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ABSTRACT Simultaneous Localization and Mapping (SLAM) plays an irreplaceable role in the field of
artificial intelligence. The traditional visual SLAM algorithm is stable assuming a static environment, but
has lower robustness and accuracy in dynamic scenes, which affects its localization accuracy. To address
this problem, a semantic SLAM system is proposed that incorporates ORB-SLAM3, semantic segmentation
thread and geometric thread, namely DeepLabv3*_SLAM. The improved DeepLabv3™ semantic segmenta-
tion network combines context information to segment potential a priori dynamic objects. Then, the geometry
thread uses a multi-view geometry method to detect the motion state information of the dynamic object.
Finally, a new ant colony strategy is proposed to find the group of all dynamic feature points through the
optimal path, and avoids traversing all the feature points to reduce the dynamic object detection time and
improve the real-time performance of the system. By conducting experiments on public data sets, the results
show that the method proposed in this paper effectively improves the positioning accuracy of the system in a
high-dynamic environment compared with similar algorithms, and the real-time performance of the system

is improved.

INDEX TERMS DeepLabv3™_SLAM, semantic, high-dynamic environment, new ant colony strategy.

I. INTRODUCTION

With the rapid development of robotics and computer sci-
ence, autonomous mobile robots are widely used in various
fields such as industry and agriculture. As one of the most
advanced technologies in the field of robot motion, SLAM
uses the sensor data from a robot for autonomous positioning
and map construction. From the mutual dependence of robot
autonomous localization and map construction, only accurate
autonomous localization is necessary to build a correct map.
A correct map can help the robot determine its position in the
map accurately.

At present, most visual SLAM frameworks operate under
the assumption of a static environment, such as ORB-SLAM
[1], ORB-SLAM2 [2], ORB-SLAM3 [3], LSD-SLAM [4],
RGB-D SLAM [5]. Among these frameworks, ORB-SLAM3
is considered to be the advanced method currently used in
static scenes. ORB-SLAM3 is a system based on ORB-
SLAM?2 and ORB-SLAM-VI that can operate robustly in
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purely visual or visual inertial guidance systems, and is
a complete and highly accurate generalized system. These
algorithms can achieve satisfactory results in a static envi-
ronment or an environment with a small number of dynamic
objects. However, when the robot is operated in an environ-
ment with a large number of dynamic objects (e.g., people,
vehicles), the performance of the visual SLAM algorithm will
significantly decrease. This is a result of the visual features
from dynamic objects in the environment, which affects the
positional estimation of the robot and greatly decrease the
positioning accuracy of the system. In recent years, with
the development of deep learning technology, increasingly
more excellent image algorithms have been applied to visual
SLAM, which provide methods and ideas for improving the
localization accuracy of the system.

In this article, we propose a multi-threaded parallel seman-
tic SLAM system to solve the problem when facing dynamic
objects. The system is mainly based on the ORB-SLAM3
algorithm framework and introduces semantic segmentation
and multi-view geometry approaches to the original frame-
work. In the semantic segmentation thread, the ResNest [6]
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classification network with higher accuracy is used to replace
the original ResNet [7] in the DeepLabv3™ [8] segmenta-
tion network, which helps segment object boundaries more
accurately. The dilated convolution [9] with a smaller dilation
rate is more effective in extracting low-resolution feature map
information, so a new layer of dilated convolution is added
to the Atrous Spatial Pyramid Pooling (ASPP) module of
DeepLabv3™, and the dilation rate size is adjusted. Simul-
taneously, to reduce the amount of network parameters and
improve the efficiency and training speed of the network,
we replace all the dilated convolutions with depthwise separa-
ble convolutions [10] and perform 2D decomposition. In the
geometry thread, the method of multi-view geometry is used
to determine the motion state of the object, and a new ant
colony search strategy is proposed to avoid the multi-view
geometry method having to analyze all the feature points
using the distribution characteristics of feature points on the
image. This improves the robustness and real-time perfor-
mance of the system.

