60] and multi-objective
optimization algorithms [61] are worth studying.
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