The rest of this paper is organized as follows. Section II
briefly describes some achievements and shortcomings of
various visual SLAMs in dynamic scenarios. Section III elu-
cidates the architecture of our SLAM system. In Section IV,
we conduct experiments on the TUM RGB-D dataset to verify
the effectiveness and accuracy of the DeepLabv3™_SLAM
system. Finally, in Section V, we conclude and discuss the

paper.

Il. RELATED WORK

The main methods for obtaining the semantic information of
objects include target detection and semantic segmentation.
Target detection is the determination of the object bounding
box, and semantic segmentation is the accurate classification
of objects. Both target detection and semantic segmenta-
tion can be used to recognize dynamic objects in a scene.
In comparison, semantic segmentation is better at recognizing
the results of objects, because the contour of objects can
be accurately segmented. However, the bounding box may
contain pixels that do not belong to the object. After pro-
cessing the abnormal objects using semantic segmentation,
a static background model without any dynamic objects is
established, thus improving the accuracy and robustness of
the visual SLAM system in dynamic environments.

With the rise of neural networks, semantic segmentation
has been gradually introduced into the SLAM semantic sys-
tem. For instance, Yu et al. [11] proposed a DS-SLAM
scheme, which combines the visual SLAM algorithm with the
SegNet [12] network to filter the dynamic part using semantic
information and motion feature points in dynamic scenes.
This method improvs the accuracy of pose estimation, but
the types of objects that can be recognized by the semantic
segmentation network in this scheme are limited, which limits
the scope of its application. Zhong et al. [13] combined
ORB-SLAM?2 and SSD [14] into a new coupling framework
named Detect-SLAM, and proposed a method to propagate
the motion probability of key points in real time to overcome
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the delay of target detection threads. Semantic information
is used to eliminate the negative effects caused by moving
objects in SLAM. This framework aims to improve the effi-
ciency of target detection and sensitivity to the viewpoint
transformation problem, and the real-time performance of the
system must to be further optimized. Xiao et al. [15] proposed
Dynamic-SLAM, constructed an SSD target detector based
on a convolutional neural network, and proposed a missed
detection compensation algorithm based on constant speed of
adjacent frames to address the problem of low recall of SSD
target detection network, which greatly improved the recall
of detection. A selective tracking algorithm is also proposed
to simply eliminate dynamic objects, which improves the
robustness and accuracy of the system. Cui and Ma [16]
proposed a semantic optical flow method, which combines
the semantic information before motion, aids in the calcu-
lation of the epipolar geometry, filters out the true dynamic
features, and keeps only the remaining static features fed into
the tracking optimization module to achieve accurate estima-
tion of the camera pose in a dynamic environment. Zhang
et al. [17] proposed VDO-SLAM, a dynamic feature-based
SLAM system, which utilizes image-based semantic infor-
mation in the scene without prior knowledge of object pose or
geometry to achieve localization, map building, and tracking
of dynamic objects simultaneously. However, there are cases
in which large errors occur due to problems with the algo-
rithm or optimization function, and the real-time performance
requires improvement. Chen et al. [18] proposed DM-SLAM,
which combines the instance segmentation network Mask-R
CNN with optical flow and epipolar geometry to constrain
the outliers in the scene. Two different strategies for obtain-
ing segmentation results of potential dynamic objects in the
dynamic point detection segment are proposed. One method
reprojects the feature points with depth information to the
current frame, and uses the reprojection offset vector to
distinguish dynamic points. The other method uses the epipo-
lar geometric constraints. Long et al. [19] proposed PSPNet-
SLAM, which integrates the semantic thread and geometric
thread of the pyramid structure into ORB-SLAM?2 through
pyramid scene resolution SLAM, which uses a semantic
thread combined with contextual information to segment
dynamic objects. The best error compensation homography
matrix is designed to improve the accuracy of dynamic point
detection, but the ability of the network to process image
frames affects the real-time performance of the system, and
the ability to remove dynamic objects needs to be improved.
Bescos et al. [20] proposed DynaSLAM, which processes
monocular and RGB-D cameras differently. In the case of
monocular, Mask R-CNN [21] is used to detect moving
objects, and in RGB-D mode, the Mask R-CNN network and
the multi-view geometric model are combined to detect mov-
ing objects. This method can detect multiple moving objects
in the environment and repair the background occluded by
dynamic objects. However, the system has difficulty operat-
ing in real-time, because the Mask R-CNN network is time
and resource-consuming for images processing. Ai et al. [22]
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FIGURE 1. Structure of DeepLabv3+_SLAM.

proposed the DDL-SLAM system, which improves the seg-
mentation and background restoration abilities. By com-
bining semantic segmentation and multi-view geometric
algorithms to filter out dynamic objects in the scene, the static
scene map can repair the background obscured by moving
objects for restoration, thus improving the localization accu-
racy in highly dynamic environments. However, the real-time
performance is remains insufficient.

Compared with the traditional ORB-SLAM3, although the
various solutions proposed above how better performance
when detecting the semantic information of objects, there
is room for improvement and research on the correlation
between objects in the semantic information, localization
accuracy and the real-time performance of the system.

IIl. SYSTEM DESCRIPTION

The system proposed in this paper improves on the basis of
ORB-SLAM3. The overall structure block diagram is shown
in Fig. 1. In the improved framework, semantic threads and
geometric threads are added. First, the RGB-D camera col-
lects image data. Then, the data is passed into the tracking
thread for pre-processing, and the DeepLabv3™ model subdi-
vides all the a priori dynamic contents by pixels, while using
the geometric thread module to distinguish the dynamic and
static feature points in the image. Second, the segmentation
results from the DeepLabv3™ model and the motion state
information judged by the geometry module are combined
and used to extract the contour regions of dynamic objects.
Finally, feature points and spatial points of dynamic object
regions are removed, and image frames with only static fea-
tures are used for subsequent tracking and map building, thus
improving the accuracy and robustness of the visual SLAM
system in a highly dynamic environment.

A. SEMANTIC SEGMENTATION DeeplLabv3t

In traditional semantic systems, convolutional neural net-
works such as fully convolutional neural network [23] (FCN),
U-net based on codec architecture [24], SegNet and other
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FIGURE 2. DeeplLabV3* network structure.

algorithms are used in visual SLAM systems. However, each
of these algorithms have problems, such as the lack of in abil-
ity to infer information from the context, the inability to han-
dle the relationship between the scene and global information,
or unable to effectively deal with the relationship between
categories leading to the failure of label association, result-
ing in discontinuous predictions. DeepLabv3™ is the best
segmentation model among a series of DeepLab [25]-[27]
models proposed by Google, but the model is not superior in
terms of processing speed and model capacity. The overall
structure of DeepLabv3™ is shown in Fig. 2. This model
introduces the idea of Encoder-Decoder based on Dilated
FCN. The main function of Encoder is to gradually reduce
the resolution of the feature map and provide high-level
semantic information. The main body of Encoder is DCNN
with dilation convolution, and the classification network used
can be ResNet, Xception or another network, followed by the
ASPP module, which introduces multi-scale information to
capture rich contextual information by performing pooling
operations at different resolutions.

Assuming H; is expressed as a convolution operation with
a convolution kernel size of £ and a dilation rate of r, its
output can be expressed as:

y = H3(x) + Hi?(x) + H{3 (), (1

The main function of the Decoder module is to further
fuse the low-level features and high-level features to improve
the accuracy of the segmentation boundaries and recover
spatial information. The Decoder obtains a feature map with
a resolution of 4 after bilinear upsampling 4 times from the
feature map output by Encoder, and then splices and fuses this
feature map with the feature map obtained after 1 x 1 convo-
lution and dimensionality reduction in the backbone network.
Finally, the module up-samples 4 times by 3 x 3 convolution
to obtain the final predicted semantic segmentation map.

As the backbone network of DeepLabv3™, ResNet per-
forms well. ResNet mainly uses a residual structure based on
bottleneck design, which is generally used when the number
of network layers is greater than 30, so that the network
parameters can be significantly reduced and deeper networks
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can be trained. The ResNet network has largely alleviated
the problem of network degradation caused by the deepening
of network layers to a great extent, so that the network can
learn deeper image features. However, the size of its receptive
field is fixed and single, which cannot be used to fuse multi-
scale features, and does not take advantage of the interaction
between cross-channel features. ResNest’s proposal makes
up for the shortcomings of ResNet.

ResNest is a modification of ResNet that combines the
split attention of the feature map in a single network, and
extends the attention mechanism of the channel dimension
to the representation of the feature map group to form mod-
ularization, as shown in Fig. 3. Compared with ResNet or
its variants, ResNest does not require additional calculations,
and the result is a significant improvement compared to
ResNet and its variants. Therefore, this article uses ResNest
as the backbone network of DeepLabv3™, so that the semantic
thread in the SLAM system has better image segmentation
performance.
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FIGURE 3. ResNest's split-attention block.

B. ASPP MODULE

In the Encoder session, the convolutional layers in the original
ASPP module are 1 x 1 dilation convolution, 3 x 3 dilation
convolution with a dilation rate of 6, 12, and 18, and a
global average pooling layer. With the continuous extraction
of image features by the backbone network, the resolution of
the feature map will continue to decrease, and the dilation
convolution with a larger dilation rate is not conducive to
extracting feature map information with lower resolution.
To address this problem, a new layer of dilation convolution
is added to the original dilation convolution, and the dilation
rate is adjusted to 4, 8, 12, and 16 to improve the extraction of
low-resolution feature map information, the output of which
can be expressed as:

y = Hi(x) + HS (x) + Hi?(x) + HI%(v), )

ASPP stacks the dilation convolutions of different dilation
rates in parallel to obtain multi-scale information gain. The
one-dimensional mathematical expression of dilation rate is:

S
p= xli+rxslwlsl, 3)

s=1
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where x[i] means the input signal, y[i] denotes the output
signal, r is the step size of the sampling, w[s] represents the
size of the convolution kernel as a parameter at position s, and
S means the size of the convolution kernel.

Comparing the depthwise separable convolution with the
standard convolution, we found that depthwise separable con-
volution can largely reduce the excessive number of param-
eters in the training process. The number of parameters in
the standard convolution is about three times the number
of parameters in the depthwise separable convolution for
the same input. Therefore, we replace all the dilation con-
volutions in ASPP with depthwise separable convolutions
to improve the training performance and efficiency of the
system with less impact on the segmentation accuracy.

The main function of ASPP is to extract multi-scale infor-
mation from the feature map. However, the 3 x 3 convolution
will learn redundant information, result in an increase in
the number of system parameters that affects the speed of
the system. In this paper, all 3 x 3 convolutions in ASPP
are transformed into 3 x 1 and 1 x 3 convolutions using
2-dimensional decomposition without changing the dilation
rate. This reduces the number of parameters compared with
the original structure by about 1/3, effectively reducing the
computation of this module, with faster training speed and
the ability to extract important feature information.

The improved ASPP module is shown in Fig. 4. When
the feature map generated by the backbone network is sent
to ASPP for processing, the feature map is first subjected
to a 1 x 1 convolution, the convolution with dilation rates
of 4, 8, 12 and 16, and the global average pooling operation
is performed. Then, the six feature maps obtained are spliced
and fused in the channel dimension. Finally, the feature
map containing high-level semantic features is obtained after
1 x 1 convolution and dimensionality reduction operation.
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FIGURE 4. Modified ASPP framework.

C. DYNAMIC OBJECT DETECTION BASED ON MULTI-VIEW
GEOMETRY

Semantic segmentation networks can only detect dynamic
objects with a priori high probability, but in actual scenes,
the SLAM system will often be disturbed by static objects.
Books and chairs are examples of static objects. However,
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when people move with books or chairs, they should be
regarded as dynamic objects but are regarded as static objects
to participate in the positioning and mapping. This results
in a great impact on the SLAM system. Therefore, we use
a dynamic object segmentation method based on multi-view
geometry for processing. As shown in Fig. 5, the map point
cloud is projected to the current frame, and the object is
distinguished as a dynamic object or static object based on
the viewpoint difference and size of the change in depth value.
By calculating the viewing angle value v of each key point
in the current frame (¢f) and the viewing angle value vy of
the historical frame (4f), if the difference Av = [ver — vpr| of
the viewing angle value is greater than the set threshold, the
key point is determined to be a dynamic point. At the same
time, we also need to calculate the depth value d.r of the key
point in the current frame and the projection depth value dp,,;
of the historical frame in the current frame. If the difference
between the depth values is Ad = |d); — def| = 0, the key
point is determined to be a static point. If Ad is greater than
the set threshold dy, s, the key point is considered dynamic.

i e

FIGURE 5. Multi-view geometry.

D. ANT COLONY STRATEGY

The ant colony algorithm [28] is a simulation optimiza-
tion algorithm that simulates the foraging behavior of ants.
Ants release pheromones related to the path length during
movement. The path length is inversely proportional to the
pheromone concentration, where the optimal path has the
largest pheromone concentration. Ants choose their path
according to pheromone concentration. The ant colony algo-
rithm has two main processes: state transfer and pheromone
update. Assuming that the probability of ant m moving from
node i to node j is pg?, its state transition rule is given by the
following equation:

[2(i, )% x [0, )P .
> ol x o Sl

S€jm(i)
0, otherwise

mo__
pij =

where t(i,j) denotes the pheromone concentration on the
path from i to j, (i, j) is the corresponding heuristic infor-
mation function, ¢ is the information heuristic factor, § is the
expected heuristic factor, and allowed,, is the node not visited
by the ant. The greater the value of «, the more likely the
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ant is to choose the path before moving, and the randomness
of the search path is weakened. The smaller the value of «,
the smaller the search range, and it is easy to fall into the
local optimum. The larger the value of 8, the easier it is
for the ant colony to choose the local shortest path, and the
convergence speed of the algorithm is accelerated. When the
ant completes a path transfer, it will perform a pheromone
update. The update rules are as follows:

Tj(t +n) = (1 — p) x 7;j(t) + Azy(1), )
M

ATi(t) = Y AT, (6)
m=1

where p is the information volatilization factor, p € [0, 1),
1 — p denotes the residual factor, and At;;(t) is the pheromone
increase from i to j at time . When p is too small, there are too
many pheromones that remain on each path, resulting in the
continued search of invalid paths, which affects the efficiency
of the algorithm. When p is too large, although invalid paths
can be excluded from the search range, valid paths may also
be excluded, affecting the search for the optimal solution.

E. NEW ANT COLONY STRATEGY

When the multi-view geometry method transforms the image
of the historical frame into the current frame by projection,
a large number of projected feature points will be obtained.
A point is determined to be a static point or dynamic point by
traversing all the projected feature points. However, there are
thousands of feature points in the feature extraction, and if
each feature must be determined to be static or dynamic, the
real-time performance of SLAM will be limited. In this paper,
based on the strategy of the ant colony algorithm, we propose
anew ant colony strategy to find the group of all dynamic fea-
ture points through the optimal path, so as to avoid traversing
all feature points, reduce the time-consumed by feature point
extraction and improve the real-time performance of SLAM.

In the ant colony algorithm strategy, throughout the process
from the origin to the destination, the ant colony avoids obsta-
cles they encounter to find an optimal path to the destination.
Based on this strategy, this paper sets a search path from
the starting point to the destination, and searches feature
points on the path in turn. Because the dynamic points or
static points in the image are distributed in groups rather than
chaotically scattered throughout the image, when a dynamic
feature point is found, the search will be transferred to the
group in which the feature point is located until all the feature
points of the entire group are detected or the search exceeds
the range of the group. The next dynamic feature point group
will then be searched. When a static feature point is detected,
the point and its group will not be processed, and the search
will continue according to the path.

According to the distribution of feature points in the image,
this paper designs a path / from the departure S to the desti-
nation 7', as shown in Fig. 6. The search strategy is: the ant
colony moves continuously from the feature point m; = 0 on
the path to the next point m;(i = 1,2, ..., n) until reaching

VOLUME 10, 2022



Z. Hu et al.: Semantic SLAM Based on Improved DeepLabv3™ in Dynamic Scenarios

IEEE Access

Path, |

s\ R

FIGURE 6. New ant colony strategy.

the destination target 7. On the moving path, each feature
point m will take itself as the origin, and search for feature
points within a radius R. If a dynamic point is not found,
the search will continue to move forward on path /. When
a dynamic point is found, expand outward with the band-
width A#h. If the next new dynamic point is found, continue to
expand outward with Ak until no dynamic point is found in
the expanded area, then return to path / and continue to search
the next feature point m; that matches the dynamic feature in
turn until path / is completed.

IV. EXPERIMENT AND ANALYSIS

A. EXPERIMENTAL ENVIRONMENT AND DATA SET

In this section, to compare the performance of our semantic
SLAM system and other excellent SLAM systems in dynamic
environments, experiments are conducted on the data set
TUM RGB-D. In addition, the proposed system is compared
with the original ORB-SLAM3 to quantify its improvement
in dynamic scenarios. All experiments were performed on a
computer equipped with an Intel i7 CPU, RTX2080Ti GPU
and 16 GB of memory.

The TUM dataset is an excellent dataset for evaluating
camera positioning accuracy and provides an accurate ground
truth for the sequences. The dataset contains 7 sequences
recorded by an RGB-D camera at 30 fps with a resolution
of 640 x 480. In this section, we use 5 sequences from
the TUM dataset to evaluate the performance and demon-
strate the effectiveness of DeepLabv3™_SLAM in dynamic
environments, namely fr3_s_static, fr3_w_static, fr3_w_rpy,
fr3_w_xyz, fr3_w_halfsphere. Besides fr3_s_static which is
a static sequence, the other sequences are dynamic sequences.
The “s” in the sequence name means ‘‘sitting” and “w”
means ‘“‘walking”. The word after the underscore indicates
the state of the camera, for example, “xyz” indicates that the
camera moves along the x-y-z axis.

To quantitatively evaluate the advantages of our algorithm,
the overall performance of the system is evaluated using
Absolute Trajectory Error (ATE), which indicates the global
consistency of the trajectory, and Relative Pose Error (RPE),
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which measures translational and rotational drift. Root Mean
Square Error (RMSE) can reflect the accuracy and robustness
of the system better than the mean and median values, and
the Standard Deviation Error (S.D.) can reflect the stability
of the system. Therefore, in this paper, the RMSE value
and S.D. value of ATE and RPE are obtained by processing
each sequence separately to judge the positional accuracy and
system stability.

B. EXPERIMENTAL RESULT

The ATE and RPE of ORB-SLAM3, DynaSLAM and
DeepLabv3*_SLAM algorithms were obtained by conduct-
ing experiments on 5 sequences. The results are shown in
Tables 1-3.

As shown in the table, DeepLabV3+_SLAM and
DynaSLAM can significantly reduce the ATE and RPE of
each sequence compared to ORB-SLAM3. In highly dynamic
sequences, the method in this paper shows a significant
improvement in ATE and PRE compared to DynaSLAM,
and in terms of ATE, the improvement values of RMSE
and S.D. reach 25.18 % and 31.88%, mainly because the
proposed semantic segmentation network not only has better
performance, but also considers the information correlation
with geometric threads, so that the DeepLabv3™_SLAM sys-
tem can significantly improve its localization accuracy and
robustness in high dynamic environments. In the low dynamic
sequence fr3_s_static, the improvement of the method in
this paper is not obvious compared with ORB-SLAM3. This
is mainly because ORB-SLAM3 itself is designed for low
dynamic environment and can handle low dynamic scenes
well and achieve good results, so the room for improvement
is limited.

Figs. 7-9 show the ATE and RPE of ORB-SLAM3,
DynaSLAM and DeepLabv3*_SLAM in the high dynamic
sequence fr3_w_xyz. The black line represents the real tra-
jectory of the camera and the blue line indicates the camera
trajectory estimated by the SLAM algorithm. In the high
dynamic environment, the motion trajectory estimated by the
ORB-SLAM3 system has a large gap with the real trajec-
tory, and even produces wrong trajectories in some regions.
On the contrary, DynaSLAM and DeepLabv3*_SLAM sys-
tems have high overlap between the estimated motion trajec-
tories and the true trajectories because the dynamic objects
in the scene are eliminated, and the motion trajectories esti-
mated by DeepLabv3™_SLAM are closer to the true trajecto-
ries than those estimated by DynaSLAM. This indicates that
the method in this paper is more capable of handling highly
dynamic scenes.

The purpose of this paper is to remove the feature points on
dynamic targets and keep only the remaining static feature
points. Therefore, to verify the effect of dynamic feature
point rejection, this paper conducts experiments on the high
dynamic sequence fr3_w_xyz. Fig. 10 shows the original
image, the semantic segmentation image, and the image with
unprocessed dynamic feature points from top to bottom,
where the green dots represent the locations of ORB feature
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TABLE 1. Absolute trajectory error results (ATE[m]).

Improvement Improvement
sequences ORB-SLAM3 DynaSLAM DeepLabv3t _SLAM (compare to ORB-SLAM3) (compare to DynaSLAM)
percentage (%) percentage (%)
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3_s_static 0.0072 | 0.0044 | 0.0064 | 0.0044 0.0052 0.0035 27.78% 20.45% 18.75% 20.45%
fr3_w_static 0.3692 | 0.0528 0.0068 0.0034 0.0060 0.0028 98.37% 94.70% 11.76% 17.65%
fr3_w_xyz 0.6787 | 0.3258 0.0156 | 0.0079 0.0135 0.0065 98.01% 98.00% 13.46% 17.72%
fr3_w_rpy 0.8161 0.3024 | 0.0417 0.0276 0.0312 0.0188 96.18% 93.78% 25.18% 31.88%
fr3_w_halfphere | 0.5939 | 0.3055 0.0302 | 0.0156 0.0276 0.0127 95.35% 95.84% 8.61% 18.59%
TABLE 2. Translation drift results (RPE[m/s]).
Improvement Improvement
sequences ORB-SLAM3 DynaSLAM DeepLabv3t _SLAM (compare to ORB-SLAM3) (compare to DynaSLAM)
percentage (%) percentage (%)
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3_s_static 0.0079 | 0.0046 | 0.0081 0.0041 0.0068 0.0035 13.92% 23.91% 16.05% 14.63%
fr3_w_static 0.1752 | 0.1569 0.0093 0.0048 0.0086 0.0038 95.09% 97.58% 7.53% 20.83%
fr3_w_xyz 0.4105 0.2674 | 0.0206 | 0.0107 0.0178 0.0092 95.66% 96.56% 13.59% 14.02%
fr3_w_rpy 0.4145 0.3116 | 0.0592 | 0.0422 0.0406 0.0237 90.21% 92.39% 31.42% 43.84%
fr3_w_halfphere | 0.3562 | 0.2734 | 0.0279 | 0.0132 0.0238 0.0108 93.32% 96.05% 14.70% 18.18%
TABLE 3. Rotational drift results (RPE[deg/s]).
Improvement Improvement
sequences ORB-SLAM3 DynaSLAM DeepLabv3t _SLAM (compare to ORB-SLAM3) (compare to DynaSLAM)
percentage (%) percentage (%)
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3_s_static 0.2833 0.1223 0.2713 0.1179 0.2488 0.1039 12.18% 15.04% 8.29% 11.87%
fr3_w_static 3.2495 2.8642 | 0.2522 0.114 0.2342 0.1104 92.79% 96.15% 7.14% 3.92%
fr3_w_xyz 7.8974 | 5.4517 0.6229 | 0.3824 0.5785 0.3602 92.67% 93.39% 7.13% 5.81%
fr3_w_rpy 8.3134 | 6.0427 1.3207 0.9055 0.9274 0.5219 88.84% 91.36% 29.78% 42.36%
fr3_w_halfphere | 6.3729 | 5.1487 0.7933 0.3865 0.7268 0.3447 88.60% 93.31% 8.38% 10.82%
250 : / 0t
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FIGURE 7. ATE and RPE of ORB-SLAMS3 in fr3_w_xyz.

points. As can be seen from the figure, the feature points
falling on dynamic objects have been detected and removed
by the method in this paper, while other feature points falling
on static objects are retained. There are also feature points
in some regions at the edges of the human body that are not
well rejected, which is related to the accuracy of semantic
segmentation.

In practical applications, real-time performance is an
important metric for evaluating SLAM systems. Therefore,
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FIGURE 8. ATE and RPE of DynaSLAM in fr3_w_xyz.

to evaluate the real-time performance, we let DeepLabv3™_
SLAM and DynaSLAM run five sequences under the same
hardware conditions and record the time consumed by the
geometric threads, and the results are shown in Table 4.
In terms of running time, since this paper introduces a new
ant colony strategy in the geometric threads, which greatly
reduces the time consumed by the geometric method to judge
the object state information, the method in this paper has
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FIGURE 9. ATE and RPE of DeepLabV3*_SLAM in fr3_w_xyz.

FIGURE 10. Experimental results on a highly dynamic sequence
fr3_w_xyz from the TUM RGB dataset.

TABLE 4. Time evaluation.

Sequence DynaSLAM [ms] DeepLabV3T _SLAM [ms]
fr3_s_static 156.42 146.21
fr3_w_static 227.32 136.28
fr3_w_xyz 323.48 172.17
fr3_w_rpy 209.84 149.89
fr3_w_halfphere 337.47 190.54

better real-time performance compared with DynaSLAM,
thus improving the overall real-time performance of the
SLAM system.

V. CONCLUSION

In order to eliminate the influence of dynamic objects on
the positioning accuracy of the system, we propose the
DeepLabv3*_SLAM system. This system introduces seman-
tic and geometric threads based on the original ORB-SLAM3.
First, a priori dynamic information is obtained through
semantic threads. Then, the dynamic feature points in the
scene are detected in the geometry thread using a multi-view
geometry approach, while a new ant colony strategy is pro-
posed to selectively detect dynamic feature points using the

VOLUME 10, 2022

distribution characteristics of the feature points in order to
improve the real-time performance of the geometry thread.
Finally, to verify the overall performance of the system in
this paper, we conducted experiments and analyses on the
TUM RGB-D dataset, and the results show that the local-
ization accuracy and real-time performance of the system in
this paper are improved in a highly dynamic environment
compared with existing advanced SLAM frameworks.

Despite the progress in localization accuracy and real-time
performance, there are still many deficiencies. On the one
hand, the real-time performance of the system still needs to
be improved, and the speed of geometric thread image frame
processing needs to be improved. On the other hand, we still
need to continuously optimize the semantic segmentation
network to improve the accuracy of network segmentation,
or select other excellent and lightweight networks to help
the system more effectively eliminate the impact caused by
dynamic objects.
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